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The high computational cost of wide-parameter-space searches for continuous gravitational waves
(CWs) significantly limits the achievable sensitivity. This challenge has motivated the exploration of
alternative search methods, such as deep neural networks (DNNs). Previous attempts [1,2] to apply
convolutional image-classification DNN architectures to all-sky and directed CW searches showed promise
for short, one-day search durations, but proved ineffective for longer durations of around ten days. In this
paper, we offer a hypothesis for this limitation and propose new design principles to overcome it. As a proof
of concept, we show that our novel convolutional DNN architecture attains matched-filtering sensitivity for
a targeted search (i.e., single sky-position and frequency) in Gaussian data from two detectors spanning ten
days. We illustrate this performance for two different sky positions and five frequencies in the 20–1000 Hz
range, spanning the spectrum froman “easy” to the “hardest” case. The corresponding sensitivity depths fall in
the range of 82–86=

ffiffiffiffiffiffi
Hz

p
. The same DNN architecture is trained for each case, taking between

4–32 hours to reach matched-filtering sensitivity. The detection probability of the trained DNNs as a
function of signal amplitude varies consistently with that of matched filtering. Furthermore, the DNN statistic
distributions can be approximately mapped to those of the F -statistic under a simple monotonic function.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are weak, long-
lasting and nearly-monochromatic waves emitted by non-
axisymmetric spinning neutron stars. Numerous searches
have been performed on the data from the LIGO (H1 and
L1) and Virgo (V1) detectors, yet no CWs have so far been
detected [3]. Owing to the expected small amplitude of CW
signals, months to years of data will be required in order to
collect a sufficient signal-to-noise ratio to allow a detection.
The most sensitive search method consist of coherently

integrating signal templates over the entire time-span of the
data, as process commonly known as matched filtering.
However, for wide parameter spaces this method is severely
constrained by the required computing cost (due to the
astronomical number of required templates), e.g., see [4].
Instead, semicoherent search methods are used in practice
for wide parameter-space searches, which proceed by
coherently analyzing shorter segments of data and combin-
ing their results incoherently. These search methods tend to

result in the highest sensitivity at a fixed computational
cost.
In order to overcome the computational-cost constraint

on the achievable sensitivity, one alternative approach
being explored is to use deep neural networks (DNNs)
to search for CWs in the data. There has been a number of
studies exploring the potential of DNNs to help improve
CW searches, for example, as a clustering and follow-up
method of search candidates [5–7], to reduce the computa-
tional cost of follow-ups [8,9], and to mitigate the effect of
instrumental noise artifacts [10]. DNNs have also been
shown to be able to accelerate searches for long-duration,
transient CWs [11,12].
Here we continue to pursue the approach of [1,2] to train

DNNs as an end-to-end search method for CW signals
directly on the detector strain data. These earlier studies
considered wide-parameter-space searches of signals with
time-spans of 105 s and 106 s, respectively, using the best
available DNN architectures for image classification tasks.
While this approach proved quite effective on the shorter
time-span of 105 s ∼ 1 day, it performed poorly on the
longer signals of 106 s ∼ 11.6 days.
This raises the question if it is the larger number of signal

waveforms (i.e., templates) in a wide parameter space, or the
morphology of longer signals itself that thwarts the net-
works’ ability to successfully learn to detect them. A similar
difficulty of DNNs to detect long-duration signals has also
been observed in the context of compact-binary-coalescence
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searches, see [13]. We find that the characteristics of longer
CWsignals seem tobe theunderlying causeof the inability of
the image-classification architectures to effectively learn to
detect them.
Therefore here we take a step back and focus on the

problem of targeted (i.e., single-template) CW searches
over a time-span of ten days in simulated Gaussian noise.
Developing architectures capable of detecting longer CW
signals is crucial for scaling up to complete wide-parameter
space search methods that could ultimately compete with
current state-of-the-art semicoherent CW searches.
The plan of the paper is as follows: in Sec. II, we

introduce the CW signal model, we define benchmark
targeted search cases in Sec. III and describe the archi-
tecture and training of our DNN in Sec. IV. Finally, we
present our test results and discussion in Sec. V and
conclusions and future outlook in Sec. VI.

II. CONTINUOUS GRAVITATIONAL WAVES

Continuous gravitational waves are long-lasting, quasi-
monochromatic waves with a slowly varying frequency,
emitted by spinning nonaxisymmetric neutrons stars. We
model the evolution of the CW signal phase ΦðτÞ as a
function of time τ in the source frame (assuming only linear
spindown) as

ΦðτÞ ¼ 2π

�
fðτrefÞΔτ þ

1

2
ḟðτrefÞΔτ2

�
þ ϕ0; ð1Þ

where Δτ≡ τ − τref , and τref is the reference time at which
fðτrefÞ and ḟðτrefÞ are defined.
In the detector frame the signal experiences frequency

modulation due to the relative motion between the detector
and the source. This modulation can be characterized by the
relation between the arrival time t of a wave front at the
detector that left the source at time τ. For an isolated
neutron star, this timing relation τðtÞ can be written as
follows:

τðt;nÞ ¼ tþ rðtÞ · n
c

−
d
c
; ð2Þ

where n ¼ ðcos δ cos α; cos δ sin α; sin δÞ is the unit
vector pointing to the source in equatorial coordinates,
expressed in terms of right ascension (α) and declination
(δ), rðtÞ is the vector from the solar-system barycenter
(SSB) to the detector location, d is the distance between the
SSB and the source and c is the speed of light. The term
r · n=c is known as the Rømer delay.
The frequency evolution fðtÞ of the signal in the detector

frame is obtained by applying the timing relation τðtÞ of
Eq. (2) to the source-frame phase evolution of Eq. (1),
namely ΦðtÞ ¼ ΦðτðtÞÞ, and computing the derivative

fðt; λÞ ¼ dΦðtÞ
2πdt

¼ ½fðτrefÞ þ ḟðτrefÞΔτðtÞ�
dτ
dt

; ð3Þ

where λ≡ ffðτrefÞ; ḟðτrefÞ;α; δg are commonly referred to
as the phase-evolution parameters.
An example of the detector-frame frequency evolution

fðtÞ for a CW signal over a time-span of ten days is shown
in Fig. 1. Here we see the two-component Doppler
modulation of the signal due to the diurnal rotation of
the detector (Doppler shifts of order ∼10−6 f) and the
orbital motion of the Earth (Doppler shifts of order
∼10−4 f over the course of a year).
The CW strain signal in the detector additionally

depends on four amplitude parameters A, namely the
overall signal amplitude h0, the neutron-star spin-axis
alignment cos ι with the line of sight, the polarization
angle ψ and the initial phase ϕ0. The full expression for the
strain signal hðt;A; λÞ is not important here and can be
found, for example, in [4,14]. The total measured strain
xðtÞ in a detector can be expressed as

xðtÞ ¼ nðtÞ þ hðt;A; λÞ; ð4Þ

where nðtÞ denotes the noise, characterized by a noise
power spectral density SnðfÞ as a function of frequency. In
practice nðtÞ is often assumed to be (approximately)
Gaussian, a simplifying assumption that we will also use
in this work.
We can distinguish three main categories of CW searches

[3,4], depending on the assumed level of knowledge about
the signals; wide parameter-space all-sky searches assume
the phase-evolution parameters λ to be completely
unknown, directed searches treat the sky position n as
known with unknown frequency and spindown(s), while
targeted searches take the phase-evolution parameters λ to
be fully known. Note that the four amplitude parameters A

FIG. 1. Detector-frame frequency evolution fðtÞ of Eq. (3) for
a CW signal with source-frame frequency fðτrefÞ ¼ 1000 Hz,
spindown ḟðτrefÞ ¼ −10−10 Hz s−1 and sky position Sky-B (see
Table I). The highlighted region denotes the bandwidth of the
signal over each one-day time span.
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are typically considered unknown even for targeted
searches.
The sensitivity of a CW search [15,16] is typically

characterized in terms of an upper-limit amplitude hpdet
0 at

which a search achieves a given detection probability pdet
(typically chosen as 90% or 95%) at a chosen false-alarm
level pfa. This upper-limit amplitude h0 characterizes a
population of signals with unknown (neutron-star) spin
axis orientation (uniform priors cos ι∈ ½−1; 1� and ψ ∈
½−π=4; π=4�) and initial phase (uniform in ϕ0 ∈ ½0; 2π�).
The CW upper limit amplitude hpdet

0 scales with the
amplitude noise spectral density

ffiffiffiffiffi
Sn

p
at every frequency,

it is therefore more convenient to use the sensitivity depth
Dpdet , defined as

Dpdet ≡
ffiffiffiffiffi
Sn

p
hpdet
0

; ð5Þ

which characterizes the sensitivity of a search setup [16]
independently of the noise-floor level Sn. In the following
we use the sensitivity depth D90%, corresponding to an
upper-limit amplitude h90%0 , for which a matched-filter
search would achieve a detection probability of pdet ¼
90% at a false-alarm probability of pfa ¼ 1%.

III. BENCHMARK TARGETED SEARCHES

Previous studies [1,2] had directly attempted to tackle
wide-parameter-space CW searches with convolutional
deep-neural-network architectures from image classifica-
tion. While this approach worked well for short search
durations of about one day, it became ineffective when
extended to longer durations up to 106 s ∼ 11.6 days, see
Table VI in [2].
Further experimentation reveals that these network archi-

tectures struggle with longer-duration signals even when
trained on much simpler targeted searches. For example, for
ten-day signals the Inception-Resnet-v2 architecture used in
[2] fails to essentially learn anything except at the lowest
frequency (f ¼ 20 Hz), as shown in Fig. 2.
This indicates that it is not (only) the larger parameter

space but the signal morphology itself that causes prob-
lems. Specifically, the difficulty encountered by DNNs in
detecting CW signals appears to be correlated with their
effective bandwidth in the data, corresponding to the
Doppler broadening in the detector frame (as illustrated
in Fig. 1).
In this study, we therefore narrow our focus on targeted

searches spanning ten days, in order to demonstrate, as a
proof of concept, that an appropriately-designed DNN
architecture can detect these longer signals with optimal
matched-filter sensitivity. For this purpose we define ten
benchmark cases of targeted ten-day searches, given in
Table I, spanning the spectrum from “easy” to “hardest”,
with five different frequencies from 20–1000 Hz (higher

frequency leads to more Doppler broadening) and two
different sky positions, Sky-A and Sky-B.
Sky position Sky-B has the widest Doppler broadening

(over the sky) of the signal during the ten-day search span,
while sky position Sky-A is more favorable with a narrow
signal bandwidth. The total ten-day signal bandwidths for
all benchmark cases are listed in Table II. We see that the

FIG. 2. Training progress of an image-classification DNN
(Inception-Resnet-v2) used in [2] when trained on a ten-day
targeted search considered in the current study (at sky position
Sky-B, see Table I). Trained signals are injected at depth D90%

Sky−B
given in Eq. (6) at five different frequencies. In 76 h of training,
the image-classification network manages to learn to detect such
signals only in the lowest-frequency case (f ¼ 20 Hz), while
completely failing for higher frequencies (f ≥ 100 Hz).

TABLE I. Benchmark targeted searches, spanning five frequen-
cies between 20–1000 Hz and two sky positions, one “easy”
(Sky-A) and the “hardest” (Sky-B).

Start time 1200300463 s
Duration 10 days
Detectors LIGO Hanford (H1) and Livingston (L1)
Noise Stationary, white, Gaussian
Frequency fðτrefÞ 20, 100, 200, 500, 1000 Hz
Spindown ḟðτrefÞ −10−10 Hz s−1
τref 1200300463 s
sky position (α, δ) Sky-A (6.123771, 1.026457) rad

Sky-B (2.119314, 0.299076) rad

TABLE II. Total signal bandwidths over ten days (in mHz) for
the targeted-search cases defined in Table I.

Bandwidth [mHz]

Frequency [Hz] Sky-A Sky-B

20 0.089 0.453
100 0.163 1.941
200 0.382 3.802
500 1.060 9.383
1000 2.194 18.685
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search at f ¼ 20 Hz targeting sky position Sky-A has the
narrowest signal band (∼0.09 mHz), and is expected to be
the easiest to master for a DNN, while targeting Sky-B at
f ¼ 1000 Hz is expected to be the hardest case (with a total
bandwidth of ∼18.7 mHz). A visual illustration of the
respective bandwidths of signals at the two sky-positions
can also be found in Fig. 3.
We can estimate the optimal matched-filtering sensitivity

D90% (at pfa ¼ 1% false-alarm level) for each of the bench-
mark search cases using the approach developed in [15,16]
and implemented in [17].1 The corresponding optimal
sensitivity depths depend on the sky position (due to the
different antenna-pattern response), and are obtained as

D90%
Sky−A ≈ 86.2 =

ffiffiffiffiffiffi
Hz

p
;

D90%
Sky−B ≈ 81.8 =

ffiffiffiffiffiffi
Hz

p
: ð6Þ

This defines the optimal sensitivity ceiling to compare the
DNN performance against.
Note that the matched-filter search at Sky-B is slightly

less sensitive than at Sky-A, requiring a stronger signal
(i.e., smaller depth) to reach pdet ¼ 90%. This is due to
differences in the antenna-pattern response at the two sky
positions and is unrelated to the previous discussion about
signal bandwidths in the detector frame, which does not
affect matched-filter performance.

IV. DEEP LEARNING

In this section we describe the design of the DNN
architecture, the pre-processing of the input data, and the
training process.

A. A new DNN architecture for CWs

Deep state-of-the-art image classification networks (spe-
cifically, ResNet [19] and Inception-ResNet-v2 [20])
employed in [1,2] were unable to achieve competitive
sensitivities for CW signals lasting ∼11.6 days, with
rapidly decreasing performance at higher frequencies
(e.g., see Table VI in [2]). As mentioned in the previous
section, these architectures perform poorly even when
simplifying the problem to simple targeted searches over
ten days, as seen in Fig. 2.
We hypothesize that this failure to learn is due to a

mismatch between the morphology of long CW signals
in noise and the implicit priors in (convolutional)
image-classification network architectures. These image-
classification priors can be roughly characterized as

(i) the image could represent any object,
(ii) high signal-to-noise-ratio pixels can be combined

locally to find small-scale structures like ridges,
corners, etc.,

(iii) lower-level patterns can be hierarchically combined
into larger structures in subsequent layers, where the
exact location of lower-level structures has little to
no impact on the final classification.

The resulting typical convolutional image-classification
architectures consists of small convolutional kernels (such
as 7 × 7 or smaller), lossy layer reductions such as max- or
mean-pooling and a large number (≳50) of layers
(cf. [19,20]).
Contrast this with CW signals, where two things happen

when increasing search duration: (i) the signal depth D90%

for matched filtering grows as ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
duration

p
, so the ampli-

tude of the target signals become smaller, and (ii) the
Doppler spreading of the signal in the detector frame
increases, see Sec. III and Fig. 1. Both of these factors
contribute to weaker and less localized signal power in
time-frequency space, i.e., reduced local signal-to-noise
ratio in any spectrogram bin. Figure 4 illustrates this effect

FIG. 3. Input spectrogram arrays for two signals without noise at 1000 Hz: (a) sky position Sky-A featuring low Doppler broadening
of the signal, and (b) sky position Sky-B exhibiting maximal Doppler broadening over the ten-day period. See Table I for the complete
parameter definitions.

1This is assuming the F -statistic, which is not strictly
Neyman-Pearson optimal [18], but the difference is too small
to be of practical relevance for these search setups.
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for a spectrogram of the Sky-B@1000 Hz signal of Fig. 3
added to Gaussian noise at a matched-filtering depth of
D90% ¼ 81.8=

ffiffiffiffiffiffi
Hz

p
. The resulting “image” does not show

any visible trace of the signal. We can therefore roughly
characterize the CW signal priors as:

(i) a diurnal narrow frequency pattern, repeating daily
with an overall frequency drift (due to spindowns
and orbital motion2), see Figs. 1 and 3,

(ii) a vanishing local signal-to-noise ratio in any spectro-
gram pixel, see Fig. 4,

(iii) a lossless combination of all signal pixels will be
necessary for classification to be able to compete
with matched filtering.

Motivated by these priors, we use the following design
principles to construct our CW-DNN architecture:
(1) avoid operations that lose information about the

signal (such as max-/mean-pooling),
(2) combine all signal bins within the shortest layer

pathway,
(3) use an input spectrogram adapted to the diurnal

repeating shifted signal pattern.
The last point is probably not strictly necessary, and is
intended to simplify the problem for the network, by
providing a “natural” factorization into a repeating shifted
daily pattern that can be learned by the same convolutional
kernels across all segments, producing a tracklike output
pattern to be combined by subsequent layers.

B. Preprocessing the input

We convert the one-dimensional time-series data xðtÞ of
Eq. (4) for each detector into a two-channel (real and
imaginary part) spectrogram over ten one-day segments.
Detectors are stacked along the channel dimension, and for

two detectors (H1+L1) the input spectrograms therefore
have a total of four channels. Hence, the input consists of a
three-dimensional array, with axes corresponding to seg-
ments, frequency bins, and channels, as depicted in Figs. 3
and 4.
The input frequency band encompasses the entire

signal bandwidth, aligned to start at the lowest signal
frequency with a fixed total bandwidth corresponding to the
widest signal in Table II, specifically ∼18.7 mHz for the
Sky-B@1000 Hz case. With the segment FFT resolution of
1=day, plus a padding of 16 frequency bins on either side of
the band, this results in a total input bandwidth of 1647
frequency bins.

C. Network architecture

Through extensive experimentation based on the archi-
tecture design principles of Sec. IVA, we ultimately
arrived at the simple network architecture summarized in
Table III.
The first layer performs 1D-convolutions with 64 kernels

of dimension 1 × 313 × 2, sliding along the frequency-axis
for each detector and segment. The kernel size of 313
frequency bins encompasses the widest signal bandwidth
within the one-day segments, namely 3.4 mHz, for the
skyB@1000 Hz signal.
The second layer performs 2D convolution of 64 kernels

with dimension 2 × 40 × 64, combining neighboring seg-
ments over 40 units along the frequency-axis. The width in
frequency covers the widest output “track” width over the
two-day span. This choice is motivated by the idea of
combining the full signal information within the shortest
possible network path, as discussed in Sec. IVA.
The output block consists of three layers: a flatten layer

(reshaping the input to a one-dimensional array), a dense
layer with 32 units and a final output layer consisting of a
single unit.
Every layer except the flatten and output layers use ReLU

activation. The output layer uses a sigmoid activation in the
final output for the probability ŷ∈ ½0; 1� of the data contain-
ing a signal.

FIG. 4. Input spectrogram array for signal Sky-B@1000 Hz of
Fig. 4(b) added to Gaussian white noise at a matched-filtering
depth D90%

Sky−B ≈ 81.8=
ffiffiffiffiffiffi
Hz

p
.

TABLE III. DNN architecture for targeted ten-day CW search:
the output shape (T, F, C) of each layer corresponds to the number
of bins in the (time, frequency, channels) axes, respectively. The
kernel sizes of the convolutional layers are using the same
convention.

Layer Output shape (T, F, C)

Input (10, 1647, 4)
Conv1D (Stride—16) (10, 103, 64)
Conv2D (Stride—(1, 4)) (10, 26, 64)
Flatten (16640)
Dense (32)
Output (1)

2This assumes isolated sources and needs to be revisited for
sources in binary systems.
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The sigmoid output ŷ is well-suited for training a
classification network, but as previously observed [2,21],
this tends to run into numerical over and underflow issues
when using it as a detection statistic, e.g., when measuring
the receiver-operator-characteristic (ROC) of detection
probability pdet versus false-alarm pfa. This can be avoided
simply by dropping the final sigmoid activation when using
the trained network’s output as a detection statistic.
The total number of trainable parameters of the network

in Table III is ∼900 k, and the network requires ∼5 MB of
GPU memory per sample. The training was performed on
NVIDIA A100-SXM4 GPUs with 40 GB of memory. The
DNN was implemented in TENSORFLOW 2.0 ([22]) with
the Keras API ([23]). We used the Weights and Biases
platform [24] to track our experiments and to log training
metrics.
Note that despite this being a rather shallow five-layer

network, it still contains about half the trainable parameters
of the nearly 100-layer deep Inception-Resnet-v2 of [2],

which is due to the fact that our network uses substantially
larger kernels.

D. Training and validation

For each of the targeted-search cases in Table I we train
the same network architecture on samples containing either
pure Gaussian noise or an additional signal. The training
data is constructed from a fixed set of 8192 precomputed
(for performance reasons) signals with randomly-chosen
amplitude parameters according to the physical uniform
priors cos ι∈ ½−1; 1�, ψ ∈ ½−π=4; π=4� and ϕ0 ∈ ½0; 2π�.
Each signal is added to a dynamically-generated noise
realization, at a fixed matched-filtering sensitivity depth of
D90% as described in Sec. III.
In every epoch, the network is trained on all 8192 signals

added to Gaussian noise and an equal number of pure
Gaussian-noise samples, where the noise is dynamically
generated in every sample. The training therefore never

FIG. 5. Training and validation detection probability pdet (at fixed pfa ¼ 1%) versus number of epochs and training time for the
targeted-search cases (a) Sky-A@20 Hz, (b) Sky-B@20 Hz, (c) Sky-A@1000 Hz, and (d) Sky-B@1000 Hz. See Table I for the
complete parameter definitions and Table II for the corresponding signal bandwidths.

PRASANNA M. JOSHI and REINHARD PRIX PHYS. REV. D 108, 063021 (2023)

063021-6



sees the exact same samples twice and therefore there can
no overfitting or memorization in the strict sense, although
the finite selection of 8192 signals from the continuous
distribution can still result in some bias or small overfitting.
We use a binary cross-entropy loss function, which is

common practice for classification tasks, namely

Lðy; ŷÞ ¼ 1

N

XN
i¼1

−yi log ŷi − ð1 − yiÞ logð1 − ŷiÞ; ð7Þ

where ŷi ∈ ½0; 1� is the DNN sigmoid output for the iith

sample, yi is the corresponding label (0 for noise and 1 for a
signal), and N is the total number of samples in a batch. We
use the Adam optimizer with a batch size of 128 samples
for training.
At every epoch, we measure the DNN detection prob-

ability pdet at a constant pfa ¼ 1% false-alarm level on the
training dataset. Every 100 epochs, we perform a validation
step, where loss and detection probability are evaluated on
an independent dataset drawn from the same distribution,
constructed again from a (different) set of 8192 indepen-
dent precomputed signals.
The learning progress of detection probability versus

training epoch and time are shown in Fig. 5 for four
representative cases. The network training continues until
the validation detection probability exceeds pdet ≥ 89%.
For each of the targeted-search cases, we start training from
ten different random DNN weight initializations, and we
use the best-performing network from each case for final
testing.
These results confirm an empirical observation men-

tioned in Sec. III, namely the time required for the DNN to
achieve matched-filtering performance increases with sig-
nal bandwidth, suggesting that is more “difficult” for the
network to learn wider signals.

V. RESULTS AND DISCUSSION

A. Verifying performance on a test dataset

The close agreement observed in Fig. 5 between the
DNN performance on the training and validation datasets
indicates that there is no overfitting to the finite set of 8192
training signals. However, there is still potential for over-
fitting to the validation set during the optimization of the
network hyperparameters (i.e., learning rate, layers, kernel
sizes, strides, etc).
Therefore we evaluate the full-trained DNN on a

completely independent test dataset. We generate new
samples of Gaussian white noise and add signals at fixed
matched-filtering depth D90% of Eq. (5) with randomly-
drawn amplitude parameters cos ι;ψ ;ϕ0, resulting in the
final test detection probabilities pdet at fixed false-alarm of
pfa ¼ 1% shown in Table IV. These results are consistent
with the validation detection probability of pdet ≥ 89% that
was used as a stopping criterion for the training. There is a

slight downward bias of the test results, i.e., p̄det ∼ 88.3%,
which makes sense given that training was stopped as soon
as pdet exceeded 89% on the validation dataset that is
subject to both finite-sampling uncertainties and biases.

B. Detection efficiency versus signal depth

All results presented up to this point refer to signals at a
fixed matched-filtering depth D90% of Eq. (5), i.e., signals
with a fixed amplitude h0. A valid question therefore arises
if the network correctly generalizes to other signal ampli-
tudes, as it could in principle have memorized or special-
ized to this particular sensitivity depth.
We measure pdet of the trained DNN at varying signal

depths D, commonly referred to as the efficiency curve,
shown in Fig. 6 for the Sky-B@1000 Hz case (results for
the other test cases look similar). We can see that the DNN
statistic behaves very similarly to matched filtering for both
weaker and stronger signals compared to the D90% depth it
was trained at. This confirms similar results found pre-
viously in [1,2], namely fixing the training depth to D90%

does not seem to result in any over-specialization of the
network.

TABLE IV. Detection probabilities pdet (at fixed pfa ¼ 1%)
achieved by the trained DNNs, evaluated on an independent test
dataset for each of the five frequencies and the two sky positions
Sky-A and Sky-B, see Table I for the complete parameter
definitions.

Frequency Sky-A Sky-B

20 89.0þ0.8
−1.2 88.5þ0.8

−1.0
100 87.8þ0.8

−1.1 87.4þ1.0
−1.0

200 89.0þ0.8
−1.0 89.0þ0.9

−1.0
500 88.4þ0.7

−1.0 88.8þ1.0
−0.9

1000 87.6þ0.8
−1.1 87.6þ1.0

−1.2

FIG. 6. Detection probability pdet (at fixed pfa ¼ 1%) versus
signal depth D for the trained DNN (circles with 90% error bars)
compared to matched filtering (solid line), for the benchmark case
Sky-B@1000 Hz.
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C. Approximate mapping to theF -statistic distribution

The results in the previous sections suggest that the
receiver-operator-characteristic (ROC) pdetðpfaÞ of the DNN
statistic agrees well with that of the matched-filtering
F -statistic [14]. We therefore expect the DNN statistic
and the F -statistic to be (approximately) related by a
monotonic function.
However, for simplicity here we only consider the

corresponding statistic distributions (which fully determine
their respective ROC performance), which would be related
by the same monotonic function. We test this prediction by
comparing the DNN statistic distributions to the known χ2-
distribution of the F -statistic3 in both the pure noise as well
as the signalþ noise cases. For illustration purposes we
focus on the “hardest” Sky-B@1000 Hz test case.

We obtain a distribution of DNN output statistics
on pure noise samples and fit a quadratic mapping to
the known F -statistic noise distribution, namely a central
χ2-distribution with four degrees of freedom. The best-fit
quadratic is obtained as 0.1x2 þ 1.9xþ 9.2 which is a
monotonic function in the range of the DNN statistic. The
resulting mapped noise distributions are shown in the top
panel of Fig. 7.
We then apply the same mapping to the DNN statistic

outputs obtained in the signal case with signals injected at
depth D90%, and we compare the resulting distribution to
the corresponding fixed-depth F -statistic distribution
(cf. [16]), shown in the bottom panel in Fig. 7. We see
reasonably good agreement between the DNN- and
F -statistic distributions, respectively, as expected. This
shows (somewhat complementary to Fig. 6) that the net-
work has properly generalized by learning to compute a
statistic with similar characteristics to (near-)optimal
“matched filtering” statistics such as the F -statistic.

VI. CONCLUSIONS

State-of-the-art convolutional image-classification net-
works have proven ineffective [1,2] for CW searches on
longer durations of ∼11.6 days. We hypothesize that this
failure is due to an inherent mismatch between the CW
signal morphology and the priors implicit in (convolu-
tional) image-classification network architectures.
We propose new DNN architecture design principles for

CWs, which lead us to a novel convolutional DNN
architecture that can effectively achieve matched-filtering
sensitivity for targeted CW searches over ten days.
Future work needs to extend this study to longer

durations (up to 1–2 years) and CW sources in binaries
that would be subject to even larger Doppler spreads.
The resulting network input sizes will become substantially
larger as a result, potentially creating memory and
performance bottlenecks. Furthermore, returning to wide-
parameter-space searches will require scaling up the net-
work capacity in order to be able to learn large numbers of
different signal shapes.
More work will therefore be required to further improve

the network architecture, for example, using transformers
[26,27] for the 2D “track” processing (see Sec. IV C) might
be an interesting direction with the potential of minimizing
the network pathway combining the full signal power.
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FIG. 7. Comparison between the distribution of the F -statistic
(solid line), the DNN output statistic (blue histogram) and the
mapped DNN output statistic (red histogram) for pure noise
samples (top) and D90% signals in noise (bottom), for the
Sky-B@1000 Hz test case.

3The actual Neyman-Pearson-Searle optimal statistic [25] is not
theF -statistic but the Bayes factor, but for our present purposes the
difference in ROC performance will be negligible [18].
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