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 1 

Abstract  

Human brain morphology undergoes complex developmental changes with diverse regional 

trajectories. Various biological factors influence cortical thickness development, but human data 

are scarce. Building on methodological advances in neuroimaging of large cohorts, we show that 

population-based developmental trajectories of cortical thickness unfold along patterns of 

molecular and cellular brain organization. During childhood and adolescence, distributions of 

dopaminergic receptors, inhibitory neurons, glial cell populations as well as features of brain 

metabolism explain up to 50% of variance associated with regional cortical thickness trajectories. 

Cortical maturation patterns in later life are best explained by distributions of cholinergic and 

glutamatergic systems. These observations are validated in longitudinal data from over 8,000 

adolescents, explaining up to 59% of developmental change at population- and 18% at single-

subject level. Integrating multilevel brain atlases with normative modeling and population 

neuroimaging provides a biologically and clinically meaningful path to understand typical and 

atypical brain development in living humans. 

 

Keywords: Neurodevelopment; Cortex; Cortical thickness; Normative modeling; Nuclear imaging; 

Neurotransmitters, Neuronal cell types; Dominance analysis; Longitudinal 
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 2 

1 Introduction 

Human cerebral cortex volume and thickness are subject to global and regionally specific 

developmental changes1,2. Myelination, synaptic remodeling (“pruning”), as well as neuronal and 

glial reorganization have been suggested as key biological factors influencing development and 

maturation of cortical thickness (CT)3–6. More recently, availability of human high-resolution 

postmortem transcriptomic brain atlases7 enabled the study of cortex-wide colocalization patterns 

between CT estimates and genetic markers of microstructural tissue properties3,8. These studies 

point to involvement of genes associated with glial cells (astrocytes, microglia, oligodendrocytes), 

pyramidal neurons, and neuronal cell components (myelination, dendrites, dendritic spines) in CT 

development9–14. However, biological processes underlying CT development as observed using 

magnetic resonance imaging (MRI), are likely not constrained to the cellular level. Instead, brain 

morphological changes may reflect development and/or activity of broader brain-functional 

processes such as brain metabolism, immunity, as well as molecular signaling, e.g., 

neurotransmitter functions. 

The rising popularity of multimodal association techniques is paralleled by recent progress 

in population-level normative modeling of brain development15. Used as a reference norm, these 

models have great value as tools for quantification of individual pathophysiology16. However, such 

reference models also carry the potential to study developmental trajectories as far as these models 

represent typical brain development in “representative subjects” with high temporal resolution. 

Combining these models with human postmortem cell population markers17 and recently published 

collections of diverse in vivo nuclear imaging atlases mapping various neurotransmitter, brain 

metabolism, and molecular systems18–24 can provide new insights into mechanisms underlying CT 

development. Going beyond typical development, neurodevelopmental disorders are associated 

with both, atypical cortex development25–27 and dysfunction of various neurotransmitter 

systems28,29. However, given a lack of reproducible biomarkers30, methodological approaches that 

describe and bridge to the molecular level are urgently called for31.  

Assuming that CT changes over the lifespan are shaped by development, maturation, and 

degeneration of certain biological systems, we hypothesized that the spatiotemporal patterns of CT 

development colocalize with the non-pathological adult spatial distributions of the respective 

biological systems10,13. Increased colocalization of CT changes with an individual biological 

system at a given developmental period would then support a role of the associated biological 
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process in respective developmental alterations. Establishing these spatial associations will help to 

identify both typical and atypical human neurodevelopmental mechanisms, supporting formulation 

of hypotheses for future research endeavors. If translated to the level of the individual subject, 

spatial colocalization estimates promise value as interpretable biomarkers of biological and clinical 

significance18,32,33.  

Following this reasoning, we demonstrate that population-average and single-subject CT 

trajectories colocalize with, and are explained by, spatial distributions of brain metabolism and 

immunity features, neurotransmitter systems, cortical myelin, as well as neuronal and glial cell 

populations. We gathered 49 in vivo and postmortem brain atlases mapping these neurobiological 

systems and extracted the latent spatial patterns using factor analysis (Fig. 1; A). Population-

average CT trajectories for 148 cortex regions were obtained from a normative model by 

Rutherford et al.2 based on over 58,000 subjects (B). In the following, we refer to the clustered 

brain atlases as “(multilevel) biological (brain) systems”, and to the Rutherford CT data as 

“representative” or “modeled CT (change)”. First, we tested if modeled CT at each given time point 

in life was distributed across the cortex in patterns reflecting the distributions of specific biological 

brain systems (C)13. Temporal dynamics in these spatial colocalization patterns can provide first 

evidence on which systems are associated with cortical development. To further understand the 

observed developmental associations, we fitted regression models predicting the spatial patterns of 

modeled longitudinal CT change from biological brain systems. The outcome was quantified as 

the overall and system-wise explained variance R2, interpretable as the percentage to which CT 

change patterns can be explained from multilevel systems19,34. We first assessed the combined and 

individual relevance of the biological brain systems for cortical development (D). After identifying 

the most important systems, we evaluated their role in explaining modeled CT changes while 

accounting for shared variance (E). Last, we validated the observed model-based CT development 

associations using longitudinal CT data from approximately 8,000 adolescents (F)35,36, successfully 

validating our findings on the individual level (G).  
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Fig. 1: Study overview  

The workflow of the present study, from data sources (left side) to data processing and analysis method 
(middle) to the research questions and results (right side). A–G: See last Introduction paragraph.  
Abbreviations: CT = cortical thickness, ABA = Allen Brain Atlas, MRI = magnetic resonance imaging. 

2 Results 

2.1 Multilevel biological brain systems 

Using factor analyses, we extracted the latent spatial patterns underlying the 49 included 

brain atlases to reduce predictor intercorrelation in the following regression analyses. To 

independently evaluate the relevance of molecular- and cellular-level systems for explaining CT 

development, this step was performed separately per atlas modality resulting in 10 nuclear imaging 

(named ni1–10), 10 gene expression cell markers (ce1–10), and an MRI-derived myelin map (mr1; 
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Supp. 1.1; Fig. S1–2; Tab. S1). Each original atlas was assigned to the biological system (factor-

level map) on which it loaded most strongly, and the factor maps were named accordingly (Fig. 

S2D–E). The factor maps represented biologically meaningful brain systems, with the first factor 

capturing the first spatial component of cortical transmitter systems (ni1), followed by more 

specific factors broadly representing serotonergic (ni2), dopaminergic (ni3, ni9), and cholinergic 

systems (ni5) as well as brain metabolism (ni4, ni6) and immunity (ni7, ni10). Similarly, mRNA 

expression-derived factors entailed one general neuronal dimension (ce1) and several more specific 

excitatory and inhibitory neuronal (ce4–10) and glial factors (ce2–3).  

2.2 Cross-sectional colocalization patterns show distinct lifespan trajectories  

First, we asked if CT patterns across cortex regions colocalized with spatial distributions of 

multilevel brain systems and how these colocalization patterns developed over the lifespan. After 

extraction of representative CT data from 5 to 90 years of age2 (Supp. 1.2; age distribution: Fig. 

S3; CT trajectories: S4A, Anim. S1), spatial Spearman correlation analyses with biological brain 

systems revealed diverse colocalization trajectories with a general pattern of strongest changes in 

early and late phases of life (Fig. 2). Colocalization strengths varied across the centiles of modeled 

CT, but temporal trajectories were consistent. Sex did not relevantly influence the trajectories (Fig. 

S5). 
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Fig. 2: Colocalization between cross-sectional representative CT and multilevel brain systems across the lifespan 

Lifespan trajectories of colocalization between multilevel biological brain systems and cross-sectional CT. Z-transformed Spearman correlation 
coefficients are shown on the y axis, age on the x axis. Blue-to-red lines: percentiles of extracted modeled CT data (see legend). Note that these do 
not show actual percentiles of colocalization strengths. Green: LOESS line smoothed through the percentile data to highlight trajectories. Scatters: 
individual subjects from ABCD and IMAGEN cohorts at each timepoint with mean colocalization strength indicated by the larger dots. These serve 
to validate the observations based on modeled CT (i.e., strength and sign of the colocalizations).  
Abbreviations: CT = cortical thickness, MRI = magnetic resonance imaging, LOESS = locally estimated scatterplot smoothing, SV2A = synaptic 
vesicle glycoprotein 2A, M1 = muscarinic receptor 1, mGluR5 = metabotropic glutamate receptor 5, 5HT1a/1b/2a/4/6 = serotonin receptor 1a/2a/4/6, 
CB = cannabinoid receptor 1, GABAa = γ-aminobutyric acid receptor A, HDAC = histone deacetylase, 5HTT = serotonin transporter, FDOPA = 
fluorodopa, DAT = dopamine transporter, D1/2 = dopamine receptor 1/2, NMDA = N-methyl-D-aspartate glutamate receptor, GI = glycolytic index, 
MU = mu opioid receptor, A4B2 = α4β2 nicotinic receptor, VAChT = vesicular acetylcholine transporter, NET = noradrenaline transporter, CBF = 
cerebral blood flow, CMRglu = cerebral metabolic rate of glucose, COX1 = cyclooxygenase 1, H3 = histamine receptor 3, TSPO = translocator 
protein, Ex = excitatory neurons, In = inhibitory neurons, Oligo = oligodendrocytes, Endo = endothelial cells, Micro = microglia, OPC = 
oligodendrocyte progenitor cells, Astro = astrocytes.
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2.3 Lifespan CT development is explained by multilevel biological systems  

Studying population-level and individual brain development inevitably requires looking at 

respective changes over time, rather than focusing only on cross-sectional data37. In that respect, 

we tested to which extent biological systems explained the relative change of representative CT 

across the lifespan and which systems showed the strongest associations. For each cortex region, 

relative CT changes over time were computed using a sliding window approach (5-year window 

length; Fig. S4B–C). Using linear regression models and strict permutation testing, we asked if the 

spatial patterns of CT changes over time were explained by multilevel brain systems, both 

combined (multivariate) and individually (univariate). To provide an estimate of 

overparameterization effects in multivariate analyses, regression analysis results are shown in 

relation to their respective permuted models. 

The combined biological systems at molecular and cellular levels explained up to 54% of 

the spatial variance in representative CT changes across the lifespan with peaks at about 20–35 

(molecular) and 15–20 (cellular) years of age, respectively [false discovery-rate (FDR)-corrected; 

Fig. 3]. In univariate analyses, 9 of the 21 multilevel systems including major neurotransmitter 

systems (dopaminergic, cholinergic, noradrenergic), features of brain metabolism, neuron 

populations, as well as glia cells displayed significant associations with CT changes during at least 

one timestep. These systems explained 15–38% of CT change patterns with most systems showing 

peaks between 5 and 30 years of age (Fig. 3). Combining all 21 systems across biological levels 

explained up to 67% of CT changes at 15–25 years of age (Fig. S6). All findings were robust to 

changes in sliding window step size, modeled sex, and CT percentile (Fig. S6–7).
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Fig. 3: Representative lifespan CT change patterns explained by multilevel biological systems 

Associations between modeled lifespan CT change and multilevel brain systems separated by data sources (left vs. right). Colored lines show the 
amount of spatial CT change variance explained (y axis) by the combined biological systems (upper) or each system individually (lower) throughout 
the lifespan (x axis). Stars indicate significance of each regression model estimated with a permutation-based approach; filled: FDR-corrected across 
all tests shown in each panel of the plot; empty: nominal p < 0.05. To provide an estimate of the actual observed effect size, gray areas show the 
distributions of spatial CT change variance explained by permuted predictor maps (n = 10,000). For the lower panel, null results were combined 
across predictor maps.  
Abbreviations: CT = cortical thickness, PET = positron emission tomography, MRI = magnetic resonance imaging, FDR = false discovery rate, see 
Fig. 2 for abbreviations used in biological system names.
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2.4 Distributions of dopaminergic neurotransmitter systems, glia cells, and inhibitory 

neurons account for the majority of explained CT development  

Next, we focused on the 9 multilevel biological systems that best explained CT change 

patterns in univariate analyses (FDR-corrected). We sought to understand in detail how specific 

systems contributed to the overall explained CT change, while accounting for intercorrelation and 

shared spatial variance patterns between molecular and cellular levels. In the above analyses, we 

found the strongest cortical changes and subsequently the strongest associations with the multilevel 

brain system during the main neurodevelopmental period from childhood to young adulthood. 

Because of the particular relevance of this timespan also from a clinical viewpoint, we included 

CT change from 5 to 30 years as an additional time window for further testing. 

The spatial distributions of the 9 selected molecular and cellular brain systems jointly 

explained 58% of CT changes from 5 to 30 years, peaking at 10–15 years of age (Fig. 4A, top). 

Using dominance analyses, we tested for the relative importance of these predictors, while 

accounting for shared variance19,34. All 9 brain systems contributed to the overall explained CT 

change during different life periods (nominal p < 0.05) with 6 systems surviving FDR-correction 

(Fig. 4A, middle; Anim. S2). During the main neurodevelopmental period, 3 of these 6 systems 

explained most of the spatial CT change patterns, representing estimates of dopaminergic receptors 

(ni9-D2; R2 = 16%; peek at 8–14 years; D2 = dopamine receptor 2), microglia and oligodendrocyte 

progenitor cells (ce3-Micro-OPC; R2 = 12%; 8–15 years; Micro = microglia, OPC = 

oligodendrocyte progenitor cells), as well as of somatostatin-expressing interneurons (ce8-In8; R2 

= 12%; 5–14 years). Midlife CT maturation patterns were explained by 2 systems most strongly 

associated with dopaminergic and cholinergic neurotransmission (ni3-FDOPA-DAT-D1-NMDA 

and ni5-VAChT-NET; 29–56 years; FDOPA = fluorodopa, DAT = dopamine transporter, D1 = 

dopamine receptor 1, NMDA = N-methyl-D-aspartate glutamate receptor; VAChT = vesicular 

acetylcholine transporter, NET = noradrenaline transporter). Finally, late-life CT aging patterns 

were associated with a system mostly representing inhibitory neuron populations (ce4-In3-In2-

Astro, 78–88 years; In = inhibitory neuron, Astro = astrocytes). Except for microglia and 

oligodendrocyte progenitor cells, all identified associations were negative, i.e., indicating a 

stronger reduction of CT in areas with higher density of the respective biological system. 
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2.4.1 Medial occipitotemporal, sensorimotor, and cingulate cortices drive CT associations 

All results reported here arise from the colocalization of whole-brain spatial patterns 

between CT data and biological brain systems. These spatial associations are likely dominated by 

some cortical regions relative to others. To identify regions specific to each biological system, we 

evaluated each system’s effect on the region-wise prediction errors of every multivariate model 

(one per each timestep). We found the most influential regions to be generally located in medial 

occipital, medial temporal, sensorimotor, and cingulate cortices (Supp. 1.3; Fig. 4B; Fig S8; Anim. 

S2).
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Fig. 4: In-depth analysis of the molecular and cellular systems most relevant for explaining  representative CT change patterns 

across the lifespan 

A: Modeled lifespan CT change explained by multilevel brain systems. See Fig. 3 for descriptions of global plot elements. Top: overall explained 
CT change variance, the two colored lines highlight contributions of molecular and cellular systems. Middle: System-wise contributions to the overall 
explained spatial variance. Note that, as the used total dominance statistic describes the average R2 associated with each predictor relative to the “full 
model” R2, the sum of the predictor-wise values at each timepoint in the middle plot equals the R2 values expressed in the upper panel. Bottom: 
Spearman correlations between CT change and multilevel brain systems to visualize the sign of the association patterns. See Fig. 3 for further details. 

A B
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B: Cortex-regional influences on explained CT change. Each row shows one of the 9 brain systems included in dominance analyses. Scatterplots: 
Correlation between CT change at the respective predictor’s peak timestep (y axis) and the predictor map, corresponding to panel A-bottom. The 
first brains show the residual difference maps calculated for each multilevel system. For illustration purposes, the second and third brains show CT 
change and the spatial distribution associated with the system. See Fig. S8 for all residual difference maps, Fig. S4C for all CT change maps, and 
Fig. S2G for all predictor maps.   
Abbreviations: CT = cortical thickness, see Fig. 2 for abbreviations used in biological system names.
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2.4.2 Factor-level associations transfer to original molecular and cellular brain atlases 

Our focus on the latent spatial patterns underlying the original 49 brain atlases reduced 

predictor intercorrelation and increased statistical power. However, aiding interpretation and 

confirming validity of the factor-level systems, the original atlases that were most closely related 

to each factor-level system explained modeled CT change patterns to similar extents (Supp. 1.4; 

Fig. S9). We found further associations between ni9-D2 and the D1 dopaminergic receptor as well 

as between ni5-VAChT-NET and the α4β2 nicotinic receptor. Indeed, for the latter, NET was of 

lesser importance, while the factor ni3-FDOPA-DAT-D1-NMDA was dominated by the NMDA 

receptor and the factor ce3-Micro-OPC was dominated by the microglia distribution. Residual 

regional differences showed similar patterns as observed with factor-level systems, with additional 

relevance of the medial frontal gyrus for the microglia atlas and lateral temporal gyri for D1/D2 

receptors (Fig. S10). 

2.5 Single-subject longitudinal data confirms the normative model-based findings 

Next, we evaluated if the general approach and the model-based findings translated to 

single-subject data. A successful validation on the individual level would provide further evidence 

for the potential mechanistic relevance of the associated brain systems and support the use of 

normative reference models to non-invasively study subject-specific neurodevelopmental 

mechanisms. Considering the high relevance of the first life decades from both 

neurodevelopmental and clinical standpoints, we focused these analyses on childhood and 

adolescence. 

Summarizing the model-based results pertaining to this period of life, we found that 6 

biological systems explained over 50% of early life cortical development. D1/2 dopaminergic 

receptors, microglia, and somatostatin-expressing interneurons were most relevant during this time 

period, with medial and lateral temporal, medial occipital, and cingulate cortices being the most 

influential cortex regions. Transitioning to the individual level and independent data, we then 

assessed the extent to which these 6 brain systems explain (i) cohort-average and (ii) single-subject 

CT changes at different ages in two longitudinal neurodevelopmental cohorts. 6,789 subjects from 

the ABCD study35 were scanned at ~10 and 12 years of age and 985–1177 subjects from the 

IMAGEN cohort36 were scanned at ~14, 19, and 22 years (demographics and quality control: Supp. 

1.5, Tab. S2, Fig. S11; Observed-vs.-predicted CT change patterns and correlations: Fig. S12–S13; 
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Effects of site on CT and CT change: Tab. S3–4). Of note, ABCD baseline data (~10 years), but 

not ABCD follow-up data and the IMAGEN cohort, were included in the estimation of the 

Rutherford et al.2 normative model. We contrasted our findings to those obtained from individual-

level normative CT predicted from each subject’s age and sex using the Rutherford et al. model2.  

First, we confirmed that the colocalization between cross-sectional single-subject CT and 

biological systems mirrored the patterns observed for the modeled population-average (Fig. 2 & 

S14). Next, we evaluated the longitudinal CT change between study time points, looking at the 10–

12 years timespan for ABCD and 14–22, 14–19, and 19–22 years timespans for IMAGEN. The 6 

brain systems explained cohort-average CT changes to extents comparable with the reference 

model (minimum/maximum observed R2 = 25/56%, model-prediction R2 = 47/56%; Fig. 5A upper 

and center). These patterns translated to the single-subject level, explaining on average between 9 

and 18% in individual CT changes with considerable variability (range R2 = 0–59%; Fig. 5A, lower; 

Fig. S15). Looking at system-wise contributions, we again found the model-based patterns to be 

reflected on both cohort-average and single-subject levels (Fig. 5B & Fig. S15–16). While the brain 

systems predicted to be most important (D1/2 and microglia) indeed explained significant amounts 

of CT change, two other systems, which primarily reflected aerobic glycolysis (ni4) and granule 

neurons (ce5), were equally dominant.  

Finally, we tested if the regression models estimated to predict each subject’s normative 

CT change patterns generalized to each subject’s observed change patterns, i.e., we asked if a “one-

size-fits-all” approach would have performed equally well. While these models on average indeed 

exceeded the predictive performance of permuted null models, they did not provide good fit for 

many individuals, thus highlighting the value of our individual differences-focused approach (Fig. 

S17). Additional sensitivity analyses showed that the explained CT changes (i) were not relevantly 

influenced by the reference model-based site-adjustment (Fig. S15), (ii) increased with longer 

follow-up duration within each time period (Fig. S18), (iii) varied by sex and study site in some 

tested time periods (Supp. 1.6; Fig. S19), and (iv) varied with individual atypical CT development 

as well as data quality (Supp. 1.7; Fig. S20).
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Fig. 5: Validation of model-based results in ABCD and IMAGEN datasets 

A: Explained spatial CT change variance in ABCD and IMAGEN data. The overall model performance is illustrated as scatter plots contrasting 
predicted CT change (y axis) with observed CT change (x axis). Scatters: single brain regions, color-coded by prediction error. Continuous line: 
linear regression fit through the observations. Dashed line: theoretical optimal fit. Brains: prediction errors corresponding to scatters. Rows: upper = 
cohort-average predicted by the reference (“Braincharts”) model; middle: observed cohort-average; lower: observed single-subject values, one 
regression model was calculated for each subject, but the results were combined for illustration purposes. 
B: Explained spatial CT change variance with a focus on the individual multilevel systems. Subplots for the combined analysis and each individual 
multilevel system show: modeled CT change as presented in Fig. 4 (dotted line); observed cohort-average CT change (cross markers); and observed 
single-subject CT change (boxplots and dot markers). For each subject, one horizontal line at their individual R2 value ranges from their age at 
beginning and end of each time span. Boxplots show the distribution of individual values for each time span. Note that the first subplot (“Combined 
systems”) corresponds to the data presented in panel A. See Fig. S16–17 for detailed results. 
Abbreviations: CT = cortical thickness, adj. = adjusted, see Fig. 2 for abbreviations used in biological system names.

BA
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3 Discussion 

Factors shaping human brain morphology over the life span are poorly understood. Here 

we demonstrate that the complex patterns in which the human cerebral cortex develops and matures 

colocalize with specific biological systems on molecular and cellular levels. Our findings support 

roles of the dopaminergic system, microglia, somatostatin-expressing interneurons, brain 

metabolism, and granule neurons in early CT development, whereas cholinergic and dopaminergic 

neurotransmission are associated with CT changes across adulthood (Fig. 6). Our results not only 

have implications for the study of typical neurodevelopment, but also hold promise for the value 

of neurodevelopmental cross-modal association analyses for future clinical research applications.  

 

Fig. 6: Summary of study findings in the context of prior literature 

Condensed visualization of the reported results (first line of each block) in context with related results of 
previous human studies investigating similar biological systems (below lines). Each header indicates one 
biological system or process, each thin black line overlaid by a colored bar indicates results from one study. 
If a study reported multiple results within the same system (e.g., from two different brain regions), bars 
were laid over each other. Thin black lines: overall time span investigated. Colored overlay: time period in 
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which significant associations to CT (change) patterns were reported (nominal p < 0.05), independent of the 
sign of the association. Large dots: Timepoint of the maximum association. See also Fig. S21 and Tab. S5 
for a more comprehensive overview including various topics. 
Abbreviations: ST = somatostatin, CR = calretinin, sMRI = structural MRI, CBF = cerebral blood flow, 
PET = positron emission tomography, ASL = arterial spin labeling, ACh(E) = acetylcholine (esterase), see 
Fig. 2 for abbreviations used in biological system names. 
 
 

We find the colocalization between developmental changes of cortex morphology and 

corresponding adult-derived neurotransmitter and cell type profiles to closely reflect 

neurodevelopmental processes across various biological systems (see Fig. 6, Fig. S21, and Tab. S5 

for a descriptive overview). For example, while synaptogenesis and neuronal and glial proliferation 

continue into the first postnatal years, the second and third life decades are marked by a targeted 

reduction of neurons and cell components, likely reflecting functional specialization38–46. In line 

with our findings, dopamine D1 receptor activity was reported to peak in adolescence and young 

adulthood before declining steadily with age47–49. Considering the observed impact of the 

dopaminergic system on cortical development, this association warrants further study in context 

with dopaminergic pathomechanisms of neurodevelopmental disorders50,51. Our findings 

concerning somatostatin-expressing interneurons and microglia fit with prior reports showing 

somatostatin interneuron markers to decrease strongly within the first decade of life46 and 

microglial involvement in synaptic remodeling4,12,13 as well as myelination52,53, which has been 

shown to continue into the fourth decade of life10,11,54–56. Approaching adulthood, cortical 

development becomes less dynamic with most regions taking stable or steadily decreasing aging 

trajectories1,2. We find these phases to be reflected in spatial colocalization patterns in that most 

biological systems colocalize with CT changes in early cortex development. Only the cholinergic 

system consistently predicts cortical changes throughout adulthood, potentially pointing to its role 

in healthy and pathological aging57. Considering the lack of early biomarkers of accelerated aging 

this association warrants further investigation58. 

Normative modeling of large-scale neuroimaging data has received considerable attention 

as a tool to translate research into clinical applications1,2,16,59. We show that if used as a reference 

for typical brain development, combining normative models of brain regional features with spatial 

colocalization approaches can facilitate discovery of physiological mechanisms underlying specific 

conditions. Going beyond this group-level discovery approach, we demonstrate the feasibility of 

neurodevelopmental spatial colocalization analyses in single subjects by mapping individual-level 

deviations from normative trajectories to specific biological systems. In view of this ability of 
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molecular and cellular brain systems to explain typical developmental and maturational patterns of 

the cortex, studying how these findings translate to atypical neurodevelopment60 may be a fruitful 

path for future research. From a clinical perspective, mapping deviating brain developmental 

patterns to potentially underlying biological processes promises value not only for biomarker 

discovery but also for identification of therapeutic targets to correct deviations from normative 

trajectories. 

Importantly, spatial association analyses as applied here do not impose causality and, thus, 

the reported associations only provide indirect evidence for involvement of specific biological 

systems in cortical development and therewith guidance to future causal studies of specific 

processes. Our analyses are also limited by the heterogeneity of the brain atlases which were 

derived from independent adult populations of varying age and sex, processed with different 

strategies, and in part derived from postmortem data. Similar restrictions apply to the normative 

CT model which is largely based on the WEIRD (Western, Educated, Industrialized, Rich, and 

Democratic)61 population2,62. The contribution of these factors needs to be quantified in future 

research. Nonetheless, the high replicability of the observed associations, despite the noise 

introduced by both limitations, rather strengthens the robustness of our findings. 

To summarize, patterns of spatial colocalization between macroscale brain structure and its 

underlying brain-organizational levels provide in vivo insight into healthy and pathological 

processes that are otherwise difficult or impossible to study. This approach has already provided 

valuable information on typical neurodevelopment3 and pathophysiological mechanisms 

underlying neurological and psychiatric disorders19,34,63,64. The now occurring transition to the 

individual level allows to place these biologically interpretable MRI markers in their broader 

system-level context, ranging from genetics and epigenetics to behavior and 

psychopathology18,32,33. 

4 Method 

4.1 Overview 

Multi-level brain atlases were retrieved from open sources, parcellated, and dimensionality 

reduced. Modeled CT (change) data were extracted from the Rutherford et al.2 reference model 

(from here on termed “Braincharts” model) and ABCD/IMAGEN datasets. First, we assessed the 
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trajectories of colocalization between modeled cross-sectional cortex-wide CT patterns and multi-

level brain systems. We then tested how these systems explain modeled longitudinal CT change 

patterns jointly and individually in multivariate and univariate regression frameworks. To account 

for spatial variance shared between molecular and cellular levels, and to distinguish the specific 

contributions of multilevel systems to explaining CT change, we submitted the systems showing 

the strongest univariate associations to dominance and brain-regional analyses. To validate the 

model-based results and transfer them to the single-subject level, we tested if cohort- and 

individual-level CT development in the ABCD and IMAGEN samples was explained by specific 

biological systems as predicted from our model-based findings. 

4.2 Software 

Multimodal brain atlases were retrieved and processed from/with neuromaps20, abagen65, 

JuSpace18, or author sources. Analyses of associations between CT and cortical atlases were 

conducted using JuSpyce 0.0.266 in a Python 3.9.11 environment (Lotter and Dukart, 2022). 

JuSpyce (https://github.com/LeonDLotter/JuSpyce) is a toolbox allowing for flexible assessment 

and significance testing of associations between multimodal neuroimaging data, relying on 

imaging space transformations from neuromaps20, brain surrogate map generation from 

brainSMASH67, and several routines from Nilearn68, scipy69, NiMARE70, statsmodels, numpy, and 

pandas. Visualizations were created using matplotlib71, seaborn72, and surfplot73. The 

PCNtoolkit74,75 was used to generate modeled CT data, as well as site-adjusted/predicted CT data 

and deviation scores for ABCD and IMAGEN subjects.  

4.3 Ethics 

No new human data were acquired for this study. Ethical approval for collection and sharing 

of the used human neuroimaging and behavioral data (brain atlases, Braincharts model, ABCD and 

IMAGEN datasets) were provided by local ethics committees who reviewed the original projects. 

Detailed information is available in the cited sources. Use of the ABCD data is registered at the 

NDA database at http://dx.doi.org/10.15154/1528657. The responsible IMAGEN investigator is T. 

Banaschewski.  
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4.4 Data sources and processing 

4.4.1 Atlases of multi-level brain systems 

Multi-level brain atlases (Fig. S1) were separated into two broad categories according to 

their source modality. Sample characteristics and data sources are provided in Tab. S1. 

The neuroimaging (“ni-”) dataset consisted of group-average nuclear imaging atlases 

(neurotransmitter receptors, brain metabolism and immunity, synaptic density, and transcriptomic 

activity) and an MRI-based myelin atlas18–23. Maps were (i) transformed from fsLR (metabolism 

and myelin maps) or Montreal Neurological Institute space (all others) to fsaverage5 space using 

registration fusion20,76, (ii) parcellated in 74 cortical regions per hemisphere77, and (iii) Z-

standardized across parcels within each atlas. 

Cell type (“ce-”) atlases were built by (i) retrieving genetic cell type markers identified by 

Lake et al.17 via single-nucleus RNA sequencing in human brain tissue from the PsychENCODE 

dataset78, (ii) extracting Allen Human Brain Atlas mRNA expression values7 for each Destrieux 

parcel and each marker gene using abagen65 (default settings, data mirrored across hemispheres, 

Supp. 2.1), (iii) Z-standardizing the data across parcels within each gene, and (iv) taking the 

uniform average of the data across genes within each cell type. 

We reduced the dimensionality of the atlas datasets to decrease multicollinearity in 

multivariate regression analyses. As the nuclear imaging and mRNA expression data likely differed 

strongly in terms of confounds and signal-to-noise ratio, and to study molecular- and cellular-level 

effects separately, data sources were not mixed during dimensionality reduction. To retain 

interpretability, we used factor analysis for dimensionality reduction (minimum residuals, promax 

rotation). All unrotated factors that explained ≥ 1% of variance of each dataset were retained. We 

chose the oblique rotation method as the resulting factor intercorrelation would be expected from 

non-independent biological systems. Resulting predictors were named by assigning each original 

atlas to the factor it loaded on the most (nuclear imaging: ni1–n; mRNA expression: ce1–n; MRI, 

only the myelin atlas, no dimensionality reduction: mr1). 

4.4.2 Braincharts CT model 

The Braincharts reference model was estimated on 58,836 subjects from 82 sites (50% 

training/testing split; 51% female; age range 2.1–100 years; age distribution: Fig. S3). Detailed 
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information on the included samples, CT estimation, and modeling procedure was provided by 

Rutherford et al.2. Notably, while ABCD baseline data were included in the model estimation, 

ABCD follow-up and IMAGEN data were not. Briefly, T1-weighted MRI data were obtained from 

the original cohorts and FreeSurfer 6.079 was used to extract parcel-wise CT data. Image quality 

was ensured based on FreeSurfer’s Euler characteristic80 and manual quality control of 24,354 

images35. CT development was modeled separately for each Destrieux parcel using warped 

Bayesian linear regression models predicting CT from age, sex, and site as fixed effect. The applied 

methodology was developed for use in large datasets, can model nonlinear and non-Gaussian 

effects, accurately accounts for confounds in multisite datasets, and allows for estimation of site 

batch effects in previously unseen data2,81–83.  

We extracted Braincharts CT data separately for females and males for each of 148 cortical 

parcels for 171 timepoints (5–90 years with 0.5-year steps) and 7 percentiles (1st, 5th, 25th, 50th, 

75th, 95th, and 99th). We focused on CT data from the age of 5 years onwards as the used FreeSurfer 

pipeline was not adjusted for very young ages2. For colocalization analyses, the extracted modeled 

CT data were used as is. For model-based (pseudo-)longitudinal analyses, we calculated the relative 

CT change ∆𝐶𝑇 from year 𝑖 to year 𝑗 based on the median (50th percentile) sex-average CT data as 

∆𝐶𝑇(",$) =
&'!(&'"
&'"

. Lifespan CT change was then calculated using a sliding window with 1-year 

steps and 5-year length from 5 to 90 years as ∆𝐶𝑇(",$), 𝑖 ∈ [5. .85], 𝑗 = 𝑖 + 5.  

4.4.3 ABCD and IMAGEN CT data 

Processed and parcellated CT data from the Adolescent Brain Cognitive Development 

(ABCD) cohort35 was taken directly from the ABCD 4.0 release. Baseline (T0, ~10 years) and 2-

year follow-up (T2) structural MRI data were processed using FreeSurfer 7.1.1. Details were 

provided by Casey et al.35 and in the release manual (http://dx.doi.org/10.15154/1523041). For the 

IMAGEN cohort36, T1-weighted MRI data at baseline (T0, ~14 years) and at one or two follow-up 

scans (T5, ~19, and T8, ~22 years) were retrieved and processed with FreeSurfer’s standard 

pipeline (7.1.1). Following Rutherford et al.2, for quality control we relied on an Euler-like metric, 

i.e., the total number of surface defects as provided by FreeSurfer. We excluded subjects that 

exceeded a threshold of 𝑄3 + 𝐼𝑄𝑅 × 1.5 calculated in each sample across timepoints80,84 or failed 

the manual quality ratings provided in the ABCD dataset. One ABCD study site (MSSM) stopped 

data collection during baseline assessment and was excluded. We utilized the Braincharts model to 

harmonize CT data of the two datasets across sites (ABCD: n = 20; IMAGEN: n = 8) and to derive 
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individual deviation scores to be used only in sensitivity analyses. Site effects were estimated in 

healthy subsamples of both dataset’s baseline data (n = 20 per site, 50% female) distributed evenly 

across baseline age ranges. These subjects including their follow-up data, and all subjects with data 

for less than two study time points, were excluded from further analyses. As the ABCD baseline 

data were used in training the Braincharts model, we conducted sensitivity analyses on the non-

adjusted data to estimate potential overfitting effects.  

Colocalization analyses were calculated on the site-adjusted and original CT values at each 

timepoint. For longitudinal analyses, the relative CT change between each time point within each 

cohort was calculated as above (ABCD: T0–T2; IMAGEN: T0–T8, T0–T5, and T5–T8). 

4.5 Null map-based significance testing 

Spatial associations between brain maps can be assessed in correlative analyses in the sense 

of testing for cortex- or brain-wide alignment of the distributions of two variables A (e.g., CT) and 

B (e.g., a neurotransmitter receptor)10,18,19,85. Effect sizes (e.g., correlation coefficients) resulting 

from correlating A and B convey interpretable meaning. However, parametric p values do not, as 

they are influenced by the rather arbitrary number of “observations” (between thousands of 

voxels/vertices and a few parcels) and spatial autocorrelation in the brain data86. Null model-based 

inference approaches circumvent this problem by comparing the observed effect size to a null 

distribution of effect sizes obtained by correlating the original brain map A with a set of permuted 

brain maps generated from B to derive empirical p values. From several approaches proposed to 

preserve or reintroduce spatial autocorrelation patterns in the null maps86, we relied on the 

variogram-based method by Burt et al.67 as implemented in JuSpyce via BrainSMASH20,66,67. 

4.6 Discovery analyses based on the Braincharts model 

4.6.1 Lifespan colocalization trajectories 

To characterize lifespan trajectories of colocalization between cross-sectional CT and 

multi-level brain systems, we calculated Spearman correlations between each brain atlases and 

modeled CT data at each extracted time point and percentile. Smoothed regression lines (locally 

estimated scatterplot smoothing) were estimated on data from all percentiles combined to highlight 

developmental trajectories. As the resulting developmental patterns were largely similar across 
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sexes, we performed the main analyses on female-male averaged CT data and reported sex-wise 

results in the supplementary materials. 

4.6.2 Prediction of CT change  

The main objective of this study was to determine the extent and the temporal patterns to/in 

which multi-level brain systems could explain CT development and lifespan change. To achieve 

this goal, we designed a framework in which we “predicted” stepwise relative CT change from one 

or more brain atlases in multivariate or univariate regression analyses. The amount of CT variance 

explained R2 was used as the main outcome measure (adjusted in multivariate analyses). Exact one-

sided p values were calculated by generating a constant set of 10,000 null maps for each multi-

level brain atlas and comparing observed R2 values to R2 null distributions obtained from 10,000 

regression analyses using the null maps as predictors.  

To determine the general extent to which CT development could be explained, we 

performed one multilinear regression per lifespan timestep (81 models) using (i) all neuroimaging 

and (ii) all mRNA expression-based atlases. In an additional analysis, we assessed the result 

combining all atlases irrespective of modality. The resulting p values were FDR-corrected across 

all models separately per modality. To quantify individual atlas-wise effects and identify specific 

biological systems of potential relevance to CT development, we performed univariate regression 

analyses per timestep and atlas (21 × 81 models), again correcting for multiple comparisons using 

FDR correction within each modality. In sensitivity analyses, we assessed the effects of CT 

percentile (1st and 99th), sex (female and male separately), and window length (1-year, 2-year). As 

above, the results were consistent across sexes, thus all main analyses were reported for sex-

average CT data and the following model-based analyses were performed only on sex-average data. 

4.6.3 System-wise contributions to explained CT change 

Aiming to identify when and how biological systems contributed to explaining CT change, 

we retained only those brain atlases that significantly explained CT development individually 

(FDR correction) and conducted dominance analyses “predicting” CT change from this joint set of 

atlases. Dominance analysis aims to quantify the relative importance of each predictor in a 

multivariate regression. The total dominance statistic is calculated as the average contribution of a 

predictor x to the total R2 across all possible subset models of a multivariate regression and can 

here be interpreted as the extent to which CT development during a certain time period is explained 
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by x in presence of the whole set of predictors X and as a fraction of the extent to which CT 

development is explained by set X19,34,87. Following from this, in our models, the sum of the atlas-

level R2 at a given timespan equals the total R2 at this time point. Significance of dominance 

analyses was determined as described above by generating null distributions and estimating 

empirical p values for both, the “full model” multivariate R2 and the predictor-wise total dominance 

R2. Finally, Spearman correlations between CT change and multi-level brain atlases were 

conducted to indicate the directionality of associations. 

Dominance analyses were conducted at each timestep and, to highlight the main postnatal 

developmental period between child and adulthood, on the CT development across this entire 

period defined as ∆𝐶𝑇(),*+) (82 models). Resulting p values were corrected across the whole 

analysis (full model and atlas-wise: 82 + 82 × 9 p values).  

4.6.4 Brain-regional influences on CT change association patterns 

To estimate the importance of individual brain regions for the associations between CT 

change and brain atlases, we relied on the atlas-wise residual differences across brain-regions as 

unitless measures of the influence of individual cortex regions on the dominance analysis results. 

The residual difference of prediction errors ∆𝑃𝐸 for each predictor x out of the predictor set X was 

calculated as ∆𝑃𝐸 = 7𝑃𝐸,∖{/}7 − |𝑃𝐸,|. The results were visualized on surface maps for 

descriptive interpretation.  

4.6.5 Relationships between dimensionality-reduced and original multi-level atlases 

Assessing whether the factor-level atlases represented the original multi-level atlases 

according to the applied atlas-factor-association scheme, we performed dominance analyses per 

factor-level atlas using the strongest associated original atlases as predictors. The latter were 

defined as the five atlases that loaded the most on each factor if the absolute loading exceeded 0.3. 

FDR correction was performed across all models per factor-level atlas. 

4.7 Validation analyses based on ABCD and IMAGEN single-subject data 

4.7.1 Developmental colocalization trajectories 

First, we tested whether colocalization patterns between multi-level atlases and single-

subject cross-sectional CT followed the predictions of the Braincharts model. Spearman 
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correlations were calculated between each subject’s CT values and each atlas at all available 

timepoints, for both site-adjusted CT data and the data prior to site-effect-correction. 

4.7.2  Explained CT development patterns on cohort- and single-subject levels 

Following, we assessed how the brain systems that significantly explained modeled CT 

development during the period covered by ABCD and IMAGEN data (9–25 years) performed in 

single-subject longitudinal data. Dominance analyses were performed in two steps. First, for each 

of the four investigated time spans (ABCD: ~10–12; IMAGEN: ~14–22, ~14–19, 19–22 years), 

one dominance analysis was calculated to predict the cohort-average CT change pattern from 

multi-level brain systems. Second, dominance analyses were calculated in the same fashion, but 

for every subject. For comparison, analyses were repeated on CT change patterns as predicted by 

the Braincharts model from each subject’s age and sex. For cohort-average dominance analyses, 

exact p values were estimated as described for the stepwise model-based analyses. For individual-

level analyses, instead of estimating p values for each subject, we tested whether the mean R2 values 

of the full models and each predictor observed in each cohort and time span were significantly 

higher than was estimated in 1,000 null-analyses with permuted atlas data. Finally, we repeated 

subject-level analyses on the original CT change data prior to site-effect-correction and on the 

longitudinal change of deviation Z scores as returned by the Braincharts model2. 

Finally, we evaluated how the subject-level regression models predicting CT change 

patterns from biological systems generalized from the subject-level normative CT change patterns 

to the actual observed CT change. For that, we applied the regression model parameters estimated 

on each subject’s normative CT change patterns to each subject’s observed CT change and 

evaluated model fit as the subject-level correlation between predicted and observed CT change. To 

estimate the effect size, results were contrasted to null analyses in which each regression model 

was estimated using 1,000 permuted multilevel brain maps. Further sensitivity analyses were 

conducted to estimate how CT change predictions were affected by follow-up duration, sex, study 

site, “normativity” of CT and CT change patterns [correlation between predicted and observed CT 

(change), average Braincharts CT deviation (change), count of extreme deviation (change)], and 

data quality (number of surface defects). Subject-level full model R2 values were compared by sex 

and study site using analyses of covariances corrected for follow-up duration (and sex). All other 

variables were correlated with full model R2 values using Spearman correlations. 
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5 Data availability 

All scripts and data supporting our analyses are available in a GitHub repository 

(https://github.com/LeonDLotter/CTdev/), except for original data and derivatives from the ABCD 

and IMAGEN datasets that cannot be shared openly (https://abcdstudy.org/; https://imagen-

project.org/). The Braincharts model is available from: https://github.com/predictive-clinical-

neuroscience/braincharts.  
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