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Abstract  

Human brain morphology undergoes complex changes over the lifespan. Despite recent progress 

in tracking brain development via normative models, current knowledge of underlying biological 

mechanisms is highly limited. We demonstrate that human cerebral cortex development and aging 

trajectories unfold along patterns of molecular and cellular brain organization, traceable from pop-

ulation-level to individual developmental trajectories. During childhood and adolescence, cortex-

wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and 

brain-metabolic features explain up to 50% of variance associated with a lifespan model of regional 

cortical thickness trajectories. In contrast, modeled cortical change patterns during adulthood are 

best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distribu-

tions. These relationships are supported by developmental gene expression trajectories and trans-

late to individual longitudinal data from over 8,000 adolescents, explaining up to 59% of develop-

mental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases 

with normative modeling and population neuroimaging provides a biologically meaningful path to 

understand brain development and aging in living humans. 
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1. Introduction 

The human cerebral cortex develops in complex patterns1–3, giving rise to our cognitive 

abilities4,5. Biologically, these morphological changes are likely driven by developmental pro-

cesses originating from different organizational levels. Microstructural reorganization, e.g., neu-

ronal and glial restructuring, synaptic remodeling (“pruning”), as well as pericortical myelination, 

has been discussed as the main driver of cortical thickness (CT) development6–9. The neuronal 

component mainly consists in remodeling of dendritic arbor, with human postmortem evidence for 

increases of synaptic and dendrite density into childhood and early adolescence, followed by grad-

ual decreases during adolescence10–12 that might extend even into adulthood13. As microscale de-

velopments on the synapse level alone are unlikely to explain macroscale CT changes, childhood 

and adolescence neuronal remodeling is likely to be accompanied by a changes of cortical glial 

cells6,14, in line with, e.g., microglia potentially playing an active role in developmental synaptic 

remodeling7. In contrast, pericortical myelination is thought to specifically influence magnetic res-

onance imaging (MRI)-based CT through myelin-dependent changes in tissue contrasts, which 

might result in apparent cortical thinning6,8. 

Given the multitude of neurobiological mechanisms that likely shape cortex morphology 

over the lifetime, it is to assume that CT change patterns at any given developmental period result 

from several interacting biological factors jointly influencing cortical microstructure as outlined 

above. For example, concerted developments across cortical cell populations could be mediated 

via specific neurotransmitter effects projected from deeper brain regions, as was indicated in early 

non-human animal studies for, e.g., glutamatergic15 and serotonergic16 effects of thalamocortical 

projections on motor and somatosensory cortices as well as for dopaminergic effects of mesocor-

tical projections on the prefrontal cortex17. Relatedly, neurotransmitter receptors likely play regu-

latory roles in cortical development as evidenced, for instance, by the effects of in-utero cocaine 

exposure on cortical macrostructure18, thought to be caused by a disruption D1 and D2 dopamin-

ergic receptor influences during cortex development19. Unfortunately, as today’s neuroimaging 

tools do not suffice to study human cellular neurobiology in detail, we have to rely on scarce human 

postmortem and non-human animal data. Conversely, while structures and processes on the molec-

ular level are partly accessible in humans with nuclear imaging, here, the exposure to radioactivity 

practically forbids application in typical developing children and adolescents, limiting its use to 

study neurodevelopment. While the study of neurobiological mechanisms underlying human brain 
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development suffers from these practical challenges, considerable progress has been made in map-

ping the development and aging of human brain macrostructure, with large-scale normative mod-

els1,3,20 providing new insights in both population-level typical and individual atypical neurodevel-

opment21,22. Similarly, our understanding of general brain organization was significantly advanced 

by the availability of modern in vivo nuclear imaging atlases23,24, explaining typical brain organi-

zation and disordered brain structure to greater extents as compared to MRI-based brain structural 

and functional metrics25,26.  

Neural cell populations and molecular-level tissue structures and processes – their neuroim-

aging-based correlates hereafter collectively referred to as “neurobiological markers” – are not 

uniformly distributed across the cortex, but show distinct spatial distributions27–30. Similarly, CT 

development and aging trajectories vary by cortex region3,11, resulting in distinct spatial change 

patterns associated with any given developmental period. We assume that these CT change patterns 

are not random but reflect neurobiological processes that causally influence CT changes over time. 

To elaborate our rationale (Supplementary Text S1.1 for a more detailed account), let X be a neu-

robiological entity that exhibits a non-uniform distribution across cortical regions, changes with 

neurodevelopment and aging, and might have direct or indirect downstream effects on CT. While 

X’s spatial distribution might change across the human lifespan, major distribution changes are 

more likely during childhood and adolescence (and again during aging) than compared to a rela-

tively stable middle adulthood period. If changes in X lead to changes in CT, the spatial distribution 

of CT changes likely resembles X’s “steady state”, as we would assume regions with higher final 

density of X to have shown stronger developmental activity. We conclude that an observed spatial 

colocalization – the alignment of spatial patterns between two measured brain metrics – between 

(i) the distribution of X as measured during the stable period and (ii) the distribution of CT changes 

during a given developmental period could have resulted from a developmental or aging process 

that X is subject to. Notably, it is conceivable that a third process could influence both, X and CT, 

leading to a correlation between X and CT changes that is non-causal but still implies a neurobio-

logical mechanism influencing both. Applying a similar reasoning, prior spatial colocalization 

studies have demonstrated that spatial patterns of CT development are correlated with adult distri-

butions of glial cells, pyramidal neurons, and neuronal cell components31–36, providing the majority 

of recent evidence for human cortex-developmental mechanisms6,37. Of note, all cited studies are 

based only on bulk-sequencing postmortem gene expression data from the Allen Brain Atlas38, 

which may only poorly represent the in vivo expression patterns for many genes39. We emphasize 

that, despite causal assumptions being made on the conceptual side (see above), neither prior nor 
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the current spatial correlation study can actually prove causal relationships between an MRI-ob-

served change pattern and tested neurobiological markers. Relatedly, the specificity of spatial as-

sociations is inherently limited by the spatial resolution and noise associated with both correlated 

components.  

Our current knowledge on biological factors that guide typical human cortex development 

is severely limited by practical obstacles. Multimodal neuroimaging-based spatial colocalization 

approaches can provide a window into specific biological mechanisms, but – to our knowledge – 

developmental studies until now were limited to postmortem data. Combining these approaches 

with to date’s availability of large-scale normative models and in vivo derived molecular brain 

atlases constitutes the next major step in the imaging-based study of human brain development 

(Fig. 1). If translated to the level of the individual subject, the approach can serve as the foundation 

for future neuroimaging-based yet biologically interpretable biomarkers to be tested for their clin-

ical potential23,40,41.  
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Fig. 1: Study overview 

The workflow of the present study, 
from data sources (left side) to data 
processing and analysis method 
(middle) to the research questions and 
results (right side). (A) A collection of 
postmortem “cellular” and in vivo 
“molecular” brain atlases was 
parcellated and dimensionality reduced. 
(B) “Modeled” predicted CT data was 
extracted from a normative model. (C) 
We calculated the colocalization 
between neurobiological markers and 
CT at each point throughout the 
lifespan. (D) We evaluated how 
combined and individual 
neurobiological markers could explain 
lifespan CT change. (E) The strongest 
associated markers were examined in 
detail, accounting for shared spatial 
patterns. (F) A developmental gene 
expression dataset was used to generate 
trajectories of gene expression 
associated with each neurobiological 
marker. (G) Periods in which CT 
change was significantly explained 
were validated in developmental gene 
expression data. (H) Single-subject 
longitudinal data was extracted from 
two developmental cohorts. (I) 
Findings based on the normative model 
were validated in single-subject data. 
Abbreviations: CT = cortical thickness, 
ABA = Allen Brain Atlas, MRI = 
magnetic resonance imaging. 
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2. Results 

2.1. Molecular and cellular neurobiological markers  

In this work, we explored if and to what extent spatiotemporal patterns of CT change 

throughout the human lifespan are explained by the spatial distributions of underlying neurobio-

logical properties. For this, we gathered (i) 21 postmortem gene-expression “cellular markers” 

mapping neuronal and glial cell populations42,43,38, (ii) 27 in vivo nuclear imaging “molecular mark-

ers” of neurotransmitter receptors and transporters, synaptic density, transcriptomic activity,23–25 

as well as, to cover further potentially relevant factors, of brain metabolism and immune activ-

ity24,44,45, and (iii) an MRI-derived map of cortical microstructure (T1w/T2w)25 (Figs. 1A and S1; 

all derived from independent healthy adult samples: Tab. S1, Supplementary Text S1.2.1 and 

S1.2.2). In support of our analytical rationale, three neurotransmitter receptors/transporters, for 

which alternative atlases from different adult age groups were available, showed high stability of 

spatial patterns during adulthood (Spearman’s rho ≥ 0.68; Text S1.2.3, Fig. S2). The analytic ap-

proach taken here establishes associations between temporospatial CT (change) patterns and brain 

atlases based on the similarity of cortex-wide spatial patterns (148 parcels; Destrieux parcella-

tion46). Intercorrelation arising from spatial patterns shared between atlases on either cellular or 

molecular levels (Fig. S3A) was reduced by factor analyses applied independently to the cellular 

and molecular marker sets after parcellation of the individual maps. For each marker set, all unro-

tated factors that explained at least 1% of the set’s variance were retained, resulting in 10 “factor-

level” nuclear imaging maps (ni1–10) and 10 gene expression cell marker maps (ce1–10). After 

promax rotation, these factors explained 90.9% and 86.9% of each marker set’s variance, respec-

tively (Fig. S3B and C). We chose the liberal factor-number criterion to balance retaining as much 

of the spatial information in the neurobiological markers as possible with reducing marker multi-

collinearity in the following multivariate analyses. Factor solutions were successfully validated 

against permuted brain maps (Text S1.2.4) and factors were named based on the most closely re-

lated original atlases (Fig. S3D and E). The 20 factor scores, in addition to the marker of cortical 

microstructure (mr1), represented the neurobiological markers to be evaluated in subsequent main 

analyses (surface plots in Fig. 2 and Fig. S4). The dimensionality-reduced markers represented 

biologically meaningful entities with the first factor capturing the first spatial component of cortical 

transmitter systems (ni1), followed by more specific factors broadly representing serotonergic 

(ni2), dopaminergic (ni3, ni9), and cholinergic systems (ni5) as well as brain metabolism (ni4, ni6) 
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and immunity (ni7, ni10). Similarly, mRNA expression-derived factors entailed one general neu-

ronal dimension (ce1) and several more specific excitatory and inhibitory neuronal (ce4–10) and 

glial factors (ce2–3).  

2.2. Mapping neurobiological markers to cortical development 

In the following, we report on how these neurobiological markers colocalize and explain 

CT change patterns between 5 and 90 years of age (Fig. 1B), spanning developmental periods from 

“middle and late childhood” to “late adulthood” as defined previously27,1 (see following Figs.). CT 

trajectories for 148 Destrieux regions were derived from a normative model of CT development3 

estimated from cross-sectional data of over 58,000 subjects (from here on referred to as “modeled 

CT”; Fig. 1B; Text S1.3.1; age distribution: Fig. S5; CT trajectories: Fig. S6A and Animation S1). 

First, we tested if modeled cross-sectional CT at each given time point in life was distributed across 

the cortex in patterns reflecting the distributions of specific neurobiological markers (Fig. 1C)32. 

To further understand the observed spatial associations, we then followed a hierarchical analysis 

framework based on regression models “predicting” the spatial patterns of pseudo-longitudinal 

“modeled CT change” from neurobiological markers. The outcome was quantified as the overall 

and marker-wise explained variance R2, interpretable as the percentage to which (modeled) CT 

change patterns can be explained from neurobiological markers25,26. In the first set of regression 

analyses, we assessed the combined and individual relevance of all 21 neurobiological markers for 

cortical development and aging (D). In the second step, after identifying a subset of significantly 

associated markers, we evaluated their role in jointly explaining modeled CT changes while ac-

counting for shared variance (E). In the final regress step, we repeated the analyses with those 

original neurobiological markers (i.e., before factor analysis) that loaded most strongly on the iden-

tified subset to demonstrate the validity of the factor-level markers. Next, we utilized developmen-

tal gene expression data (F) to validate and further specify our imaging-based findings (G). Last, 

we transferred our approach to longitudinal CT data from approximately 8,000 adolescents47,48 (H) 

to demonstrate that time period-specific association patterns identified using the normative model 

translate to the individual subject level (I).  

2.3. Cross-sectional modeled CT shows diverse colocalization trajectories  

Structural patterns resulting from the relative distribution of CT across cortical regions vary 

depending on the time point in life49. Temporal changes of these patterns might mirror the contri-

bution of a certain cellular or molecular process to CT changes at a given time point. Using spatial 
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Spearman correlations between each neurobiological marker and modeled CT at each timepoint, 

we revealed diverse colocalization trajectories with a general pattern of strongest changes from 

childhood to young adulthood (up to approximately 30 years) as well as in late adulthood (from 60 

years onwards; Figs. 2 and S7). Colocalization strengths varied across the modeled CT percentiles 

extracted from the normative model, but temporal trajectories were consistent. On visual compar-

ison, trajectories appeared similar across sexes but partly differed in overall colocalization strength 

(Fig. S8). The modeled nature of the colocalization estimates precluded statistical tests, which 

would need to be conducted in individual-level data. 
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Fig. 2: Colocalization between cross-sectional modeled 

CT and neurobiologial markers across the lifespan 

Lifespan trajectories of colocalization between neurobiological 
markers and modeled cross-sectional CT. For each marker, the 
upper panel shows a surface projection of the parcellated data; 
yellow-violet: nuclear imaging markers, yellow-green: gene-
expression, yellow-gray: microstructural; yellow = higher 
density. The center panel shows the marker’s colocalization 
trajectory: Z-transformed Spearman correlation coefficients are 
shown on the y axis, age on the x axis; blue-to-orange lines 
indicate percentiles of modeled CT data (see legend, note that 
these do not show actual percentiles of colocalization strengths); 
the green line (LOESS = locally estimated scatterplot 
smoothing) was smoothed through the percentile data to 
highlight trajectories (shades: 95% confidence intervals). The 
lower panel shows year-to-year changes (y axis) derived from 
the LOESS line in the upper plot. See Fig. S7 for trajectories 
including ABCD and IMAGEN subjects and Fig. S8 for 
trajectories split by sex. Coloc. = colocalization, SV2A = 
synaptic vesicle glycoprotein 2A, M1 = muscarinic receptor 1, 
mGluR5 = metabotropic glutamate receptor 5, 5HT1a/1b/2a/4/6 
= serotonin receptor 1a/2a/4/6, CB = cannabinoid receptor 1, 
GABAa = γ-aminobutyric acid receptor A, HDAC = histone 
deacetylase, 5HTT = serotonin transporter, FDOPA = 
fluorodopa, DAT = dopamine transporter, D1/2 = dopamine 
receptor 1/2, NMDA = N-methyl-D-aspartate glutamate 
receptor, GI = glycolytic index, MU = mu opioid receptor, A4B2 
= α4β2 nicotinic receptor, VAChT = vesicular acetylcholine 
transporter, NET = noradrenaline transporter, CBF = cerebral 
blood flow, CMRglu = cerebral metabolic rate of glucose, 
COX1 = cyclooxygenase 1, H3 = histamine receptor 3, TSPO = 
translocator protein, Microstr = cortical microstructure, Ex = 
excitatory neurons, In = inhibitory neurons, Oligo = 
oligodendrocytes, Endo = endothelial cells, Micro = microglia, 
OPC = oligodendrocyte progenitor cells, Astro = astrocytes. 
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2.4. Neurobiological markers explain CT change 

Studying population-level and individual brain development and aging inevitably requires 

looking at respective changes over time, rather than focusing only on cross-sectional data50. We 

now asked to which extent different neurobiological markers explained the relative modeled 

change of CT across the lifespan (Figs. S6B and C) and which markers showed the strongest asso-

ciations. Multivariate regression analyses predicting modeled CT change across 5-year periods 

throughout the lifespan (sliding window with 1-year-steps) showed that the combined, either mo-

lecular- or cellular-level, markers explained up to 54% of the spatial variance in modeled CT 

changes with peaks during young adulthood (molecular, 20–35 years) and adolescence (cellular, 

15–20 years) [false discovery-rate (FDR)-corrected; Fig. 3, top]. Combining all 21 markers across 

biological levels explained up to 67% of modeled CT changes during the adolescence-to-adulthood 

transition (Fig. S9). Individually, 9 of the 21 neurobiological markers explained up to 15–38% of 

modeled CT change patterns, with most markers showing peaks up to young adulthood, i.e., be-

tween 5 and 30 years of age (FDR-corrected; Fig. 3, bottom). These 9 markers represented major 

neurotransmitters (dopaminergic, glutamatergic, cholinergic, noradrenergic), features of brain me-

tabolism, neuron populations, and glial cells. All findings were robust against correction for base-

line modeled CT as well as changes in sliding window step size, modeled sex, and modeled CT 

percentile (Figs. S9 and S10). Results were consistent after projecting all surface data into the more 

often used, but low-spatial-resolution, Desikan-Killiany parcellation51 (Text S1.3.2, Fig. S11).We 

did not find evidence for confounding effects of (i) the age distribution of the lifespan sample from 

which the modeled CT data was obtained or (ii) the approximated average ages of the adult samples 

from which neurobiological markers were derived (Text S1.3.3, Figs. S12 and S13).  
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Fig. 3: Modeled lifespan CT change patterns explained by neurobiological markers 

Associations between modeled lifespan CT change and neurobiological markers separated by data sources (left vs. right). Developmental periods covered by 
this study as defined by Kang et al. are shown on top. Time periods were aligned to the center of each modeled CT change step (e.g., Δ(5,10) = 7.5). Colored 
lines show the amount of spatial modeled CT change variance explained (y axis) by the combined markers (upper) or each marker individually (lower) 
throughout the lifespan (x axis). Stars indicate significance of each regression model estimated with a permutation-based approach; ★: FDR-corrected across 
all tests shown in each panel of the plot; ☆: nominal p < 0.05. To provide an estimate of the actual observed effect size, gray areas show the distributions of 
modeled CT change explained by permuted marker maps (n = 10,000). For the lower panel, null results were combined across marker maps. See Fig. S6C 
for all CT change maps, and Fig. S4 for all predictor maps. Abbreviations: CT = cortical thickness, PET = positron emission tomography, MRI = magnetic 
resonance imaging, FDR = false discovery rate, see Fig. 2 for abbreviations used in neurobiological marker names. 
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2.5. Specific neurobiological markers drive explained CT change 

Next, we sought to understand in detail how the 9 significant neurobiological markers con-

tributed to overall explained modeled CT change while accounting for correlation and shared spa-

tial variance patterns between molecular and cellular levels. Given that we found both the strongest 

modeled CT changes and CT associations during the period from childhood to young adulthood 

and given the particular clinical relevance of this timespan, we included modeled CT change from 

5 to 30 years as an additional time window for further testing. Using dominance analyses52,25,26 to 

quantify the individual contribution of each univariately FDR-significant neurobiological marker 

in a multivariate setting, we found that the 9 molecular and cellular markers jointly explained 58% 

of modeled CT change patterns from 5 to 30 years, peaking at the transition from childhood to 

adolescence (10–15 years; Fig. 4A, top). All 9 neurobiological markers contributed to the overall 

explained modeled CT change during different life periods (nominal p < 0.05) with 6 markers 

surviving FDR correction (Fig. 4A, middle; Animation S2). During childhood and adolescence, 3 

of these 6 markers explained most of the modeled CT change patterns, representing estimates of 

dopaminergic receptors (ni9; R2 = 16%; peek at 8–14 years), microglia and oligodendrocyte pro-

genitor cells (ce3; R2 = 12%; 8–15 years), as well as of somatostatin-expressing interneurons (ce8; 

R2 = 12%; 5–14 years). Modeled CT change patterns during young and middle adulthood were 

explained by 2 neurobiological markers broadly associated with the major – i.e., dopaminergic, 

glutamatergic, cholinergic, and noradrenergic – neurotransmitter systems (ni3 and ni5; 29–56 

years). Finally, late adulthood modeled CT aging patterns were associated with a marker represent-

ing inhibitory neuron populations and astrocytes (ce4, 78–88 years). Except for microglia and oli-

godendrocyte progenitor cells, all identified associations were negative, i.e., indicating a stronger 

reduction of modeled CT in areas with higher density of the respective biological marker. 

2.6. Specific cortical regions drive CT change associations 

The spatial associations reported here are likely dominated by some cortical regions relative 

to others. By evaluating the impact of iteratively excluding each region from the multivariate mod-

els, we found that the most influential regions differed depending on the markers. For example, 

cellular markers associated to childhood and adolescence modeled CT development (ce9: somato-

statin-expressing interneurons and ce3: microglia) were driven by premotor, cuneus, and frontopo-

lar areas, whereas the association to dopaminergic receptors during this period (ni9) was more 
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influenced by primary visual, mid-cingulate, and insular regions. While associations between mod-

eled CT change during young and middle adulthood and cholinergic neurotransmission (ni5) ex-

hibited similar patterns, adult colocalization to dopaminergic neurotransmission (ni3) was strongly 

influenced by sensorimotor areas (Fig. 4B; Text S1.3.4; Fig. S14; Animation S2).  

2.7. Factor-level markers reflect original brain atlases 

Thus far, we focused on a lower-dimensional representation of neurobiological markers, 

which reduced predictor intercorrelation and increased statistical power, as compared to using the 

original 49 brain atlases. Nevertheless, we found that original atlases that were most closely related 

to each factor explained modeled CT change patterns to a similar extent as the factor-level models, 

aiding interpretation and supporting the validity of the factor-level approach (Text S1.3.5; Fig. S15 

and S16). All univariate spatial associations between modeled CT change and the tested original 

atlases reached nominal significance (p < 0.05). Separate dominance analyses for each factor-level 

neurobiological marker with only strongly loading original atlases as predictors confirmed contri-

butions of specific original atlases to the factor’s peak explained variance: somatostatin-expressing 

interneurons, dopaminergic D1 and D2 receptors, as well as glucose metabolism and aerobic gly-

colysis accounted for most of the associated markers’ peak effects during childhood and adoles-

cence (ce9, ni9, ni4, and ni6). Peak effects during young and middle adulthood were mostly ac-

counted for by α4β2 nicotinic receptors and the acetylcholine transporter (ni5) as well as the glu-

tamatergic NMDA receptor (ni3; Fig. S15).  
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Fig. 4: In-depth analysis of the neurobiological markers most relevant for explaining modeled CT change patterns across the lifespan 

(A) Modeled lifespan CT change explained by neurobiological markers, selected from the univariate analyses (Fig. 2; 9 FDR-corrected significant markers). 
See Fig. 3 for descriptions of global plot elements. Top: overall explained modeled CT change variance, the two colored lines highlight contributions of 
molecular and cellular markers. Middle: Marker-wise contributions to the overall explained spatial variance. Note that, as the used total dominance statistic 
describes the average R2 associated with each predictor relative to the “full model” R2, the sum of the predictor-wise values at each timepoint in the middle 
plot equals the R2 values expressed in the upper panel. Bottom: Spearman correlations between modeled CT change and markers to visualize the sign of the 
association patterns. (B) Regional influences on explained modeled CT change. Each row shows one of the 9 markers included in dominance analyses. 
Scatterplots: Correlation between modeled CT change at the respective predictor’s peak timestep (y axis) and the predictor map, corresponding to panel A-
bottom. The first surface shows the residual difference maps calculated for each marker, highlighting the most influential regions on modeled CT change 
association effects. For illustration purposes, the second and third surface show modeled CT change and the spatial distribution associated with the marker. 
See Fig. S14 for all residual difference maps, Fig. S6C for all modeled CT change maps, and Fig. S4 for all predictor maps. Abbreviations: CT = cortical 
thickness, see Fig. 2 for abbreviations used in neurobiological marker names.

A B
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2.8. Developmental gene expression supports CT change associations  

Next, we turned to developmental gene expression27 to confirm that the biological processes 

we found associated with cortical development were indeed upregulated in the cortex during the 

identified developmental period53. From a human postmortem dataset (n = 33, age range 0.33–

82.05 years, see Kang et al.27 for details), we estimated gene expression trajectories across the 

neocortex corresponding to each original brain atlas relevant for the final 9 factor-level neurobio-

logical markers (c.f., Fig. S15). For cell-type atlases, we averaged normalized gene expression 

values across the respective marker genes42,43. For molecular markers, we selected genes corre-

sponding to each protein(-compound), in addition to two sets of genes associated with brain me-

tabolism54 (Tab. S1). To pose as little assumptions on the sparse data as possible, we compared 

each gene/gene set during the age period with which the respective marker was associated with a 

control set of non-brain genes, testing (i) if the gene/gene set showed higher mean expression and 

(ii) if it showed a “peak” in its trajectory, quantified as a higher ratio of expression during versus 

outside the age period. As expected, most genes/gene sets showed higher mean expression and/or 

higher expression ratios during the respective neurobiological marker’s peak period, indicating that 

they were active in cortical tissue or had their individual peak expression in these timeframes 

(FDR-corrected; Figs. 5 and S17). Conversely, we observed relatively stable phases during mid-

adulthood for most genes/gene sets, supporting our mechanistic rationale (see Introduction). Nota-

bly, for the two molecular markers explaining modeled CT aging patterns in adulthood (ni3: glu-

tamatergic/ dopaminergic and ni5: cholinergic/ noradrenergic), we found evidence for associations 

only with dopaminergic D1 and glutamatergic NMDA receptors for ni3 as well as with the cholin-

ergic α4β2 receptor for ni5.  
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Fig. 5: Validation of CT model-based results in developmental gene expression data 

First row: Modeled CT change explained by individual neurobiological markers, exactly corresponding to univariate results in Fig. 2. X values are aligned 
to the first year of each tested modeled CT change time period (e.g., “Δ(5,10)” aligned to 5 years on x-axis). Shades following each line visualize other 
possible alignments (“Δ(5,10)” aligned to 6, 7, 8, 9, or 10 years). Vertical shaded boxes indicate time periods in which CT change was explained significantly 
(FDR). Following rows: Normalized log2-transformed gene expression trajectories for maxiumally 5 original atlases that loaded on factor-level 
neurobiological markers with λ > |0.3| (c.f., Fig. S15). Gene expression for each marker was derived from related single genes or from averaging across gene 
sets. Grey dots indicate average neocortical expression of individual subjects. Black lines and shades show locally estimated scatterplot smoothing (LOESS) 
curves with 95% confidence intervals. Associations were tested for by averaging the LOESS data within and outside of each respective time period and 
comparing mean and ratio against data randomly sampled from non-brain genes. ★: FDR-corrected across all tests; ☆: nominal p < 0.05. Abbreviations: 
CT = CT change, adj. = adjusted, FDR = false discovery rate, ns = not significant, see Fig. 2 for abbreviations used in neurobiological marker names. 
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2.9. Neurobiological markers explain individual CT trajectories 

The above analyses successfully demonstrated that specific neurobiological markers ac-

count for a large proportion of variance arising from modeled CT change patterns. During the neu-

rodevelopmental period from childhood to young adulthood, 6 markers accounted for about 50% 

of the total variance with D1/2 dopaminergic receptors, microglia, and somatostatin-expressing 

interneurons taking the largest share. Relevance of all these 6 markers during their respective as-

sociated neurodevelopmental periods could be confirmed in independent gene expression data. 

However, a sole focus on modeled population CT change, i.e., median predictions from the nor-

mative model3, does not allow for inferences about individual-level neurodevelopment, which is 

the mandatory prerequisite for exploring potential sources of interindividual variability. A success-

ful validation in individual longitudinal data can also strengthen the potential mechanistic relevance 

of the identified neurobiological markers and support the use of normative models to non-inva-

sively study neurodevelopmental mechanisms.  

To demonstrate that our approach could be transferred to the individual level, we obtained 

2-to-8-year longitudinal data from two large multi-site cohorts47,48, covering the neurodevelopmen-

tal period from late childhood to young adulthood (ABCD: n = 6,789; IMAGEN: n = 915–1142; 

Demographics and quality control: Text S1.4.1, Tab. S2, Fig. S18). Notably, only the ABCD base-

line data, but not the ABCD follow-up data or any IMAGEN data were used in estimation of the 

Rutherford et al. CT model3. To further ensure independency from the CT model, we independently 

harmonized the ABCD and IMAGEN CT data across sites using ComBat(-GAM)55,56 (Tabs. S3 

and S4). To nevertheless provide a reference for the extent to which CT changes could be explained 

in independent longitudinal data as compared to corresponding CT model predictions, we projected 

the ABCD and IMAGEN data into the CT model (Text S1.4.1) and extracted predicted CT for each 

individual subject and session (observed-vs.-predicted CT change patterns and correlations: Figs. 

S19 and S20). We first confirmed that the colocalization between cross-sectional single-subject CT 

and neurobiological markers mirrored the patterns observed for the modeled population-average 

(Figs. S7, S8, and S21). In line with these findings, the cohort-average relative change of CT across 

study timespans (appr. 10–12, 14–22, 14–19, and 19–22 years) was explained to extents compara-

ble with predictions by the normative model (minimum/maximum observed R2 = 27/57%, model-

prediction R2 = 47/56%; Fig. 6A upper and middle). These patterns translated to the individual-

subject level, explaining on average between 9 and 18% in individual CT changes with considera-

ble variability (range R2 = 0–61%; Fig. 6A, lower; Fig. S22). Looking at individual marker-wise 
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contributions, we again found the model-based patterns to be reflected on both cohort-average and 

individual-subject levels (Fig. 6B; Figs. S22 and S23). While the neurobiological markers predicted 

to be most important (D1/2 and microglia) indeed explained significant amounts of CT change, 

two other markers, which primarily reflected aerobic glycolysis (ni4) and granule neurons (ce5), 

were equally dominant. Sensitivity analyses showed that CT change predictions (i) generalized 

from the normative data to individual subjects with above-chance performance but were a poor fit 

for many individuals, underscoring our focus on individual differences (Text S1.4.2; Fig S24), (ii) 

were not relevantly influenced by ComBat or CT model-based site harmonization (Figs. S22 and 

S23), (iii) increased with longer follow-up duration within each time period (Fig. S25), (iv) varied 

by sex and study site in some tested time periods despite site harmonization of the original cross-

sectional CT data (Text S1.4.3; Fig. S26), and (v) varied with individual atypical CT development 

as well as data quality (Text S1.4.4; Fig. S27).  
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Fig. 6: Validation of model-based results in ABCD and IMAGEN datasets 

(A) Explained spatial CT change variance in ABCD and IMAGEN data. The overall model performance is illustrated as scatter plots contrasting predicted 
CT change (y axis) with observed CT change (x axis). Scatters: single brain regions, color-coded by prediction error. Continuous line: linear regression fit 
through the observations. Dashed line: theoretical optimal fit. Brains: prediction errors corresponding to scatters. Rows: upper: cohort-average predicted 
by the reference (“Braincharts”) model, lower sample size due to subjects dropped during model adaptation (see Methods); middle: observed cohort-average 
(ComBat-harmonized); lower: observed single-subject values (ComBat-harmonized), one regression model was calculated for each subject, but the results 
were combined for illustration purposes. (B) Explained spatial CT change variance with a focus on the individual neurobiological markers. Subplots for the 
combined analysis and each individual marker show: modeled CT change as presented in Fig. 3 (dotted line); observed cohort-average CT change (cross 
markers); and observed single-subject CT change (boxplots and dot markers). For each subject, one horizontal line at their individual R2 value ranges 
from their age at beginning and end of each time span. Boxplots show the distribution of individual values for each time span (boxes: 25th, 50th, and 75th 
percentile; whiskers: 1.5 × interquartile range). Note that the first subplot (“Combined markers”) corresponds to the data presented in panel A. See Figs. S22 
and S23 for detailed results. Abbreviations: CT = cortical thickness, adj. = adjusted, see Fig. 2 for abbreviations used in neurobiological marker names. 

BA
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3. Discussion 

Patterns of spatial colocalization between macroscale brain structure and the underlying 

neurobiology provide in vivo insight into healthy and pathological processes that are otherwise 

inaccessible to human studies. Our results suggest that the spatial alignment between modeled 

lifespan changes of cortex morphology and corresponding adult-derived neurotransmitter receptor, 

brain metabolism, and cell type profiles closely reflects neurodevelopmental processes across var-

ious neurobiological levels (see Figs. 7, S28, and Tab. S5 for a descriptive overview). While syn-

aptogenesis and neuronal and glial proliferation continue into the first postnatal years, the second 

and third life decades are marked by a targeted reduction of neurons and cell components, likely 

reflecting functional specialization10–13,27,30,57–59. Indeed, our findings reveal dynamic patterns of 

associations between early cortex development and neurobiological markers, in line with a diverse 

prior literature. Microglia have been implicated in synaptic remodeling7,32,35 and in mye-

lination60,61, which has been shown to continue into young adulthood31,34,62–64. Brain metabolic 

demand was shown to peak close to the childhood-to-adolescence transition65–67, potentially con-

nected to puberty-associated hormonal changes68. Somatostatin interneuron markers were shown 

to remarkedly decrease within the first decade of life59. Finally, dopamine D1 receptor activity was 

reported to peak in adolescence and young adulthood before declining steadily with age69–71. No-

tably, we identified the dopamine D1 and D2 receptors as the only neurotransmitter distributions 

that explained early cortex development, in line with their initially discussed regulatory effects on 

cortical development19,18,17. Approaching adulthood, cortical development becomes less dynamic 

with most regions taking stable or steadily decreasing aging trajectories1,3. Only the cholinergic 

system consistently predicts cortical changes throughout adulthood, potentially pointing to its role 

in healthy and pathological aging72. From a broader perspective, regional patterns of cortical de-

velopment were often described in terms of a segregation in uni- and transmodal brain regions, 

showing distinct developmental trajectories and (micro-)structural profiles36,73. While we indeed 

observe regions typically implicated in these contexts to strongly contribute to child-to-adulthood 

developmental colocalizations (i.e., motor and medial occipital vs. lateral prefrontal and parietal 

cortices), we cannot report on a clear pattern, requiring further follow-up study. 

While converging findings between our spatial association analyses and prior multi-disci-

plinary research can be taken as confirmation for our results, these convergences can neither prove 
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that our results actually reflect cortex-developmental neurobiology, nor can they provide explana-

tions for non-matching results. For instance, while one might intuitively bridge from our findings 

on a potential connection between cortical aging patterns and cholinergic, glutamatergic, and do-

paminergic neurotransmitter systems to neurodegeneration, it is much harder to find confirmation 

for a potential mechanism in the literature, considering that our findings are based on (modeled) 

typical cortex aging patterns. Interpretation of our results is furthermore complicated by the con-

straints of the underlying data, with, on one side, the neurobiological brain atlases, which (i) were 

derived from independent adult populations of varying age and sex, (ii) were processed with dif-

ferent strategies, (iii) were in part – as was the developmental gene expression data – obtained from 

postmortem samples39, and (iv) exhibited shared spatial patterns, limiting specificity of single spa-

tial colocalization estimates. On the other side, the normative CT model was based on (i) cross-

sectional data from a (ii) largely White and “western”74 population3,75 and (iii), while it was esti-

mated in a sufficiently large20 and sex-matched cohort, may yet be biased by a non-uniform age 

distribution. Generally, although colocalization patterns were similar when evaluated using a 

coarser anatomical cortex parcellation, we recommend future studies to explore finer divisions 

based on cortical cytoarchitecture, which could potentially reveal more detailed associations. 

Nonetheless, we consider the high replicability of the observed associations despite the noise in-

troduced by these limitations to rather strengthen the robustness of our findings.
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Fig. 7: Summary of study findings in the 

context of prior literature on humans 

Condensed visualization of the reported results 
(first line of each block, emphasized are 
neurobiological markers that showed consistent 
results) in context with related results of previous 
human studies investigating similar biological 
processes or cell populations (lines below). We 
do not claim this collection to be exhaustive. In 
the left upper panel, we show studies 
investigating general cellular remodeling 
processes; in the other panels, each header 
indicates one neurobiological marker with 
associated studies below. Each thin black line 
overlaid by a colored bar indicates results from 
one study. If a study reported multiple results 
pertaining to the same process (e.g., from two 
different brain regions), bars were laid over each 
other (Tab. S5 for individual listings). Thin black 
lines: overall time span investigated. Colored 
overlay: time period in which the respective 
study target was reported to show developmental 
changes (present study: nominal p < 0.05), 
independent of the sign of the association. Large 
dots: Timepoint of the maximum association. See 
also Fig. S28 and Tab. S5 for a more 
comprehensive overview including various 
topics. Abbreviations: ST = somatostatin, CR = 
calretinin, sMRI = structural MRI, CBF = 
cerebral blood flow, PET = positron emission 
tomography, ASL = arterial spin labeling, 
ACh(E) = acetylcholine (esterase), see Fig. 2 for 
abbreviations used in neurobiological marker 
names. 
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The spatial colocalization framework constitutes a powerful and flexible tool to study bio-

logical underpinnings of both typical and atypical human brain processes in vivo. While its appli-

cation in a wide range of neuroimaging contexts has brought valuable insights into the neurobiol-

ogy of structural76,32,31 and functional77 brain development, as well as brain organization in health25 

and disease26,40,41, inferences from spatial colocalization analyses are usually limited to an associ-

ative, non-causal level. Notably, this also is the case for our present study, in which all reported 

associations can only provide indirect evidence for involvement of specific neurobiological mark-

ers in cortical development and aging, not providing actual mechanistic explanations. We identify 

two pathways to further evolve the spatial colocalization approach. First, spatial colocalizations, 

as readily available and efficiently applicable tools, can serve as potential guidance to targeted 

(causal) follow-up studies of specific processes. However, experimentally establishing causality 

(as in: “manipulation of X causes changes in cortical morphology”) is again likely hard to realize 

in humans, especially when brain morphology as compared to brain function is the outcome of 

interest. Second, from a neuroimaging perspective, the validity, meaningfulness, and – potentially 

– causality of spatial colocalizations can be tackled (i) by specifically testing on the individual level 

if the spatial distribution of a neurobiological process that is ethically measurable in vivo can pre-

dict the spatial distribution of neuroimaging outcome of interest, (ii) by providing supporting evi-

dence from other levels of biological organization, which we assume to either influence or be in-

fluenced by spatially organized brain-processes, and (iii) by harnessing disorders with a known 

pathobiology in a quasi-experimental “lesion-mapping” setting to explore influences of the patho-

logical process on brain organization. Applying these strategies to the present work, follow-up 

studies could, for example, (i) test if cholinergic receptor distributions measured with PET at one 

adult timepoint predict CT change patterns in later adulthood, (ii) test if individual spatial colocal-

izations scale with genetic or epigenetic markers (as influencing factors), peripheral physiology or 

cognition (as influenced factors), or (iii) test if neurodevelopmental or -degenerative disorders such 

as attention-deficit hyperactivity disorder, psychosis, Parkinson’s, or Alzheimer’s diseases lead to 

deviations in the expected cortex-developmental colocalization patterns (i.e., here, ni9, ni3, and 

ni5). Finally, strong quasi-experimental human evidence for the biological validity of spatial colo-

calizations between cortical morphology and neurobiological processes would be provided by the 

study of human subjects involuntarily exposed to development-affecting drugs (e.g., cocaine18) or 

rare disorders with specific targets such as genetic deletion/duplication syndromes or (pediatric) 

autoimmune encephalitides. Especially the latter could, due to their rapid onset, clinical course, 
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and known targets (e.g., NMDA, GABAA, or GAD), lead to specific alteration patterns of expected 

developmental trajectories that might be captured with spatial colocalization approaches78,79.  

Normative modeling of large-scale neuroimaging data has received considerable attention 

as a tool to translate basic research into clinical applications1,3,20,22,80. Our results indicate that if 

used as a reference for typical brain development, combining normative models of brain regional 

features with spatial colocalization approaches could facilitate discovery of physiological mecha-

nisms underlying specific developmental patterns. As evidenced by our comparative analyses be-

tween “CT change predictions” by the normative models and cohort-average CT changes as ob-

served especially in the independent IMAGEN sample, normative models are capable of predicting 

population-level development, even when estimated only on cross-sectional data. Going beyond 

this group-level discovery approach, we demonstrate the feasibility of developmental spatial colo-

calization analyses in single subjects by mapping individual-level brain development to specific 

neurobiological markers. However, the strong variation in colocalization estimates observed on the 

individual level warrants further research into normative modeling of longitudinal data on the one 

side81 and potential sources of interindividual variability on the other. Finally, in view of the ability 

of neurobiological markers to explain typical developmental patterns of the cortex, studying how 

these findings translate to atypical neurodevelopment82 is a promising path for future research. 

Establishing developmental spatial colocalizations as potential diagnostic, prognostic, or therapeu-

tic biomarkers will require demonstrating both their biological validity (see above) and sensitivity 

to the clinical outcome of interest. In the present case, their value as biomarkers may be limited by 

the large interindividual variation, requiring (i) further fine-tuning of individual-level cortex de-

velopmental change mapping including – if necessary – correction of study site confounds and (ii) 

optimization of the applied neurobiological markers in terms of source cohorts, potential dimen-

sionality reduction, and spatial resolution. 
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4. Methods 

4.1. Ethics 

No new human data were acquired for this study. Ethical approval for usage of publicly 

available and restricted-access databanks including human demographic, behavioral, and neuroim-

aging data has been granted by the Heinrich-Heine-University, Düsseldorf, Germany. Specific ap-

proval for collection and sharing of the used data (brain atlases, Braincharts model, Human Brain 

Transcriptome, ABCD, and IMAGEN) were provided by local ethics committees; detailed infor-

mation is available in the cited sources. Use of the ABCD data is registered at the NDA database 

at http://dx.doi.org/10.15154/1528657. The responsible IMAGEN investigator is T. Banaschewski.  

4.2. Software 

Spatial colocalizations between CT (changes) and cortical atlases were conducted using 

JuSpyce 0.0.283 (https://github.com/LeonDLotter/JuSpyce) in a Python 3.9.11 environment. Other 

used software23,24,83–92 is listed in detail in the Supplementary Text S1.5. 

4.3. Data sources and processing 

4.3.1. Atlases of molecular and cellular neurobiological markers 

Neurobiological atlases (Fig. S1) were separated into two broad categories according to 

their source modality. Sample characteristics and data sources are provided in Tab. S1. 

The neuroimaging (“ni-”) dataset consisted of group-average nuclear imaging atlases (neu-

rotransmitter receptors, brain metabolism and immunity, synaptic density, and transcriptomic ac-

tivity) and an MRI-based marker of cortical microstructure (T1w/T2w ratio; Text 

S1.2.1)23,25,24,44,93,45,94,95. Maps were (i) transformed from fsLR (metabolism and T1w/T2w) or 

Montreal Neurological Institute space (all others) to fsaverage5 space using registration fusion24,96, 

(ii) parcellated in 74 cortical regions per hemisphere (Destrieux46), and (iii) Z-standardized across 

parcels within each atlas. 

Cell type (“ce-”) atlases were built by (i) retrieving genetic cell type markers identified by 

Lake et al.42 and Darmanis et al.43 via single-nucleus RNA sequencing in human brain tissue from 

the PsychENCODE dataset97, (ii) extracting Allen Human Brain Atlas mRNA expression values38 

for each Destrieux parcel and each marker gene using abagen84 (default settings, data mirrored 

http://dx.doi.org/10.15154/1528657
https://github.com/LeonDLotter/JuSpyce
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across hemispheres, Text S1.2.2), (iii) Z-standardizing the data across parcels within each gene, 

and (iv) taking the uniform average of the data across genes within each cell type. 

We reduced the dimensionality of the atlas datasets to decrease multicollinearity in multi-

variate regression analyses. As the nuclear imaging and mRNA expression data likely differed 

strongly in terms of confounds and signal-to-noise ratio, and to study molecular- and cellular-level 

effects separately, data sources were not mixed during dimensionality reduction. To retain inter-

pretability, we used factor analysis for dimensionality reduction (minimum residuals, promax ro-

tation). All unrotated factors that explained ≥ 1% of variance of each dataset were retained. We 

chose the oblique rotation method as the resulting factor intercorrelation would be expected from 

non-independent biological processes or cell populations. Resulting predictors were named by as-

signing each original atlas to the factor it loaded on the most (nuclear imaging: ni1–n; mRNA 

expression: ce1–n; MRI: only microstructural marker, no dimensionality reduction: mr1). In an 

additional analysis, we ensured that the factor solution estimated on the original brain atlases ex-

plained more variance in the original dataset than factor analyses estimated on permuted brain maps 

(see Text S1.2.4). 

4.3.2. Braincharts CT model 

The Braincharts reference model was estimated on 58,836 subjects from 82 sites (50% 

training/testing split; 51% female; age range 2.1–100 years; age distribution: Fig. S5). Detailed 

information on the included samples, CT estimation, and modeling procedure was provided by 

Rutherford et al.3. Notably, while ABCD baseline data were included in the model estimation, 

ABCD follow-up and IMAGEN data were not. Briefly, T1-weighted MRI data were obtained from 

the original cohorts and FreeSurfer 6.098 was used to extract parcel-wise CT data. Image quality 

was ensured based on FreeSurfer’s Euler characteristic99 and manual quality control of 24,354 im-

ages3,47. CT development was modeled separately for each Destrieux parcel using warped Bayesian 

linear regression models predicting CT from age, sex, and site as fixed effect. The applied meth-

odology was developed for use in large datasets, can model nonlinear and non-Gaussian effects, 

accurately accounts for confounds in multisite datasets, and allows for estimation of site batch 

effects in previously unseen data3,92,100–102.  

We extracted Braincharts “modeled" CT data separately for females and males for each of 

148 cortical parcels for 171 timepoints (5–90 years with 0.5-year steps) and 7 percentiles (1st, 5th, 
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25th, 50th, 75th, 95th, and 99th). We focused on the age range of 5 years onwards as the used Free-

Surfer pipeline was not adjusted for very young ages3. For colocalization analyses, the extracted 

modeled CT data were used as is. For model-based (pseudo-)longitudinal analyses, we calculated 

the relative modeled CT change ∆𝐶𝑇 from year 𝑖 to year 𝑗 based on the median (50th percentile) 

sex-average modeled CT data as ∆𝐶𝑇(",$) =
&'!(&'"
&'"

. Lifespan CT change was then calculated using 

a sliding window with 1-year steps and 5-year length from 5 to 90 years as ∆𝐶𝑇(",$), 𝑖 ∈ [5. .85], 𝑗 =

𝑖 + 5.  

4.3.3. ABCD and IMAGEN CT data 

Processed and parcellated CT data from the Adolescent Brain Cognitive Development 

(ABCD) cohort47 was taken directly from the ABCD 4.0 release. Baseline (T0, ~10 years) and 2-

year follow-up (T2) structural MRI data were processed using FreeSurfer 7.1.1 by the ABCD study 

team. Details were provided by Casey et al.47 and in the release manual 

(http://dx.doi.org/10.15154/1523041). For the IMAGEN cohort48, T1-weighted MRI data at base-

line (T0, ~14 years) and at one or two follow-up scans (T5, ~19, and T8, ~22 years) were retrieved 

and processed with FreeSurfer’s standard pipeline (7.1.1). Following Rutherford et al.3, we relied 

on the total number of surface defects as provided by FreeSurfer for quality control. We excluded 

subjects that exceeded a threshold of 𝑄3 + 𝐼𝑄𝑅 × 1.5 calculated in each sample across 

timepoints99,103 or failed the manual quality ratings provided in the ABCD dataset. One ABCD 

study site (MSSM) stopped data collection during baseline assessment and was excluded. For each 

cohort (ABCD: n = 20; IMAGEN: n = 8 sites), we applied site harmonization to cross-sectional 

CT data of all subjects in one step across sessions using ComBat56, modeling age as a non-linear 

covariate (ComBAT-GAM55) in addition to covariate effects of sex and session. Facilitating com-

parison between observed and Braincharts-predicted CT data, we additionally projected the ABCD 

and IMAGEN data into the Braincharts model to derive predictions and individual deviation scores 

(for sensitivity analyses, Text S1.4.1).  

Colocalization analyses were calculated on the site-adjusted and original CT values at each 

timepoint. For longitudinal analyses, the relative CT change between each time point within each 

cohort was calculated as above (ABCD: T0–T2; IMAGEN: T0–T8, T0–T5, and T5–T8). 

http://dx.doi.org/10.15154/1523041
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4.4. Null map-based significance testing 

Spatial associations between brain maps can be assessed in correlative analyses in the sense 

of testing for cortex- or brain-wide alignment of the distributions of two variables A (e.g., CT) and 

B (e.g., a neurotransmitter receptor)23,25,31,104. Effect sizes (e.g., correlation coefficients) resulting 

from correlating A and B convey interpretable meaning. However, parametric p values do not, as 

they are influenced by the rather arbitrary number of “observations” (between thousands of 

voxels/vertices and a few parcels) and spatial autocorrelation in the brain data105. Null model-based 

inference approaches circumvent this problem by comparing the observed effect size to a null dis-

tribution of effect sizes obtained by correlating the original brain map A with a set of permuted 

brain maps generated from B to derive empirical p values. From several approaches proposed to 

preserve or reintroduce spatial autocorrelation patterns in null maps105, we relied on the variogram-

based method by Burt et al.85 as implemented in JuSpyce via BrainSMASH24,83,85. 

4.5. Discovery analyses based on the Braincharts model 

4.5.1. Lifespan colocalization trajectories 

To characterize lifespan trajectories of colocalization between cross-sectional modeled CT 

and neurobiological markers, we calculated Spearman correlations between each brain atlas and 

modeled CT data at each extracted time point and percentile. Smoothed regression lines (locally 

estimated scatterplot smoothing) were estimated on data from all percentiles combined to highlight 

developmental trajectories. As the resulting developmental patterns were largely similar across 

sexes, we performed the main analyses on female-male-averaged modeled CT data and reported 

sex-wise results in the supplementary materials. 

4.5.2. Prediction of modeled CT change  

The main objective of this study was to determine the extent to, and the temporal patterns 

in which, neurobiological marker could explain modeled CT development and aging patterns. To 

achieve this goal, we designed a framework in which we “predicted” stepwise relative (modeled) 

CT change from one or more brain atlases in multivariate or univariate regression analyses. The 

amount of (modeled) CT variance explained R2 was used as the main outcome measure (adjusted 

in multivariate analyses). Exact one-sided p values were calculated by generating a constant set of 

10,000 null maps for each brain atlas and comparing observed R2 values to R2 null distributions 

obtained from 10,000 regression analyses using the null maps as predictors.  
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To determine the general extent to which modeled CT changes could be explained, we per-

formed one multilinear regression per lifespan timestep (81 models) using (i) all neuroimaging and 

(ii) all mRNA expression-based atlases. In an additional analysis, we assessed the result combining 

all atlases irrespective of modality. The resulting p values were FDR-corrected across all models 

and atlas source modalities. To quantify individual atlas-wise effects and identify specific neuro-

biological markers of potential relevance to CT development, we performed univariate regression 

analyses per timestep and atlas (21 × 81 models), correcting for multiple comparisons using FDR 

correction within each modality. In sensitivity analyses, we assessed effects of correcting for base-

line modeled CT (regression of modeled cross-sectional CT at year x from CT change between 

year x and year y), adjusting modeled CT percentile (1st and 99th), sex (female and male separately), 

and window length (1-year, 2-year). As above, the results were consistent across sexes, thus all 

main analyses were reported for sex-average modeled CT data and the following model-based 

analyses were performed only on sex-average data. As our analyses are based on the 148-parcel 

Destrieux parcellation46, while the low-resolution Desikan-Killiany parcellation51 (68 parcels) is 

more prevalent in the literature, we evaluated if spatial association patterns remained stable using 

Desikan-Killiany-transformed data (Text S1.3.2). Finally, we tested if explained modeled CT 

change across time windows was correlated to (i) the number of subjects that went into model 

estimation per time window and (ii) the distance in years to the approximate age of the neurobio-

logical marker sources (Text S1.3.3). 

4.5.3. Marker-wise contributions to explained modeled CT change 

Aiming to identify when and how neurobiological markers contributed to explaining mod-

eled CT change, we retained only those brain atlases that significantly explained modeled CT de-

velopment individually (FDR correction) and conducted dominance analyses “predicting” modeled 

CT change from this joint set of atlases. Dominance analysis aims to quantify the relative im-

portance of each predictor in a multivariate regression. The total dominance statistic is calculated 

as the average contribution of a predictor x to the total R2 across all possible subset models of a 

multivariate regression and can here be interpreted as the extent to which modeled CT development 

during a certain time period is explained by x in presence of the whole set of predictors X and as a 

fraction of the extent to which modeled CT development is explained by set X25,26,52. Following 

from this, in our models, the sum of the atlas-level R2 at a given timespan equals the total R2 at this 

time point. Significance of dominance analyses was determined as described above by generating 

null distributions and estimating empirical p values for both, the “full model” multivariate R2 and 
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the predictor-wise total dominance R2. Finally, Spearman correlations between modeled CT change 

and neurobiological markers were conducted to indicate the directionality of associations. 

Dominance analyses were conducted at each timestep and, to highlight the main postnatal 

developmental period between child and adulthood, on the modeled CT development across this 

entire period defined as ∆𝐶𝑇(),*+) (82 models). Resulting p values were corrected across the whole 

analysis (full model and atlas-wise: 82 + 82 × 9 p values).  

4.5.4. Brain-regional influences on modeled CT change association patterns 

To estimate the importance of individual brain regions for the associations between CT 

change and brain atlases, we relied on the atlas-wise residual differences across brain-regions as 

unitless measures of the influence of individual cortex regions on the dominance analysis results. 

The residual difference of prediction errors ∆𝑃𝐸 for each predictor x out of the predictor set X was 

calculated as ∆𝑃𝐸 = 7𝑃𝐸,∖{/}7 − |𝑃𝐸,|. The results were visualized on surface maps for descrip-

tive interpretation.  

4.5.5. Relationships between dimensionality-reduced and original neurobiological markers 

To assess whether the factor-level markers represented the original neurobiological atlases 

according to the applied atlas-factor-association scheme, we performed (i) dominance analyses and 

(ii) univariate regressions per factor-level atlas using only the strongest associated original atlases 

as predictors. The latter were defined as the five atlases that loaded the most on each factor if the 

absolute loading exceeded 0.3. FDR correction was performed independently for dominance anal-

yses and univariate regressions across all tests. 

4.6. Validation analyses based on developmental gene expression data 

4.6.1. Data sources and (null) gene set construction 

Normalized developmental gene expression data for n = 17,565 genes was downloaded 

from the Human Brain Transcriptome database (https://hbatlas.org/pages/data); the original dataset 

was published by Kang et al.27. As of the postnatal focus of our study, we included only subjects 

after birth, resulting in n = 33, aged between 0.33 and 82.05 years. The original data was sampled 

across multiple cortical regions and, in some cases, both hemispheres per subject. However, be-

cause a maximum of only 11 cortex regions was sampled, we decided to average the data per 

subject across hemispheres and neocortical areas (c.f. Kang et al.).  

https://hbatlas.org/pages/data


 

 

30 

30 

We identified the original brain atlases that loaded most strongly on each factor-level neu-

robiological marker (c.f. section 4.5.5). Each of these original atlases was represented in the genetic 

data through a single gene or a set of genes (Tab. 1); in case of gene sets, gene expression data was 

averaged across genes. For most nuclear imaging maps, we selected the genes or gene sets that 

coded for, or was associated with, the respective tracer target. For brain metabolism maps, we took 

two gene sets associated with aerobic and anaerobic glycolysis from Goyal et al.54. We did not 

have a gene set for the CBF (cerebral blood flow) map. For cell type maps, we took the original 

gene sets from which the maps were generated42,43.  

For permutation-based significance testing (see below), we created n = 10,000 null gene 

expression datasets by randomly selecting genes or same-sized gene sets from n = 2,154 non-brain 

genes (https://www.proteinatlas.org/humanproteome/brain/human+brain, “Not detected in brain”). 

4.6.2. Associations to temporal patterns of explained CT development 

The following process was used to test for associations between modeled CT change ex-

plained by neurobiological markers and developmental gene expression trajectories: (i) We fitted 

a smoothed regression line (locally estimated scatterplot smoothing) to the gene expression data 

associated with each gene/gene set as well as to the respective null gene expression datasets. (ii) 

For each dimensionality-reduced neurobiological marker, we identified the time period in which it 

explained modeled CT change significantly (FDR-corrected). (iii) For each of the (null) gene ex-

pression trajectories associated with the current neurobiological marker, we calculated the average 

gene expressions during and outside of the significant time period. (iv) We separately compared 

the mean and the ratio of gene expression during vs. outside the significant time period between 

the observed and null gene expression data to derive empirical one-sided p values for the associa-

tion between each neurobiological marker and each associated gene/gene set. (v) FDR-correction 

was applied across all tests at once. A significantly higher mean expression would indicate in-

creased cortical expression of a marker during the tested time period as compared to non-brain 

genes. An increased ratio would broadly indicate that the marker’s gene expressions peaks during 

the tested time period. 

https://www.proteinatlas.org/humanproteome/brain/human+brain
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4.7. Validation analyses based on ABCD and IMAGEN single-subject data 

4.7.1. Developmental colocalization trajectories 

First, we tested whether colocalization patterns between neurobiological markers and sin-

gle-subject cross-sectional CT followed the predictions of the Braincharts model. Spearman corre-

lations were calculated between each subject’s CT values and each atlas at all available timepoints, 

for CT data (i) as extracted from FreeSurfer, (ii) after ComBat-harmonization, (iii) after projection 

into the Braincharts model, and (iv) as predicted by the model.  

4.7.2. Explained CT development patterns on cohort- and individual-subject levels 

Following, we assessed how neurobiological markers that significantly explained modeled 

CT development during the period covered by ABCD and IMAGEN data (9–25 years) performed 

in individual-subject longitudinal data. Dominance analyses were performed in two steps. First, for 

each of the four investigated time spans (ABCD: ~10–12; IMAGEN: ~14–22, ~14–19, 19–22 

years), one dominance analysis was calculated to predict the cohort-average CT change pattern 

from neurobiological markers. Second, dominance analyses were calculated in the same fashion, 

but for every subject. For comparison, analyses were repeated on CT change patterns as predicted 

by the Braincharts model from each subject’s age and sex. For cohort-average dominance analyses, 

exact p values were estimated as described for the stepwise model-based analyses. For individual-

level analyses, instead of estimating p values for each subject, we tested whether the mean R2 values 

of the full models and each predictor observed in each cohort and time span were significantly 

higher than was estimated in 1,000 null-analyses with permuted atlas data. Finally, we repeated the 

subject-level analyses on the original CT change data prior to site-harmonization, under correction 

for intracranial volume, and on the longitudinal change of deviation Z scores as returned by the 

Braincharts model3. 

We then estimated how the subject-level regression models generalized from the subject-

level normative CT change patterns to the actual observed CT change by applying the regression 

models estimated on each subject’s normative CT change patterns to each subject’s observed CT 

change (Text S1.4.2). 

Further sensitivity analyses were conducted to estimate how CT change predictions were 

affected by follow-up duration, sex, study site, “normativity” of CT and CT change patterns [cor-

relation between predicted and observed CT (change), average Braincharts CT deviation (change), 

count of extreme deviation (change)], and data quality (number of surface defects). Subject-level 
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full model R2 values were compared by sex and study site using analyses of covariances corrected 

for follow-up duration (and sex or site). All other variables were correlated with full model R2 

values using Spearman correlations. 

5. Data availability 

Neurobiological marker source data, the Braincharts models, data extracted from these 

models, developmental gene expression data, and colocalization results are available from a 

GitHub repository accompanying this publication (https://github.com/LeonDLotter/CTdev/; DOI: 

https://doi.org/10.5281/zenodo.7901282). The Braincharts model is furthermore available from: 

https://github.com/predictive-clinical-neuroscience/braincharts. Original data and derivatives from 

the ABCD and IMAGEN datasets cannot be shared openly but are accessible via requests to the 

original investigators (https://abcdstudy.org/; https://imagen-project.org/).  

6. Code availability 

All code supporting the analyses and conclusions of this publication is available via the 

publication repository (https://github.com/LeonDLotter/CTdev/; DOI: https://doi.org/10.5281/ze-

nodo.7901282). The code is organized in annotated Jupyter notebooks, which also produce all main 

and supplementary figures.  
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