
Machine Learning: Science and
Technology

PAPER • OPEN ACCESS

Discovering quantum circuit components with
program synthesis
To cite this article: Leopoldo Sarra et al 2024 Mach. Learn.: Sci. Technol. 5 025029

View the article online for updates and enhancements.

You may also like
Solving quantum statistical mechanics with
variational autoregressive networks and
quantum circuits
Jin-Guo Liu, Liang Mao, Pan Zhang et al.

-

Transforming two-dimensional tensor
networks into quantum circuits for
supervised learning
Zhihui Song, Jinchen Xu, Xin Zhou et al.

-

Variational quantum reinforcement
learning via evolutionary optimization
Samuel Yen-Chi Chen, Chih-Min Huang,
Chia-Wei Hsing et al.

-

https://doi.org/10.1088/2632-2153/ad4252
/article/10.1088/2632-2153/aba19d
/article/10.1088/2632-2153/aba19d
/article/10.1088/2632-2153/aba19d
/article/10.1088/2632-2153/ad2fec
/article/10.1088/2632-2153/ad2fec
/article/10.1088/2632-2153/ad2fec
/article/10.1088/2632-2153/ac4559
/article/10.1088/2632-2153/ac4559

Mach. Learn.: Sci. Technol. 5 (2024) 025029 https://doi.org/10.1088/2632-2153/ad4252

OPEN ACCESS

RECEIVED

30 September 2023

REVISED

24 March 2024

ACCEPTED FOR PUBLICATION

23 April 2024

PUBLISHED

3 May 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Discovering quantum circuit components with program synthesis
Leopoldo Sarra1,2,∗, Kevin Ellis3 and Florian Marquardt1,2
1 Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
2 Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 5, 91058 Erlangen, Germany
3 Cornell University, Ithaca, NY, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: leopoldo.sarra@gmail.com

Keywords: quantum circuits, machine learning, program synthesis, quantum physics

Abstract
Despite rapid progress in the field, it is still challenging to discover new ways to leverage quantum
computation: all quantum algorithms must be designed by hand, and quantum mechanics is
notoriously counterintuitive. In this paper, we study how artificial intelligence, in the form of
program synthesis, may help overcome some of these difficulties, by showing how a computer can
incrementally learn concepts relevant to quantum circuit synthesis with experience, and reuse
them in unseen tasks. In particular, we focus on the decomposition of unitary matrices into
quantum circuits, and show how, starting from a set of elementary gates, we can automatically
discover a library of useful new composite gates and use them to decompose increasingly
complicated unitaries.

It has been theorized for decades that quantum computers can perform tasks more efficiently than classical
ones [1]. Consider, for example, Shor’s algorithm for factorization [2] or Grover’s algorithm for search [3],
the variational quantum eigensolver [4] or other quantum machine learning algorithms [5], which can all
have a significant impact on important problems. Although those algorithms are very promising and justify
the current effort in the development of large-scale quantum computers [6], it is difficult to exploit the
advantages offered by quantum computing automatically. Indeed, each of those algorithms has been
invented specifically for the task it solves, and often their principles do not generalize easily to other tasks.
Currently barely two hundred algorithms exist [7]. While there is strong evidence of a quantum
advantage [8], i.e. quantum computers can be more powerful than classical ones, and this advantage on
near-term devices has been shown experimentally for specific purpose-designed tasks [9–11], we do not have
a way to automatically make use of quantum principles such as superposition or entanglement to speed up
classical algorithms: each algorithm must be designed from scratch and it is not known a priori whether a
corresponding faster quantum algorithm could exist. Compared to the classical regime, quantum mechanics
is generally counterintuitive, and thus a significant effort and imagination is required to conceive quantum
algorithms. Hence, a technique for understanding the laws of the quantum world and finding efficient
approaches to solve a given task on a quantum computer would be an invaluable tool in the development of
new quantum algorithms and general principles which can grant quantum speed up. This long-standing goal
is currently out of reach, but worthy of exploration to develop ingredients potentially useful for that purpose.

This paper takes a step in that direction by considering a simpler core subproblem: instead of working on
entire quantum algorithms, we focus on the purely quantum part, excluding measurements and classical
processing. We develop a machine learning technique to automatically produce a quantum circuit which
performs a desired unitary transformation of a quantum state. The main innovation of our approach to this
general problem is the gradual discovery of new composite gates, which can subsequently be used to
decompose increasingly complicated unitary matrices. In this way, we can build a self-learning compiler,
which can express a given unitary matrix into a given set of gates and satisfy given qubit connectivity
constraints, without providing explicit transformation rules. Instead, we propose a training set of unitary
matrices to decompose, with varying degrees of difficulty.

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ad4252
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ad4252&domain=pdf&date_stamp=2024-5-3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7504-8656
https://orcid.org/0000-0001-6586-0632
https://orcid.org/0000-0003-4566-1753
mailto:leopoldo.sarra@gmail.com

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure 1. Synthesis of quantum unitaries. Given a dataset of target unitary matrices, we enumerate quantum circuits for a given
timeout interval, using the elementary gates in the library as components. After some matrix decompositions have been found,
the solutions are analyzed and the most useful components are added to the library as new available gates. The procedure is
repeated for a given number of iterations.

At a high level, our method works by iteratively (1) searching for correct decompositions, assembling
gates from our current set of components, and (2) extracting new components by analyzing the solutions
found in the previous step. In doing so, our system gradually learns increasingly useful quantum operations,
which it uses to decompose more complex matrices (figure 1). At first, our method automatically rediscovers
suitable representations of common gates such as SWAP and CZ, even when they are not initially provided to
the system. Importantly, it also proposes new unexpected combinations of gates which prove to be valuable
ingredients in the construction of more sophisticated unitaries. Circuits too difficult to synthesize by
randomly assembling the initial elementary components can be tractably found using new gates proposed by
the system itself while building simpler circuits. In that way, the system bootstraps a set of new gates from
solving simpler problems, which unlocks solving more complex problems, leading to new gates, and so on.

The technique presented here introduces concept extraction and program synthesis to the field of
quantum computing and shows proof-of-concept applications to the domain of unitary matrix
decomposition. We demonstrate the importance of bootstrapping advanced concepts from simpler ones, and
how these concepts can be used to solve increasingly complex problems. The choice to express concepts as
small ‘programs’ also allows better interpretability, in comparison to other possible black-box approaches
such as neural networks [12]. Extensions of these ideas will allow significant improvements to existing
machine learning methods in quantum computing.

1. Related works

The synthesis of quantum unitary matrices, to which we will also just refer as ‘unitaries’ in the following, is
the process of building a quantum circuit by placing gates one after the other, acting on selected qubits, to
reproduce the effect of the given unitary. The problem of building a circuit that reproduces the action of a
given unitary, or of another quantum circuit, using only a given set of gates, or respecting some given
constraints, is well-known in the literature, and is called compilation [13]. On the other hand, if the unitary
is given by a circuit expressed in a set of gates, and we want to find an equivalent circuit which uses another
set of gates, the process is called transpilation. Many algorithms already exist to compile given unitaries into
circuits [14] that only use a given set of gates, e.g. the ones that can be physically implemented, some even
using machine learning and reinforcement learning techniques [15]. Many other works explore different

2

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

directions for optimizing the total number of gates in a circuit [16] or reducing the number of a given kind of
gate, which may be more expensive or noisy in the considered implementation [17]. For example, the
Solovay–Kitaev algorithm [18, 19] can approximate with arbitrary error any given unitary matrix with a
given finite set of gates, as long as this set can approximate any one-qubit gate. In our case, we build a
self-learning compiler, which changes its behavior according to the experience, until converging to the
optimal solution for the given architecture. This kind of compiler does not need explicit rules about how to
decompose the given unitary matrix, but just a series of matrices to decompose with increasing difficulty. We
emphasize that the main interest in our case is not in reproducing the performance of a state-of-the-art
compiler, or transpiler, but to investigate how to imitate the ability of scientists to learn new concepts and
reason with them, for example by building more and more complicated circuits from elementary
components whose behavior is known. In our examples, we mainly optimize for conceptual efficiency,
i.e. number of used high-level operations to express a quantum operation, rather than for the effective
experimental implementation cost (e.g. total gate number minimization). Different constraints can
potentially be chosen nonetheless.

After expressing quantum circuits more conveniently, we can take advantage of machine learning
techniques to assemble them until the requested unitary is produced. We build on machine learning
techniques for program synthesis [20]. Program synthesis methods automatically construct source code, and
our work exploits the fact that a quantum circuit can be easily expressed as a simple program. Recent
program synthesis techniques use neural networks to learn how to generate source code ([21], inter alia).
Our work uses a slightly different family of learning methods which casts program synthesis as Bayesian
inference [22]. This probabilistic Bayesian framing allows searching for the most likely programs that solve a
given unitary, and also learning to generate good programs via hierarchical Bayesian methods. These
Bayesian program learning methods were developed in a series of works [23–25]. We directly build upon
DreamCoder [26], a recent work in this family.

Coming back to the much higher conceptual level, regarding the longer-term idea of an ‘artificial
scientist’, the first proof-of-principle of an agent capable of conducting research on its own has been shown
in [27], to automate functional genomics experiments. The idea of automatic concept discovery from
experience is a helpful ingredient for this long-term goal, as it is a first step towards reasoning. Indeed, there
has already been a large interest also in other fields of physics ranging from the design of new quantum optics
setups [28], the use of symbolic regression and graph neural networks to find new laws of astrophysics [29],
to the general development of algorithms capable to formulate scientific laws [30]. In [31], the idea of
extraction of building blocks is used in a reinforcement learning setting to produce quantum entangled
states. Also, projective simulation [32] allows employing reinforcement learning agents to explore novel
algorithms for quantum communication [33]. While these techniques share the idea of concept extraction to
solve a specific quantum task, in the usual reinforcement learning setting the discovery of new components is
an incidental effect, obtained while achieving the task. In our case, the goal of circuit decomposition itself is
the discovery of new useful gates, by minimizing the overall complexity of the solutions, quantified in terms
of description length [34, 35].

2. Methods

In this section, we explain how our algorithm for unitary synthesis and gate extraction works. As shown in
figure 2, quantum circuits can be seen as programs that subsequently apply operations to a given state:
starting from the identity matrix, representing a circuit without any gates, each operation corresponds to a
multiplication by the unitary matrix associated to the applied gate. The final unitary matrix is built up by
sequentially multiplying all the unitary matrices. By working on programs that build up the sequence of
operations that make a circuit, we can explore the space of possible unitary matrix decompositions with
program synthesis.

To begin, we define a probability distribution over quantum circuits c. Our learning algorithm works by
adjusting the distribution over c to make useful circuits more likely. The distribution depends on the set of
allowed gates, G, together with the probability of each gate g ∈ G, which we write θg . We decompose it as a
product of the probability of choosing the specific gates and applying those gates to the selected qubits. We
assume gates are generated independently at random, and that they attach to wires (i.e. qubits) drawn
uniformly and independently at random:

P(c|G,θ) =
∏

g∈c

1 [g ∈ G]θgχ(c,g) , (1)

where 1 is the indicator function, yielding one iff the condition is fulfilled, and χ(c,g) the probability of
connecting the gate to the specific qubits. For example, we use uniform probability of associating a gate to

3

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure 2. Unitary matrix representations. A quantum unitary matrix (a) can be represented as a quantum circuit (b), a sequence
of instructions about the gates and the qubits on which they act (c), or a tree representation of a program (d). When enumerating
new programs, the input identity matrix (I) is replaced with another gate applied to other qubits, creating a new branch.

any of the possible qubits: χ(c,g) = N
−ng
c , with ng is the number of inputs to gate g, Nc is the number of

qubits in the circuit c. If the resulting circuit is not valid, for example if the inputs of a CNOT gate are
repeated, it is automatically discarded, which leads to a small modification of the probability χ whose
discussion we omit since it is not crucial for understanding the workings of the algorithm.

Notice that by optimizing the choice of the set of gates G, it is possible to make more complex circuits
more likely.

Ultimately our aim is not to probabilistically score specific circuits but to learn a collection of gates that
are valuable for solving a broad range of unitary synthesis problems. To that end, we assume that we have a
training set of unitary matrices to decompose, collectively written U. Our algorithm tries to maximize the
posterior probability of the gate set, given that it must solve every unitary in U : it finds the optimal gate set
and optimal gate probabilities as

(G∗,θ∗) = argmax
G,θ

P(G,θ|U) , (2)

where we employ Bayesian reasoning to write

P(G,θ|U)∝ (3)

P(G)P(θ|G)
∏

u∈U

∑

c

1 [U (c) = u]P(c|G,θ) , (4)

where P(G) is the prior over gate sets, P(θ|G) is the prior of gate weights of a given gate set, and U(c) is the
operator that gives the unitary matrix associated to a given circuit. The above equation is computationally
intractable because it includes summing over the infinite space of all circuits (inner sum over c). We
introduce a tractable lower bound on equation (4) by only summing over a small set of possible circuits for
each unitary. Writing Bu for the small set of circuits we consider for unitary u, our objective function
becomes lower-bounded by

P(G)P(θ|G)
∏

u∈U

∑

c∈Bu

1 [U (c) = u]P(c|G,θ) . (5)

Equation (5) serves as our core objective function for learning a library of gates. A more detailed derivation
of this objective is given in the appendix B, and in the original work [26]. Maximizing it with respect to
(G,θ) corresponds to updating our gate set to increase the probability of a circuit solving each unitary.
Maximizing it with respect to Bu corresponds to program synthesis: finding a handful of likely circuits that
evaluate to a given unitary.

More precisely, our system takes as inputs the example unitary matrices to learn to decompose, U,
together with a set of initial elementary gates, G0. The unitaries provided as examples in U determine which
assemblies of gates are the most useful, thus the optimal set of learned gates G∗. The algorithm iterates many
times through two phases: program synthesis, where circuits that decompose target matrices are proposed,
and library learning, where concepts are extracted from the found circuits and the most useful sequences of

4

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

gates are added to the set of elementary gates G as a composite gate. It can then use the new gate as a single
block in the subsequent iterations of program synthesis. Mathematically, program synthesis corresponds to
maximizing equation (5) w.r.t. Bu, while library learning corresponds to maximizing w.r.t. (θ,G). A sketch of
the algorithm is shown in figure 1.

2.1. Program synthesis
During this phase of the algorithm, we seek the top kmost likely programs solving each unitary:

Bu← arg k−maxc P(c|G,θ)1 [U (c) = u] , (6)

where arg k−maxc is the function that returns the arguments with the largest k values. To find those top k
circuits, we enumerate programs in order of decreasing probability under P(·|G,θ) until k solutions have
been found or we reach a timeout. We construct the syntax trees of candidate programs bottom-up, with
higher probability expressions being generated first, using recent algorithms for probabilistic program
enumeration [36, 37]. As an optimization, we discard any programs containing subexpressions that are
semantically equivalent to higher-probability subexpressions, meaning they evaluate to the same unitary (in
the literature called pruning by observational equivalence [38]). Within our implementation, we search for a
maximum budget of 200 s and collect the top k= 2 programs for each unitary.

In practice, to accelerate the convergence in the algorithm, we do not update the programs for every
unitary at each iteration. Instead, we sample a small batch of unitaries and only synthesize programs for
those tasks. This is analogous to the use of mini batching for training neural networks using gradient
descent [12]. Essentially, it allows taking fast, small learning steps (updating the set of available gates G)
without examining and analyzing the entire training set.

Although enumeration may seem like a very basic program synthesis strategy, our goal is to learn a
sophisticated set of gates G such that even a simple enumerative search can quickly uncover interesting
unitaries. Thus, the ability of the program synthesis to succeed hinges critically on learning a good gate
library G, which we describe next.

2.2. Library building
During the library building step, we augment the library of gates by adding new compositions of gates that
the system itself proposes. We do this by analyzing the circuits found during the program synthesis phase and
extracting commonly occurring patterns of gates. Adding these new patterns of gates to G increases the
probability of generating circuits that use them.

On the other hand, the goal of library building is not to simply memorize every successful circuit, even
though memorizing would most increase the probability of the programs found so far. Instead, we want to
find new gates that generalize the patterns found in the synthesized programs. Striking the right balance is
accomplished by prioritizing gate sets that are compressive, i.e. have small description length [34, 35].
Remembering that our goal is to maximize equation (4), we see that we need to not just make the circuits
likely under G, but also have a G with a high prior probability P(G). Our system uses a prior that assigns less
probability to larger sets of gates and to gates with many subcomponents, which exerts pressure for
proposing new gates that are small, yet broadly useful across many tasks.

Algorithmically, our system proposes new gates by extracting fragments of program syntax trees
discovered during the previous program synthesis phase. Given a set of candidate new gates, G′, it then
constructs a set of candidate new libraries that extend the old library by exactly one gate:
{G∪ {g ′} : g ′ ∈ G ′}. For each such G∪ {g ′}, the system estimates a new θ using
expectation-maximization [35]. The system finally computes the objective function in equation (5), and
takes the gate which most increases it. This entire process repeats until equation (5) fails to improve, and
then another round of program synthesis begins. See [26] for details.

Despite the apparent simplicity of the synthesis step, the overall algorithm is substantially more efficient
than simple brute-force enumeration, as each component is used according to its assigned probability, and
branches of the tree are pruned as they are discovered to be equivalent to already known branches. Also, the
addition of the extracted gates to the set of elementary gates increases the breadth of the search tree (more
components to choose from at each step) but reduces the required depth of the search (number of
components to put together one after the other). Without these tricks, there would be a combinatorial
explosion with the depth of the tree (e.g.O((gn)d) with g elementary gates, n qubits and depth of the tree d,
considering only 1-qubit gates in this rough estimate). It would be just unfeasible to decompose very long
circuits, and this is why reducing the depth to explore is so helpful. Using the probabilistic guidance of the
learned (G,θ), we can discover a circuit c in at mostO(1/P(c|G,θ)), which may be much better than
O((gn)d) if the target circuit c employs similar computational motifs to the training data. In some sense, this

5

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

algorithm allows us to learn a domain-specific language for quantum circuits, by discovering a good prior to
guide the circuit synthesis.

2.3. Convergence of the algorithm
Wemaximize the posterior in equation (4) by repeating two steps: (1) estimating a small collection of circuits
that have high probability, and (2) improving the set of gates used to build those circuits (along with their
probabilities θ). Both steps are approximations. We now discuss convergence properties of these
approximations.

During the program synthesis phase we approximate P(u|G,θ), whose exact computation demands
summing over every possible program that could generate u. Rather than sum over all programs, we consider
the top kmost likely that we can assemble in a given timeout interval t, effectively ignoring circuits with low
prior probability (even if they might have high posterior probability). Formally, it is well known that
quantities like P(u|G,θ) are lower-semicomputable [39], and in the limit as the timeout budget t→∞ and
the program budget k→∞, our bounded approximation becomes exact. In practice, as we learn the prior
over successive iterations, the approximation should become increasingly accurate as the system learns to
solve more circuits: Initially we receive no learning signal from unitaries that cannot be solved within the
given timeout, but as long as some new matrices are decomposed at each iteration, the prior (G,θ) should
shift such that our bounded approximation covers a larger share of the posterior probability mass.

The other approximation that affects the convergence of the algorithm takes place during the library
building step. Starting with an initial set of elementary gates, new gates are added incrementally at each step.
This procedure is greedy—the next gate library is built on top of the one from the previous step—so this
optimization may be suboptimal. In addition, since we sample a small batch of unitaries to decompose at
each iteration, the batching order can affect the final outputs. After the first batch, some gate sequences may
be selected and added to the elementary gate set. This will change the circuits enumerated during the next
iteration. More computationally expensive alternatives include building a new gate set from scratch
according to the enumerated solutions up to that particular iteration, or additional mechanisms such as
pruning seldom-used gates. Larger batches of unitary matrices reduce the randomness of the algorithm.

As a consequence of these approximations, our algorithm does not necessarily converge to the global
maximum of the likelihood in equation (2), but may get stuck in a local maximum. While the enumeration
of programs that decompose a given matrix can be easily improved by increasing the timeout, and thus
convergence to the correct circuits can be guaranteed, it is not possible to guarantee the convergence to the
optimal library. However, it is not obvious that optimality on the training set is truly the goal: like many
machine learning algorithms, the global optimum of the loss function depends on the training set (in our
case, the unitary matrices to be decomposed), but performance is evaluated on the test set, which may have a
different global maximum. Since we want to build a library of gates that can be used to efficiently decompose
new (unseen) matrices, generalization properties are desirable.

3. Results and discussion

In this section, we show the application of our unitary matrix decomposition algorithm using an elementary
set of gates, which can theoretically approximate any circuit. We show results when enforcing either full
connectivity between qubits, or only allowing gates between nearest-neighboring qubits (e.g. between qubit
0 and 1 but not 0 and 2). To make the search faster and focus on the proof of concept, we limit ourselves to
discrete gates, i.e. gates that do not depend on a tunable real parameter: this would require an optimization
over the parameter of the gates, in addition to the search among the possible programs. For simplicity, we also
fix the number of qubits to be the same in the entire set. In particular, to avoid the combinatorial explosion
due to input qubit combinations (a n-qubit gate should be tested on all permutations of qubit inputs), we
limit our examples to circuits with only 3 qubits, but generalizations to larger circuits are of course possible.

We choose G0 ={H, T, T†, CNOT} as the elementary gate set. This essentially corresponds to the Clifford
gate set, plus T gates to make it a universal approximator [40, 41]. We also include the T† gate, which itself
corresponds to seven T gates, to spifeed up the search. The choice of the target unitary set U is important, as
the extracted gates will be selected to maximize the decomposition efficiency over those tasks. In general,
some unitaries are much harder to approximate because they require many elementary gates. Sampling from
the space of unitary matrices would generally produce matrices that are too hard to decompose when
starting from our elementary set of gates and trying combinations of them. In our experiments, to be sure
that it can be decomposed in a finite amount of search time, we build U by defining another set of gates,
Gtasks, which uses more high-level operations. We sample circuits from Gtasks by randomly putting gates on
the circuit. The unitaries associated with the sampled circuits will be the target for our algorithm. To keep the
decomposition difficulty under control, also the gates in Gtasks have no continuous parameters, in particular

6

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure 3. Unitary synthesis with full connectivity among qubits. (a) Fraction of solved tasks at each iteration. (b) Likelihood to
decompose some target unitaries during the algorithm iterations (P(u|G,θ)). The star symbol shows the first iteration in which
the target matrix has been successfully decomposed. As new gates are discovered, some matrices become easier to decompose. For
three tasks, we show the circuit that generates the target matrix in the insets. In both figures, the blue symbols mark the iterations
at which a new gate has been extracted.

Gtasks = {H, T, T†, S, X, Y, Z, SX, SX†, CNOT, CY, CZ, CS, CH, SWAP, iSWAP}. We first generate a set of
matrices by enumerating all the possible circuits given by this set within 50 s. From this set, we select 1000
matrices to build U. To make sure that the train set always contains a significant fraction of both easy and
difficult decomposition tasks, we choose them with uniform probability in the number of gates of the initial
circuits, taking into account only circuits generated within the timeout. All other generated unitaries are
included in our test set T, and they will be used to assess the performance of the algorithm. The target dataset
thus contains tasks with different levels of difficulty, allowing the algorithm to gradually learn to solve more
and more complicated tasks. It is important to include unitaries with different decomposition lengths.
Indeed, only after some tasks are solved it is possible to extract gates that can be used to solve other tasks
since we need at least some elements in Bk in equation (5). If all tasks are too complicated, the learning
procedure will not start and each iteration will not provide any benefit, since it will always propose the same
programs. In that case, the enumeration timeout should be increased until some solutions are found.

We perform 100 algorithm iterations, each time considering batches of 25 tasks and enumerating for 150
s (in parallel with 32 CPUs). We see that after some iterations we can solve most of the about 50 000 of tasks
in the test set. Every time we learn a new gate, the algorithm starts using it to explore new circuits thus solving
more tasks. To evaluate the performance of the algorithm, we can consider the test set T (which the algorithm
has never seen during the previous iterations) and check how many unitaries can be decomposed into a
circuit. Results are shown in figure 3. After about 50 iterations, the algorithm can decompose almost all the
proposed matrices. The algorithm rediscovers suitable decompositions of gates into the available elementary
gates. For example, it finds useful elementary decompositions of high-level gates like the SWAP gate and the
Pauli gates, adding them as building blocks to its library. Importantly, it goes beyond those simpler examples
and discovers more complicated composite gates, which also seem to be useful to reuse. By discovering useful
building blocks, matrices that are initially impossible to decompose in the given time budget because of the

7

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure 4. Analysis of extracted gates. (a) Evolution of the probability of using a certain gate (θ). Some extracted gates (in blue)
become more important during the iterations, while some elementary gates (in black) become rarer. (b) Likelihood of
decomposing the target unitaries with different elementary sets: the initial set of gates, the final one (which also includes the
extracted gates), and the set of gates with which the target dataset has been generated. (c) Final probability of using a certain gate
in G100 (‘weight’) and in the found solutions (‘frequency’). In blue are shown the extracted gates, in black the initial ones (in
decreasing order: CNOT, T, Hadamard, and T†). (d) The first few most useful extracted gates.

high number of required components are easily decomposed into short sequences of the newly extracted
components. Indeed, as soon as a new gate is extracted, many new unitary matrices can immediately be
decomposed. The ‘train’ and ‘test’ curves are obtained by checking all the found programs at a given iteration
against each unitary matrix in the target set U and test set T. We recall that here we consider the whole target
set for evaluation purposes, but the algorithm only has access to a small random batch of matrices at each
iteration. As figure 3(b) shows, the difficulty to decompose a given matrix changes during the algorithm
iterations: when new gates are added, some unitaries suddenly become easier to be decomposed, while other
matrices, which mainly use the initial elementary components, become less likely to occur because those
components become less frequent in the enumeration. Overall, all matrices become easier to decompose.

It is also interesting to inspect the library of extracted gates and try to interpret their behavior. As seen in
figure 4, after discovering composite gates, initial gates like T become less useful and are used less often, while
some new gates like ‘f18’, which corresponds to a controlled Hadamard gate suitably decomposed into
elementary gates, and ‘f4’, which corresponds to a controlled Z gate, are used more often than CNOT. By
looking at figure 4(b), we see that, initially, it is generally very hard to find decompositions for the target
matrices (in orange). After running the algorithm, we have a new set of gates (in blue) that allows
decomposing most of the matrices. We go from problems with probability(e−60 to be solved to(e−20,
about 17 orders of magnitude larger probability, which make it feasible to find the decomposition in a finite
amount of time. It is interesting to observe how a different choice of elementary components can make the
decomposition easier. In particular, the extracted set of gates at the final iteration, G100, makes the
decomposition of the target matrices even easier than when using exactly the same set we used to generate

8

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure 5. Unitary synthesis with only nearest-neighbor connectivity among qubits. (a) Percentage of solved tasks at each iteration.
(b) Some extracted gates. (c) Example decomposition of a high-level circuit into the requested gate set.

the target dataset itself (in green). In other words, our algorithm discovers a set of quantum gates to describe
the target dataset that is even better than the set that we used to generate it, Gtasks. For example, it turns out
that it is much more useful to have two-qubit gates like CH and CZ than CNOT.

We also performed another experiment with the same parameters, but this time we constrained the
2-qubit gates to only act on neighboring qubits. This configuration resembles a linear array of qubits, where
interactions are constrained to nearest neighbors. Also in this case, the algorithm learns to decompose more
and more matrices with experience. We notice that this time a larger fraction cannot be decomposed yet even
after 100 iterations. This is due to the larger difficulty of this problem, and with more iterations and larger
enumeration timeout results would keep improving. Again, the algorithm learns more complicated gates and
finds similar results as in the previous example. In addition, it also learns gates that allow it to efficiently
handle the enforced connectivity constraint, like the SWAP gate between the first and the third qubit (by
swapping with the middle one) and similar two and three-qubit gates. The automatic extraction of
composite gates allows for expressing concisely very long sequences of gates. Results are shown in figure 5.

The final outcome of the algorithm depends of course on the chosen definition of being a better set of
gates: in this case, we wanted to minimize the number of components to put in a circuit so that all target
matrices could be decomposed with some high-level gates. However, different constraints can be considered,
for example, to include the overall length of the circuit in terms of elementary components or a different cost
for the use of each component.

4. Outlook

In this paper, we have shown how concept extraction and program synthesis techniques can potentially help
quantum computing, by providing tools to work and reason with the quantum world. In particular, we have
shown a procedure to discover useful quantum gates (in terms of reusability) by just giving a set of unitary
matrices to decompose. This can be seen as a first step toward the longer-term goal of enabling the discovery
of new quantum algorithms.

9

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

The extension to larger qubit numbers will require careful optimization of the performance of the
different parts of the algorithm (search and library building), but we anticipate there is a lot of room for
improvement here. Indeed, our experiments take about 20 min per iteration to run, and systems with more
qubits would require much more time. It is also possible to test the generalization capabilities by running
first on smaller systems and then trying to solve more complicated tasks on larger systems. To improve
performance, it would be possible to restrict the decomposition to the Clifford gate set, so that calculation
would be faster, e.g. by exploiting highly optimized Clifford simulators that can deal with large qubit
numbers [42]. To tackle the combinatorial explosion due to the larger number of possible qubits a gate can be
applied to, more advanced approximations for the circuit distribution P(c) in equation (1) may be employed.
For example, instead of factorizing the circuit distribution as the product of the probability of its gates, we
could condition the probability of a gate to the previous ones, improving the precision of the enumerator.

One of the most important future extensions would concern the choice of the set of target unitaries.
While in our case these were generated as random circuits from a high-level gate set, the application to more
structured training sets would greatly increase the power of the approach. We are thinking, in particular, of
circuits generated from a library of quantum algorithms.

Different connectivity constraints may also be enforced, or one could extend the programs that generate
the circuits to also include programming constructs like conditions and loops. In the long run, the presented
library bootstrapping procedure can be part of future algorithms to automatically extract components and
reuse them in a curriculum-learning approach [43]. Also, it would be possible to adopt this concept
extraction algorithm as an additional step of a reinforcement learning agent [44] that tries to decompose a
unitary matrix. In that case, the goal would be to train an agent (i.e. a probability distribution of putting a
certain gate given the current circuit) to synthesize the unitary, where the state would be the current circuit,
and the possible actions would be the allowed elementary gates. It would be possible to extend the action
space by adding the extracted gates, thus facilitating the exploration of the circuit space, as in hierarchical
reinforcement learning [45].

Finally, on a more general level, the ability to extract concepts and to use them in further exploration is
also interesting for the development of future ‘artificial scientist’ algorithms, here applied to the quantum
domain and specifically quantum computation, aimed at reasoning and developing scientific models
similarly to humans: the possibility to define concepts and reason about them is reasonably a necessary skill
for this purpose. Similar techniques can be a useful addition to existing machine learning algorithms for
quantum circuit design, and, in the long run, they may help to develop new quantum algorithms.

The code of the algorithm and the instructions to reproduce the presented examples are open-sourced on
GitHub 4.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
zenodo.org/record/8213680 [46].

Acknowledgments

This work was supported by the Munich Quantum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern Plus, and by the Max Planck Society.

Appendix A. The program synthesis algorithm

To apply the program synthesis framework presented in [26], we need to express quantum circuits as
programs. The specific formalism that we adopt is that of functional programming, typed-λ-calculus [47] in
particular. Each quantum gate becomes a function that takes as input a quantum circuit and the sequence of
qubits on which it should act, and returns a quantum circuit with the requested gate applied on the right. In
this way, a program is simply the sequential application of many gates, starting from the empty circuit I.

For example, the circuit in figure A1 can be expressed as

f = cnot(x(I,0),0,1).

Lambda calculus allows representing and working with these kinds of expressions efficiently, so that each
function and its arguments are associated to the leaves of a tree and new programs can be obtained by
modifying existing trees. In this language, the previous function is expressed as

4 https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified.

10

https://zenodo.org/record/8213680
https://zenodo.org/record/8213680
https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure A1. Example circuit.

(lambda (lambda (lambda (cnot (x $0 $1) $1 $2))))

where $0 is the initial input circuit and $i the qubit index (increased by one). For the technical description of
the lambda calculus programs as trees and their advantages, we refer to the DreamCoder paper [26].

Appendix B. Probabilistic framing

In this section, we give some more details about the probabilistic framing that yields the optimization
objective of our algorithm, while still referring to [26] for the full treatment. We want to find the optimal set
of gates G∗ and the optimal single gate probabilities θ∗ = {θg,∀g ∈ G}. For this purpose, we perform
Bayesian inference using Bayes theorem [48]. The posterior reads

P(G,θ|U) = P(U|G,θ)P(G,θ)
P(U)

, (B.1)

where P(G,θ) is the prior, P(U|G,θ) is the likelihood, and P(U) the marginal probability of the evidence. We
can consider U as constant because it does not depend on this set of gates, hence we drop the denominator
from the above equation (equation (2)):

(G∗,θ∗) = argmax
G,θ

P(G,θ|U) . (B.2)

By definition, we can factorize the joint distribution as P(G,θ) = P(G)P(θ|G), and write the likelihood as

P(U|G,θ) =
∏

u

P(u|G,θ) , (B.3)

where P(u|G,θ) is the probability of a specific unitary u given G and θ, because of the independence between
different unitary matrices in the dataset. The probability of a specific unitary can in turn be written as a
function of the probability of generating it from sequences of gates in G:

P(u|G,θ) =
∑

c

P(u|c)P(c|G,θ) , (B.4)

where the sum over c is intended over all the circuits that can be generated by assembling sequences of gates
in G. In our case, each unitary is deterministically induced by a circuit, thus

P(u|c) = 1 [U (c) = u] . (B.5)

The probability of a circuit given a gate set can be rewritten as a function of the gate probabilities θ. Indeed, a
circuit is a sequence of gates, each applied to a set of qubits. In general, the probability of the ith gate could
depend on all the previous gates, thus the probability of a sequence of gates would read
P(g0)P(g1|g0)P(g2|g1,g0) In our case, we made the roughest approximation to consider these probabilities
to be independent:

∏
g θg. The probability of a circuit is thus obtained by multiplying the gate sequence

probability and the multiplicity factor that takes into account the number of inputs of the gate and the
number of possible qubits to connect it to. Therefore, we obtain equation (1)

P(c|G,θ) =
∏

g∈c

1 [g ∈ G]θgχ(c,g) . (B.6)

If the resulting circuit is not valid, for example, if the inputs of a CNOT gate are repeated, it is automatically
discarded. In this case, the χ factor would include an extra characteristic function that selects only the
accepted circuits. In particular, to obtain gate sequences of variable length, when sampling we add a
terminating gate to G with some probability θend and stop the sequence as soon as the gate gets extracted.

11

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

By putting it all together, we obtain the optimization objective in equation (4)

P(G,θ|U)∝ P(G)P(θ|G)
∏

u∈U

∑

c

1 [U (c) = u]P(c|G,θ) . (B.7)

Our program synthesis algorithm systematically enumerates expression trees sequentially in decreasing
probability order. Therefore, instead of finding all the possible circuits that can produce a given unitary, we
consider only the most likely k (given the current set of gates G and θ). We obtain the lower bound in
equation (5)

P(G)P(θ|G)
∏

u∈U

∑

c∈Bu

1 [U (c) = u]P(c|G,θ) (B.8)

just because we are neglecting smaller positive terms. The maximization of this lower bound also implies the
indirect maximization of the posterior.

The specific details of the enumeration algorithms are in the original DreamCoder paper [26] and in the
GitHub repository. After we enumerated programs within a certain timeout, we start checking whether some
of those programs can produce a circuit that is associated to one of the unitary matrices we want to
decompose. At each iteration, we consider a minibatch of 25 unitaries from the whole training set and update
the sets Bu for those unitaries.

Appendix C. Implementation details

The algorithm workflow is described in pseudocode in agorithm 1. It takes as input the set of target unitary
matrices to decompose, the initial set of elementary gates to use in the assembled circuits, the batch size of
each iteration, the enumeration timeout in seconds, and the number of iterations. The output is the final list
of extracted gates. To run the algorithm again and test the performance, it is enough to enumerate programs
again for a given timeout and check against the test set.

Algorithm 1. Unitary matrix decomposition algorithm.

Data: target_unitaries, gate_library, batch_size, timeout, N_iterations
Result: gate_library
1 for n<N_iterations do
2 target_unitaries_batch← get_batch(target_unitaries, batch_size);
3 enumerated_programs← enumerate(timeout, gate_library);
4 solutions← check_solutions(enumerated_programs, target_unitary_batch);
5 gate_library← update_library(elementary_set, solutions);
6 end

We ran the search in parallel on 32 Xeon Gold 6130 CPUs. Each of them explores disjoint subsets of the
program space. The enumeration runs for a fixed amount of time (150s). The library building step can take a
longer amount of time, according to the number of found solutions and the number of tasks in the
considered batch of tasks (in our case, 25). This phase can last up to about 15 minutes and is not parallelized.
The effect of checking only against a few tasks at each iteration allows speeding up the library building phase
since we limit the number of unitary matrices each enumerated circuit should be tested against. Of course, an
additional consequence is that more iterations are overall needed, since it takes N/Nbatch iterations on
average just to check against all the tasks. The algorithm learns to decompose new matrices, but it accounts
for that only when those are selected as target tasks. As shown in figure C1, the performance that would be
inferred at train time is, therefore, lower than the effective one on the train set, just because we do not check
all the tasks at each iteration. The ‘seen train’ curve (calculated by considering only the decomposed matrices
in the iteration batch) takes more time to take advantage of the discovered gates since at each iteration it is
only evaluated on a subset of the total elements. The same set, but completely evaluated at each iteration of
the algorithm, is shown as ‘train’ set (this is the same curve as in figure 3). We see that, even if the algorithm
can decompose all the matrices (for example after iteration 30), it can still invent new gates to make the
decomposition easier in terms of the number of used gates.

To produce plots of the circuits we use the qiskit library [49]. The complete code to run the algorithm
and reproduce the experiments is available on GitHub5.

5 https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified.

12

https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Figure C1. Estimated performance on the target set of matrices during algorithm iterations, calculated on the effectively seen
matrices (in green), and on the complete set (in blue). Using batches of tasks adds some stochasticity to the algorithm (which
helps to make it more robust) and speeds up the library building routine, but increases the number of required iterations.

Appendix D. Experiments

In this appendix, we show more details about the experiments we presented in the main text. In table D1, we
show the list of all the gates that the algorithm extracted to solve the proposed tasks, in the case where no
connectivity constraints were enforced (i.e. figure 3 in the main text).

Table D2 shows some examples of unitary matrices in our set (expressed in terms of the circuit that we
used to generate the matrix) and the decompositions proposed by our algorithm. We see that the algorithm
also finds unexpected ways to decompose the associated unitary matrix, which does not necessarily involve
the use of exactly the same blocks we used to build it.

Table D1. List of extracted gates after 100 iterations, with no connectivity constraints between qubits.

(Continued.)

13

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Table D1. (Continued.)

14

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

Table D2. Examples of decomposed matrices.

ORCID iDs

Leopoldo Sarra https://orcid.org/0000-0001-7504-8656
Kevin Ellis https://orcid.org/0000-0001-6586-0632
Florian Marquardt https://orcid.org/0000-0003-4566-1753

References

[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467–88
[2] Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring Proc. 35th Annual Symp. on Foundations of

Computer Science (Santa Fe, NM, USA) (IEEE Computer Society Press) pp 124–34 (available at: http://ieeexplore.ieee.org/
document/365700/)

[3] Grover L K 1996 A fast quantum mechanical algorithm for database search Proc. 28th Annual ACM Symp. on Theory of Computing
(STOC 1996) (Philadelphia, Pennsylvania, United States) (ACM Press) pp 212–9 (available at: http://portal.acm.org/citation.
cfm?doid=237814.237866)

[4] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun. 5 4213
[5] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195–202
[6] Preskill J 2021 arXiv:2106.10522
[7] Montanaro A 2016 npj Quantum Inf. 2 15023
[8] Preskill J 2012 arXiv:1203.5813
[9] Aaronson S and Arkhipov A 2011 The computational complexity of linear optics Proc. 43rd Annual ACM Symp. on Theory of

Computing (San Jose California USA) (ACM) pp 333–42 (available at: https://dl.acm.org/doi/10.1145/1993636.1993682)
[10] Arute F et al 2019 Nature 574 505–10
[11] Zhong H-S et al 2020 Science 370 1460–3
[12] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (MIT Press)

15

https://orcid.org/0000-0001-7504-8656
https://orcid.org/0000-0001-7504-8656
https://orcid.org/0000-0001-6586-0632
https://orcid.org/0000-0001-6586-0632
https://orcid.org/0000-0003-4566-1753
https://orcid.org/0000-0003-4566-1753
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
http://ieeexplore.ieee.org/document/365700/
http://ieeexplore.ieee.org/document/365700/
http://portal.acm.org/citation.cfm?doid=237814.237866
http://portal.acm.org/citation.cfm?doid=237814.237866
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://arxiv.org/abs/2106.10522
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://arxiv.org/abs/1203.5813
https://dl.acm.org/doi/10.1145/1993636.1993682
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770

Mach. Learn.: Sci. Technol. 5 (2024) 025029 L Sarra et al

[13] Benenti G, Casati G and Strini G 2004 Principles of Quantum Computation and Information (World Scientific)
[14] Ostaszewski M, Grant E and Benedetti M 2021 Quantum 5 391
[15] Moro L, Paris M G A, Restelli M and Prati E 2021 Commun. Phys. 4 178
[16] Fösel T, Niu M Y, Marquardt F and Li L 2021 Quantum circuit optimization with deep reinforcement learning (arXiv:2103.07585)
[17] Wang P Y et al 2022 Automated quantum circuit design with nested Monte Carlo tree search (arXiv:2207.00132)
[18] Kitaev A Y 1997 Russ. Math. Surv. 52 1191–249
[19] Dawson C and Nielsen M 2006 Quantum Inf. Comput. 6 81–95
[20] Gulwani S, Polozov O and Singh R 2017 Program Synthesis (Foundations and Trends in Programming Languages (Now Publishers)
[21] Li Y et al 2022 Science 378 1092–7
[22] Saad F A, Cusumano-Towner M F, Schaechtle U, Rinard M C and Mansinghka V K 2019 Proc. ACM Program. Lang. 3 1–32
[23] Dechter E, Malmaud J, Adams R P and Tenenbaum J B 2013 Bootstrap learning via modular concept discovery Proc. Twenty-Third

Int. Joint Conf. on Artificial Intelligence (IJCAI 2013) (AAAI Press) pp 1302–9 (available at: www.scopus.com/inward/record.
uri?eid=2-s2.0-84896061120&partnerID=40&md5=0002fb391824bcd83d441b26339c5cef)

[24] Liang P, Jordan M I and Klein D 2010 Learning programs: a hierarchical bayesian approach Proc. 27th Int. Conf. on Int. Conf. on
Machine Learning ICML’10 (Madison, WI, USA) (Omnipress) pp 639–46 (available at: https://icml.cc/Conferences/2010/papers/
568.pdf)

[25] Ellis K et al 2018 Library learning for neurally-guided Bayesian program induction Proc. 32nd Int. Conf. on Neural Information
Processing Systems NIPS’18 (Red Hook, NY, USA) (Curran Associates Inc.) pp 7816–26 (available at: https://proceedings.neurips.cc/
paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-paper.pdf)

[26] Ellis K et al 2021 DreamCoder: bootstrapping inductive program synthesis with wake-sleep library learning Proc. 42nd ACM
SIGPLAN Int. Conf. on Programming Language Design and Implementation (Virtual Canada) (ACM) pp 835–50 (available at:
https://dl.acm.org/doi/10.1145/3453483.3454080)

[27] King R D et al 2009 Science 324 85–89
[28] Arlt S, Ruiz-Gonzalez C, and Krenn M 2022 arXiv:2210.09981
[29] Cranmer M et al 2020 Discovering symbolic models from deep learning with inductive biases Proc. 34th Int. Conf. on Neural

Information Processing Systems NIPS’20 (Red Hook, NY, USA) (Curran Associates Inc.)
[30] Wu T and Tegmark M 2019 Phys. Rev. E 100 033311
[31] Trenkwalder L M, et al 2022 Automated gadget discovery in science (arXiv:2212.12743 [quant-ph])
[32] Briegel H J and De las Cuevas G 2012 Sci. Rep. 2 400
[33] Wallnöfer J, Melnikov A A, Dür W and Briegel H J 2020 PRX Quantum 1 010301
[34] Rissanen J 1978 Automatica 14 465–71
[35] Bishop C M 2006 Pattern Recognition and Machine Learning Information Science and Statistics (Springer)
[36] Barke S, Peleg H and Polikarpova N 2020 Proc. ACM Program. Lang. 4 1–29
[37] Fijalkow N et al 2022 Proc. AAAI Conf. on Artificial Intelligence vol 36 pp 6623–30
[38] Udupa A et al 2013 TRANSIT: specifying protocols with concolic snippets Proc. 34th ACM SIGPLAN Conf. on Programming

Language Design and Implementation (Seattle Washington USA) (ACM) pp 287–96 (available at: https://dl.acm.org/doi/10.1145/
2491956.2462174)

[39] Li M et al 2008 An Introduction to Kolmogorov Complexity and its Applications vol 3 (Springer)
[40] Kliuchnikov V, Maslov D and Mosca M 2012 Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T

gates (arXiv:1206.5236)
[41] Giles B and Selinger P 2013 Phys. Rev. A 87 032332
[42] Gidney C 2021 Quantum 5 497
[43] Wang X, Chen Y and Zhu W 2021 IEEE Trans. Pattern Anal. Mach. Intell. 43 1–1
[44] Sutton R S and Barto A G 2018 Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning Series) 2nd

edn (The MIT Press)
[45] Pateria S, Subagdja B, Tan A-H and Quek C 2022 ACM Comput. Surv. 54 1–35
[46] Sarra L, Ellis K and Marquardt F 2023 Discovering quantum circuit components with program synthesis (https://doi.org/

10.5281/zenodo.8213680)
[47] Pierce B C 2002 Types and Programming Languages (MIT Press)
[48] Papoulis A and Pillai S U 2009 Probability, Random Variables and Stochastic Processes 4th edn (McGraw-Hill)
[49] Qiskit contributors 2023 Qiskit: an open-source framework for quantum computing (available at: https://github.com/Qiskit/qiskit/

blob/main/CITATION.bib) (https://doi.org/10.5281/zenodo.2573505)

16

https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.1038/s42005-021-00684-3
https://doi.org/10.1038/s42005-021-00684-3
https://arxiv.org/abs/2103.07585
https://arxiv.org/abs/2207.00132
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.26421/QIC6.1-6
https://doi.org/10.26421/QIC6.1-6
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1145/3290350
https://doi.org/10.1145/3290350
www.scopus.com/inward/record.uri?eid=2-s2.0-84896061120%26partnerID=40%26md5=0002fb391824bcd83d441b26339c5cef
www.scopus.com/inward/record.uri?eid=2-s2.0-84896061120%26partnerID=40%26md5=0002fb391824bcd83d441b26339c5cef
https://icml.cc/Conferences/2010/papers/568.pdf
https://icml.cc/Conferences/2010/papers/568.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-paper.pdf
https://dl.acm.org/doi/10.1145/3453483.3454080
https://doi.org/10.1126/science.1165620
https://doi.org/10.1126/science.1165620
https://arxiv.org/abs/2210.09981
https://doi.org/10.1103/PhysRevE.100.033311
https://doi.org/10.1103/PhysRevE.100.033311
https://arxiv.org/abs/2212.12743
https://doi.org/10.1038/srep00400
https://doi.org/10.1038/srep00400
https://doi.org/10.1103/PRXQuantum.1.010301
https://doi.org/10.1103/PRXQuantum.1.010301
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3428295
https://dl.acm.org/doi/10.1145/2491956.2462174
https://dl.acm.org/doi/10.1145/2491956.2462174
https://arxiv.org/abs/1206.5236
https://doi.org/10.1103/PhysRevA.87.032332
https://doi.org/10.1103/PhysRevA.87.032332
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1109/TPAMI.2019.2929146
https://doi.org/10.1109/TPAMI.2019.2929146
https://doi.org/10.1145/3453160
https://doi.org/10.1145/3453160
https://doi.org/10.5281/zenodo.8213680
https://doi.org/10.5281/zenodo.8213680
https://github.com/Qiskit/qiskit/blob/main/CITATION.bib
https://github.com/Qiskit/qiskit/blob/main/CITATION.bib
https://doi.org/10.5281/zenodo.2573505

