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Trained immunity of alveolar macrophages requires metabolic
rewiring and type 1 interferon signaling
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Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs),
tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures
likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity.
Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered
that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response,
characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a
critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly
attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage
upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting
the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local
immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial
exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.
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INTRODUCTION
Our immune system is invariably shaped by microbial encounters
and exposure to environmental pathogen-associated molecular
patterns (PAMPs). Such interactions can result in long-term
functional changes of innate immune cells, which enable an
increased responsiveness to secondary challenges1. This phenom-
enon, referred to as trained immunity, has broadened our
understanding of innate immunity and represents a critical
component of immune cell memory1. Trained immunity can be
induced by endogenous or exogenous compounds (e.g. β-glucan,
oxLDL, cytokines) and has been described for a wide range of cell
types, including monocytes, macrophages and NK cells, as well as
hematopoietic stem cells and multipotent progenitor cells2. While
the molecular basis of trained immunity is not yet fully
understood, it is known that innate memory responses mechan-
istically depend on a complex interplay between epigenetic
regulation and cellular metabolism3.
The lungs are continually exposed to particles and microbes

from the external environment4, which may impact local immune
responses and induce innate memory. Lipopolysaccharide (LPS),
the major component of Gram-negative bacterial cell walls, is a

ubiquitously present PAMP that can be detected in airborne
particles, such as organic dust and cigarette smoke5, and initiates
a proinflammatory response upon recognition by the innate
immune system6. There are considerable variations in the amount
of personal, ambient LPS exposure. Urban LPS concentrations are
generally below 10 inhalable endotoxin units (EU)/m3 7, whereas
ranges of 300–6600 EU/m3 have been reported for endotoxin-rich
environments, such as livestock farming8, corresponding to
0.15–3.3 EU per breath (assuming 0.5 L human tidal volume9).
While the consequences of LPS inhalation are diverse and
complex, recent epidemiological studies have demonstrated a
protective effect of environmental endotoxin exposure on the
development of allergic diseases10.
Being located at the interface of the airways and the

environment, alveolar macrophages (AMs) constitute the first line
of innate cellular defense against inhaled microbes11 and are in
direct contact with airborne allergens, environmental agents and
PAMPs, including LPS. Given their unique location, AMs exhibit a
distinctive cellular profile that tightly regulates their activation
state to avoid excessive inflammatory responses12. As such, they
display limited plasticity and exhibit only moderate transcriptional
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and functional changes following severe insults such as
bleomycin-induced fibrosis or influenza infection13. Furthermore,
AMs are metabolically adapted to the low glucose levels of the
alveolar space and depend on oxidative phosphorylation
(OXPHOS) while maintaining only minimal glycolytic activity in
homeostatic and inflammatory conditions14. Despite their hypor-
esponsive state, AMs are key players in the innate pulmonary
defense during respiratory infections and eliminate invading
pathogens by processes such as phagocytosis or secretion of
antimicrobial peptides, while playing an equally important role in
the restoration of homeostasis11. AM-mediated initiation and
resolution of inflammation have been shown to be particularly
relevant during bacterial pneumonia, which is most commonly
caused by the Gram-positive bacterium Streptococcus pneumo-
niae (S. pneumoniae)15. Due to their unique cellular properties,
AMs are interesting candidates to study tissue-specific aspects of
trained immunity. Yet, our current knowledge about innate
memory responses of AMs and the underlying cellular mechan-
isms is limited.
In this study, we investigated whether exposure to ambient

amounts of LPS can modulate AM function by inducing trained
immunity. We applied a combination of genetic, epigenetic and
metabolic analyses to uncover the unique cellular properties of
AM memory and assessed the consequences of LPS training in the
context of pneumococcal infection.

RESULTS
LPS exposure induces trained immunity in alveolar
macrophages
The respiratory tract is continuously exposed to airborne microbial
products, which modulate the pulmonary immune system. Due to
their strategic location in the alveoli of the lungs, AMs are in direct
contact with inhaled particles and microbes, and thus represent
potential candidates to develop trained immunity. To investigate
whether ambient concentrations of ubiquitous airborne compounds
can elicit AM memory, we administered 1 ng LPS (∼0.5 EU/mouse;
an amount in relation potentially inhaled by humans8) or endotoxin-
free saline intranasally (i.n.) to wild type C57BL/6 J mice (Fig. 1a). This
treatment induced an acute inflammatory response, characterized
by a transient influx of neutrophils after 24 h (Fig. 1b). Six days later,
neutrophils were no longer detectable in the BAL fluid (BALF;
Fig. 1c), and post-lavage lung immune cell numbers were
comparable to the control group, except for dendritic cell and B
cell numbers, which remained moderately elevated in LPS-exposed
lungs (Fig. S1a–c). These data support the transient nature of LPS-
triggered effects, and exclude overt signs of persisting lung
inflammation. To assess whether LPS exposure modulates AM
immunity, we isolated AMs by BAL six days after i.n. LPS treatment
and challenged the cells ex vivo with heat-inactivated S. pneumoniae
(HISP, Fig. 1a). LPS-exposed AMs produced higher amounts of
multiple cytokines and chemokines, including C-X-C Motif Chemo-
kine Ligand (CXCL)-1, interleukin (IL)-1β, IL-10, IL-12p40 and IL-6
compared to control (saline-exposed) AMs (Fig. 1d, Fig. S2a),
indicating an innate memory effect. Taking absolute concentrations
and log2 fold changes into account (Fig. 1d), we selected IL-6, a
cytokine critically involved in host immunity16, as the most stable
readout and decided to use it as a surrogate for LPS-induced AM
memory in subsequent experiments. In support of this choice, we
continued to observe elevated IL-6 responses by AMs two and six
weeks after intranasal LPS treatment (Fig. 1e), indicating long-lasting
cellular reprogramming following ambient LPS exposure.
Given that phagocytosis and efferocytosis are key effector

functions of AMs, we next decided to investigate whether these
processes are modulated six days after in vivo training. To analyze
AM-mediated phagocytosis, AMs were isolated by BAL and
incubated with FITC-labeled HISP, followed by FACS analysis.
These experiments revealed that the phagocytic capacity of

trained AMs was enhanced in comparison to saline-treated
controls (Fig. 1f). AM-mediated efferocytosis was assessed after
intratracheal transfer of CFSE-labeled apoptotic thymocytes on
day six after training (Fig. S2b) and did not reveal any differences
between the groups (Fig. S2c, d). However, we noticed that LPS-
exposed AMs showed elevated surface expression of MerTK
(Fig. S2e) and Axl (Fig. S2f), two TAM family receptors known to
promote apoptotic cell removal17.
AMs are predominantly of embryonic origin and self-maintain

locally with minimal contribution of circulating monocytes under
steady-state conditions18. However, upon infection or severe lung
injury, the alveolar niche can be replenished by monocytes, which
get recruited to the lungs and acquire an AM profile under the
influence of the local microenvironment13. In order to determine
whether the transient inflammatory response to LPS inhalation
induced replenishment of tissue-resident AMs by monocytes, we
labeled resident AMs by i.n. administration of the fluorescent dye
PKH2619 eight days prior to LPS treatment (Fig. 1g). Frequencies of
PKH26+ and PKH26− AMs were determined 24 h and six days after
training. The dye selectively labeled lung-resident CD11c+ Siglec
F+ AMs while CD11b+ Ly6C+ monocytes remained PKH26-
negative (Fig. S2g). Of note, the percentage of PKH26+ CD11c+

Siglec F+ AMs in BALF (Fig. 1h, i) and post-lavage lung tissue
(Fig. S2h) was comparable between LPS-treated and control mice
at both timepoints investigated. This indicates that the resident AM
population was not replenished by inflammatory monocytes upon
in vivo training. In conclusion, we showed that i.n. LPS exposure
trains the local AM pool for increased cytokine production and
phagocytosis following secondary bacterial challenge.

AM training depends on type 1 interferon signaling
LPS-mediated signaling is accompanied by the production of type
1 interferons (IFNs; e.g. IFN-β)20 and type 2 IFNs (IFN-γ)21, which
have the capacity to modulate immune responses. Yao et al.
reported that IFN-γ, produced by T-cells during respiratory
adenoviral infection, primes AMs for enhanced immune activity
upon secondary pneumococcal challenge22. To test whether IFN-
γ- or T cell-mediated responses contribute to LPS-induced AM
memory, we applied our training model (in vivo training, followed
by ex vivo AM challenge) to IFN-γ-receptor-deficient (Ifngr1−/−)
and Rag2-deficient (Rag2−/−) mice, respectively. These experi-
ments showed that the enhanced IL-6 response of LPS-exposed
AMs occurred independently of IFN-γ-receptor signaling (Fig. S3a)
and adaptive immunity (Fig. S3b).
LPS is a potent inducer of type 1 IFNs, which can in turn

potentiate LPS-mediated immune responses23. To investigate
whether type 1 IFN signaling plays a role in LPS-induced AM
memory, we trained type 1 IFN-receptor-deficient (Ifnar1−/−) and
control mice, and analyzed AM IL-6 production upon ex vivo HISP
challenge six days later. Interestingly, AMs retrieved from LPS-
exposed Ifnar1−/− mice were unable to mount a trained response
(Fig. 2a), suggesting that type 1 IFN signaling plays an important
role in the establishment of AM memory. Of note, this effect was
not restricted to IL-6, as IL-12p40 and IL-12p70 responses were
similarly diminished upon Ifnar1 deficiency (Fig. S3c, d).
Based on these findings, we aimed to dissect whether type 1

IFNs promote AM training in a direct or indirect manner. Using
Ifnar1ΔCD169 and Ifnar1fl/fl control mice, we found that
macrophage-specific deficiency of type 1 IFN receptor expression
abolished AM memory (Fig. 2b), indicating that AMs need to
directly sense type 1 IFNs during LPS-mediated training. This
prompted us to investigate whether local administration of type 1
IFNs has the potential to induce trained immunity in AMs. For this
purpose, we treated wild type mice i.n. with IFN-β or saline and
examined the responsiveness of AMs six days later (Fig. 2c). Similar
to LPS-training, IFN-β exposure increased the IL-6 production by
AMs upon secondary, bacterial challenge, indicating an innate
memory effect (Fig. 2d).
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Given that type 1 IFNs act downstream of TLR4 signaling and
can affect cellular immunity via autocrine signaling24, we went on
to explore whether AM memory can be induced in a cell-
autonomous manner and generated murine ex vivo cultured AMs
(mexAMs)25 from primary wild type AMs. Following in vitro
expansion, mexAMs were stimulated for 24 h with LPS, IFN-β or
medium, allowed to rest for five days, and subsequently
challenged with HISP on day six after training (Fig. 2e). Similar
to in vivo AM training, LPS- or IFN-β-exposed mexAMs produced
increased amounts of IL-6 upon bacterial challenge (Fig. 2f),
indicating that these stimuli have the potential to directly induce
AM memory. Applying the same regimen to Ifnar1ΔCD169 and
Ifnar1fl/fl control mexAMs, we could further demonstrate that
autocrine type 1 IFN signaling can mediate LPS-induced in vitro
training (Fig. 2g).

Collectively, our data suggest that type 1 IFNs play an important
role in the establishment of LPS-mediated AM memory.

Trained AMs exhibit an altered transcriptional profile upon
secondary bacterial challenge
Trained immunity is defined as the altered reactivity to a
secondary trigger induced by prior exposure to a training
stimulus26. In contrast to primed immune responses, this
phenomenon is characterized by the return to a baseline state
after initial activation26. Mechanistically, trained immunity has
been associated with epigenetic remodeling and metabolic
reprogramming, two processes that serve as the molecular basis
for altered gene expression upon secondary challenge3. To
identify transcriptional changes of LPS-exposed and control AMs
at baseline and upon subsequent bacterial stimulation, AMs were
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isolated six days after training and incubated for 3 h with medium
or HISP (Fig. 3a). Principal component analysis (PCA) of RNA-seq
results revealed a high similarity between trained and control AMs
(Fig. 3b, c), and only 10 differentially expressed genes (DEGs) at
baseline (Table S1). In contrast, transcriptional profiles clustered
according to the preceding training stimulus upon bacterial
challenge (Fig. 3b, c), which correlated with 165 upregulated and
27 downregulated genes identified in LPS-trained compared to
control AMs (Table S2). DEGs detected upon HISP challenge
mapped to different Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) pathways (Fig. 3d), with “cytokine-cytokine receptor
interaction“ and “chemokine signaling“ being most differentially
regulated. Among these pathways, signaling-related genes (Prkcd,
Nfkb1, Raf1) as well as genes encoding chemokines of CC (Ccl22,
Ccl3) and CXC (Cxcl2, Cxcl3) subfamilies were differentially
expressed upon HISP stimulation (Fig. 3e). In accordance, CXCL1
protein levels were markedly increased upon ex vivo challenge of
trained AMs (Fig. S2a).
To assess whether the altered transcriptional responsiveness of

LPS-exposed AMs was associated with persistent epigenetic
changes reflected by altered chromatin accessibility, BAL AMs
were processed for Assay for Transposase-Accessible Chromatin
(ATAC)-seq analysis on day six after in vivo training (Fig. 3a). In
total, we identified 24 differentially accessible regions (DARs;
Fig. S4a and Table S3; FDR ≤ 0.05), nine of which were more
accessible in the trained group (Fig. 3f). Among these, three DARs
were annotated to the genes Fos (2 DARs) or Fosb (1 DAR), which
are associated with transcriptional regulation of multiple biologi-
cal processes, including cell migration, differentiation and
inflammation27.

Next we considered the possibility that accelerated gene
expression upon secondary challenge may result from altered
baseline deposition of permissive histone marks, such as H3K4
methylation or H3K27 acetylation28. To test whether AM training

depends on methylation- or acetylation events established during
LPS exposure, we trained WT mexAMs in presence of the
methyltransferase inhibitor 5’-deoxy-5′-methylthioadenosine29

(MTA), the acetyltransferase inhibitor anacardic acid30 or DMSO.
After 24 h, cells were washed and allowed to rest in medium until
bacterial challenge (Fig. S4b). Neither of the inhibitors influenced
the trained IL-6 response (Fig. S4c), suggesting that the targeted
epigenetic enzymes do not contribute to LPS-induced AM
memory.
Collectively, trained and control AMs displayed similar gene

expression levels and few changes in chromatin accessibility at
baseline, but mounted an augmented transcriptional response
upon secondary, bacterial challenge.

Secondary metabolic AM responses are modulated by prior
LPS exposure
Recent research highlighted the critical impact of cellular
metabolism on the functional state of immune cells, including
the induction, maintenance and regulation of trained immunity31.
Importantly, metabolic pathways do not only provide energy and
macromolecular building blocks, but can directly influence the
epigenetic machinery by generating intermediate metabolites
that serve as substrates or cofactors32. In monocytes and
macrophages, glycolysis, glutaminolysis and cholesterol synthesis
have been described to play crucial roles in the induction of
trained immunity, with increased glycolysis defined as hallmark of
trained macrophages31,32. AMs, however, are unique tissue-
resident immune cells that are metabolically adapted to the
remarkably low glucose concentration of the alveolar space, and
primarily utilize OXPHOS to meet their energy demands14. We
therefore speculated that the metabolic characteristics of trained
AMs may differ from those classically associated with trained
monocytes and macrophages. To investigate the baseline
metabolism of AMs six days after in vivo training, we performed
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Seahorse analyses (Fig. 4a, b). Compared to control AMs, LPS-
exposed AMs displayed a reduced basal metabolic activity,
reflected by a decreased oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) (Fig. 4c). Sequential inhibi-
tion of selected electron transport chain (ETC) components further
revealed a reduced ATP production rate of trained AMs (Fig. 4c),
while maximum respiratory capacity and spare respiratory
capacity (SRC) were unaltered (Fig. S5a). To assess how prior LPS

exposure affects AM metabolism upon secondary, bacterial
challenge, we performed Seahorse analyses of trained and control
AMs 16 h after incubation with HISP (Fig. 4d, e). Interestingly, basal
OCR and ECAR, ATP production (Fig. 4f), as well as maximum and
spare respiratory capacity (Fig. S5b) were significantly decreased
in trained cells. While saline-exposed AMs exhibited an increased
OCR upon bacterial stimulation (16 h; compared to incubation
with medium only), trained AMs displayed similar OCR levels in
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transformed, followed by z-score scaling. f Volcano plot displaying differentially accessible regions (DARs; padj ≤ 0.05) of trained versus control
AMs identified by ATAC-seq analysis six days after in vivo training. Labels indicate top 10 DARs per group.
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presence or absence of HISP (Fig. 4g). Although both trained and
control cells increased their ECAR upon bacterial challenge
(Fig. 4g), the absolute ECAR of trained AMs was lower than that
of control AMs at the investigated time point.
In summary, these experiments demonstrate that ambient LPS

exposure rewires AM metabolism, which further impacts the
metabolic response to subsequent bacterial challenge.

LPS training induces changes in AM metabolite and lipid
composition
Based on these findings, we went on to investigate the effects of
LPS training on the metabolite and lipid composition of AMs.

CD11c+ Siglec F+ AMs were FACS-sorted six days after LPS
administration and subjected to LC-MS/MS-based analyses (Fig. 5a;
Fig. S6a). Targeted metabolomic analysis revealed that trained
AMs contained increased amounts of S-adenosyl-methionine
(SAM; Fig. 5b), an essential metabolite synthesized from methio-
nine and ATP33. In accordance, intracellular amino acid profiles
(Fig. S6b) showed a trend for increased methionine concentrations
in trained AMs compared to control cells (Fig. S6c). SAM acts as a
universal methyl group donor for RNA, DNA, lipids and proteins
and was reported to drive a proinflammatory macrophage
phenotype in the context of LPS-induced inflammation34. In
addition, LPS exposure modulated metabolites of the tricarboxylic
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acid (TCA) cycle, with fumarate and malate being significantly
reduced compared to control AMs (Fig. 5b). Interestingly,
lipidomic analysis identified profound differences between LPS-
and saline-exposed AMs on day six after training (Fig. 5c). Trained
AMs contained substantially higher amounts of selected cera-
mides (Cer), phosphatidylethanolamines (PE), sphingomyelins
(SM) and phosphatidylcholines (PC), essential membrane lipids
that can directly or indirectly impact membrane receptor
signaling35. In contrast, triacylglycerol (TAG) levels were strongly
reduced in trained compared to control AMs (Fig. 5d). TAGs serve
as cellular energy stores that fuel cell-intrinsic ATP production in
the mitochondria by providing free fatty acids for β-oxidation36. In
summary, these findings imply that in vivo LPS exposure
profoundly modulates the metabolite and lipid composition of
AMs.

LPS-induced rewiring of AM metabolism is critical for memory
induction
Tissue-resident AMs predominantly rely on OXPHOS to meet their
metabolic demands37. This process is tightly linked to the TCA cycle,
which serves as the main electron donor for the mitochondrial ETC.
Substrates fueling the TCA cycle can be generated by multiple
processes, including fatty acid oxidation (FAO), glutaminolysis and
oxidation of amino acids or pyruvate38. Based on the altered
metabolite and lipid composition of LPS-exposed AMs, we
speculated that the initial metabolic activation evoked by the
training stimulus might be critical for the altered reactivity observed
upon secondary challenge. To test this hypothesis, we applied
selective metabolic inhibitors during in vitro mexAM training and
determined the consequences on the trained IL-6 response exerted
upon bacterial challenge. 2-deoxyglucose (2-DG), bis-2-(5-phenyla-
cetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and etomoxir
were used to inhibit glycolysis, glutaminolysis or FAO, respectively
(Fig. 5e). While glycolysis appeared to be dispensable for the
establishment of mexAM memory, inhibition of FAO and glutami-
nolysis abrogated the trained IL-6 response of LPS-exposed cells
(Fig. 5f), suggesting that LPS-mediated metabolic rewiring is critical
for the establishment of AM memory.

LPS training modulates pneumonia outcome
AM activation represents an ambiguous balancing act, which
serves to promote pathogen clearance while maintaining tissue
integrity. Consequently, malfunction, hypo-or hyperactivation of
AMs can have detrimental consequences for the host12,39. To
investigate whether LPS-trained AMs can modulate the outcome
of a subsequent pneumococcal infection, we isolated AMs five
days after in vivo training (Fig. S7a–c) and transferred them
intratracheally (i.t.) into naïve recipients (Fig. S7d), followed by i.n.
S. pneumoniae infection (“in vivo challenge”) 24 h later (Fig. 6a).
Recipients of trained AMs displayed increased bacterial loads
(Fig. 6b) and lung inflammation (Fig. 6c, d), indicating that
adoptive transfer of LPS-experienced AMs impairs host defense
against bacterial pneumonia. Considering that LPS-mediated
effects on other (i.e. non-AM) cell populations are omitted in a
transfer setup, we next addressed the impact of LPS training in a
physiologically more relevant setting and infected mice with S.
pneumoniae six days after LPS exposure (Fig. 6e). These
experiments revealed that LPS-pretreated animals displayed
enhanced bacterial clearance (Fig. 6f) and reduced lung tissue
inflammation (Fig. 6g, h) 48 h after infection. While LPS-exposed
animals demonstrated increased recruitment of inflammatory cells
early upon infection (6 h; Fig. S7e–f), monocyte and neutrophil
numbers were decreased after 48 h (Fig. S7h), indicating
accelerated initiation and resolution of inflammation.
Overall, these results highlight the necessity to investigate the

physiological consequences of environmental exposures as they
may be influenced by multiple cellular players and tissue-specific
parameters.

DISCUSSION
Continuous exposure to environmental microbial triggers poses a
strong impact on the education and maturation of our immune
system, affecting human health and disease susceptibility40. Due
to their unique location at the interface of the airways and our
environment, AMs are in direct contact with inhaled substances
and thus represent potential candidates to develop mucosal-
associated trained immunity. Yet, our current knowledge about
the tissue-specific properties and consequences of AM memory
remains very limited. In this study we discovered that pulmonary
exposure to ambient amounts of LPS (corresponding to an inhaled
endotoxin concentration of ∼0.5 EU) induces a robust AM memory
response, characterized by increased phagocytic activity and
cytokine production upon secondary, bacterial challenge. Our
RNA-seq and protein analyses collectively revealed that LPS-
experienced AMs, being transcriptionally similar to control AMs at
baseline, produced elevated amounts of multiple cytokines (e.g.
IL-6, IL-12p40 and IL-1β) following subsequent pneumococcal
challenge. Given that some of these factors (CXCL1, CXCL2 and
CXCL3) are powerful neutrophil chemoattractants that play a
prominent role in host defense41,42, LPS-induced AM memory may
potentially impact the immune response and outcome of
infectious challenges by modulating pulmonary inflammation
and/or neutrophil recruitment. While AM memory was overall
associated with increased production of pro-inflammatory cyto-
kines, we also observed an upregulation of IL-10. This anti-
inflammatory mediator was reported to play an ambivalent role in
host defense against S. pneumoniae as it prevented exacerbated
neutrophil influx while favoring bacterial dissemination43. In this
context, future studies will be required to investigate a potential
immunomodulatory effect of trained IL-10 production during
pneumococcal infection.
Innate memory responses have mechanistically been linked to

epigenetic reprogramming events induced upon exposure to the
training stimulus44. However, this evidence is primarily based on
studies investigating trained immunity in the context of cellular
differentiation. For instance, it was reported that systemic
administration of Bacille Calmette-Guérin (BCG) promotes bone
marrow myelopoiesis by inducing transcriptional changes in
hematopoietic stem cells, which give rise to epigenetically
modified, trained macrophages45. Additionally, β-glucan-trained
murine monocytes were shown to differentiate into epigenetically
altered macrophages, which confer protection against Candida
albicans infection46. In this study, we characterized the epigenetic
profile of AMs upon in vivo training and discovered few changes
in chromatin accessibility six days after LPS exposure. In a recent
publication, Aegerter et al. demonstrated that tissue-resident AMs
displayed minimal changes in chromatin accessibility following an
infectious lung insult, whereas monocyte-derived AMs readily
maintained an open chromatin conformation47. While our data
support the notion that AMs exhibit limited epigenetic plasticity, it
remains to be investigated whether differential regulation of the
identified chromatin loci plays a mechanistic role in the establish-
ment of AM memory. Exploring the possibility that altered
baseline deposition of histone marks could mediate AM training,
we further demonstrated that selective inhibition of methyl- and
acetyltransferase activity did not diminish the training effect.
While these findings collectively suggest that chromatin remodel-
ing is no major driving factor of LPS-induced AM memory, it
remains to be investigated whether other epigenetic mechanisms
(e.g. modulation of gene expression by micro RNAs) or other
enzyme classes are critical for AM training.
Despite their limited inflammatory potential at steady state,

AMs constitute the front line of cellular host defense against
respiratory pathogens and play an important role in the initiation
of the inflammatory response11. Due to their continuous exchange
with the environment, they represent ideal candidates to
investigate trained immunity at mucosal sites. Yao et al.
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demonstrated that respiratory adenoviral infection induces AM
memory via CD8+ T cell-derived IFN-γ22. However, while IFN-γ-
exposed AMs showed enhanced responsiveness upon subsequent
S. pneumoniae challenge, the cells did not return to a baseline
state following adenoviral infection, which was illustrated by
elevated glycolysis and increased transcriptional activity 28 days
after adenoviral exposure. These findings imply that the increased
reactivity of memory AMs upon secondary challenge may possibly
be a consequence of prior IFN-γ-priming, rather than innate
training. While IFN-γ-priming constitutes a well-established con-
cept and reportedly alters macrophage immunity by promoting a
proinflammatory phenotype48–50, we showed that LPS-induced
AM training occurs independently of IFN-γ-receptor signaling and
adaptive immunity, and, instead, identified a novel mechanistic
regulation of pulmonary macrophage memory. We discovered
that type1 IFN deficiency profoundly diminishes AM training and
extended our findings by showing that i.n. administration of IFN-β
can replicate the training effect of pulmonary LPS exposure. While
type 1 IFNs possess potent antiviral and immunostimulatory
properties, mistimed, inappropriate or excessive type 1 IFN
responses can impair anti-bacterial immunity, and thus facilitate
secondary bacterial superinfections, e.g. via suppression of Th17
responses51,52, or impairment of neutrophil recruitment53. Nota-
bly, our experimental model differs from settings of viral-bacterial
superinfections in important aspects, such as the extent and

duration of type 1 IFN exposure, as well as the timing of S.
pneumoniae infection. As we have not investigated a potential
impact of i.n. IFN-β treatment on pneumonia outcome in this
study, future research will be required to assess potential
consequences of exogenous IFN-β administration on pneumo-
coccal clearance.
Recent research has highlighted the critical impact of cellular

metabolism on immune cell activation and regulation of innate
memory responses32. Along these lines, multiple studies provide
evidence for a key role of glycolytic metabolism in trained
monocytes31. In addition to glycolysis, glutaminolysis has been
reported to be essential for the induction of BCG-induced innate
memory54 and both pathways have been shown to be closely
intertwined with epigenetic regulation. While these studies have
highlighted a critical role of metabolic regulation in trained
immunity in vitro, we lack knowledge about tissue-specific
metabolic reprogramming of innate immune cells.
The pulmonary niche constitutes a unique mucosal environ-

ment, which is characterized by remarkably low glucose
availability55. Being metabolically adapted to these conditions,
AMs display limited glycolytic activity and rely on mitochondrial
OXPHOS14,37. A recent study by Svedberg et al. demonstrated that
impaired glycolysis of AMs limits their responsiveness during type
2 inflammation56, suggesting a functional implication of this
metabolic constraint. We here identified a critical role of
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glutaminolysis and FAO in the establishment of LPS-induced AM
memory and provide evidence that glycolytic activation is
dispensable for this process. Of note, the altered metabolic profile
of AMs was not reflected on a gene expression level, which might
potentially be explained by different temporal dynamics of
metabolic and genetic responses. To our knowledge, this study
is the first to describe a metabolic dependency of AM memory,
and to report a role of FAO in trained immunity of tissue-resident
macrophages. Furthermore, these data emphasize that the cellular
characteristics of AM memory reflect their unique immunological
and metabolic properties.
In recent years, several epidemiological and experimental

studies have identified a beneficial role of trained immunity due
to heterologous protection against unrelated pathogens46,57,58.
However, innate memory responses may also be maladaptive in
conditions of chronic inflammation, such as atherosclerosis,
neurodegeneration and autoimmunity59. In this study, we found
that adoptive transfer of trained AMs resulted in increased lung
inflammation and impaired bacterial clearance following S.
pneumoniae infection (compared to recipients of control AMs).
In contrast, i.n. exposure to LPS, a scenario in which LPS-mediated
reprogramming can potentially affect any lung-resident cell
population, improved pneumonia outcome. Based on these
findings, and disregarding the inherent limitations of cell transfer
experiments due to concomitant inflammation, we speculate that
i.n. LPS treatment not only induces AM training but likely imprints
other (non-AM) cell populations (e.g. resident structural, myeloid
or lymphoid cell types), thereby altering their responsiveness to S.
pneumoniae challenge. Such additional reprogramming events
might be crucial to prevent excessive inflammation and promote
anti-bacterial immunity. Similarly, LPS-induced modulations of the
local immune andmetabolic environment (e.g. altered availability of
soluble mediators or metabolites) may critically influence the
outcome of subsequent infectious challenges. While our data
indicate that trained AMs can exert a significant impact on
pneumococcal clearance in a transfer setting, the experimental
set up did not enable us to delineate whether and how AMs
contribute to the protective effect following intranasal LPS
exposure. These findings may therefore represent two independent
observations. However, they collectively underline the complexity
of biological systems and illustrate that a single cell population may
not be sufficient to dictate the ultimate outcome of host defense.
Several epidemiological studies have demonstrated that

exposure to a microbe-rich, diverse environment is linked to a
decreased prevalence of allergies, a phenomenon commonly
referred to as the “farm effect”10. A remarkable example for this
effect is offered by a study showing that house dust from
traditional farming environment decreases asthma prevalence and
development by engaging and modulating innate immunity60. We
here demonstrated that inhalation-exposure to ambient endo-
toxin levels significantly improves the outcome of bacterial
pneumonia. While these findings underline the immunomodula-
tory potential of environmental agents, future studies will be
required to dissect the underlying cellular mechanisms of this
observation. Furthermore, it remains to be investigated whether
LPS-induced reprogramming of AMs plays a role in allergic airway
inflammation and other respiratory diseases.
Altogether, our data highlight the necessity to investigate

trained immunity in a tissue-specific context and emphasize that
the mechanisms and consequences of innate memory are
influenced by the local microenvironment and disease setting.

MATERIALS AND METHODS
Additional methodological details on cell isolation and flow cytometry,
phagocytosis/efferocytosis assays, RNA-seq, ATAC-seq and LC-MS/MS
sample preparation and data analysis, mexAM culture, histological
evaluation and study design can be found in the Supplementary Materials.

Mice
Age-matched, 8–10-week-old male mice were used throughout the study.
Mice were housed at the Medical University of Vienna (MUW, Austria), at
the Institute of Molecular Biotechnology (IMBA, Vienna, Austria), at the
Vienna BioCenter (VBC, Austria) or at the Max Planck Institute (MPI) of
Immunobiology and Epigenetics (Freiburg, Germany). C57BL/6 J mice were
purchased from Janvier (in-house maintenance breeding at MUW) or from
the Jackson Laboratory (maintenance at MPI). Rag2−/− mice61 (originally
ordered from Jackson), Ifnar1ΔCD169 and Ifnar1fl/fl control mice were bred at
IMBA. Ifnar1−/−62, Ifngr1−/−63, and respective C57BL/6 N wild type control
mice were bred at the VBC. All mice were housed in a specific pathogen-
free environment according to the Federation of European Laboratory
Animal Science Associations (FELASA) guidelines and were matched for
sex, age and genetic background in individual experiments. All mouse
experiments were approved by and performed in accordance with the
Austrian Federal Ministry of Science and Research (BMWF-66.009/0363-WF/
V/3b/2017; 2020-0.009.488) and the Regierungspraesidium Freiburg,
Germany (35-9185.81/G-18/65).

In vivo training
Mice received 50 µL endotoxin-free saline (Braun) containing 1 ng LPS
(Sigma; E.coli O55:B5) or 2000 U mouse IFN-β (pbl assay science) or saline
only i.n. under light isoflurane anaesthesia (2% isoflurane, 2 L/min O2) or
after intraperitoneal (i.p.) injection of Ketasol (100mg/kg; OGRIS Pharma)
and Rompun (10mg/kg; Bayer).

Ex vivo challenge of AMs
On day six after in vivo training, AMs were isolated by BAL as described
(s. Supplementary Materials). Cells were resuspended in RPMI medium
(10% FCS, 1% penicillin-streptomycin [PS; Sigma]), counted and seeded at
a density of 5 × 104 cells per well in a TC-treated 96 well plate (Corning).
After 2 h, non-adherent cells were washed off with PBS. Subsequently,
trained and control AMs were challenged with heat-inactivated S.
pneumoniae (HISP; ATCC6303, MOI [multiplicity of infection] 100) in RPMI
medium (3% FCS, 1% PS) or with medium only for 3 h (RNA-seq analysis) or
16–24 h (cytokine analysis, Seahorse experiments). IL-6 levels were
quantified by ELISA (BioLegend) or LEGENDplex (BioLegend). Levels of
CXCL1, TGF-β1, G-CSF, IL-18, IL-23, CCL22, IL-10, IL-12p40, IL-12p70, IL-6,
CCL17 and IL-1β were measured using the LEGENDplex Mouse Macro-
phage/Microglia Panel (BioLegend) according to the manufacturer’s
instructions. Data analysis was performed using the LEGENDplex data
analysis software.

In vivo labeling of tissue-resident AMs
Tissue-resident AMs were labeled by i.n. treatment with PKH26 (Sigma) eight
days prior to in vivo training. The dye was prepared according to the
manufacturer’s instructions and administered at 10 µM in a volume of 50 µL.
At indicated time points, BALF and post-lavage lung AMs were analyzed by
flow cytometry to determine frequencies of PKH26+ and PKH26- cells.

Seahorse analysis
AMs were isolated by BAL six days after in vivo training. Biological
replicates were pooled by experimental group and seeded as technical
replicates in XF-96 cell culture plates (Agilent) at a density of 8 × 104 cells/
well in 80 µL RPMI medium (3% FCS, 1% PS). To remove non-adherent cells,
the plate was incubated for 2 h at 37 °C and cells were washed twice either
with PBS (followed by subsequent ex vivo challenge, performed as
described) or XF assay medium (Seahorse XF RPMI medium, pH 7.4, 10 mM
Glucose, 1 mM Pyruvate, 2mM L-Glutamine [all from Agilent], 3% FCS).
Prior to analysis, cells were incubated under non-CO2 conditions in XF
assay medium for 1 h. Oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR) of AMs were analyzed using a Seahorse XF-96
Extracellular Flux Analyzer (Agilent). Where indicated, 1 μM oligomycin,
1.5 μM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or
100 nM rotenone plus 1 μM antimycin A (R/A; all from Sigma) were injected
to assess mitochondrial function. Means of R/A values (non-mitochondrial
respiration) were subtracted from OCR raw data for quantification of
mitochondrial parameters. ECAR data represent raw values.

Murine pneumonia model
Pneumonia was induced by i.n. infection with 104 CFUs mid-logarithmic-
stage S. pneumoniae serotype 3 (ATCC6303) as previously described64.
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Lungs were harvested 48 h after infection. Right lobes were collected for
determination of bacterial counts, the left lobe was collected for
histological analysis. Bacterial growth was quantified by plating 10-fold
serial dilutions of lung homogenates on blood agar plates.

Adoptive AM transfer
For adoptive AM transfer experiments, donor AMs were isolated by BAL on
day five after in vivo training with LPS or saline. BALF samples were pooled
by experimental group and centrifuged for 5 min (4 °C, 300 g). Cells were
resuspended in PBS, counted and diluted to a concentration of 107 cells/
mL. Subsequently, 3 × 105 cells were transferred intratracheally to naïve
wild-type recipients in a volume of 30 µL. Twenty-four hours after transfer
(i.e. six days after donor training), recipients were i.n. infected with 104 CFU
S. pneumoniae.

Statistical analysis
Differences in values obtained from two experimental groups were
assessed by student’s t-test (unpaired) or Mann-Whitney test (non-
parametric). One-way ANOVA or two-way ANOVA analysis followed by
Šídák’s multiple comparisons test was used to determine differences
between multiple groups. Data were analyzed using GraphPad Prism 8.0
and are presented as mean + SD or mean + SEM for experiments
performed with biological or technical replicates, respectively.

DATA AVAILABILITY
Raw and processed sequencing data (RNA-seq and ATAC-seq) are available in the
NCBI Gene Expression Omnibus database (accession number GSE184684). Raw and
processed LC-MS/MS data are available in the MetaboLights database (accession
number MTBLS3151).
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