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Abstract: The previously undescribed natural product lumnitzeralactone (1), which represents
a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian man-
grove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient
and highly challenging condensed aromatic ring system, was unambiguously elucidated by exten-
sive spectroscopic analyses involving high-resolution mass spectrometry (HRMS), 1D 1H and 13C
nuclear magnetic resonance spectroscopy (NMR), and 2D NMR (including 1,1-ADEQUATE and
1,n-ADEQUATE). Determination of the structure was supported by computer-assisted structure
elucidation (CASE system applying ACD-SE), density functional theory (DFT) calculations, and a
two-step chemical synthesis. Possible biosynthetic pathways involving mangrove-associated fungi
have been suggested.

Keywords: Lumnitzera racemosa; lumnitzeralactone; isolation; synthesis; structure elucidation; ellagic
acid; anti-bacterial; NMR; 13C-1H ADEQUATE

1. Introduction

Mangroves are salt-tolerant plants, growing as shrubs or trees along coastlines at
tropical and subtropical latitudes [1,2]. Together with associated microbes, fungi, other
plants, and animals, they form a mangrove forest community also called mangal [2]. Alto-
gether, about 75 true mangrove species from 11 families are recognized [3–5]. Lumnitzera
racemosa Willd. belongs to the mostly (sub)tropical family Combretaceae. The species
is widely distributed from the shores of East Africa to the Indo-West Pacific [6], as well
as in the Malay Archipelago [2]. Its extracts are well known in traditional medicine,
being used, among other applications, for the treatment of snake bites, rheumatism,
skin allergies, asthma, and diabetes mellitus and as a blood purifier [2,7–10]. The fruits
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and juice of young twigs, as well as sap of older bark, are used for treating skin dis-
orders, herpes, pruritus, and thrush arising from fungal infections [6,11–13]. Biolog-
ical activities of L. racemosa extracts and constituents were intensively studied. Anti-
bacterial [6,14–16], anti-coagulant [17], anti-inflammatory [18], anti-cancer [17,19,20], anti-
angiogenic [18], anti-oxidative [17,20], hepatoprotective [21,22], anti-hypertensive [23],
anti-hyperglycemic [24], and anti-viral effects [16,25–27] have been described so far. The
reported major classes of secondary metabolites present in L. racemosa extracts comprise
tannins [17,20,23], flavonoids [10,17,18,20,22], phenols [17,18,20,21], alkaloids [21], and ter-
penes [6,17,20,21]. Gallic acid and its derivatives—soluble tannins and related compounds
such as ellagic acid (EA) or 3,3′,4-tri-O-methylellagic acid (TMEA)—were found as one of
the possible biologically active classes of compounds [1,6,8,18,22]. These compounds are
common for the Combretaceae family in general and for L. racemosa in particular. Recently,
triterpene acids were identified as anti-bacterial compounds in Combretaceae [28], and
their effect against Staphyllococcus aureus was proposed to be a result of synergism with
epicatechin [28]. However, not all bioactive compounds of mangroves originate from
the plant itself, with many produced by associated microorganisms [6,29–31], including
various fungal endophytes. While the same fungal species have been found on different
host plant species, multiple samples of the same mangrove species do not necessarily bear
the same microorganisms [32,33]. It is likely that differences in the diversity of associated
microorganisms are due to species composition and environmental conditions, such as
precipitation, frequency of tidal flooding, salinity, freshwater flow, soil types, and hours of
radiation at the place of occurrence, as cases of no strict host specificity are known [32].

Recently, in our comprehensive metabolomics survey, we characterized the patterns of
ellagic acid derivatives in the root extracts of L. racemosa [8]. In the present study, we report
the isolation, structure elucidation, and chemical synthesis of the previously undescribed
ellagic acid derivative lumnitzeralactone (1) from L. racemosa. In addition, anti-bacterial
activity was studied and putative biosynthetic pathways involving fungal participation
are discussed.

2. Results and Discussion
2.1. Isolation and Identification of Compound 1

During our previous LC-MS investigation of 31 extracts from air-dried root samples of
the Indonesian mangroves L. racemosa and L. littorea, a series of interesting new sulfated
natural products as well as unusual EA derivatives were identified and subsequently
isolated [8]. The extracts from mangroves from different locations varied significantly in
their anti-bacterial activity. Remarkably, only two extracts obtained from locations close to
each other (the Maluku islands Ternate and Halmahera) completely inhibited the growth
of the Gram-positive bacterium Bacillus subtilis when applied at 500 µg/mL [8,34], which
could indicate a connection between the locations of the plants and their anti-bacterial
activity. This activity correlated with the occurrence of a signal at m/z 289 [M − H]− (peak
1 in the chromatogram in Figure 1A) in the LC-MS profiles, which could be exclusively
observed in the two active extracts. High-resolution mass spectrometry (HRMS) indicated
the molecular formula C13H6O8 for 1, based on the [M−H]− ion at m/z 289.0002 calculated
for C13H5O8

− to be 288.9990 with a mass tolerance of 4.2 ppm (Figure S5). Thus, as can
be seen from the mass difference of 12 amu, 1 has one carbon atom less than EA (2). This
elemental composition corresponds to only one known natural product, phelligridin J
(4) (3-carboxyl-8,9-dihydroxypyrano[4,3-c]isochromen-4-one) (Figure 2), isolated from the
Chinese medicinal fungus Phellinus igniarius [35]. However, the MS2 investigations of 1
revealed a fragmentation behavior similar to 2, suggesting a close structural relationship be-
tween these two compounds (Figure 1B). Indeed, the fragmentation of 1 and 2 followed the
pathways characteristic for phenolic compounds, as was recently described by Schmidt [36].
These pathways, accompanied with multiple losses of CO and CO2 and the formation
of odd-electron O-centered radical ion intermediates, provide a good explanation for the
observed patterns.
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EA (2) is a ubiquitous secondary metabolite in plants particularly found in the Com-
bretaceae family and quite characteristic of the genus Lumnitzera. The difference of
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12 amu, observed between 1 and 2, implies the potential occurrence of either a five-
membered ring in 1, instead of a six-membered ring in 2, or a rearranged structure with
the formal elimination of a (quarternary) carbon atom. To allow for unequivocal structure
elucidation by NMR data, the compound had to be isolated.

An initial isolation approach under non-acidic conditions yielded 2.5 mg of 1, which
was only slightly soluble in methanol. Although initial preliminary NMR data could be
obtained (Table S1), the amount was insufficient for further structure elucidation by 2D
NMR. From the small amount of the remaining dried roots (15.06 g), an additional 14.6 mg
of 1 was obtained. Acidification of the aqueous phase during liquid–liquid extraction of
the crude extract with ethyl acetate allowed for extraction of the yellow-colored compound
into the organic phase. Subsequently, 1 was purified by repeated column chromatography
on Sephadex LH20 and reversed-phase 2 material (RP2), followed by semi-preparative
RP-HPLC.

2.2. Structure Elucidation

Compound 1 was obtained as a yellow amorphous solid. Over time and through
repeated dissolving and drying, the substance turned red and became less soluble in
methanol. The bathochromic shift was reversible, and the color change could be repeated
on a TLC plate (Figure S1). Under NH3 vapor, the color of the yellow spot of 1 immediately
changed to red and then back to bright yellow when treated with HCl vapor. By spraying
the plate with a solution of magnesium acetate in methanol, the red color could be fixed
due to the formation of the corresponding phenolate ions (Mechanism: Scheme S1) [37].
This effect is known as the Bornträger reaction. The decreased solubility in methanol, also
observed during the first extraction under neutral conditions, might result from stable salts
formed by the phenolate ions, which strongly enhances the polarity of the molecule. The
observed halochromism, namely the color change through salt formation by charge change
of a molecule, is a result of an extensive electron delocalization due to the participation of
the free electrons of the negative-charged oxygen of the phenolate. This is a strong hint
for the presence of phenolic hydroxyl groups in 1, which was not unexpected for an EA
derivative. In agreement with data from the literature [37–39], the presence of a benzene
ring, conjugated carbonyl groups, and phenolic hydroxyl groups can be assumed based
on the presence of the maxima at 232 (4.10), 290 (3.95), and 407 (3.96) nm in the UV-Vis
absorption spectra of 1 (Figure S9-1).

The 1H NMR spectrum of 1, recorded in CD3OD, revealed three proton signals at δH
6.87 (d, 9 Hz), 7.59 (s), and 8.46 (d, 9 Hz) (Figure S2-1, Table S1-1), two of which (δH 6.87 and
8.46) are ortho-coupled, which was supported by the correlation observed in the COSY and
TOCSY spectra (Figures S2-2 and S2-3). This is not compatible with a structure similar to 2,
which would show only two aromatic singlets. Usually, the coupling constant for protons
of the benzene ring in the ortho position is in the range of 7.6–8.5 Hz [40,41]. Nevertheless,
larger coupling constants are known. For example, urolithin M5, a degradation product
of 2 detected in extracts from Elaeocarpus tonkinensis and also formed in humans after
ingestion of 2 [42], showed a coupling constant of 9 Hz, which was the same as what was
observed in 1.

The 1H NMR spectrum of 1, recorded in DMSO-d6 (Table 1, Figure S2-7), shows two
additional signals attributable to phenolic hydroxyl protons (δH 9.56, brs, 10.62, brs). The
13C NMR spectrum of 1, recorded in DMSO-d6 (Table 1, Figure S2-8), revealed 13 carbon
signals, which is in agreement with the molecular formula. Three carboxyl or lactone
carbon signals at δC 160.0, 158.3, and 158.2 were visible, as well as ten more carbons, seven
of which were non-protonated, including two oxygen-bearing carbons at δC 132.7 and 150.8.
The three protonated sp2 carbons were assigned by HSQC for δC 113.2, 117.9, and 107.3.
Surprisingly, the 13C NMR (CD3OD) of 1, isolated under non-acidic conditions, showed
only 11 of the expected 13 carbon signals (Figure S2-4, Table S1-2). Nevertheless, the two
missing signals (C-3 and C-11) could be determined by HMBC correlations (Figure S2-6).
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The higher chemical shift values of these signals indicated the presence of a salt instead of
the free acid.

Table 1. 13C (100 MHz) and 1H NMR (400 MHz) data of 1 and synthesized 1b and 5.

Lumnitzeralactone (1) Synthetic Lumnitzeralactone (1b) Synthetic Intermediate (5)

Position δC, Type
DMSO-d6

δH, m (J in Hz)
DMSO-d6

δC, Type
DMSO-d6

δH, m (J in Hz)
DMSO-d6

δC, Type a

THF-d8
δH, m (J in Hz) a

THF-d8

1 158.2, C 158.3, C 158.8, C
3 145.8, C 146.2, C 147.6, C
4 107.3, CH 7.49, s 107.2, CH 7.48, s 107.4, CH 7.54, s

4a 125.1, C 125.1, C 124.9, C
5 158.3, C 158.3, C 158.4,

6a 142.8, C 142.8, C 144.2, C
7 132.7, C 132.7, C 135.2, C
8 150.8, C 150.7, C 149.5, C
9 113.2, CH 6.95, d (9.0) 113.2, CH 6.94, d (9.0) 115.9, CH 7.21, s

10 117.9, CH 8.33, d (9.0) 117.8, CH 8.33, d (9.0) 127.4, C
10a 108.1, C 108.1, C 107.2, C
10b 127.9, C 127.8, C 130.8, C
11 160.0, C 160.1, C 160.4, C
12 167.8, C

7-OH 9.56, brs 9.56, brs 9.48, brs
8-OH 10.62, brs 10.59, brs 9.34, brs

a NMR data in accordance with the study conducted by Tokutomi et al. [40].

Based on the acquired data set, it seemed highly probable that the structure of 1
contains three protonated sp2 carbons (two of which are ortho-coupled aromatic protons),
one carboxyl group, and two phenolic hydroxyl groups. Thus, a condensed system of three
rings, including two lactones, was most likely, i.e., a structure representing a regioisomer of
phelligridin J (4) [35]. Since 1 contains only few protons, COSY and HMBC correlations
were not sufficient to elucidate its complete structure.

Derivatization of the molecule to incorporate additional protons (e.g., by methyla-
tion of the hydroxyl groups and formation of a methyl ester of the carboxyl group) was
not performed to avoid wasting the compound without obtaining decisive information.
Consequently, non-destructive methods were preferred. All attempts for crystallization, as
described for molecules with related structural elements [40,42,43], did not lead to crystals
suitable for X-ray analysis. Thus, further elucidation strategies relied on more unusual 2D
NMR experiments, such as 13C-13C-INADEQUATE, 1,1-ADEQUATE, and 1,n-ADEQUATE,
that require very high-field NMR instruments. 13C-13C-INADEQUATE provides correla-
tions for each carbon atom with the adjacent carbon atoms through 1JCC coupling. For
molecules with a natural 13C abundance, the sensitivity of this 2D NMR experiment is
very low due to the 13C-13C spin coupling ratio of just 0.012%. Therefore, a high sample
concentration or 13C enrichment is recommended [44]. Because these requirements could
not be met, 13C-13C-INADEQUATE experiments with a measurement time of 3 days did
not provide a spectrum that showed visible correlations. Therefore, the 1,1-ADEQUATE
experiment was performed, which shows pseudo 2JCH correlations which can be used to
assign the neighboring carbon atoms of proton-bearing carbons in the carbon skeleton [45].
The 1,1-ADEQUATE correlations from H-9 to C-8 and C-10 and from H-10 to C-9 and C-10a
allowed for the assignment of C-8 at δC 150.8 and the aromatic carbon C-10a (δC 108.1)
(Figure S2-12). Correlations from H-4 lead to the assignment of the neighboring carbons
C-4a (δC 125.1) and C-3 (δC 145.8) (Figure 3).
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The 1,n-ADEQUATE experiment provides information about the long-range
carbon–carbon connectivity under natural abundance conditions [46], primarily via pseudo
4JCH (1JCH + 3JCC) correlations and occasional observations of 3JCH (1JCH + 2JCC)
correlations [47,48]. Compared to the usual INADEQUATE experiment, sensitivity can
be increased up to a factor of 64, making this approach applicable to smaller amounts of
sample material [49]. In addition to the most common 3JCC and occasional 2JCC correlations,
2D 1,n-ADEQUATE also displays 1JCC correlations [48,50] similar to those observed in
the 1,1-ADEQUATE spectrum. The inversion of 1JCC correlations [48,50] that leak into
the 1,n-ADEQUATE spectrum would facilitate unambiguous discrimination between 1JCC
correlations (blue contours, Figure S2-11) and nJCC correlations (red contours, Figure S2-11).
Thus, 1,n-ADEQUATE can be used to obtain both 1JCC and nJCC correlations in a single
experiment. However, it should be noted that 1,n-ADEQUATE is less sensitive compared
to 1,1-ADEQUATE.

The combined evaluation of HMBC 3JCH and long-range 1,n-ADEQUATE 4JCH corre-
lations from H-9 and H-10 to C-6a (δC 142.8) and C-7 (δC 132.7) leads to their assignment
(Figures 3 and S2-11). C-10b is a special case because this carbon exhibited HMBC corre-
lations to all three protons (H-4, H-9, and H-10). H-10 and H-4 both show strong HMBC
correlations to C-10b, indicating 3JCH correlations. Although H-9 only shows a weak
HMBC correlation to C-10b, the observed 1,n-ADEQUATE correlation suggested its 4JCH
coupling. The assignment of the three COOR carbons was more complicated. The cor-
relation observed in 1,n-ADEQUATE from H-4 to the carbon at δC 160.0 (C-11) is a 3JCH
correlation, which was further supported by a strong HMBC correlation. The 13C spectrum
of 1, obtained in DMSO-d6, displayed two unresolved carbonyl carbons at δC 158.2 and
158.3. Thus, the correlation from H-4 to the two carbons at δC ~158 in 1,n-ADEQUATE
could either be a 3J (H4-C5) or 4J (H4-C1) correlation, yet it is impossible to distinguish
them. While the carbon signals at δC 158.2 and 158.3 could belong to C-1 or C-5 under the
discussed conditions, both signals were better resolved in CD3OD (Tables S1-2 and S1-3).
Here, the strong HMBC correlations of H-4 were interpreted as 3JCH, which allowed for the
assignment of C5.

To localize the hydroxyl groups, a low-temperature HMBC experiment was accomplished
in CD3OH at−20 ◦C (Figure S2-13) analogous to the strategy used by Vemulapalli et al., which
was successfully applied to elucidate the structure of phenanthroperylene quinone pig-
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ments [51]. In this special NMR solvent and condition, the hydroxyl group of methanol is
not deuterated. Consequently, the hydroxyl protons of the compound cannot be exchanged
with a deuterium and remain visible as sharp signals. The hydroxyl proton at δH 10.62 (brs)
shows correlations to C-7, C-8, and C-9, locating its position at C-8; another hydroxyl proton
(δH 9.56, brs) did not show any correlations. This could be caused by low signal-to-noise
ratios observed in the 2D NMR spectra, low sample concentration, or hardware limita-
tions such as low observation frequencies or poorly performing probe technologies [52].
However, the location of the second hydroxyl group could be indirectly assigned to C-7 by
HMBC correlations from H-9 and H-10 to C-7. An overview of all recorded HMBC spectra
is shown in Table S1-3 and Figure S2. By combining all the obtained data, the structure of 1
was identified as 7,8-dihydroxy-1,5-dioxo-1,5-dihydropyrano[4,3-c]chromene-3-carboxylic
acid (Figure 3). In reference to the source genus Lumnitzera, 1 was given the trivial name
lumnitzeralactone.

2.3. Computer-Assisted Structure Elucidation (CASE)

To verify the structure of 1, a CASE system was applied: the structure elucidator
of Advanced Chemistry Development software (ACD-SE). All available NMR data and
the molecular formula, though no predefined structural elements, were used to build the
information set used as a basis for the calculation. Although it is possible to generate a
“Found Fragments” (FF) library, especially for proton-deficient molecules, the calculations
were performed in common mode to obtain unbiased results. After a long calculation time of
more than eighteen hours, ACD-SE delivered the surprisingly low number of 44 structural
proposals. Usually, more than 90% of the test sets could be calculated in less than thirty
minutes, although there are cases with calculating times of more than 48 h and an output
of more than 500 proposals [53]. However, even expert-challenging molecules often take
just minutes to calculate when a good spectra information set (2D, 1,1-ADEQUATE) is
provided, as was done here as well [53,54]. Remarkably, in the calculation results, the
proposed structure for 1 was mentioned eight times, with slightly different 13C annotations
for the COOR carbons (C-1, C-5, C-11) and for two aromatic carbons with a single oxygen
bond (C-6a, C-7). The ranking of most probable structure proposals is based on dN(13C+1H),
the average differences between predicted and experimental chemical shifts. This ranking
confirmed our structure annotation for lumnitzeralactone (1). The proposal with the correct
carbon annotation was listed as the first ranked hit with a dN of 3.888. Furthermore, the
correct structure appeared at positions 2 to 4, as well as at positions 7, 8, 11, and 12 (for the
whole ranking, see Figure S8).

2.4. Density Functional Theory (DFT) Calculations

In addition, the structure of 1 was verified by DFT calculations. Five potential struc-
tural isomers of 1 (lumnitzeralactone and isomers II-V) were considered for this computa-
tional quantum mechanical modelling (Figure 4 and Table S2-1). For each structure, only
one dominant conformer was obtained (Table S2-2). For these, the experimental and calcu-
lated chemical shifts were compared. The anticipated structure of lumnitzeralactone (1) is
assigned a very high probability by 1H-DP4+ (99.89%), 13C-DP4+ (100%), and (1H + 13C)-
DP4+ (100%), while the alternative structures (isomers II-V) are assigned a probability of
almost 0%. Thus, the proposed structure for lumnitzeralactone (1) could be unambiguously
identified as the correct structure.

2.5. Synthesis

A further proof of the structure of 1 was obtained by chemical synthesis, something
which was required for final structural proof for many natural products [55,56]. The
synthesis of 1 was achieved in a two-step reaction starting from 2, as shown in Scheme 1.
The first step is the photo-oxidation of 2, which produces intermediate 5 that has a similar
structure to the natural product 1. Following the protocol of Tokutomi et al. [43] who first
described this reaction, we could obtain a good yield of the desired intermediate 5 under
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adapted conditions. To improve conversion, the reaction was conducted under oxygen
atmosphere in an ice bath to avoid overheating from the lamp. All recorded NMR (Figure S3,
Table 1) and HRMS data (Table 2, Figure S7) of 5 are in accordance with data reported in the
literature [43]. For the second step, Cu-catalyzed and Ag-catalyzed protodecarboxylation
was first attempted for a selective decarboxylation of aromatic carbonic acids [57,58], though
no product could be observed. However, thermal decarboxylation of 5 in toluene at 180 ◦C
yielded the desired singly decarboxylated product 1b, as well as side products. NMR data
(Table 1, Figure S4) and HRMS data (Table 2, Figure S6) of the synthesized lumnitzeralactone
(1b) are in full accordance with data from the natural lumnitzeralactone (1).
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ities were obtained by correlating the experimental 1H and 13C NMR data with the calculated
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Table 2. Characterization of the natural lumnitzeralactone (1) and synthesized compounds (1b and 5)
through reversed-phase ultra-high-performance liquid chromatography–quadrupole time-of-flight
tandem mass spectrometry (RP-UHPLC-QqTOF MS/MS).

No tR
(min)

m/z [M − H]−
Observed

m/z [M − H]−
Calculated ∆ppm Elemental

Composition RDB Fragmentation Patterns

1 2.5 289.0002 288.9990 4.2 C13H6O8 11.5

65.0033 (C4HO, 8), 117.0346 (C8H5O, 25),
133.0293 (C8H5O2, 14), 145.0297 (C9H5O2,

100), 151.0035 (C7H3O4, 9), 161.0244
(C9H5O3, 49), 173.0247 (C10H5O3, 28),

189.0196 (C10H5O4, 42), 200.0115 (C11H4O4,
11), 217.0145 (C11H5O5, 26) 228.0064

(C12H4O5, 14) 245.0098 (C12H5O6, 21)

1b 2.5 288.9990 288.9990 0 C13H6O8 11.5

65.0026 (C4HO, 7), 117.0326 (C8H5O, 30),
133.0288 (C8H5O2, 13), 145.0292 (C9H5O2,

100), 151.0032 (C7H3O4, 8), 161.0240
(C9H5O3, 50), 173.0239 (C10H5O3, 26),

189.0191 (C10H5O4, 40), 200.0109 (C11H4O4,
10), 217.0138 (C11H5O5, 29), 228.0025

(C12H4O5, 15), 245.0089 (C12H5O6, 24)

5 1.9 332.9887 332.8889 –0.4 C14H6O10 12.5

77.0386 (C6H5, 5), 105.0333 (C7H5O, 19),
117.0332 (C8H5O, 9), 133.0284 (C8H5O2,

38), 145.0282 (C9H5O2, 10), 161.0233
(C9H5O3, 100), 189.0186 (C10H5O4, 57),

202.9975 (C10H3O5, 3), 217.0134 (C11H5O5,
12), 233.0086 (C11H5O6, 13), 261.0039

(C12H5O7, 22)

2.6. Biosynthetic Considerations

Compound 1 was found in only two of the 31 investigated Lumnitzera samples [8,34].
Therefore, it is likely that biosynthesis of the natural product is not (exclusively) dependent
on the plant host, which shows low levels of genetic variation at a population level [59].
Instead, biosynthesis is the result of interactions with associated microorganisms that can
highly depend on local environmental conditions. We suggest fungal participation in the
transformation of 2 to 1 through an enzymatic process. In a fungal fermentation experiment
by Aguilar-Zárate et al., an unknown EA degradation product with the same m/z as 1
was detected [60]. One possible biosynthetic pathway could begin with radical-triggered
(oxidative) decarboxylation, performed by an oxidative enzyme originating from associated
fungi. Subsequent steps include further oxidation and cyclization (Scheme S2-1). Several
oxidizing enzymes are known from fungi, many of which exhibit extracellular activity and
act on polyphenols [61–66]. Decarboxylating enzymes of fungal origin are involved in the
degradation of lignin [67–69] and gallo- and ellagitannins [70].

Therefore, we suggest an alternative pathway analogous to chemical synthesis [43] via
the intermediate 5. The endoperoxide intermediate might be formed by cycloaddition of
ROS [43] or enzymatically by an oxygen incorporating enzyme such as dioxygenase. This
is followed by enzymatic decarboxylation (Scheme 2). However, 1 is found in the root bark,
and we have no evidence at this point as to whether it is formed only superficially or by
root penetrating or endophytic fungi and how the transport of EA (2), EA derivatives, or
lumnitzeralactone (1) occurs between species.

2.7. Biological Activity

Since 1 was detected exclusively in the two anti-bacterial crude extracts [8,34], the
contribution of 1 to this activity was hypothesized. Thus, the anti-bacterial activity of
1 was checked. However, in contrast to expectations, 1 did not inhibit bacterial growth
(Table 3). Interestingly, fractions resulting from the purification process and containing
mainly 1 showed anti-bacterial effects (95% inhibition at a concentration of 500 µg/mL,
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Table 3). Analysis of the metabolites in this active fraction revealed, besides 1, the presence
of 3 (Figure S10). In accordance with reports in the literature [71], 3 exhibited a clear
anti-bacterial effect in the assay with an inhibition rate of nearly 100% at a concentration of
100 µM (Table 3). However, 3 does not seem to be responsible for the observed anti-bacterial
activity profile of the mangrove extracts, as this compound was detected in the majority
of the 31 Lumnitzera crude extracts addressed in our previous comprehensive profiling
study and its occurrence did not correlate with the effects [8]. At this moment, we can only
speculate that a synergistic effect might contribute to the observed anti-bacterial effects, or
that the other extracts had matrix effects countered by compound 1.
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Table 3. Anti-bacterial activity against Gram-positive Bacillus subtilis of the crude extract, a fraction
(both 500 µg/mL), and pure compounds (100 µM) derived from L. racemosa and its synthetic analog.

Sample Growth Inhibition [%]

1 11.9 ± 26.2
1b 21.7 ± 11.4
5 28.9 ± 10.6
3 99.9 ± 3.0

Fraction containing 1 and 3 94.6 ± 7.1
Crude extract 90.1 ± 20.6

Pos. control (Chloramphenicol) 98.9 ± 0.1

As mentioned above, mangroves often live in symbiosis with associated microor-
ganisms, including fungi. An intensive investigation of endophytic fungi from man-
groves, including Lumnitzera, revealed significant anti-microbial potential for 71 repre-
sentative endophytic fungal species tested. Their extracts were applied against a set of
two Gram-positive bacteria (B. subtilis and S. aureus) and two Gram-negative bacteria
(Pseudomonas aeruginosa and Escherichia coli) [32]. Consistent with this study, our results
imply that EA-metabolizing fungi might contribute to the anti-bacterial effects of selected
Lumnitzera samples.

3. Material and Methods
3.1. General Experimental Procedures and Reagents

Thin layer chromatography (TLC) analyses were performed on silica gel 60 reversed-
phase 18 F254 (Merck, Darmstadt, Germany) using the solvent system H2O:MeOH 3:2 or
silica gel 60 reversed-phase 2 UV254 (Macherey-Nagel, Düren, Germany) using the solvent
system H2O:MeOH 3:2. To visualize the compound spots, long-wavelength UV light
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(366 nm), short-wavelength UV light (254 nm), and spraying with vanillin-H2SO4 reagent
were used, followed by heating or spraying with a natural product spray reagent.

Low-resolution ESI-MS spectra were obtained using a Sciex API-3200 instrument
(Applied Biosystems, Concord, ON, Canada) combined with an HTC-XT autosampler
(CTC Analytics, Zwingen, Switzerland).

The UV spectra were recorded on a Jasco V-770 UV-Vis/NIR spectrophotometer (Jasco,
Pfungstadt, Germany) using a 10 mm quartz glass cuvette.

Analytical and semi-preparative RP-HPLC were performed on a Shimadzu promi-
nence system consisting of an SPD-M20A diode array detector, a FRC-10A fraction collector,
a CBM-20A communications bus module, a DGU-20A5R degassing unit, an LC-20AT liq-
uid chromatograph, and an SIL-20A HT auto sampler. Chromatographic separation was
performed using an analytical YMC Pack Pro C18 column (ID 4.6 mm, length 150 mm,
particle size 5 µm) and a semi-preparative YMC Pack Pro C18 column (ID 10.0 mm, length
150 mm, particle size 5 µm) using ultrapure water (TKA ultrapure water system) and
methanol (Merck, LiChrosolv HPLC Gradient Grade) as eluents.

Ellagic acid was purchased from TCI Chemicals (Tokyo, Japan) and was used without
further purification. All solvents were purchased from Merck Chemicals GmbH (Darmstadt,
Germany) and were distilled prior to use. Deuterated solvents for NMR spectroscopy were
purchased from Deutero GmbH (Kastellaun, Germany). TMEA (3) was obtained by earlier
isolation [8].

3.2. Plant Material

The root material of Lumnitzera racemosa Willd. was collected from the Indonesian
archipelago as described in Manurung et al. [8] in Table 1, No. 19. The material corre-
sponding to sample LR7 comes from Ternate Island, Maluku (DD coordinates 0.84 /127.31).
The voucher specimen (BO1959402) is deposited at Herbarium Bogoriense (BO, Bogor,
Indonesia), National Research and Innovation Agency (BRIN). The samples were cleaned,
air-shadow-dried, and then kept in resealable zipper storage bags until use for further
treatment.

3.3. Extraction and Isolation

An aliquot (1.35 g) of the crude extract used in previous work [8] was diluted in
200 mL water and extracted five times with 100 mL of ethyl acetate. Each ethyl acetate
fraction was centrifuged. The combined supernatant of fractions 2–5 was dried (49.2 mg)
and submitted to an RP18 column eluted with a mixture of water and methanol (30:20,
v/v) followed by final purification by preparative HPLC (water (A)/methanol (B) gradient:
0–17.5 min, 5–31.5% B; 17.5–19.5 min, 31.5–100% B, isocratic for 8 min and a flow rate of
0.8 mL/min) to yield lumnitzeralactone (1) (2.5 mg, Rf = 0.71 in MeOH/H2O (2:3, v/v)
on RP18).

For repeated isolation, 15.06 g of dried roots from L. racemosa was ground to fine
powder in a ball mill, followed by an exhaustive extraction with methanol to provide 1.33 g
of dried crude extract. The extract was partitioned by liquid–liquid extraction between
water and ethyl acetate, first pure, then by adding some drops of 2M HCl to the water
phase, resulting in three fractions: water (697.2 mg), ethyl acetate (pure) (312.8 mg), and
acidic ethyl acetate (75.5 mg).

The last fraction was separated using a Sephadex LH20 column (h: 76 cm, d: 2.5 cm)
eluted with pure methanol. Based on TLC profiles, six main fractions were combined.
Fraction 3 (Rf = 0.72) was further purified on an RP2 cartridge (h: 5.5 cm, d: 1.6 cm) and
eluted with a mixture of 40% methanolic water followed by 10% methanolic chloroform
solution. Final purification of the water–methanol fraction was performed by preparative
HPLC. Compound 1 (14.6 mg, Rf = 0.72 in MeOH/H2O (2:3, v/v) on RP18) was purified
using a water (A)/methanol (B) gradient system (0–17.5 min, 5–31.3% B; 17.5–19.5 min,
100% B (isocratic for 8 min)) and a flow rate of 7.089 mL/min at 25 ◦C with absorbance
detection at 210 to 800 nm (Rt = 9.038 min, λmax: 411 nm, 288 nm, 210 nm).
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The pure ethyl acetate fraction resulting from the liquid–liquid extraction was sepa-
rated in the same way using an LH20 column and an RP2 cartridge to obtain a fraction
containing 1 and TMEA (3) (54.0 mg). This fraction was used in the anti-bacterial assay.

Lumnitzeralactone (7,8-dihydroxy-1,5-dioxo-1,5-dihydropyrano[4,3-c]chromene-
3-carboxylic acid, 1): yellow amorphous solid; UV (THF) λmax (log ε) 232 (4.10), 290
(3.95), 407 (3.96) nm; 1H and 13C NMR, see Table 1; HR ESI-MS and MS2 fragmentation, see
Table 2.

3.4. Synthesis
3.4.1. Photoreaction

A solution of ellagic acid dihydrate (0.82 g, 2.4 mmol) in dry THF (800 mL) was
irradiated using a mercury xenon lamp for 45 h inside a photoreactor. The reaction vessel
was placed in an ice bath for additional cooling and a balloon filled with oxygen was
attached to it. Reaction progress was monitored through measurement of UV spectra to
detect the decreases in absorption intensity at 367 nm and increases in intensity at 400 nm,
as performed by Tokutomi et al. [43]. After completion of the reaction, the solvent was
distilled off and the residue was freeze-dried. The crude product was suspended in DCM
and then stored overnight in the refrigerator. Subsequently, the supernatant was removed,
and the precipitation step was repeated, yielding 0.79 g of an orange amorphous solid (5)
which was used without further chromatographic purification.

Synthesized intermediate of lumnitzeralactone (7,8-dihydroxy-1,5-dioxo-1,5-
dihydropyrano[4,3-c]chromene-3,10-dicarboxylic acid, 5): orange amorphous solid; UV
(THF) λmax (log ε) 232 (4.13), 290 (3.77), 407 (3.63) nm; 1H and 13C NMR, see Table 1; HR
ESI-MS and MS2 fragmentation, see Table 2.

3.4.2. Decarboxylation

A solution of intermediate 5 (100 mg) in dry toluene (2 mL) was heated to 180 ◦C in a
capped microwave vial for 60 h. After distilling off the solvent, the reaction product was
dissolved in methanol and centrifuged to separate insoluble residues. The supernatant was
purified using an RP18 column (h: 36 cm, d: 3.5 cm) and eluted with a water–methanol
mixture (3:2, v/v) to obtain synthetic lumnitzeralactone (1b) (6.7 mg, 0.023 mmol, 7.5% yield
over two steps).

Synthetic lumnitzeralactone (1b): yellow amorphous solid; UV (THF) λmax (log ε)
232 (4,01), 290 (3.94), 411 (3.98) nm; 1H and 13C NMR, see Table 1; HR ESI-MS and MS2

fragmentation, see Table 2.

3.5. NMR
1H and 13C NMR spectra were recorded on an Agilent DD2 400 NMR spectrometer

at 399.917 and 100.570 MHz, respectively. Chemical shifts are reported relative to TMS
(1H NMR) or solvent peaks (13C, DMSO-d6 39.5 ppm, MeOH-d4 49.0 ppm). For samples
with low concentrations, 1H and 13C NMR spectra were recorded on a Bruker Avance Neo
500 NMR spectrometer at 500.234 and 125.797 MHz, respectively, using a 5 mm prodigy
probe with TopSpin 4.0.7 spectrometer software. The 2D NMR spectra were recorded on
an Agilent VNMRS 600 MHz NMR spectrometer using standard CHEMPACK 8.1 pulse
sequences (1H-13C gHSQCAD, 1H-1H gCOSY, 1H-1H gTOCSY, and 1H-13C gHMBCAD)
implemented in Varian VNMRJ 4.2 spectrometer software.

The low-temperature 13C-1H long-range correlation HMBC spectrum for structure
elucidation of 1 was recorded at 253 K on a Bruker Avance NEO 700 MHz (1H resonance
frequency) instrument equipped with a 5 mm TCI cryoprobe prodigy. Long-range carbon–
proton coupling of 8 Hz was used. The time domain matrix of 4k × 256 with 13 ppm (F2)
and 80 ppm (F1) spectral width was used. Carrier frequency was set to 5.5 and 135 ppm in
the F2 and F1 dimensions, respectively. The number of scans was set to 256 per t1 increment
and 2 s of repetition delay was used. The 1,1-ADEQUATE [72] (Bruker pulse sequence:
adeq11etgpsp) spectrum was recorded on a Bruker Avance III HD 900 MHz (1H resonance
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frequency) instrument equipped with a 5 mm TCI cryoprobe. One-bond carbon–proton
and carbon–carbon couplings of 145 and 50 Hz, respectively, were used. The inversion
(Crp60, 0.5, 20.1) and refocusing (Crp60, 0.5, 20.1) 180◦ selective pulses on 13C were set to
500 and 2000 µs, respectively. The time domain matrix of 3k × 208 with 13 ppm (F2) and
147 ppm (F1) spectral width was used. Carrier frequency was set to 6 and 100 ppm in the F2
and F1 dimensions, respectively. The number of scans was set to 256 per t1 increment and
2 s of repetition delay was used. The 1,n-ADEQUATE [48,50,72,73] (Bruker pulse sequence:
adeq1netgprdsp) spectrum was recorded on a Bruker Avance NEO 800 MHz (1H resonance
frequency) instrument equipped with a 3 mm TCI cryoprobe. One-bond carbon–proton and
carbon–carbon couplings of 145 and 57 Hz (64 Hz), respectively, were used. The desired
long-range carbon–proton coupling was set to 9.5 Hz (8 Hz). NMR spectra were processed
and analyzed using Topspin 4.1.3 (Bruker, Germany).

3.6. UHPLC-ESI-QqTOF-MS and MS/MS

For mass spectra of pure compounds, the samples (2 µL) were loaded on an EC 150/2
Nucleoshell RP 18 column (C18-phase, ID 2 mm, length 150 mm, particle size 2.7 µm,
Macherey Nagel, Düren, Germany) under isocratic conditions (3% eluent B, 1 min) and sep-
arated using a linear gradient from 3% to 95% eluent B in 5 min. Separation was performed
on an ACQUITY UPLC I-Class UHPLC System (Waters GmbH, Eschborn, Germany) with
a flow rate of 0.4 mL/min and 55 ◦C column temperature. Eluents A and B were water and
acetonitrile, with 0,1% (v/v) formic acid. The column effluent was introduced online into a
TripleTOF 6600 quadrupole time-of-flight (QqTOF) mass spectrometer equipped with a
DuoSpray ESI/APCI ion source operating in negative ion SWATH (Sequential Windowed
Acquisition of All Theoretical Fragment Ion Mass Spectra) mode and controlled by Analyst
TF 1.7.1 software (AB Sciex GmbH, Darmstadt, Germany). The TOF scans (MS experiments)
were acquired in the m/z range of 50 to 1000 (accumulation time 50 ms) with an ion spray
voltage of −4.5 kV and 450 ◦C source temperature. Declustering (DP) and collision (CE)
potentials were−35 and−10 V, respectively. The product ion spectra (tandem mass spectra,
MS/MS) were acquired in the high sensitivity mode (accumulation time 20 ms) in the m/z
range of 50–350 using unit Q1 resolution with mass resolution above 30,000. Collision
potential (CE) was set from −80 to −20 V, whereas collision energy spread (CES) was
15 V. The data were evaluated by Peak View 1.2.0.3 software (AB Sciex GmbH, Darmstadt,
Germany).

The crude extract was investigated by applying the MS conditions described in
Manurung et al. [8].

3.7. DFT-Calculations

The starting structures representing potential isomers of 1 were built in Maestro 11.4
(Schrödinger Release 2017-4: Maestro; Schrödinger, LLC: New York, NY, USA, 2019.).
The conformational search was performed with Macromodel 11.8 (Schrödinger Release
2017-4: Macromodel; Schrödinger, LLC: New York, NY, USA, 2019) using the MMFF
forcefield [74] under vacuum and an energy threshold of 5 kcal/mol. Only one dominant
conformer was obtained for each structure. All conformers were geometry-optimized at
the B3LYP [8–11]/6-31+G(d,p) [75] level of theory with Gaussian09 (Gaussian 09, Revision
C.01; Gaussian Inc.: Wallingford, CT, USA, 2010). The energy minimized conformers were
used as an input geometry for further DFT calculations. The nuclear shielding constants
were calculated at mPW1PW91 [76,77] /6-311+G(d,p) and mPW1PW91/6-311+G(2d,p)
levels of theory using GIAO [78] and IEFPCM [79] solvent (methanol) models. The obtained
shielding constants were converted into chemical shifts using the scaling factors available
on the CHESHIRE (chemical shift repository) [80–83] webpage. DP4+ [84,85] probability
was obtained using the experimental and calculated 1H and 13C chemical shifts.
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3.8. ACD-SE Calculations

The ACD/Structure Elucidator (ACD/SE) from ACD/Labs in ACD/Labs version
2018.2.5 (File Version S80S41, Build 108235, 8 April 2019) was used to perform verification
of promising structure proposals based on experimental NMR and HRMS data.

3.9. Anti-Bacterial Assay

The compounds were evaluated against the Gram-positive Bacillus subtilis 168 (DSM
10), as described by Ware et al. [86]. The tests were performed in 96-well plates based on
absorption read-out. Chloramphenicol (100 µM) was used as a positive control to induce
complete inhibition of bacterial growth. The results (mean ± standard deviation value,
n = 6) are given in relation to the negative control (bacterial growth in the presence of 1%
v/v DMSO) as relative values (percent inhibition). Negative values indicate an increase in
bacterial growth.

4. Conclusions

In this study, the previously unreported lumnitzeralactone (1) was isolated and charac-
terized from the true mangrove species Lumnitzera racemosa. Elaborate structure elucidation
includes 1H and 13C NMR, 2D NMR (COSY, TOCSY, HSQC, HMBC, 1,n-ADEQUATE,
1,1-ADEQUATE) spectra recorded in different solvents and in special cases under low-
temperature conditions, HR-MS, computer-assisted structure elucidation (CASE), DFT
calculations, and chemical synthesis. In contrast to expectations, lumnitzeralactone (1) iso-
lated from the anti-bacterial crude extract did not exhibit significant anti-bacterial activity
against B. subtilis.

Putative biosynthetic pathways of 1 are suggested, as well as a high probability of the
participation of an associated microorganism or its excreted enzymes. Microorganism-based
modification or elicitation may also explain the observed differential antibiotic potential of
the same species when collected at different sites. Although 1 itself did not show significant
anti-bacterial activity, it is present exclusively in anti-bacterial crude extracts. However,
the activity of crude extracts can also result from yet unidentified highly bioactive minor
components. Considering this, Indonesian mangroves may represent a promising source of
potent bioactive compounds that are waiting to be explored further.
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