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Network science offers powerful tools to model complex social systems. Most
social network science research focuses on topological networks by simply
considering the binary state of the links, i.e., their presence or absence.
Nonetheless, complex social systems present heterogeneity in link interactions
(link weight), and accounting for this heterogeneity, it is mandatory to design
reliable social network models. Here, we revisit the topic of weighted social
networks (WSNs). By summarizing the main notions, findings, and applications
in the field of WSNs, we outline how WSN methodology may improve the
modeling of several real problems in social sciences. We are convinced that
WSNs may furnish ideas and insights to open interesting lines of new research in
the social sciences.
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1 Introduction

Networks are prominent frameworks tomodel the functioning of complex social systems
[1–4]. Social networks are composed of nodes (individual actors, people, or social
organizations within the network) and the links (relationships or interactions) that
connect them. Social networks have been used to describe patterns in friendship [5],
science collaborations [6], criminal organizations [7, 8], and to model spreading
dynamics involving, e.g., several real problems of interest, such as information diffusion
[9, 10], social influence models [11–14], epidemic spreading [15, 16], and vaccination
policies [17, 18].

Most of the social network science research has focused on the topological features of the
networks by considering the binary state of the links only, i.e., presence or absence [19].

Nonetheless, complex social systems present heterogeneity in the interactions among
nodes [4, 19, 20], and social networks should be specified not only by their topology but also
by the importance of the links (link weights) that differentiate the interactions among nodes
in terms of their strength, intensity, or capacity [2, 3, 21, 22]. For these reasons, considering
the heterogeneity in the intensity of links/interactions is fundamental to understanding
complex social systems [21].
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This review focuses on social network research adopting a
weighted network approach. We summarize the main notions,
findings, and applications of weighted social networks (WSNs).
Then, we outline how WSN methodology may improve the
modeling of several complex social system problems and
encourage new lines of research.

2 Basic notions

A binary network G(N, L) consists of two sets, N and L, such
that the elements ofN ≡ n1, n2, n3, . . . , nN{ } are the nodes (vertices,
points), while the elements of L ≡ l1, l2, l3, . . . , lL{ } are its links
(edges, ties, or lines). A binary network with N vertices is
represented by an N × N adjacency matrix A with elements aij
equaling 1 if nodes i and j are connected and 0 otherwise [19]. Two
nodes connected by a link are usually referred to as adjacent or
neighboring or neighbors. A weighted network G(N, L,W) consists
of an additional third set of elements W, such that
W ≡ w1, w2, w3, . . . , wL{ } are the weights of the links. A weighted
network is thus represented by an N × N weights matrix W with
elementswij ≠0 if nodes i and j are connected by a link of weightwij,
and 0 otherwise [19]. In this review, we consider only weighted
networks with positive link weights.

3 The “strength of weak ties” hypothesis

The “weak link hypothesis” is probably the most influential
sociological theory of networks. In the famous “The Strength of
Weak Ties” research [23], Granovetter modeled the individual
interpersonal relationships (links or ties) by quantifying the
strength of the friendship (link weight) as “strong,” “weak,” or
“absent.” Strong links represent friends, and weak links denote
tenuous acquaintances. Granovetter stresses the importance of
weak links involving secondary acquaintances outside the people
community, which therefore represent preferential sources of new
information and job opportunities [24].

The “weak link hypothesis” describes a specific social network
structure in which strong links are located within dense
communities (or groups) of similar individuals. In contrast,
weaker links act as bridges between the different communities
(Figure 1A). The weak acquaintance links play the important role
of holding together groups with low levels of similarity, avoiding the
segregation of different and disparate human communities, and thus
preserving the cohesiveness of the social network. Consequently,
social networks would be vulnerable to removing weak links since
their removal would fragment the network into isolated
communities [4, 23].

In recent years, the “weak link hypothesis” has been confirmed
in different real-world WSNs. In mobile phone call networks, longer
phone calls (strong links) generally occur within communities,
whereas shorter-duration calls (weak links) take place from
nodes/individuals in different communities [25]. In a teenager
criminal network, links, defined as friends of friends, join distant
communities of individuals and have a positive impact on criminal
activities [26]. In cinematic collaboration networks, in which the
nodes represent actors and link weight indicates the number of
movies in which they appeared together, weak links are the main
ones responsible for supporting network cohesiveness. Their
removal triggered the quickest network disconnection [27].

4 Node distance in weighted social
networks

The distance among network nodes is a fundamental metric in
social network science, and it is based on the notion of path [20]. A
“path” is a set of distinct and connected nodes. The path of
minimum length between two nodes is usually called the shortest
path (SP) [19]. The “distance” duv between two nodes u and v is the
minimum length of a path joining them, if any; otherwise, duv � ∞
[28]. The distance duv is also known as the geodesic distance,
shortest path distance, or shortest path length. In binary
networks, where links are present or absent (or have the same
weight), the distance duv is the minimum number of nodes (or links)

FIGURE 1
(A) Network structure underlying the “Granovetter weak link hypothesis” [23]. The thickness of the link indicates its weight, i.e., the intensity of the
friendship between the nodes. Links of higher thickness are of higher weight (strong links), and links of lower thickness are of lower weight (weak links).
Node color denotes different community memberships, and nodes of the same color are of the same community. The weak link hypothesis depicts a
social network in which strong links denoting tight friendship generally occur within people communities, and weak acquaintance links connect
distant individuals of different communities. Weak links are important to preserve the cohesiveness of the network. (B) The strong link hypothesis depicts
a social network in which weak links generally occur within people communities, and strong friendship links connect individuals belonging to different
communities. In this case, the strong links are the main players sustaining the cohesiveness of the social network.
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to travel between the nodes [28]. In Figure 2 (left column), we give
an example of binary node distance computation. From now on, duv
indicates the shortest path length between nodes in binary networks.

In the case of weighted networks, to compute the shortest path, it
is necessary to distinguish, in advance, the link weight meaning [3,
29]. The link weight may assume different meanings inWSNs, and a
higher link weight value may indicate that nodes are either closer or
farther apart. Let us take the example of a social network of
employees. The response time to emails among nodes/employees
in this working network indicates how far the connected nodes are in
the social network, thus denoting less important working
relationships. On the contrary, the time two nodes/employees
spend calling each other, calling time, indicates that the nodes
are closer in this social network. From now on, we define
“proximity” the link weight, if its increase denotes a closer
relationship between the nodes, and we define “remoteness” the
link weight in the opposite scenario. Proximity has been defined as a
“flow or capacity” in the literature, and remoteness is also named
“cost, distance, or resistance” [19]. Examples of link weights as

remoteness in social networks can be computed from the physical
distance among nodes/individuals in friendship networks [30], the
response time to emails among nodes/employees in email networks,
the number of troublesome among nodes/individuals in friendship
networks [31], or the antagonism number in working relationship
networks [32]. Conversely, examples of link weights as proximity in
social networks are the duration of a call between nodes/individuals
in telephone networks [25, 33], the number of co-authored papers
between scholars in scientific collaboration networks [6, 34], the
number of emails among nodes/employees [35, 36], and the declared
strength of friendship among nodes/individuals in social networks
[5, 37–39]. In Table 1, we list important types of real-world WSNs,
indicating whether the link weight meaning is proximity or
remoteness.

In weighted networks, we call the shortest path between two nodes
the “weighted shortest path” (WSP). The “weighted distance” dwuv
between two nodes u and v in a weighted network is the length of
the WSP, if any; otherwise, dwuv � ∞ [28]. From now on, dwuv indicates
the shortest path length between nodes in weighted networks.

FIGURE 2
Binary and weighted node distance computational examples. (Top) Weighted network of seven nodes and seven links and its weight matrixW. (Left
column) Binary network counterpart of the weighted network on top, with its adjacency matrix A and its distance matrix D of the binary node distances.
(Middle column) Theweighted network with link weight as remoteness, its weightmatrixW and its distancematrixDw of the weighted node distances dw

ij .
(Right column) Theweighted network with link weight as proximity, its weight matrixW computed by reciprocating the link weights, and its distance
matrix Dw of the weighted node distances dw

ij . The element Dij of the distance matrix indicates the distance dij (shortest path length) between node i and
node j. Since the computation is for undirected networks, we depict only the upper triangular matrix of D.
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TABLE 1 Types of real-world weighted social networks. The “x” indicates if link weights are proximity or remoteness.

Network
type

Description Nodes Links Weight Proximity Remoteness Reference

Advogato online
social network

Trust relationship network
among users on Advogato
online community software
developers.

Advogato
webpages

Trust relationship Trust strength X [40]

Actors Actor coappearance network
from the Internet Movie
Database (IMDb), from
2009 and 2011. Nodes are
actors, and two actors are
linked if they appeared in a
movie together.

Actors Coappearances Number of
coappearances

X [41]

Art Artists’ exhibition networks
in the Museum of
Modern Art

Artists Co-exhibition Co-exhibition
number

X [42]

New York, from 1929 to 1968.

Bitcoin Network of who-trusts-whom
relationships among users of
the Bitcoin Alpha platform.

Traders Trust relationship Trust strength X [43]

Boards of
Directors

Directors’ affiliations network
among Norwegian public
limited companies (from
2002 to 2011)

Directors Comemberships Comembership
number

X [44]

Characters (book) Network of coappearances of
characters within 15 words in
the Game of Thrones books
series.

Characters Coappearances in 15
words of the book

Coappearance
number

X [45]

Characters
(movie)

Network of coappearances of
characters in over 700 movies
from the moviegalaxies.com
website.

Characters Coappearances in a
scene

Number of
coappearances in
scenes

X [46]

Cellphone users Mobile phone network from
18 weeks of all mobile phone
call record

Phone users Calls Total call duration
(minutes)

X [25]

Cellphone
municipalities

Mobile phone calling network
among municipalities in
Colombia during a six-month
period.

Cellphones Calls Total call duration
(minutes)

X [33]

Chess Chess players’ network. Players Matches Number of matches X https://www.
kaggle.com/c/
chess/data

Crime Criminal network Criminals Collaboration in
criminal activities

Collaboration
numbers

X [47]

Drug Networks representing
communications among
members of cocaine
trafficking groups involved in
Spain 2007–2009. Nodes are
people, and an edge denotes
intercepted communication
between them.

Drug sellers Collaborations Number of
collaborations

x [48]

Email Email network of peoples
having received the same
email in the 2016 Democratic
National Committee email
leak.

Persons Reception of the
same emails

Number of emails X [35]

Email The Enron email network
between employees of Enron
between 1999 and 2003.

Employees Email sending Number of emails
sent

X [36]

(Continued on following page)
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TABLE 1 (Continued) Types of real-world weighted social networks. The “x” indicates if link weights are proximity or remoteness.

Network
type

Description Nodes Links Weight Proximity Remoteness Reference

Epidemics Epidemic network of
individuals infecting each
other by sexual contact from
“The National Survey” of the
United Kingdom.

Persons Infections Infection
probability

X [15]

Friendship
(offline)

Friendship network a
United Kingdom faculty
constructed with a
questionnaire, where the
individuals declared the
strength of the friendship
with others.

Individuals Friendship Declared friendship
strength

X [5]

Friendship
(offline)

Friendships among freshmen
at the University of
Groningen, collected over
1997–1998. Link weight gives
the friendship level from 1
(best friend) to 5 (troubled
relation).

Individuals Friendship Troublesome level
in the friendship

x [31]

Friendship
(online)

Online social networks,
Gowalla and Brightkite.

Users Friendships Geographical spatial
distance

x [30]

Facebook Artist Facebook artist online social
networks represent the artist
pages, and links are mutual
likes among them. Data
collected in November 2017.

Facebook
artists’
webpages

Mutual likes Number of mutual
likes

X [49]

Facebook
friendships

Friendship relationships and
interactions (wall posts) for a
subset of the Facebook social
network in 2009, recorded
over a 2-year period.

Facebook
users

Friendships Number of wall
posts

X [50]

Face-to-face Face-to-face network built
using wearable sensors to
detect close-range
interactions (“contacts”)
between individuals. Contact
events were measured with a
spatial resolution of about
1.5 m and a temporal
resolution of 20 s.

Individuals Close-range
interactions

Interaction time X [51, 52]

Innovation
spreading

Social networks that describe
the idea spreading among
individuals

Individuals Interactions Number of
interactions number

X [53]

Mafia Mafia criminal network
describing the number of
times two individuals had a
meeting (as reported by the
police).

Mobsters Meetings Number of meetings X [7]

Online messages Network of messages between
the users of an online
community of students from
the University of California,
Irvine.

Students Message Number of
messages

X [22]

Prostitution Network of escorts and
individuals who buy sex from
them in Brazil, extracted from
a Brazilian online
community. Links represent a
purchase of sexual
intercourse.

Escorts/sex
buyers

Sex Number of sex
activities

x [54]

(Continued on following page)
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While computing dwuv, if the weights mean remoteness, the dwuv
connecting two nodes is the minimum sum of the original link
weights necessary to travel between them [29, 59, 60] (Figure 2,
middle column). This procedure has the rationale to evaluate the
more distant nodes connected by links with higher weight/
remoteness.

In contrast, if the weights mean proximity, we first compute the
reciprocal of the link weights, and then dwuv between two nodes is the
minimum sum of the reciprocal of the link weights necessary to
travel between them [3, 29, 60, 61]. This standard procedure is
necessary to rightly evaluate higher link weight/proximity as a
“faster and shorter route” between nodes, i.e., the higher the
weight of a link, the faster the information flows between the
linked nodes (and the closer the nodes). Conversely, the lower
the link weight/proximity, the more distant the nodes [60]. This
simple calculation has a straightforward interpretation in social
systems. For example, in a telephone social network where link
weights evaluate the calling times between nodes/individuals, the
distance between them is just the inverse of the weight of their
calling time. For example, if two individuals call each other twice as
often as another couple of individuals, the distance between the first
couple is half the distance between the second couple. Figure 2 (right
column) depicts an example of weighted node distance computation
for link weights as proximity.

Notably, while the interpretation of node distance is
straightforward in binary, unweighted networks, whenever
weights are reported, the meaning of the link weight must be
considered to avoid wrong calculations and results. For example,

Table 1 shows that since the link weights in most real-world WSNs
present weights as proximity, the link weight is inversely
proportional to the distance between network nodes. To correctly
calculate the distances dwuv in social networks, it is essential to
understand the structure of the relationships among nodes/
individuals. On the one hand, considering link weights as
proximity or remoteness may change the links forming the
shortest paths between nodes (Figure 3). On the other hand, dwuv
is the base to compute different node centralities such as closeness,
betweenness, and delta centrality [19, 60, 62], and an incorrect dwuv
assessment would lead to an incorrect node ranking. Lastly, dwuv is
necessary to compute different network efficiency measurements
[29, 60, 63, 64].

Mistakes in node distance computation in weighted networks
may be more frequent than expected; it has been recently shown that
in ecological network science, among 129 published research studies,
61% of these studies using shortest paths in weighted networks may
contain errors in how WSPs are calculated [65].

5 Measures of node centrality

In network science, measures (or indicators) of node centrality
assign rankings to nodes within a network corresponding to their
position in the network structure [1, 66]. Node centrality measures
were first developed in social network analysis to identify influential
persons in social networks [1, 67, 68]. Ranking network nodes
according to their network structural embedding helps address a

TABLE 1 (Continued) Types of real-world weighted social networks. The “x” indicates if link weights are proximity or remoteness.

Network
type

Description Nodes Links Weight Proximity Remoteness Reference

Rating Online A network of ratings given
between users at Libimseti.cz,
a Czech online dating website.
Links mean rating among
users and corresponding link
weight is the given rating, on
a scale of 1–10.1

Individuals Ratings Rating value X [55]

Scientific
collaboration

A co-authorship network
among scientists working on
network science, from 2006.

Scientists Coauthorship Number of papers X [56]

Scientific
collaboration

Scientific collaborations of
New Zealand institutions
using Scopus bibliometric
data (2010–2015)

Institutions Coauthorship Number of papers X [57]

Terrorists Networks representing
connections among the
individuals associated with
bombing or other terrorist
events.

Terrorists Friendship Strength of
friendship

X [58]

Workers Employees network from
observational data of the
Western Electric (Hawthorne
Plant) factory

Employees Working
relationships

Number of
antagonistic acts

x [32]

Workers Employees network from
observational data of the
Western Electric (Hawthorne
Plant) factory

Employees Working
relationships

Number of helping
acts

X [32]
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variety of problems in social networks, such as identifying the most
influential persons in a friendship network [5], selecting the influential
spreaders of news and information [69], and finding the most
important nodes for vaccination to halt epidemic spreading, [17, 18,
70], etc [66]. Many node centrality measures conceived for binary
networks were then adapted to rank nodes in WSNs.

The simplest measure of centrality is the node degree, i.e., the
number of links to the node [1, 3].

The degree ki of node i is given by:

ki � ∑N

i�1aij, (1)

whereN is the number of nodes in the network; aij equals 1 if there
is a link connecting nodes i and j and equals 0 otherwise. The node
strength, also named weighted degree, is the sum of the link weights
to the node [3, 60].

The strength si of node i is:

si � ∑N

i�1aij ·wij, (2)

where aij = 1 if a link connects nodes i and j and 0 otherwise, andwij

is the weight value of the link connecting nodes i and j. The degree
and strength are simple and local measures, i.e., only the local
structure around a node is required to calculate them. However,
there are limitations: the degree and strength measures do not
consider the global structure of the network. For example, nodes
with few links might be located in a privileged position to reach
others quickly to access resources, such as information or knowledge
[3, 71]. The node closeness centrality can capture this feature and is
defined as the reciprocal of the sum of the distances among the node
and all other nodes in the network [1].

The closeness centrality of node i is:

Ci � 1/∑
i≠j∈N

dij (3)

where dij indicates the binary distance from node i to node j.
Therefore, in binary networks, nodes with more closeness are, on

average, fewer steps away from the other nodes in the networks. In
weighted networks, node closeness is defined by substituting the
binary distance dij with the weighted distance dwij among network
nodes. Therefore, the weighted closeness centrality considers both
the number of intermediary nodes and the link weights [3].

The betweenness is another common measure of node
centrality, accounting for how many shortest paths among nodes
lie on a node [1].

The betweenness centrality g(i) of node i is:

g i( ) � ∑N

s,t�1
σst i( )
σst

(4)

where σst is the total number of SP between nodes s and t, σst(i) is
the number of these SP passing through the node i, and N is the
number of nodes. Betweenness is able to identify nodes that funnel
the information flow in the network [72] and bridge-nodes
connecting different communities [73, 74]. The weighted
counterpart of the betweenness considers the WSP in the networks.

The weighted betweenness centrality gw(i) of node i is:

gw i( ) � ∑N

s,t�1
σwst i( )
σwst

(5)

where σwst is the total number of the WSP between nodes s and t,
σwst(i) is the number of these WSPs passing through node i,N is the
number of nodes.

Passing from binary to node centrality measures accounting for
the weight associated with the links might change the rank of node
importance in social networks [3, 4, 19, 60]. In Figure 4, we show, on
a simple network, how adopting the binary or the weighted version
of the node centrality changes the node rank. Newman [6] showed
that, by contrast, with the simple binary closeness measure, the list of
scientists who are well-connected when ranking nodes with
weighted closeness is no longer dominated by experimentalists,
although the well-connected among them still score highly. The
same has been proven true for other real-world social networks and

FIGURE 3
Finding the shortest path between nodes 1 and 5 in a weighted network. (A) The weighted network. (B) The binary shortest path. (C) Weighted
“proximity” shortest path. (D) Weighted “remoteness” shortest path. The links forming the shortest path are in red, and nodes belonging to the shortest
path are in orange. We can see how, by changing the methodology used to compute the distances among nodes in the social network, the shortest path
between the nodes may change as well.
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different node rankings [60]. Therefore, for social network analyses,
it is very important to adopt node centrality measures, considering
the weight of the links.

Ranking important nodes is fundamental for finding
influential spreaders in social networks [69, 75, 76], and most
of the research investigating influential spreaders uses a binary
network approach. In WSNs, Garas et al. [77] used a weighted
SIR model to describe a general spreading process in networks of
different natures and classified the nodes with a generalized
method for calculating the weighted node coreness centrality.
They show that the proposed weighted node coreness method
places nodes with higher spreading potential closer to the
network core, and it is more accurate in finding the best
spreader nodes in WSNs [77]. With similar aims, Gao et al.
[78] proposed a weighted version of the famous Hirsch index
[79], usually called the H-index, to find influential spreader
nodes. The authors defined the weighted h-index (hw) and
evaluated the effectiveness of the proposed measure with the
SIR spreading model on three real-world social networks. The
authors found that hw may perform better than classic node
centralities in finding influential spreaders in WSNs [78].

Finding influential spreader nodes is a pressing problem in
case of a spreading epidemic [80, 81]. In this case, considering
link weights and proper node centrality measures for weighted
networks may be very important in selecting the best spreader
node [4]. For example, let us take a social network where the link
weights account for the face-to-face contact duration among
people and consequently determine the probability that a
susceptible person is infected after having been in contact
with an infectious person. In this case, neglecting the link
weights may hide the paths of higher infection probability,

consequently selecting false influential spreader nodes and
tracing unlikely infection trajectories (Figure 5).

In Table 2, we give a list of node centrality measures for WSNs
with literature references.

6 Community structure in weighted
social networks

The investigation of community structures in social
networks is an important issue in many domains and
disciplines since many real-world social networks present
community structure [19, 61, 89]. Moreover, social networks
offer a wide variety of possible community organizations:
families, working and friendship circles, scholar
collaborations, and social networking groups [90]. The classic
weak link hypothesis is a paradigmatic example of social
networks with community structure, in which densely
connected communities of nodes/people are joined by
sparsely weaker links (Figure 1).

The definition of community in binary networks is simple: a
community is defined as a subset of nodes within the network such
that the links among the nodes of the same community are denser
than connections with the rest of the network [91]. In other words,
communities are densely connected subgroups of network nodes
with sparser connections among them. Synonyms of community are
group, clique, module, class, and cluster.

In the following two paragraphs, we first describe node
clustering, which can be viewed as the simple notion of the
network community, and then the generalized community
detection methodology.

FIGURE 4
Node centrality ranking in binary and weighted networks. Orange nodes identify the highest centrality value nodes. (A) A weighted network with link
weights as proximity. (B) First two nodes with a higher binary betweenness. (C) First two nodes with a higher binary closeness. (D) First two nodes with a
higher degree. (E) First two nodes with higher weighted betweenness. (F) First three nodes with a higher weighted closeness. (G) First two nodes with
higher strength. Passing from binary to weighted node centralities, the node rank changes as well.
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6.1 Clustering coefficient

A simple method to investigate the presence of communities is
to evaluate the network clustering coefficient [20]. In binary
networks, (binary) clustering is a measure that counts node
triplets in the network. A triplet (or triangle) is a set of three
nodes. A closed triplet is a full network of three nodes, i.e., a set
of three nodes in which each node is connected by a link with the
others. In other terms, a triplet is three nodes that are connected by
either two (open triplet) or three (closed triplet) links.

The binary “local clustering coefficient” ci of node i is defined as:

ci � Δclo
i

Δtot
i

(6)

where Δclo
i is the number of closed triplets centered on node i, and

Δtot
i is the total number of triplets (both open and closed) centered

on node i [22].
Alternatively, the binary “local clustering coefficient” ci may be

written as follows:

ci � 1
ki ki − 1( ) ∑j,h

aijaihajh (7)

where ki is the degree of node i, and aij is 1 if node i is connected
with node j, and 0 otherwise.

By computing the triplets over the whole network, we can define
the binary global clustering coefficient by generalizing Eq. 6:

C � Δclo

Δtot (8)

where Δclo is the number of closed triplets, and Δtot is the total
number of triplets (both open and closed) in the network [22].

The binary clustering coefficient evaluates the local group
cohesiveness, and it is defined for any node in the network as the
fraction of connected neighbors. In other words, the binary
clustering coefficient indicates the intensity with which nodes

tend to form tightly knit communities characterized by a
relatively high density of links, i.e., a likelihood that tends to be
higher than the average probability of links randomly drawn among
nodes [92, 93].

There are many generalizations of the binary clustering
coefficient for weighted networks [22, 87, 94, 95]. Barrat et al.
[87] proposed the most commonly used generalization, which
defined a weighted version of the local clustering coefficient
defined in Eq. 7 as:

cwi � 1
si ki − 1( ) ∑j,h

wij + wih( )
2

aijaihajh (9)

where si is the strength of node i, ki is the degree of node i, wij is the
weight of the link connecting i and j, and aij is 1 if node i is
connected with node j, and 0 otherwise. The global version of the
weighted clustering coefficient is computed by averaging the local
clustering in Eq. 9 over all nodes in the network [87].

Opsahl and Panzarasa [22] proposed another commonly used
generalization of the global clustering coefficient in WSNs. Defining
ω as the weight of a triplet, i.e., the average link weights of the triplet,
we can generalize the global clustering coefficient to weighted
networks as:

Cw � ∑ Δc| | ω∑Δ| | ω
(10)

where∑|Δc| ω is the total weight of the closed triplets, and∑|Δ| ω is
the total weight of all triplets [22].

The generalized weighted clustering coefficients proposed by
Barrat et al. [87] and Opsahl and Panzarasa [22] are both measures
of the local cohesiveness in weighted networks that take into account
both the number of closed triplets in the neighborhood of a node and
their total relative link weight with respect to the strength of the
node. In Figure 6, we give examples of binary and weighted node
clustering coefficient computation. As shown in Figure 6, the binary
and weighted clustering coefficient values are different, and the

FIGURE 5
The paths of higher infection probability among nodes/individuals in a community. The orange node is the infected individual starting the epidemic;
the red nodes are the individuals that may act as potential spreaders of infection outside the community, and the red arrows indicate the likely trajectories
of the epidemic spreading outside the community. (A) A binary network where the four red nodes are all potential spreaders. (B) The weighted network
counterpart of the binary network in (A), where the most significant channels of infection emerge; in this weighted network, the potential spreaders
to consider are the two red nodes only, and the likely trajectories of infection outside the community are only two (red arrows).

Frontiers in Physics frontiersin.org09

Bellingeri et al. 10.3389/fphy.2023.1152243

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152243


TABLE 2 Type of node centrality measures for weighted networks.

Node centrality Definition Formula Reference

Strength Sum of the weight of the links to the node The strength si of the node i is si � ∑N

i�1aij · wij , [60, 64]

where aij is 1 if there is a link joining nodes i and j and
0 otherwise, and wij is the weight of the link connecting nodes i
and j.

Betweenness The weighted betweenness centrality of the node is the number
of weighted shortest paths passing on it.

The weighted betweenness centrality gw(i) of the node i
is gw(i) � ∑N

s,t�1
σwst(i)
σwst

,
[82, 83]

where σwst is the total number of WSP between nodes s and t,
σwst(i) is the number of these WSP passing through the node i,
and N the number of nodes.

Farness The weighted farness is the sum length of the shortest paths
between the i and all other nodes in the network

The weighted farness centrality of the node i is [84]

Fw
i � ∑

i≠j∈N
dwij ,

where dwij indicates the weighted distance from node i to node j.

Closeness The weighted closeness is the reciprocal of the sum length of the
shortest paths between the node and all other nodes in the
network

The weighted closeness centrality of the node i is [84]

Cw
i � 1/ ∑

i≠j∈N
dwij ,

where dwij indicates the weighted distance from node i to node j.

Harmonic centrality The harmonic centrality is the sum of the reciprocals of all
distances to the node.

The harmonic centrality of node i is [85]

Θw
i � ∑

i≠j∈N

1
dwij
,

where dwij indicates the weighted distance from node i to node j.

hw Index The weighted h index is the weighted counterpart of the classic
h index.

The virtual weights set Wi of node i is [78, 86]

Wi � wij,1 , . . . , wij,1{ }∀jϵτi , where kj is the degree of node j, wij

is the weight of the link joining i and j, and τi is the neighbors
set of i. In other words, for each neighbor j of node i, the weight
wij of the link connecting i and j is repeated kj times, where kj
is the degree of node j.

Then, the weighted h index of node i is hwi � Η(Wi),

where Η(·) is an operator, which finds the maximum integer h
such that there are at least h

virtual weights of Wi whose value is no less than h.

The virtual strength The virtual strength of the node i is the sum of the weighted h
index hwj of its j neighbors

The virtual strength of the node i is shi � ∑
∀jϵτi

hwj , [78]

where hwj is the weighted h index of the node j, and τi is the
neighbors set of i.

Transitivity The weighted node transitivity considers the number and the
strength of the closed triplets of the node.

The weighted node transitivity cwi of node i is

cwi � 1
si(ki−1) ∑

j,h

(wij+wih )
2 aijaihajh ,

[87]

where si is the strength of i, ki the degree of i,wij is the weight of
the link connecting nodes i and j, and aij is 1 if there is a link
between i and j.

Efficiency delta centrality The efficiency delta centrality δ(i) of node i is the network
efficiency decrease after the removal of i.

The weighted network efficiency is [62]

Effw � 1
N(N−1)∑i≠j∈G

1
dwij

, whereN is the number of nodes and

dwij indicates the weighted distance from node i to node j.

The efficiency delta centrality of node i is

δi � Effw−Effw
i

Effw , where Effw is the initial network efficiency

and Effw
i the efficiency after the removal of node i.

(Continued on following page)
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weighted clustering provides additional information about the
tightness of the node clustering.

The twomeasures described provide important results, and in all
WSNs studied, the value of the weighted coefficient was greater than
the value of the binary one [22]. These findings support
Granovetter’s [23] claim that in social networks, strong ties are
more likely to be part of transitive triplets than weak ones [22].

The clustering coefficient measures the community structure of
the networks only considering the triadic closure, i.e., evaluating the
tendency of the nodes to cluster in communities of three nodes.

6.2 Community detections in weighted
social networks

Social network communities are often composed of several
nodes, and the node’s propensity to cluster together in
communities can be generalized to groups of any order.

The detection and characterization of community structure in social
networks,meaning the appearance of densely connected groups of nodes
with only sparser connections between groups, has increased in
importance in the last decades [61, 96]. The node communities
division can be performed by different methods of community
detection, such as random walk searching [97], link betweenness
[98], fast greedy modularity optimization [61], and spinning glass
model [99] [90]. Proper indicators may then be used to evaluate the
goodness of the communities division [90]. In the following, we describe
the modularity Q [61], a community structure indicator that can
properly work on binary and weighted social networks.

The modularity Q of a network measures how good the division
of two node communities is or how separated the different node
communities are from each other [61].

The modularity indicators Q for binary networks are defined as:

Q � 1
2L

∑
i,j

aij − kikj
2L

( )δ cicj( ) (11)

TABLE 2 (Continued) Type of node centrality measures for weighted networks.

Node centrality Definition Formula Reference

Eigenvector Eigenvector centralities correspond to the values of the first
eigenvector of the adjacency matrix of the network

The weighted eigenvector centrality is [68]

xw
i � 1

λ ∑
j∈τi

xwj � 1
λ ∑
j∈N

wij · xwj ,

where τi is the set of neighbors of i, wij is the weight of the link
connecting nodes i and j, N is the set of nodes, and λ is a
constant.

PageRank The weighted PageRank evaluates the node importance, based
on its links number, link weights, and the importance of the
linked nodes.

The weighted Pagerank WPR(t)
i of node i is [66]

WPR(t)
i � ∑N

j�1wij · WPR(t−1)
j

sj
, where wij is the weight of the link

connecting i and j, and sj is the strength of node j.

LeaderRank The weighted LeaderRank evaluates the node importance,
based on its link number, link weights, and the importance of
the linked nodes.

The weighted LeaderRank rank WLRi of node i is [66]

WLR(t)
i � ∑N+1

j�1 wα
ij ·

WLR(t−1)
j

bj
,

where wij is the weight of the link connecting i and j, α is a
tunable parameter, and bj � ∑

i

wα
ij . When α = 1, bi is the

strength si of the node i.

h-Degree The h-degree (hDw
i ) of node i is the largest natural number k

such that i has at least k links each with weight at least equal
to k.

The h-degree (hDw
i ) of node i is hD

w
i � wi,j�1 , . . . , wi,j�m{ }∀jϵτi , [88]

where wij is the weight of the link connecting i and j, m is the
number of neighbors of i, and τi is the neighbors set of i. The
operator Η(·) is an operator returning the maximum integer h
such that there are at least links whose weight value is no less
than h.

w-Lobby index The w-lobby index (lDw
i ) of node i is defined as the largest

integer k such that i has at least k neighbors with node strength
at least k.

The w-lobby index (lDw
i ) of node i

is lDw
i � sj�1 , . . . , sj�m{ }∀jϵτi ,

[88]

where sj is the strength of node j,m is the neighbors number of
i, and τi is the neighbors set of i. The operator Η(·) is an
operator returning the maximum integer h such that there are
at least h

nodes of strength s whose value is no less than h.

Weighted coreness The weighted coreness ranks nodes according to their centrality
in the core of weighted networks.

A weighted degree of node i is defined: kWi � (kαi · sβi )
1

α+β [66, 77]

where ki and si are the degree and the strength of i, respectively;
α and β are tunable parameters. Then, to find the weighted
coreness, the k-core decomposition process must be performed
in weighted networks.
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where L is the total number of links in the network; aij is the element
i, j of the adjacency matrix, equal to 1 if i and j are connected, and
0 otherwise; ki and kj are the degrees of i and j, respectively; ci and cj
are the modules (or community) of node i and j, respectively; and

δ(x, y) is 1 if x � y and 0 otherwise. The modularity Q represents
the fraction of the links that fall within the given community minus
the expected fraction if links are drowned at random. Positive Q
indicates that the number of links within communities exceeds the

FIGURE 6
Clustering coefficients in binary andweighted networks. (A-B-C) The binary local clustering coefficient c1 of node 1 is computed with Eq. 6 as a ratio
of the closed triplets on node 1 over the total number of triplets centered on node 1 (three triplets). The global clustering coefficient is the ratio of closed
triplets over the total number of triplets computed for the whole network (Eq. 8). In the network (A), there is only one closed triplet over the three total
triplets, the clustering of node 1 is c1 � 1

3, and the global clustering is C � 3
5 � 0.6. In the network (B), there are two closed triplets over the three total

triplets, thus c1 � 2
3, and the global clustering is C � 6

8 � 0.75. In the complete network (C), all the triplets are closed with c1 � 3
3 and C � 1. (D) Weighted

network in which the link weight is uniform and equals 1. In this network, the weighted clustering coefficient computed using Eq. 9 and its global version
Cw return the same value for both the local and global binary clustering coefficients in panel (A). (E) Weighted clustering coefficient of node 1 in a
weighted network in which the closed triplet is made by strong links. (F) Weighted clustering coefficient of node 1 in a weighted network in which the
closed triplet is made by weak links. The weighted local clustering coefficient cw1 of node 1 is higher when the closed triplets on node 1 are made of strong
links (panel E) than in the case where the closed triplets are built by weak links (panel F). Analogously, the global clustering coefficient in its global version
Cw is higher when the closed triplets are composed of strong links (as in E).

FIGURE 7
Community structure and the network modularity indicator Q [61]. (A) Random network with N = 20 nodes and L = 46 links. The random network
does not present a community structure, and it returns a modularity indicator value of Q � 0.24. (B) A network of N = 20 nodes and L = 46 links with a
strong community structure (node color distinguishes nodes belonging to the same community); this network is composed of four clearly separated
communities, and Q � 0.62.
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number expected on the basis of chance, the maximum possible
value of Q is 1, non-zero values indicate deviations from
randomness, and values around 0.3 or more usually indicate
good divisions [19, 100]. In Figure 7, we depict two networks
with the same number of nodes and links. The first network
(Figure 7A) is a random network with no community structure,
whereas the second network (Figure 7B) is a network with a strong
community structure. The modularity indicatorQ is able to quantify
the community structure level, and it is higher for the network with a
strong community structure in Figure 7B.

The modularity Q has been widely used to evaluate different
aspects of the community structure in social networks [61, 90,
101–103].

The same rationale can be used to evaluate community structure
in weighted networks. The modularity Q can evaluate weighted
networks by replacing the node degree in Eq. 11 with the node
strength and using the link weight values instead of the simple
binary presence of the links among nodes [19].

The weighted modularity Qw is thus defined:

Qw � 1
2Lw

∑
i,j

wij − sisj
2Lw

( )δ cicj( ) (12)

where Lw is the sum of the link weights; wij is the weight of the link
connecting i and j; and si, sj are the strengths of i and j, respectively.

The weighted modularity indicator considers both the binary
presence of communities in the network and their total relative link
weight. The weighted modularity Qw represents the fraction of the
link weights within the given community minus the expected
fraction of the link weights when links are drowned at random.
In other terms, the weighted modularity is higher when networks
present both a higher number of intracommunity links and a higher
weight of these links. Using the link weights in the weighted version
of the community structure algorithm and the weighted version of
the modularity Qw may change the detected communities in the
network with respect to the binary approach [19].

In Figure 8, we show that accounting link weights’ heterogeneity
may change the detected community structure of the network.
Figure 8A depicts a network with a strong binary community
structure, i.e., nodes belonging to four distinct communities.
Then, we associate link weights to the network based on the

following two criteria: delivering strong links inside (Figure 8B)
and outside the network communities (Figure 8C). Finally, we
calculate the modularity indicator Q for the three networks. The
network with a binary community structure (Figure 8A) presents
modularity Q � 0.62, whereas the network with strong links inside
the communities (Figure 8B) presents higher modularity Qw � 0.73.
The modularity indicator Q shows how associating strong links
within communities enhances the network’s community structure.
The network in Figure 8B with strong links inside the communities
can be viewed as the network with both binary and weighted
community structures, i.e., this network has a community
structure even stronger than the binary network in Figure 8A.
On the contrary, the network with strong links outside the
communities (Figure 8C) presents the lowest value of the
modularity Qw � 0.48. This indicates that delivering strong links
outside the binary communities decreases the community structure
of the network. In other words, the network in Figure 8C presents a
strong binary community structure but lacks a coupled weighted
community structure.

7 Robustness of weighted social
networks

Understanding the causes of the robustness of social systems is
of concern to social scientists, who explore the stability of human
societies in the face of disrupting forces such as epidemics, criminal
activities, social segregation, famine, war, and changes in social and
economic order [104]. Social networks are prominent frameworks
for analyzing the robustness of social systems [4, 27, 41, 73, 85,
105–107].

“Network robustness” can be defined as the functionality
(capacity) of the system to maintain its functions after removing
nodes or links [104, 108]. Usually, the decrease in network
functionality is evaluated by focusing on the connectivity
degradation after node or link removal. The two most common
measures of network connectivity are the largest connected
component (LCC) and the network efficiency (Eff). LCC
accounts for the maximum number of connected nodes in the
network, and it is a pure topological measure that neglects the

FIGURE 8
Community structure in weighted networks. (A) A binary network of N = 20 nodes and L = 46 links with a strong community structure (node color
distinguishes nodes belonging to the same community); this network is composed of four clearly separated communities, andQ � 0.68. (B) Theweighted
network counterpart of the binary network in (A) in which strong links (higher link weights) are inside the communities withQw � 0.73. (C) The weighted
network counterpart of the binary network in (A) in which strong links (higher link weights) are outside the communities, and for this network,
Qw � 0.48. The total link weights are the same for networks in (B, C).
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weighted structure of the networks [4, 109, 110]. The network
efficiency evaluates how close the nodes are in the system and is
a measure of the capacity to exchange information over the network
[60, 63, 64]. Eff is defined as the average inverse distance between
all nodes in the network [63]. The network efficiency is well defined
for both binary and weighted networks.

The binary network efficiency Eff is:

Eff � 1
N N − 1( ) ∑i≠j∈G

1
dij

(13)

where N is the number of nodes in the network G and dij is the
binary node distance between nodes i and j [60, 63, 111]. Network
efficiency can be viewed as the inverse of the harmonic mean of the
node distances. Using the weighted version of the node distance dwij,
we can compute the weighted network efficiency Effw:

Effw � 1
N N − 1( ) ∑i≠j∈G

1
dw
ij

(14)

Other measures of network functioning have been proposed,
such as the average node distance [112, 113], network diameter
[114], algebraic connectivity [115], and others [116, 117]. In Table 3,
we list network functioning measures for weighted networks.

Analyzing network robustness is also essential to determine the
most important nodes and links in social networks, i.e., the nodes
and links whose removal causes the greatest amount of damage in

the social system, which reveal the links/nodes acting as key players
for network functioning [110].

In the following, we review the main results and applications in
the field of weighted social network robustness by focusing
separately on link and node removal.

7.1 Link removal

Link removal (LR), also known as bond percolation [75], link
attack [108, 119], or link pruning [120], studies how the robustness
of networks decreases by removing links [108].

The “weak link hypothesis” [23, 24] can be viewed as one of
the first applications of LR analysis in social networks. The “weak
link hypothesis” describes a specific social network structure in
which strong links are located within dense communities (or
groups) of similar individuals. In contrast, weaker links act as
bridges between different communities. As a consequence, social
networks would be vulnerable to the removal of weak links since
the removal of the weak link (acquaintances), which serve a
cohesive function in social systems, may rapidly disconnect the
LCC of the network in isolated components [23, 108]. As
explained in the previous paragraph, the “weak link
hypothesis” was confirmed in several real-world social
networks [26, 27, 121]; these social systems would be
vulnerable to the removal of weak links.

TABLE 3 List of the network functioning (robustness) indicators.

Indicator Symbol Formula Meaning Refs

Total strength S The total strength is The total strength is the sum of the strength of the network
nodes.

[109]

S � ∑N

i�1si , whereN is the number of nodes and si is the strength

of the node i, i.e., the sum of the weights of the links connected to i.

Average node
clustering

�C The average binary node clustering coefficient is The average node clustering coefficient indicates the
cohesiveness of the nodes’ communities in the network.

[27]

�C � 1
N∑N

i�1ci , where ci is the binary node clustering coefficient of
node i and N is the number of nodes in the network.

Weighted efficiency Effw The weighted network efficiency is Information spreading capacity through undirected
weighted paths

[62]

Effw � 1
N(N−1) ∑

i≠j∈G

1
dwij
, where N is the number of nodes and dwij

indicates the weighted distance from node i to node j.

Total flow TF The total flow is The total flow represents the actual or the potential flowing
in the network, and it is the sum of link weights.

[64,
108]

TF � ∑N

i�1∑N

j�1wij , where N is the number of nodes and wij is

the weight of the link joining nodes i and j.

Average weighted
node distance

dw The average weighted node distance in the network is

dw � 1
N(N−1) ∑

i≠j∈G
dwij ,

The average weighted distance represents the average
shortest path to traverse traveling among network nodes.

[29]

where N is the number of nodes in the network G, and dwij
indicates the weighted distance from node i to node j.

Weighted diameter Dw The weighted diameter is The diameter is the longest node distance in the network. It
is the shortest distance between the two most distant nodes
in the network.

[28,
118]

Dw � max (dwij)︸����︷︷����︸
i,j∈N,i≠j

, where N is the number of nodes and dwij

indicates the weighted distance from node i to node j.
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However, network science investigations have uncovered a
seeming “paradox of weak ties,” suggesting that strong links
(i.e., links of higher weight) may be more valuable than weak
links to serve the cohesiveness and robustness of the system [4].
For example, science co-authorship networks are formed by
nodes (scientists) and links weighted by the number of co-
authored papers, presenting dense local neighborhoods mainly
consisting of weaker links, while strong links connect senior
scientists leading different research groups [27, 107]. In contrast
to what occurred in other social networks, the LCC of the
scientific networks shrinks faster when the strongest links are
removed first [27, 107]. On the other hand, recent large-scale
correlational investigations of the weak link hypothesis, have
uncovered that strong links are more valuable than weak links in
generating job transmissions [24, 122, 123].

The aforementioned studies investigating the robustness of
the social network to LR evaluated the robustness using the LCC,
thus focusing on the binary-topological structure of the system
only. These studies are based on the principle that once a fraction
of links are removed from the network, the remaining links are
equally capable of supporting the system’s functioning,
regardless of their weight. Bellingeri et al. [108] showed that,
using the weighted network efficiency Effw to evaluate the
functioning of the WSN after LR, the removal of strong and
higher weighted betweenness centrality links in friendship and
science co-authorship WSNs triggered a much faster Effw

decrease than the weak link removal. This result shed light on
the problem of the weak link hypothesis, showing that weak links,
which support the connectivity of the system (measured by the
LCC), would not be able to support the social network
functioning when deprived of their strong links, such as
supporting the information delivery efficiency (Effw) in real-
world social systems.

Furthermore, Bellingeri et al. [64] found that removing a very small
fraction of strong links of higher weight from science co-authorship and
friendship social networks triggers an abrupt collapse of Effw, while
the LCC, which only evaluates binary-topological connectedness,

remains almost unaffected. These findings suggested that the
robustness of social networks might be overestimated when focusing
only on their binary-topological connectedness.

LR may properly model various real problems in social systems,
such as describing the effect of the interruption of friendship, work,
or science collaboration relationships [4, 27]. Moreover, LR can be
used to model social distancing and non-pharmaceutical
interventions (NPIs) to curb epidemic spreading in complex
social networks [124, 125]. In the simplest binary-topological
model, LR may describe how reducing social interactions can
fragment the social network, thus confining the epidemics to a
small part of the network. On the other hand, coupling link removal
and dynamical epidemiological models, i.e., SIR or SEIRS models
[126], has the advantage of investigating important aspects of the
NPIs, such as modeling how the NPIs affect the temporal dynamics
of the infection [125, 127, 128]. Nonetheless, most research studies
focusing on NPIs and social network epidemics fail to consider the
weight of the links in the analyses. Including the weight
heterogeneity in models describing the epidemic dynamics is
fundamental in real-world social networks, such as face-to-face
networks, which are highly promising frameworks to model
epidemic spreading in real-world social systems [51]. Face-to-face
networks describe the physical interactions among individuals, and
the weight of the link accounts for the interaction time. Since longer
interactions imply higher epidemic transmission probabilities, to
properly model the epidemic dynamics in real-world WSNs, it is
fundamental to develop models considering the link weight
heterogeneity. For example, a correct description of the epidemic
dynamics in face-to-face networks should assign higher infection
probabilities to links with higher weights representing long
interaction times.

7.2 Node removal

Node removal (NR), also known as node attack [74, 129] and site
percolation [130], studies how the removal of nodes in the network

FIGURE 9
Node vaccination priority in social networks. (A) A binary network where the nodes to vaccinate (red nodes) are selected considering the node
degree; in this network, the four red nodes show the same vaccination priority. (B) The weighted network counterpart of the binary network in (A); in this
network, the nodes to be vaccinated are ranked considering their strength. The node in red has the highest strength and the highest priority for
vaccination. In the case of face-to-face networks in which link weights indicate the contact time between individuals, vaccinating the node sharing
strong links would eliminate the most significant channels of infection.
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affects its robustness [4]. The study of real-world network
robustness after node removals has drawn great attention in
recent years [73, 110, 131].

In social network analyses, NR may describe a variety of real
problems. For example, in friendship networks, NR may be useful
to individuate social hubs, i.e., more important individuals for the
connectedness of the friendship networks [132]. In science co-
authorship networks, it may be a tool to identify more important
scholars for the connectedness of the scientific collaboration
networks [133]. In criminal networks, NR may describe how
arresting criminals affects the structure of interpersonal
relationships in crime with the aim of developing policies to
halt criminal activities [134]. Finally, in social contact networks
within which a disease can spread, NR may simulate the effect of
node vaccination [18] and quarantine [128] on the spread of the
disease.

The majority of these studies focused on NR with a binary
approach, failing to evaluate the difference in link weights. However,
adopting a binary approach to NR may produce inaccurate
modeling in real-world social networks. On the one hand,
predicting the robustness of social networks when subjected to
NR may be misleading. For example, removing a few nodes from
WSNs may abruptly collapse the weighted network efficiency
(Effw), while the LCC stays roughly constant [64]. In this case,
the widely used LCC may overestimate the robustness of real-
world WSNs.

On the other hand, ignoring the weighted structure of the
network may trigger an erroneous ranking of the node’s
importance [60, 82, 109]. As explained in Figure 4, using
weighted node centralities instead of the simple binary node
centralities may change node rank. Therefore, in real-social
networks presenting decoupling with binary and weighted
node centralities, the inaccuracy in node ranking may be very
high. For example, in real-world WSNs with a low correlation
between the degree and the strength of the nodes, ranking nodes
according to their degree would give more importance to nodes
connected with several weak links than to nodes connected with a
few stronger ones. This may induce many inaccurate models of
real-world social systems. For example, in epidemic networks,
such as face-to-face networks, neglecting the weighted structure
may hide the important nodes to be vaccinated (Figure 9).

8 Conclusion

Network analysis is a promising tool for modeling and
studying several problems in social systems. In many social
networks, links have a naturally associated weight. We have
shown that a more complete and proper view of WSNs is
provided by considering the heterogeneity of the interactions
defining the links between these social systems. On the one hand,
this review aims to summarize the results of recent studies in
WSNs. On the other hand, this review offers an overview of many
open and pressing problems in social network science by
outlining how adopting a weighted network perspective may

improve the reality of social system descriptions. It is worth
noting that artificial intelligence (AI) and data mining
methodologies offer new and powerful tools to collect social
systems information. For this reason, data are increasingly
available, and they will permit the construction of new and
well-resolved WSNs. Our review may prompt social science
researchers to exercise social system analysis from a weighted
network perspective.

Author contributions

MB and DC conceived the manuscript. All the authors wrote the
manuscript.

Funding

This research is funded by a grant from the Italian Ministry of
Foreign Affairs and International Cooperation. This project has
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation programme [grant agreement no. (816313)]. This
work is supported by the Vietnam’s Ministry of Science and
Technology (MOST) under the Vietnam-Italy Scientific and
Technological Cooperation Program for the period of
2021–2023. This work is supported by Vietnam National
University Ho Chi Minh City (VNU-HCM), Ho Chi Minh
City, Vietnam, under grant number B2018-42-01. We are
greatly thankful to Van Lang University, Vietnam, for
providing the budget for this study. This research is funded by
the Ecosister project, funded under the National Recovery and
Resilience Plan (NRRP), Mission 4 Component 2 Investment
1.5—Call for tender No. 3277 of December 30, 2021 of the Italian
Ministry of University, and research funded by the European
Union—NextGenerationEU. Award Number: Project Code
ECS00000033, Concession Decree No. 1052 of June 23, 2022,
adopted by the Italian Ministry. This work has been supported by
Fondazione Cariplo, Grant No. 2018-0979.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Physics frontiersin.org16

Bellingeri et al. 10.3389/fphy.2023.1152243

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152243


References

1. Freeman HE. A set of measures of centrality based on betweenness. Sociometry
(1977) 40:35. doi:10.2307/3033543

2. Wasserman S, Faust K. Social network analysis: Methods and applications.
Cambridge, United Kingdom: Cambridge University Press (1994).

3. Opsahl T, Agneessens F, Skvoretz J. Node centrality in weighted networks:
Generalizing degree and shortest paths. Soc Networks (2010) 32:245–51. doi:10.
1016/j.socnet.2010.03.006

4. Bellingeri M, Bevacqua D, Scotognella F, Alfieri R, Nguyen Q, Montepietra D, et al.
Link and node removal in real social networks: A review. Front Phys (2020) 8:8. doi:10.
3389/fphy.2020.00228

5. Nepusz T, Petróczi A, Négyessy L, Bazsó F. Fuzzy communities and the concept of
bridgeness in complex networks. Phys Rev E - Stat Nonlinear, Soft Matter Phys (2008)
77:016107–12. doi:10.1103/PhysRevE.77.016107

6. Newman MEJ. Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality. Phys Rev E - Stat Physics, Plasmas Fluids Relat Interdiscip
Top (2001) 64:016132. doi:10.1103/PhysRevE.64.016132

7. Ficara A, Cavallaro L, De Meo P, Fiumara G, Catanese S, Bagdasar O, et al. Social
network analysis of Sicilian mafia interconnections. In: Studies in computational
intelligence. Midtown Manhattan, New York City: Springer International Publishing
(2020). p. 440–50. doi:10.1007/978-3-030-36683-4_36

8. Ficara A, Fiumara G, Catanese S, De Meo P, Liu X. The whole is greater than the
sum of the parts: A multilayer approach on criminal networks. Futur Internet (2022) 14:
1–21. doi:10.3390/fi14050123

9. Al-Taie MZ, Kadry S. Information diffusion in social networks. Python Graph Netw
Anal (2017) 2017:165–84. doi:10.1007/978-3-319-53004-8_8

10. Li M,Wang X, Gao K, Zhang S. A survey on information diffusion in online social
networks: Models and methods. Inf (2017) 8:118. doi:10.3390/info8040118

11. DeGroot M. Reaching a consensus. J Am Stat Assoc (1974) 69:118–21. doi:10.
1080/01621459.1974.10480137

12. Friedkin N, Johnsen E. Social influence and opinions. J Math Sociol (1991) 15:
193–206. doi:10.1080/0022250x.1990.9990069

13. Parisi D, Cecconi F, Natale F. Cultural change in spatial environments: The role of
cultural assimilation and internal changes in cultures. J Conflict Resolut (2003) 47:
163–79. doi:10.1177/0022002702251025

14. Deffuant G, Neau D, Amblard F, Weisbuch G. Mixing beliefs among interacting
agents. Adv Complex Syst (2000) 03:87–98. doi:10.1142/s0219525900000078

15. Kamp C,Moslonka-Lefebvre M, Alizon S. Epidemic spread on weighted networks.
Plos Comput Biol (2013) 9:e1003352. doi:10.1371/journal.pcbi.1003352

16. Bellingeri M, Bevacqua D, Turchetto M, Scotognella F, Alfieri R, Nguyen N-K-K,
et al. Network structure indexes to forecast epidemic spreading in real-world complex
networks. Front Phys (2022) 10:1–11. doi:10.3389/fphy.2022.1017015

17. Gallos LK, Liljeros F, Argyrakis P, Bunde A, Havlin S. Improving immunization
strategies. Phys Rev E - Stat Nonlinear, Soft Matter Phys (2007) 75:045104–4. doi:10.
1103/PhysRevE.75.045104

18. Sartori F, Turchetto M, Bellingeri M, Scotognella F, Alfieri R, Nguyen NKK, et al.
A comparison of node vaccination strategies to halt SIR epidemic spreading in real-
world complex networks. Sci Rep (2022) 12:21355–13. doi:10.1038/s41598-022-24652-1

19. Newman MEJ. Analysis of weighted networks. Phys Rev E - Stat Nonlinear, Soft
Matter Phys (2004) 70:056131–9. doi:10.1103/PhysRevE.70.056131

20. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks:
Structure and dynamics. Phys Rep (2006) 424:175–308. doi:10.1016/j.physrep.2005.
10.009

21. Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A. Characterization and
modeling of weighted networks. Phys A Stat Mech Its Appl (2005) 346:34–43. doi:10.
1016/j.physa.2004.08.047

22. Opsahl T, Panzarasa P. Clustering in weighted networks. Soc Networks (2009) 31:
155–63. doi:10.1016/j.socnet.2009.02.002

23. Granovetter M. The strength of weak ties. Am J Sociol (1973) 78:1360–80. doi:10.
1086/225469

24. Rajkumar K, Saint-Jacques G, Bojinov I, Brynjolfsson E, Aral S. A causal test of the
strength of weak ties. Science (2022) 377(80):1304–10. doi:10.1126/science.abl4476

25. Onnela JP, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, et al. Structure and
tie strengths in mobile communication networks. Proc Natl Acad Sci U S A (2007) 104:
7332–6. doi:10.1073/pnas.0610245104

26. Patacchini E, Zenou Y. The strength of weak ties in crime. Eur Econ Rev (2008) 52:
209–36. doi:10.1016/j.euroecorev.2007.09.002

27. Pajevic S, Plenz D. The organization of strong links in complex networks.Nat Phys
(2012) 8:429–36. doi:10.1038/nphys2257

28. Buckley F, Harary F. Distance in graphs. Redwood City, CA: Addison-Wesley
Publishing Company (1990). doi:10.1201/b16132-64

29. Bertagnolli G, Gallotti R, De Domenico M. Quantifying efficient information
exchange in real network flows. Commun Phys (2021) 4:125. doi:10.1038/s42005-021-
00612-5

30. Cho E, Myers SA, Leskovec J. Friendship and mobility: User movement in
location-based social networks. Proc ACM SIGKDD Int Conf Knowl Discov Data Min
(2011) 2011:1082–90. doi:10.1145/2020408.2020579

31. Van De Bunt GG, Duijn MAJV, Snijders TAB. Friendship networks through time:
An actor-oriented dynamic statistical network model. Comput Math Organ Theor
(1999) 52:167–92.

32. Dickson WJ, Roethlisberger FJ. Management and the worker. Econ J (2003) 51:
306. doi:10.2307/2226267

33. Coscia M, Hausmann R. Evidence that calls-based and mobility networks are
isomorphic. PLoS One (2015) 10:e0145091–15. doi:10.1371/journal.pone.0145091

34. De Domenico M, Lancichinetti A, Arenas A, Rosvall M. Identifying modular flows
on multilayer networks reveals highly overlapping organization in interconnected
systems. Phys Rev X (2015) 5:011027–11. doi:10.1103/PhysRevX.5.011027

35. Kunegis J. Konect - the koblenz network collection. In: WWW 2013 Companion -
Proc 22nd Int Conf World Wide Web; May 13-17, 2013; Rio de Janeiro, Brazil (2013).
p. 1343–50.

36. Klimt B, Yang Y. The enron corpus: A new dataset for email classification research.
In: European Conference on Machine Learning; 19-23 September; Grenoble, France
(2004). p. 217–26.

37. Moody J. Peer influence groups: Identifying dense clusters in large networks. Soc
Networks (2001) 23:261–83. doi:10.1016/S0378-8733(01)00042-9

38. Coleman JS. Introduction to mathematical sociology. New York: Free Press of
Glencoe (1964).

39. Freeman LC, Webster CM, Kirke DM. Exploring social structure using dynamic
three-dimensional color images. Soc Networks (1998) 20:109–18. doi:10.1016/S0378-
8733(97)00016-6

40. Massa P, Salvetti M, Tomasoni D. Bowling alone and trust decline in social
network sites. 8th IEEE Int Symp Dependable, Auton Secur Comput DASC (2009) 2009:
658–63. doi:10.1109/DASC.2009.130

41. Boldi P, Rosa M, Vigna S. Robustness of social networks: Comparative results
based on distance distributions. Soc Inform (2011) 6984:8–21. doi:10.1007/978-3-642-
24704-0_7

42. Braden LEA. Networks created within exhibition: The curators’ effect on historical
recognition. Am Behav Sci (2021) 65:25–43. doi:10.1177/0002764218800145

43. Kumar S, Kumar M, Hooi B, Faloutsos C, Makhija D, Subrahmanian VS. REV2:
Fraudulent user prediction in Rating platforms. In: WSDM 2018 - Proc 11th ACM Int
Conf Web Search Data Min (2018); February 5-9, 2018; Marina Del Rey, CA, USA
(2018). p. 333. doi:10.1145/3159652.3159729

44. Seierstad C, Opsahl T. For the few not the many? The effects of affirmative action
on presence, prominence, and social capital of women directors in Norway. Scand
J Manag (2011) 27:44–54. doi:10.1016/j.scaman.2010.10.002

45. Beveridge A, Shan J. Network of thrones.Math Horizons (2016) 23:18–22. doi:10.
4169/mathhorizons.23.4.18

46. Kaminski J, Schober M, Albaladejo R, Zastupailo O, Hidalgo C. Moviegalaxies -
social networks in movies. Harv Dataverse (2018) 3.

47. Morselli C. Inside criminal networks. Berlin, Germany: Springer (2009).

48. Framis AG-S. Illegal networks or criminal organizations. In: Crime and networks.
England, UK: Routledge (2023). p. 17.

49. Rozemberczki B, Davies R, Sarkar R, Sutton C. GemSec: Graph embedding with
self clustering. Proc 2019 Ieee/acm Int Conf Adv Soc Networks Anal Mining, ASONAM
(2019) 2019:65–72. doi:10.1145/3341161.3342890

50. Viswanath B, Mislove A, Cha M, Gummadi KP. On the evolution of user
interaction in Facebook. In: 2009 - Proc 2009 SIGCOMM Conf Co-Located Work
Proc 2nd ACM Work Online Soc Networks; December 1 - 4, 2009; Rome Italy (2009).
p. 37–42. doi:10.1145/1592665.1592675

51. Génois M, Barrat A. Can co-location be used as a proxy for face-to-face contacts?
EPJ Data Sci (2018) 7:11–8. doi:10.1140/epjds/s13688-018-0140-1

52. Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N, Régis C, et al. Estimating
potential infection transmission routes in hospital wards using wearable proximity
sensors. PLoS One (2013) 8:e73970. doi:10.1371/journal.pone.0073970

53. Valente TW. Network models of the diffusion of innovations. Comput Math
Organ Theor (1995) 2:163–4. doi:10.1007/bf00240425

54. Rocha LEC, Liljeros F, Holme P. Information dynamics shape the sexual networks
of Internet-mediated prostitution. Proc Natl Acad Sci U S A (2010) 107:5706–11. doi:10.
1073/pnas.0914080107

55. Kunegis J, Gröner G, Gottron T. Online dating recommender systems: The split-
complex number approach. In: RSWeb’12 - Proceedings of the 4th ACM RecSys

Frontiers in Physics frontiersin.org17

Bellingeri et al. 10.3389/fphy.2023.1152243

https://doi.org/10.2307/3033543
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.3389/fphy.2020.00228
https://doi.org/10.3389/fphy.2020.00228
https://doi.org/10.1103/PhysRevE.77.016107
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1007/978-3-030-36683-4_36
https://doi.org/10.3390/fi14050123
https://doi.org/10.1007/978-3-319-53004-8_8
https://doi.org/10.3390/info8040118
https://doi.org/10.1080/01621459.1974.10480137
https://doi.org/10.1080/01621459.1974.10480137
https://doi.org/10.1080/0022250x.1990.9990069
https://doi.org/10.1177/0022002702251025
https://doi.org/10.1142/s0219525900000078
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.3389/fphy.2022.1017015
https://doi.org/10.1103/PhysRevE.75.045104
https://doi.org/10.1103/PhysRevE.75.045104
https://doi.org/10.1038/s41598-022-24652-1
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physa.2004.08.047
https://doi.org/10.1016/j.physa.2004.08.047
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1086/225469
https://doi.org/10.1086/225469
https://doi.org/10.1126/science.abl4476
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1016/j.euroecorev.2007.09.002
https://doi.org/10.1038/nphys2257
https://doi.org/10.1201/b16132-64
https://doi.org/10.1038/s42005-021-00612-5
https://doi.org/10.1038/s42005-021-00612-5
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.2307/2226267
https://doi.org/10.1371/journal.pone.0145091
https://doi.org/10.1103/PhysRevX.5.011027
https://doi.org/10.1016/S0378-8733(01)00042-9
https://doi.org/10.1016/S0378-8733(97)00016-6
https://doi.org/10.1016/S0378-8733(97)00016-6
https://doi.org/10.1109/DASC.2009.130
https://doi.org/10.1007/978-3-642-24704-0_7
https://doi.org/10.1007/978-3-642-24704-0_7
https://doi.org/10.1177/0002764218800145
https://doi.org/10.1145/3159652.3159729
https://doi.org/10.1016/j.scaman.2010.10.002
https://doi.org/10.4169/mathhorizons.23.4.18
https://doi.org/10.4169/mathhorizons.23.4.18
https://doi.org/10.1145/3341161.3342890
https://doi.org/10.1145/1592665.1592675
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1371/journal.pone.0073970
https://doi.org/10.1007/bf00240425
https://doi.org/10.1073/pnas.0914080107
https://doi.org/10.1073/pnas.0914080107
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152243


Workshop on Recommender Systems and the Social Web; September 9, 2012; Dublin,
Ireland-book (2012). p. 37. doi:10.1145/2365934.2365942

56. Newman MEJ. Finding community structure in networks using the eigenvectors
of matrices. Phys Rev E - Stat Nonlinear, Soft Matter Phys (2006) 74:036104–19. doi:10.
1103/PhysRevE.74.036104

57. Aref S, Friggens D, Hendy S. Analysing scientific collaborations of New Zealand
institutions using scopus bibliometric data. ACM Int Conf Proceeding Ser (2018) 2018.
doi:10.1145/3167918.3167920

58. Gregori M, Merlone U. Comparing operational terrorist networks. Trends Organ
Crime (2020) 23:263–88. doi:10.1007/s12117-020-09381-z

59. Marchiori M, Latora V. Harmony in the small-world. Physica A (2000) 285:
539–46. doi:10.1016/s0378-4371(00)00311-3

60. Bellingeri M, Cassi D. Robustness of weighted networks. Phys A Stat Mech Its Appl
(2018) 489:47–55. doi:10.1016/j.physa.2017.07.020

61. Clauset C, Newman MJ, Moore C. Finding community structure in very large
networks. Phys Rev E (2004) 70:066111. doi:10.1103/physreve.70.066111

62. Latora V, Marchiori M. A measure of centrality based on network efficiency. New
J Phys (2007) 9:188. doi:10.1088/1367-2630/9/6/188

63. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett
(2001) 87:198701. doi:10.1103/PhysRevLett.87.198701

64. Bellingeri M, Bevacqua D, Scotognella F, Cassi D. The heterogeneity in link
weights may decrease the robustness of real-world complex weighted networks. Sci Rep
(2019) 9:10692. doi:10.1038/s41598-019-47119-2

65. Costa A, Martín González AM, Guizien K, Doglioli AM, Gómez JM, Petrenko AA,
et al. Ecological networks: Pursuing the shortest path, however narrow and crooked. Sci
Rep (2019) 9:17826–13. doi:10.1038/s41598-019-54206-x

66. Lü L, Chen D, Ren XL, Zhang QM, Zhang YC, Zhou T. Vital nodes identification
in complex networks. Phys Rep (2016) 650:1–63. doi:10.1016/j.physrep.2016.06.007

67. Moxley RL, Moxley NF. Determining point-centrality in uncontrived social
networks. Sociometry (1974) 37:122. doi:10.2307/2786472

68. Bonacich P. Power and centrality: A family of measures. Am J Sociol (1987) 92:
1170–82. doi:10.1086/228631

69. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, et al.
Identification of influential spreaders in complex networks. Nat Phys (2010) 6:
888–93. doi:10.1038/nphys1746

70. Baharan M, Babaei M, Jalili M. Immunizing complex networks with limited
budget. Europhys Lett (2012) 98:38004. doi:10.1209/0295-5075/98/38004

71. Borgatti SP. Identifying sets of key players in a social network. Comput Math
Organ Theor (2006) 12:21–34. doi:10.1007/s10588-006-7084-x

72. NewmanMEJ. The structure and function of complex networks. SIAM Rev (2003)
45:167–256. doi:10.1137/s003614450342480

73. Iyer S, Killingback T, Sundaram B, Wang Z. Attack robustness and centrality of
complex networks. PLoS One (2013) 8:e59613. doi:10.1371/journal.pone.0059613

74. Nguyen Q, Pham HD, Cassi D, Bellingeri M. Conditional attack strategy for real-
world complex networks. Phys A Stat Mech Its Appl (2019) 530:121561. doi:10.1016/j.
physa.2019.121561

75. Hu Y, Ji S, Jin Y, Feng L, Eugene Stanley H, Havlin S. Local structure can identify
and quantify influential global spreaders in large scale social networks. Proc Natl Acad
Sci U S A (2018) 115:7468–72. doi:10.1073/pnas.1710547115

76. Pei S, Makse HA. Spreading dynamics in complex networks. J Stat Mech Theor
Exp (2013) 2013:P12002. doi:10.1088/1742-5468/2013/12/P12002

77. Garas A, Schweitzer F, Havlin S. Ak-shell decomposition method for weighted
networks. New J Phys (2012) 14:083030. doi:10.1088/1367-2630/14/8/083030

78. Gao L, Yu S, Li M, Shen Z, Gao Z. Weighted h-index for identifying influential
spreaders. Symmetry (Basel) (2019) 11:1263–10. doi:10.3390/sym11101263

79. Hirsch JE. An index to quantify an individual’s scientific research output. Proc
Natl Acad Sci U S A (2005) 102:16569–72. doi:10.1073/pnas.0507655102

80. Pastor-Satorras R, Vespignani A. Immunization of complex networks. Phys Rev E
(2002) 65:036104. doi:10.1103/PhysRevE.65.036104

81. Wong F, Collins JJ. Evidence that coronavirus superspreading is fat-tailed. Proc
Natl Acad Sci U S A (2020) 117:29416–8. doi:10.1073/pnas.2018490117

82. Nguyen Q, Nguyen NKK, Cassi D, Bellingeri M. New betweenness centrality node
attack strategies for real-world complex weighted networks. Complexity (2021) 2021:
2021–17. doi:10.1155/2021/1677445

83. Barthélemy M. Betweenness centrality in large complex networks. Eur Phys J B
(2004) 38:163–8. doi:10.1140/epjb/e2004-00111-4

84. Bavelas A. Communication patterns in task-oriented groups. J Acoust Soc Am
(1950) 22:725–30. doi:10.1121/1.1906679

85. Boldi P, Rosa M, Vigna S. Robustness of social and web graphs to node removal.
Soc Netw Anal Min (2013) 3:829–42. doi:10.1007/s13278-013-0096-x

86. Lü L, Zhou T, Zhang QM, Stanley HE. The H-index of a network node and its
relation to degree and coreness. Nat Commun (2016) 7:10168–7. doi:10.1038/
ncomms10168

87. Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A. The architecture of
complex weighted networks. Proc Natl Acad Sci U S A (2004) 101:3747–52. doi:10.1073/
pnas.0400087101

88. Zhao SX, Rousseau R, Ye FY. H-Degree as a basic measure in weighted networks.
J Informetr (2011) 5:668–77. doi:10.1016/j.joi.2011.06.005

89. Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social
sciences. Science (2009) 323:892–5. doi:10.1126/science.1165821

90. Fortunato S. Community detection in graphs. Phys Rep (2010) 486:75–174. doi:10.
1016/j.physrep.2009.11.002

91. Radicchi F, Castellano C, Cecconi F, Loreto V, Paris D. Defining and identifying
communities in networks. Proc Natl Acad Sci U S A (2004) 101:2658–63. doi:10.1073/
pnas.0400054101

92. Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature
(1998) 393:440–2. doi:10.1038/30918

93. Holland PW, Leinhardt S. Transitivity in structural models of small groups. Comp
Gr Stud (1971) 2:107–24. doi:10.1177/104649647100200201

94. Doreian P. A note on the detection of cliques in valued graphs. Sociometry (1969)
32:237–42. doi:10.2307/2786266

95. Saramäki J, Kivelä M, Onnela JP, Kaski K, Kertész J. Generalizations of the
clustering coefficient to weighted complex networks. Phys Rev E - Stat Nonlinear, Soft
Matter Phys (2007) 75:027105–4. doi:10.1103/PhysRevE.75.027105

96. Red V, Traud AL, Kelsic ED, Mucha PJ, Porter MA. Comparing community
structure to characteristics in online collegiate social networks. SIAM Rev (2011) 53:
526–43. doi:10.1137/080734315

97. Pons P, Latapy M. Computing communities in large networks using random
walks. In: Computer and Information Sciences - ISCIS; October 26 – 28, 2005; Istanbul,
Turkey (2005). p. 284–93.

98. Newman MEJ, Girvan M. Finding and evaluating community structure in
networks. Phys Rev E - Stat Nonlinear, Soft Matter Phys (2004) 69:026113–5. doi:10.
1103/PhysRevE.69.026113

99. Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev
E - Stat Nonlinear, Soft Matter Phys (2006) 74:016110–4. doi:10.1103/PhysRevE.74.
016110

100. Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, et al. On
modularity clustering. IEEE Trans Knowl Data Eng (2008) 20:172–88. doi:10.1109/
TKDE.2007.190689

101. Salathe M, James J. Dynamics and control of diseases in networks with
community structure. Plos Comput Biol (2010) 6:e1000736. doi:10.1371/journal.pcbi.
1000736

102. Chen J, Zaïane OR, Goebel R. Detecting communities in social networks using
max-min modularity. Soc Ind Appl Math - 9th SIAM Int Conf Data Min Proc Appl Math
(2009) 2:973–84. doi:10.1137/1.9781611972795.84

103. Nguyen Q, Vu T, Dinh H, Cassi D, Scotognella F, Alfieri R, et al. Modularity
affects the robustness of scale-free model and real-world social networks under
betweenness and degree-based node attack. Appl Netw Sci (2021) 6:82. doi:10.1007/
s41109-021-00426-y

104. Barabasi A-L. Network robustness. In: Network science. Cambridge,
United Kingdom: Cambridge University Press (2021). p. 1–54.

105. Rockenbauch T, Sakdapolrak P. Social networks and the resilience of rural
communities in the global south: A critical review and conceptual reflections. Ecol Soc
(2017) 22:art10. doi:10.5751/ES-09009-220110

106. Moore JM, Small M, Yan G. Inclusivity enhances robustness and efficiency of social
networks. Phys A Stat Mech Its Appl (2021) 563:125490. doi:10.1016/j.physa.2020.125490

107. Pan RK, Saramäki J. The strength of strong ties in scientific collaboration
networks. Epl (2012) 97:18007. doi:10.1209/0295-5075/97/18007

108. Bellingeri M, Bevacqua D, Scotognella F, Alfieri R, Cassi D. A comparative
analysis of link removal strategies in real complex weighted networks. Sci Rep (2020) 10:
3911–5. doi:10.1038/s41598-020-60298-7

109. Dall’Asta L, Barrat A, Barthélemy M, Vespignani A. Vulnerability of weighted
networks. J Stat Mech Theor Exp (2006) 2006:04006. doi:10.1088/1742-5468/2006/04/P04006

110. Wandelt S, Sun X, Feng D, Zanin M, Havlin S. A comparative analysis of
approaches to network-dismantling. Sci Rep (2018) 8:13513–5. doi:10.1038/s41598-
018-31902-8

111. Crucitti P, Latora V, Marchiori M, Rapisarda A. Error and attack tolerance of
complex networks. Phys A Stat Mech Its Appl (2004) 340:388–94. doi:10.1016/j.physa.
2004.04.031

112. Lekha DS, Balakrishnan K. Central attacks in complex networks: A revisit with
new fallback strategy. Phys A Stat Mech Its Appl (2020) 549:124347. doi:10.1016/j.physa.
2020.124347

Frontiers in Physics frontiersin.org18

Bellingeri et al. 10.3389/fphy.2023.1152243

https://doi.org/10.1145/2365934.2365942
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1145/3167918.3167920
https://doi.org/10.1007/s12117-020-09381-z
https://doi.org/10.1016/s0378-4371(00)00311-3
https://doi.org/10.1016/j.physa.2017.07.020
https://doi.org/10.1103/physreve.70.066111
https://doi.org/10.1088/1367-2630/9/6/188
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1038/s41598-019-47119-2
https://doi.org/10.1038/s41598-019-54206-x
https://doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.2307/2786472
https://doi.org/10.1086/228631
https://doi.org/10.1038/nphys1746
https://doi.org/10.1209/0295-5075/98/38004
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1137/s003614450342480
https://doi.org/10.1371/journal.pone.0059613
https://doi.org/10.1016/j.physa.2019.121561
https://doi.org/10.1016/j.physa.2019.121561
https://doi.org/10.1073/pnas.1710547115
https://doi.org/10.1088/1742-5468/2013/12/P12002
https://doi.org/10.1088/1367-2630/14/8/083030
https://doi.org/10.3390/sym11101263
https://doi.org/10.1073/pnas.0507655102
https://doi.org/10.1103/PhysRevE.65.036104
https://doi.org/10.1073/pnas.2018490117
https://doi.org/10.1155/2021/1677445
https://doi.org/10.1140/epjb/e2004-00111-4
https://doi.org/10.1121/1.1906679
https://doi.org/10.1007/s13278-013-0096-x
https://doi.org/10.1038/ncomms10168
https://doi.org/10.1038/ncomms10168
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1016/j.joi.2011.06.005
https://doi.org/10.1126/science.1165821
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1038/30918
https://doi.org/10.1177/104649647100200201
https://doi.org/10.2307/2786266
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1137/080734315
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1371/journal.pcbi.1000736
https://doi.org/10.1371/journal.pcbi.1000736
https://doi.org/10.1137/1.9781611972795.84
https://doi.org/10.1007/s41109-021-00426-y
https://doi.org/10.1007/s41109-021-00426-y
https://doi.org/10.5751/ES-09009-220110
https://doi.org/10.1016/j.physa.2020.125490
https://doi.org/10.1209/0295-5075/97/18007
https://doi.org/10.1038/s41598-020-60298-7
https://doi.org/10.1088/1742-5468/2006/04/P04006
https://doi.org/10.1038/s41598-018-31902-8
https://doi.org/10.1038/s41598-018-31902-8
https://doi.org/10.1016/j.physa.2004.04.031
https://doi.org/10.1016/j.physa.2004.04.031
https://doi.org/10.1016/j.physa.2020.124347
https://doi.org/10.1016/j.physa.2020.124347
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152243


113. Holme P, Kim BJ, Yoon CN, Han SK. Attack vulnerability of complex networks.
Phys Rev E (2002) 65:056109. doi:10.1103/physreve.65.056109

114. Albert R, Jeong H, Barabasi A. Error and attack tolerance of complex networks.
Nature (2000) 406:378–82. doi:10.1038/35019019

115. Martín-Hernández J, Wang H, Van Mieghem P, D’Agostino G. Algebraic
connectivity of interdependent networks. Phys A Stat Mech Its Appl (2014) 404:
92–105. doi:10.1016/j.physa.2014.02.043

116. Yang X, Zhu Y, Hong J, Yang LX,Wu Y, Tang YY. The rationality of four metrics
of network robustness: A viewpoint of robust growth of generalized meshes. PLoS One
(2016) 11:e0161077–13. doi:10.1371/journal.pone.0161077

117. Ellens W, Kooij RE. Graph measures and network robustness (2013). 1–13.
Available at: http://arxiv.org/abs/1311.5064.

118. Divya PB, Lekha DS, Johnson TP, Balakrishnan K. Vulnerability of link-weighted
complex networks in central attacks and fallback strategy. Phys A Stat Mech Its Appl
(2022) 590:126667. doi:10.1016/j.physa.2021.126667

119. Sun S, Liu X, Wang L, Xia C. New link attack strategies of complex networks
based on k-core decomposition. IEEE Trans Circuits Syst Express Briefs (2020) 67:
3157–61. doi:10.1109/TCSII.2020.2973668

120. Mengiste SA, Aertsen A, Kumar A. Effect of edge pruning on structural
controllability and observability of complex networks. Sci Rep (2015) 5:18145–14.
doi:10.1038/srep18145

121. Onnela JP, Saramäki J, Hyvönen J, Szabó G, De Menezes MA, Kaski K, et al.
Analysis of a large-scale weighted network of one-to-one human communication. New
J Phys (2007) 9:179. doi:10.1088/1367-2630/9/6/179

122. Gee LK, Jones J, Burke M. Social networks and labor markets: How strong ties
relate to job finding on Facebook’s social network. J Labor Econ (2017) 35:485–518.
doi:10.1086/686225

123. Gee LK, Jones JJ, Fariss CJ, Burke M, Fowler JH. The paradox of weak ties in
55 countries. J Econ Behav Organ (2017) 133:362–72. doi:10.1016/j.jebo.2016.
12.004

124. Kuhlman CJ, Tuli G, Swarup S, Marathe MV, Ravi SS. Blocking simple and
complex contagion by edge removal. Proc - IEEE Int Conf Data Mining, ICDM (2013)
2013:399–408. doi:10.1109/ICDM.2013.47

125. Bellingeri M, Turchetto M, Bevacqua D, Scotognella F, Alfieri R, Nguyen Q, et al.
Modeling the consequences of social distancing over epidemics spreading in complex
social networks: From link removal analysis to SARS-CoV-2 prevention. Front Phys
(2021) 9:1–7. doi:10.3389/fphy.2021.681343

126. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic
processes in complex networks. Rev Mod Phys (2015) 87:925–79. doi:10.1103/
RevModPhys.87.925

127. Thurner S, Klimek P, Hanel R. A network-based explanation of why most
COVID-19 infection curves are linear. Proc Natl Acad Sci U S A (2020) 117:22684–9.
doi:10.1073/pnas.2010398117

128. Amaral MA, Oliveira MMd., Javarone MA. An epidemiological model with
voluntary quarantine strategies governed by evolutionary game dynamics. Chaos,
Solitons and Fractals (2021) 143:110616. doi:10.1016/j.chaos.2020.110616

129. Albert R, Barabási A. Statistical mechanics of complex networks. Rev Mod Phys
(2002) 74:47–97. doi:10.1103/revmodphys.74.47

130. Radicchi F, Castellano C. Breaking of the site-bond percolation universality in
networks. Nat Commun (2015) 6:10196. doi:10.1038/ncomms10196

131. Bellingeri M, Cassi D, Vincenzi S. Efficiency of attack strategies on complex
model and real-world networks. Phys A Stat Mech Its Appl (2014) 414:174–80. doi:10.
1016/j.physa.2014.06.079

132. Jin L, James BD, Joshi MA. Mutual-friend based attacks in social network
systems. Comput Secur (2013) 37:15–30. doi:10.1016/j.cose.2013.04.003

133. E Fonseca Bde PF, Sampaio RB, Fonseca MVde A, Zicker F. Co-authorship
network analysis in health research: Method and potential use. Heal Res Pol Syst (2016)
14:34–10. doi:10.1186/s12961-016-0104-5

134. Duijn PAC, Kashirin V, Sloot PMA. The relative ineffectiveness of criminal
network disruption. Sci Rep (2014) 4:4238. doi:10.1038/srep04238

Frontiers in Physics frontiersin.org19

Bellingeri et al. 10.3389/fphy.2023.1152243

https://doi.org/10.1103/physreve.65.056109
https://doi.org/10.1038/35019019
https://doi.org/10.1016/j.physa.2014.02.043
https://doi.org/10.1371/journal.pone.0161077
http://arxiv.org/abs/1311.5064
https://doi.org/10.1016/j.physa.2021.126667
https://doi.org/10.1109/TCSII.2020.2973668
https://doi.org/10.1038/srep18145
https://doi.org/10.1088/1367-2630/9/6/179
https://doi.org/10.1086/686225
https://doi.org/10.1016/j.jebo.2016.12.004
https://doi.org/10.1016/j.jebo.2016.12.004
https://doi.org/10.1109/ICDM.2013.47
https://doi.org/10.3389/fphy.2021.681343
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1073/pnas.2010398117
https://doi.org/10.1016/j.chaos.2020.110616
https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1038/ncomms10196
https://doi.org/10.1016/j.physa.2014.06.079
https://doi.org/10.1016/j.physa.2014.06.079
https://doi.org/10.1016/j.cose.2013.04.003
https://doi.org/10.1186/s12961-016-0104-5
https://doi.org/10.1038/srep04238
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152243

	Considering weights in real social networks: A review
	1 Introduction
	2 Basic notions
	3 The “strength of weak ties” hypothesis
	4 Node distance in weighted social networks
	5 Measures of node centrality
	6 Community structure in weighted social networks
	6.1 Clustering coefficient
	6.2 Community detections in weighted social networks

	7 Robustness of weighted social networks
	7.1 Link removal
	7.2 Node removal

	8 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


