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Shaping waveform of X-ray Mössbauer scattering into short pulses

The Mössbauer nuclei have proven as a good platform for X-ray quantum optics with
their coherent resonant scattering and ultranarrow linewidth from recoiless scatter-
ing, and long lifetime. Despite the successes in the study of the Mössbauer nuclei
and relevant quantum optics, the research has been restricted from the difficulties
of generating multiple coherent pulses with short duration and high intensity. This
thesis proposes a method for shaping the waveform of Mössbauer scattering into
pulses in nanoseconds duration. Regarding their long lifetime, the study is expected
to promote the study of the nuclear targets’ dynamics, specifically, nuclear pump-
probe measurement, etc. The motions of two nuclei by piezotransducers control the
phases of coherent scattering fields and shape them into pulse-shape. The second
study investigates the deviation in the measured motion. Narrowing down to the a
part of the motion system, electronic response of the piezo transducer, its electronic
property and limitations are studied and tested as response functions in the fre-
quency domain with varying external voltage inputs and types of piezo transducers.
With this measurements and future study in mechanical response, it is expected to
allow improved controllability to the motion system on the nanosecond time scale
and wavelength-order spatial scale.
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Chapter 1

Introduction

The advent of new light sources in the year 1960 [1] has brought a broad range of
applications to scientists and engineers over the last century. Nowadays, it is even
difficult to find the fields where the laser is not used. The wide applications of laser
can be found in communication [2], laser metrology [3], spectroscopy [4, 5], and even
nuclear fusion [6]. The development of ultrashort lasers with the Q-switching [7],
the mode-locking techniques [8, 9], and, chirped pulse amplification[10, 11] deepens
and broadens our understanding of nature. Specifically, its short duration opens a
way to investigate the fast dynamics of the charge carriers, atoms, and molecules
from nanosecond to femtosecond time scales [12, 13].

The development of the Quantum Optic field is also accompanied by the advance-
ment of laser technology. The coherent property and tunability of the laser light
source have enabled us to exploit the quantum nature of the matter as well as the
photon. Relevant successes can be found in the field of quantum metrology [14,
15], precise measurement [16] to control of light-matter interactions [17, 18]. Fur-
thermore, coherent short pulses have shown applications as coherent control of the
system, [19, 20, 21]. However, the usual laser sources operate at wavelengths from
microwaves, infrared, and the visible light, to ultraviolet.

The X-ray’s short wavelength has provided a useful research tool to scientists.
The research fields, from nanoscale physics [22, 23], interactions with core electrons
in the atomic shell [24, 25], to the nucleus [26, 27], became the researchable area
with X-ray and have reported interesting sciences and development in technologies.

On the other hand, the X-ray quantum optics field has remained a relatively new
field [28], though the X-ray is not fundamentally different from visible light where
great progress has been achieved in the Quantum optics field. The synchrotron
light sources such as PETRA III (DESY in Hamburg), ESRF (in Grenovel), etc
operating in X-ray range can be a game changer in this rising field [29, 30, 31]. The
produced beam’s property: beam brilliance, beam collimation, photon numbers,
and picoseconds pulse duration broadens the area of the Quantum optics research
field. The reported successful Quantum optical concepts in the X-ray regime are
including Hanbury Brown-Twiss effect [32], ghost imaging[33, 34], parametric down-
conversion [35], and two-photon X-ray spectroscopy [36]. Furthermore, operation of
the XFELs [37, 38] are expected to promise more fruitful research [39, 40] with its
higher brilliance and shorter pulse duration, etc.

Moving to the Nuclear quantum optics, the Mössbauer nuclei are of particular
interest. Due to their long lifetime, recoilless, and coherent scattering process, they
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Chapter 1 Introduction

offer ultranarrow resonance widths in frequency and coherent forward scattering
(Nuclear Forward Scattering, NFS) in time [41, 42]. The most popular isotope 57Fe
shows a transition energy of 14.4 keV with a linewidth of 4.7neV which corresponds
to a lifetime of 141ns. The 57Fe provides successful storage of single photon [43,
44], and supperadiance [45, 46], collective Lamb-shift [45]. And the lists go on for
coherent control of NFS. With the magnetic field, control of Bragg scattering [47]
and enhancement of re-emission [48] are reported in the early 90s. More recently,
the motion by the piezo transducer, ultrasonic, or the magnon also allows other ways
to give a coherent control to NFS property, including nuclear dynamics [49, 50, 51]
and shaping [52, 53].

The two projects of this thesis can be found in the context of the NFS with moving
Mössbauer nuclei. The first project will provide one method that shapes the scat-
tering waveform into pulse-shape with the two thin 57Fe targets. The successfully
shaped pulse waveform will give a tool to understand the dynamics of nuclear tar-
gets, nuclear pump-probe measurement. Applying motions to the targets, it makes
possible to control the time intensity by the interference effect and beating. Most
of the time, the motion of the targets will construct a destructive interference to
achieve low-intensity. Such destructive interference condition is purposely broken
to produce a pulse at a desired time. Based on the formulated general equation
for the two targets’ NFS, the property of the pulse will be analyzed and discussed
as a function of the targets’ thickness. For example, the maximum intensity of the
produced pulse, time duration, pulse-to-pulse delay, and general motion conditions.
Furthermore, one application using polarization dependent scattering will be pro-
vided that lowers the time intensity at both sides of the generated pulse. Hence, the
enhanced intensity contrast is achieved for the generated pulse.

The measured real displacement of the Mössbauer nuclei is not exactly following
the desired profile [54, 55]. The second project aims to diagnose the reason for the
imperfect motions in the synchrotron experiments. To fully characeterize the motion
system and achieve precise motion control, we need to understand both electronic
response of the piezo transducer as well as the mechanical response of the Mössbauer
target. The study will focus on the part of the motion system, the electronic re-
sponse of the piezo transducers, instead of measuring the motions of the Mössbauer
target. The measurement of electronic response of the piezo transducers is available
with the electronics without using the X-ray photon sources. The electronics have
been already set to test the piezo transducers for the past beamtimes [54]. The
piezo transducer and relevant electronics are investigated as response functions in
the frequency domain, where a physical process is easily formulated. A couple of
processes are required to calculate the response function from raw data, properly.
The average will take place at first to get rid of thermal noises. The 768ns length
data will be chosen out of the raw data for the proper Fourier transformation. And
threshold settings are introduced for the calculation of the response function. Lastly,
the time-jitter is going to be eliminated with the time-jitter noise density function
that is measured from the raw data. After having processes, the refined response
functions will be used for the analysis. We observed the thickness dependency of
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the piezo-transducer response, good linear response range for the piezo transducers,
and the limitation of the electronics at high frequency ranges within the 400MHz
and 1.5V inputs.

Structure

The Chapter 2 aims to provide a mathematical model for the Nuclear Forward Scat-
tering (NFS) of a single Mössbauer target and the effect of motion on the observables.
This chapter will start with the 57Fe’s energy structure, Mössbauer scattering, and
then it will introduce delocalized scattering for the NFS. A semi-classical model will
be brought to explain the observables of the NFS of motionless target. The NFS
matrix will be introduced to account for the polarization dependent scattering of
the hyperfine irons and future usage. As a last part of the background part, we
will formulate the NFS of moving target and understand how the motion affects the
time intensity and spectrum.

The Chapter 3 proposes a scheme to shape the Mössbauer scattering field into
pulses in hard X-rays. Our scheme employs two Mössbauer targets that can interfere
or beat depending on their motions. With the equation of the NFS time intensity,
we will formulate the arriving field over the entire measurement time as well as the
generated pulse. The intensity equations will enable us to discuss the properties
and limitations of the generated pulses regarding their maximum pulse intensity,
pulse-to-pulse delay, pulse duration, and conditions for motions. Lastly, one appli-
cation of improving the pulse’s relative intensity will make up the last part of the
waveform shaping project. Introducing hyperfine interacting iron targets in certain
configurations, the undesired intensity at wings of pulse can be suppressed at the
time periods before and after the generated pulse. In the same fashion, the analysis
of the scattering field will be followed to discuss its properties, improvements, and
limitations.

The Chapter 4 is motivated to understand the existing errors of the motion system.
Specifically, the project focuses on part of motion systems: the electronic response
of the piezo transducer and the relevant electronics, which don’t require photons,
unlike displacement measurement. The measurements are carried with the already-
set electronics in the laboratory to prepare and test the piezo transducers for the past
beamtimes [54]. To understand the raw data, the first section will be dedicated to
explaining the configurations of the pre-set electronics. The specification of each unit
as well as the experiment variables (piezo transducers, and tested input functions)
will be introduced during the discussion. The electronic response of the system and
piezo transducer will be studied with the response function in the frequency domain.
The process to calculate the response function from the raw data will be presented in
the following order: Averaging, data length selection, response function calculation
with threshold, and time-jitter noise elimination. With the data, the thickness
dependent linear response of the piezo transducer is confirmed within 400MHz and
1.5V input voltages.
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Chapter 2

Background: Nuclear forward scattering
of 57Fe

The 57Fe is one of the Mössbauer activate elements which shows a nuclear resonant
scattering, i.e. Mössbauer scattering [56, 57]. Its long lifetime corresponds to a
narrow transition in the frequency, neV level for the 57Fe’s example and has a large
potential to be used in various scientific fields [58, 59, 60]. Despite its attractive
feature, direct observation of nuclear transition had prevented early research in the
laboratory because of the huge momentum recoil that the nucleus exchanges with
photons during absorption and re-emission. The key feature of Mössbauer isotopes
is that their scattering process is free from the huge recoil problem. The reason
for the recoilless scattering can be found in the nucleus embedded in the crystal
[56, 61]. When the Mössbauer isotopes are prepared as a solid state, the exchanged
momentum is no longer delivered to the single nucleus. Instead, the entire crystal is
rebound back and consequently, the recoil momentum gives only a negligible effect
due to the macroscopic mass of the crystal.

The object of the background chapter is to understand the scattering of the Möss-
bauer nuclei, specifically 57Fe. The scattering process of interest is the coherent res-
onant scattering where the dipole radiation explains the scattering process [62, 63].
Because of the coherent resonant scattering of Mössbauer nuclei, its property and
environment make the scattering take place via several paths, quantum mechani-
cally. The semi-classical model can describe such propagation effect [54]. Therefore,
the energy structure of the 57Fe is put at the beginning to see the 2-level system
approximation for the semi-classical description, Section 2.1.1. The classical field
will be introduced to describe the propagation through a medium with the quantum
nuclear dipole moment, Section 2.2.2. The introduced model is a universal model
which can be adaptable to many similar systems [64]. Then, the Nuclear forward
scattering matrix is introduced in Section 2.2.3 to include the polarization depen-
dent scattering of iron with hyperfine structure [65]. The last section, Section 2.4,
will discuss the effect of the motion on the scattering field which benefited from the
timely separated scattering field in the synchrotron Mössbauer experiment[53, 57].

2.1 Nuclear excitation of 57Fe

To understand the existing scattering process in the 57Fe, it is necessary to under-
stand the energy structure of the nucleus.
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Chapter 2 Background: Nuclear forward scattering of 57Fe

Figure 2.1: The figure shows a schemactic energy structure of the 57Fe, reconstructed
figure in [67]. Under the hyperfine interaction, the ground state and excited state split
into 2 and 4 different states, respectively.

2.1.1 Energy structure of 57Fe

The nuclear energy state is determined by its internal nuclear interactions. One
excited state of 57Fe can be characterized by three quantum numbers: the energy
E, the nuclear spin I, and its spin orientation along the quantization axis, Iz. The
ground state of 57Fe is comprised of all paired nuclear spins except one unpaired
nucleon due to its odd mass number [57, 66]. Ground state, I=1/2, can undergo a
transition to one of the excited states if the transition satisfies the spin and energy
conservation law. The interaction with resonant photon breaks one of the paired
nucleon spins of the nuclear ground state and it produces the excited state which
has three unpaired nuclear spin configurations, I=3/2 [57, 66]. The probability of
an absorption event, in the absence of Hyperfine interaction, can be quantified with
the cross-section of resonant nuclear scattering, σ0 = 2.464 × 10−18 cm−2 for the
57Fe [57, 66]. Comparing to the total electronic absorption cross-section of 57Fe,
5.75× 10−21 cm−2, nuclear resonant excitation is the most dominant phenomena at
the 14.4keV X-ray energy level.

The nuclear energy state of the iron can be assumed as an almost perfect two-
level system. The first excited state is separated by E0 = 14.4keV or equivalently
λ0 = 0.861Å from the ground state. A striking feature of the excited state of the
57Fe is its long lifetime, τ = 141ns or the ultranarrow linewidth γ = 4.66neV in
the spectrum [57]. Furthermore, the degenerated energy states of 57Fe are split into
hyperfine energy states, respectively.

The isomer shift, quadrupole electric moment, and the nuclear Zeeman interac-
tions are the most common interactions [41, 57]. The 57Fe in our interest is the
ferromagnetic 57Fe, showing 33T of internal magnetic field. The randomly oriented
magnetic dipole moment of such 57Fe can be aligned with the external magnetic field
[68], and can imprint hyperfine interaction in the observables. For such 57Fe, the
ground state splits into two states with quantum number m = −1/2 and m = 1/2
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2.1 Nuclear excitation of 57Fe

Label Transitions: |I, Iz⟩ Polariziation ∆E Cγ

ω1 |1
2
,−1

2
⟩ → |3

2
,−3

2
⟩ ∆mz = −1 ω0 - 53.6γ 1

ω2 |1
2
,−1

2
⟩ → |3

2
,−1

2
⟩ ∆mz = 0 ω0 - 31.1γ

√
2/3

ω3 |1
2
,−1

2
⟩ → |3

2
,+1

2
⟩ ∆mz = 1 ω0 - 8.6γ

√
1/3

ω4 |1
2
,+1

2
⟩ → |3

2
,−1

2
⟩ ∆mz = −1 ω0 + 8.6γ

√
1/3

ω5 |1
2
,+1

2
⟩ → |3

2
,+1

2
⟩ ∆mz = 0 ω0 + 31.1γ

√
2/3

ω6 |1
2
,+1

2
⟩ → |3

2
,+3

2
⟩ ∆mz = 1 ω0 + 53.6γ 1

Table 2.1: Parameters of M1 transitions of 57Fe with 33T internal magnetic field are
presented in increasing energy order. The |I, Iz⟩ basis is chosen to represent the ground and
excited state. The new parameter Cγ is the Clebsch Gordan coefficient which represents
the relative strength for each transition. [67]

separated by −µ0 ·B = 39.7γ for (B = 33T ). And the excited state splits into four
equally separated states m = 3/2 to m = −3/2 but by µ1 ·B = 22.4γ for (B = 33T )
[67]. The M1 transition of the 57Fe allows only sextet transitions ∆m = −1, 0, 1 to
obey spin conservation.

2.1.2 Delocalized nuclear excitation and Nuclear Forward
Scattering(NFS)

The study of the nuclear state of the 57Fe is often carried out with the synchrotron
radiation that produces less than one resonant photon at each pulse, on average,
due to its low number of photon per mode and ultranarrow linewidth of 57Fe [30].

When a resonant photon is incident to a crystal where 57Fe nuclei are embedded,
one of the nuclei will absorb the photon without recoil and re-emit it at a later
time. The relevant scattering is the dipole radiation of the nucleus which features a
coherent evolution of the state and the radiation [69]. This type of scattering process
can take place for the 57Fe in 14, 4keV [54], or generally the nuclear excitation. Since
the scattering is coherent and elastic, the final state of the nucleus is returned to
exactly the same state as the other nucleus after completing the scattering [57].
Then, such scattering conditions set a delocalized scattering since spatial information
of the scattering center is not known before and after the scattering. The nuclear-
photon interaction needs to be expressed as a superposition of all nuclei in the target,
quantum mechanically, and the scattered field is also required to be expressed as
the superposition of respective scattering paths [57, 62, 63]. The feature of the
delocalized scattering field is the scattering direction from the interferences of each
path. The forward and backward scattering direction is the universal scattering
direction observed for all Mössbauer targets, where the scattering propagating to
forward direction is called Nuclear Forward Scattering (NFS) [42, 70]. While there
are non-zero scattering amplitudes along the Bragg’s direction for periodic crystals.
The delocalized nuclear scattering concept is independently developed by Hannon
and Kagan, named as nuclear exciton [63] and nuclear polariton [62], respectively.
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Chapter 2 Background: Nuclear forward scattering of 57Fe

2.2 Semi-classical model for Nuclear forward
scattering

The NFS of 57Fe can be described by the semi-classical model, where a quantum
state for the nucleus and a classical field are assumed.

2.2.1 Master equation

From the energy structure of the 57Fe, it encourages modeling the 57Fe as a two-level
system for the nuclear-field interaction.

Master equation
Generally, the wavefunction of a two-level system can be expressed as,

|ψ⟩ =
∑
i=e,g

ci |i⟩, (2.1)

where e, g refer the excited state and ground state, respectively
The density operator of the given system is defined as,

ρ̂ = |ψ⟩ ⟨ψ| (2.2)

The interaction of one two-level system and a light field is described by the master
equation [64]. The interaction is described as the evolution of the given system,

∂tρ̂(t) =
1

iℏ

[
Ĥ, ρ̂

]
+ ρ̂s, (2.3)

where ρ̂ is a density matrix defined as Eq. (2.2). And Ĥ is interaction hamiltonian
of the system with toghether describes the coherent evolution of the state. While
ρ̂s operator (decoherence matrix) describes the decoherence effect such as the spon-
taneous emission.

Explicitly, the nuclear states will have the following form in the interaction picture.

ρ̂ =

(
ρgg ρge
ρeg ρee

)
=

(
|cg|2 ce

cg

cg
ce |ce|2

)
(2.4)

ρ̂s =
Γ

2

(
2ρee −ρge
−ρeg −2ρee

)
(2.5)

Ĥint = −ℏ
2

(
0 Ω∗

p

Ωp 2∆p,

)
(2.6)

where the ∆p is the detuning between the natural frequency of the nucleus and the
incident field. The Rabi frequency is defined as Ωp = 1

ℏ ⟨e| Ĥint |g⟩ = 1
ℏ ⟨e| d̂ · E |g⟩
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2.2 Semi-classical model for Nuclear forward scattering

indicating the coupling amplitude of the field-nucleus interaction. The operator d̂ is
the dipole moment operator of the nucleus defined as d̂ = e · r̂ with position operator
r̂.

Each component of the Eq. (2.3) is given by,

∂tρgg = Γρee +
i

2
(Ω∗

pρeg − Ωpρ
∗
eg) (2.7)

∂tρeg = −(
Γ

2
− i∆p)ρeg −

i

2
Ωp(ρee − ρgg) (2.8)

∂tρee = −Γρee +
i

2
(−Ω∗

pρeg + Ωpρ
∗
eg) (2.9)

ρge = ρ∗eg (2.10)

We can read the the conservation law, ∂tρgg + ∂tρee = 0, universally. Furthermore,
exponential decay of excited state, ρee = |ce|2 ∼ e−Γt, and decay of coherences of the
nuclear system (two-level system), ρge ∼ e−Γ/2t, are observed when pumping field
doesn’t exist.

2.2.2 Maxwell-Bloch equation

Our interest is in how the field is changed after propagating through the nuclear
system. To answer this question we need to combine the Master equation with
Maxwell’s wave equation.

First order wave equation The behavior of the electromagnetic field is completely
determined by the set of Maxwell’s equations. When the electric field and magnetic
field exist in the medium, each field is represented as the sum of the external field
and an induced internal field [69].

The propagation equation of the electromagnetic field through dielectric material
is given as [69],

−→
∇ × (

−→
∇ ×

−→
E ) + µ0ϵ0∂tt

−→
E = −µ0∂tt

−→
P , (2.11)

where the
−→
E is the electric field. The Polarization,

−→
P , represents the induced electric

field of the given system. It is the averaged dipole moments over a sizable area of
the medium. The detailed derivation is presented in Appendix A.1.

The following equation solves the wave equation along the z-direction

E(z, t) =
1

2
E(z, t)ei(kz−νt+ϕ(z,t)) + c.c, (2.12)

where the envelope of the electric field, E(z, t), and the phase ϕ(z, t) are assumed to
slowly vary [71, 72]. The induced electric field in the medium can be also written in
a similar fashion.

P (z, t) =
1

2
P(z, t)ei(kz−νt+ϕ(z,t)) + c.c, (2.13)

9



Chapter 2 Background: Nuclear forward scattering of 57Fe

Recalling the macroscopic object, the Polarization, is defined as the averaged
dipole moment over a sizable area in classical electromagnetic dynamics, it is at-
tempting to introduce a quantum mechanical counterpart for the Polarization to
figure out the propagation effect of the nuclear 2-level system. The multiplication
of the total number of dipoles and the expectation value of a single quantum dipole
moment can fulfill the quantum mechanical expression [64, 73],

P = N
〈
d̂
〉
= N × tr(ρ̂d̂) = 2Ndegρeg(t) (2.14)

The second-order Maxwell’s wave equation reduces to the first-order differential
equation, details in Appendix A.1. And applying slowly varying approximations,

(∂z +
1

c
∂t)(Eeiϕ(z,t)) ≃ i

k

2ϵ0
P (2.15)

= i
2π

ϵ0λ
Ndegρeg(t), (2.16)

where the last equation replaces one classical object with the quantum mechanical
observable.

Coherent propagation effect
The discussion keeps assuming that both electric field and polarization will be par-
allel. Multiplying deg

ℏ at both sides of the equation, the following equation comes
out,

(∂z +
1

c
∂t)Ωp = i

2π

λℏϵ0
Nρeg|deg|2 ≡ iηρeg, (2.17)

where Ωp =
1
ℏ(deg ·E) is the Rabi frequency. The η is defined as ξΓ

2L
with ξ = NσL.

The resonant cross section of nuclear scattering is σ = 4π|deg |2
ℏϵ0λΓ [71, 72].

Together with the Master equation, the first-order Maxwell’s equation can describe
the scattering of a nuclear ensemble with proper boundary conditions. We assume
that the nuclear state is prepared in a ground state, ρij(t = 0) = δgiδjg. Another
condition is that the Rabi frequency is also zero inside the material at time zero,
Ωp(t = 0, z) = 0. And the Rabi frequency satisfies Ωp(t, z = 0) = δ(t − τ) at the
boundary of the nuclear ensemble.

Assuming weak nuclear-field interaction, Ωp ≪ Γ, for the nucleus system, it is
possible to treat the interaction strength Ωp and consequent nuclear state ρij(t) as
a perturbation in the equations from Eq. (2.7) to Eq. (2.9), and Eq. (2.17) [72].

First, let’s introduce κ to understand the order of perturbations.

ρeg(t) = κρeg(t)

Ωp(t) = κΩp(t)
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2.2 Semi-classical model for Nuclear forward scattering

Then, the following set of equations is obtained.

κ∂tρgg(t) = Γκρee(t) +
i

2
κ2(Ω∗

p(t)ρeg(t)− Ωp(t)ρ
∗
eg(t))

κ∂tρee(t) = −Γκρee(t) +
i

2
κ2(Ωp(t)ρ

∗
eg(t)− Ω∗

p(t)ρeg(t))

κ∂tρeg(t) = −κ(Γ
2
− i∆p)ρeg(t) +

i

2
κΩp(t)−

i

2
κ2Ω(ρee(t)− ρgg(t))

κ
1

c
∂tΩp(t) + κ∂zΩp(t) = iκηρeg(t)

Neglecting the terms higher than O(κ), a linear set of differential equations is ob-
tained.

∂tρgg(t) = Γρee(t) (2.18)
∂tρee(t) = −Γρee(t) (2.19)

∂tρeg(t) = −(
Γ

2
− i∆p)ρeg(t) +

i

2
Ωp(t) (2.20)

1

c
∂tΩp(t) + ∂zΩp(t) = iηρeg(t) (2.21)

The last two linear differential equations compose a set of propagation equation
from which the coherence of the nuclear system and electric field can be solved. The
set of differential equations is represented in the frequency space to easy solution.

− iωρeg(ω, z) = −(
Γ

2
− i∆p)ρeg(ω, z) +

i

2
Ωp(ω, z) (2.22)

− i
ω

c
Ωp(ω, z) + ∂zΩp(ω, z) = iηρeg(ω, z) (2.23)

The following ρeg(ω, z) solves the above equation.

ρeg(ω, z) =
−1/2

ω +∆p + iΓ/2
Ωp(ω, z) (2.24)

Substituting ρeg(ω, z), the calculation of remained the Rabi frequency is also easily
followed as,

Ωp(ω, z) = e
−iηz/2

ω+∆p+iΓ/2 × Ωp(ω, 0)e
iω
c
z = R(ω)E0(ω, z) (2.25)

To find the scattered field equation, it needs to transform the Rabi oscillation into
time space.

Ωp(t, z) =
1

2π

∫
dw × Ωp(ω, z)e

−iw(t−z/c) (2.26)

With the definition of the Rabi frequency, Ωp(t, z) = 1
ℏ(E · deg), the scattering

field is as followed.

11



Chapter 2 Background: Nuclear forward scattering of 57Fe

E(t, z) =
1

2π

∫
E(ω, 0)e

−iηz/2
ω+∆p+iΓ/2 e−iω(t−z/c)dω

=
1

2π

∫ (
E(w, z)e−iν(t−z/c)

)
(ω, 0)e

−iηz/2
ω+∆p+iΓ/2 e−iω(t−z/c)dω

=
1

2π

∫
E(ω, 0)e

−iηz/2
ω−ω0+iΓ/2 e−iω(t−z/c)dω, (2.27)

where the definition of detuning ∆p = ν−ω0 is used and defined envelope for electric
field (Eq. (2.12)) is substituted in the second equation. And the integral variable is
re-defined as ω + ν ≡ ω at the last equation.

Taylor expanding the exponential inside integral,

E(t, z) =
1

2π

∫
E(ω, 0)

∞∑
n=0

(1 +
1

1!
(

−ib
ω − ω0 + iγ

)1 + · · · )e−iω(t−z/c)dω

=
1

2π

∫
e−iω(t−z/c)dω +

∞∑
n=1

1

2π

1

n!

∫
(

−ib
ω − ω0 + iγ

)n × e−iω(t−z/c)dω, (2.28)

where the new variables, γ = Γ/2 and b = ηz/2, are introduced and δ(t)-like incident
pulse is assumed at the last equation [71].

The Cauchy’s residual theorem evaluates the second integral of the last equation
[71]. ∮

(
−ib

ω − ω0 + iγ
)n × e−iω(t−z/c)dω

= −i× (−ib)nRes[
e−iω(t−z/c)

(ω − ω0 + iγ)n
]

= −i× (−ib)n (−iω(t− z/c))n−1

(n− 1)!
e−γ(t−z/c)e−iω0(t−z/c)

Substituting the result of the contour integral, the electric field is given by,

E(t, z) = δ(t− z/c) +
∞∑
n=1

(−i)2n

n!(n− 1)!
(t− z/c)n−1bne−γ(t−z/c)e−iω0(t−z/c)θ(t− z/c)

= δ(t− z/c) + b
J1(2

√
b(t− z/c))√

b(t− z/c)
e−γ(t−z/c)eiω(b(t−z/c))θ(t− z/c), (2.29)

where the last equation uses the first kind Bessel-function definition [74, 75].

Discussion about the semi-classical model
The result of the semi-classical approach explains the direction of the scattering field
and its result is consistent with the measured time intensity in the NFS experiment

12



2.2 Semi-classical model for Nuclear forward scattering

[62, 70, 74]. The successful description of the NFS is possible because, first, narrow-
ing down the field near the resonant frequency, the given synchrotron pulse can be
treated as a weak classical field since it only produces less than one resonant photon
on average [30]. It is available to describe the propagation of a light field through
the resonant medium with the Maxwell’s equation and nuclear dipole moment [54].
Second, considering the delocalized nuclear excitation in Section 2.1.2, the collective
effect is reflected when we consider the refractive index, in Eq. (2.14) [72]. The
Maxwell-Bloch equation assumed that all nuclei are homogeneous and thus, the
refractive index is represented as the sum of the dipole moments of homogeneous
nuclear dipole moments.

2.2.3 Nuclear forward scattering matrix

Although phenomenologically the time intensity is well explained by the Eq. (2.29),
more properties can be found in Mössbauer nucleus’ NFS than the simple model
predicts. For example, the NFS can take place via different scattering channels and
can even involve an electronic contribution. To encounter the NFS thoroughly, it is
required to extend the idea into a more general method.

2.2.3.1 General description for scattering

The new method will also describe the propagation effect in terms of the refractive
index. To define the refractive index for the nucleus, it needs to keep assuming a
homogeneous nuclear ensemble for the scattering [57]. Then, the scattering can be
described with the refractive index matrix, generally [75, 76].

η = 1 +
2π

k0
2

∑
ρiMi (2.30)

The refractive index matrix, η, contains all possible scattering channels. Each in-
dividual channel, represented as a scattering matrix Mi, which is weighted by the
number density of the scatterer, written in ρi, that can undergo the Mi scattering
process [57]. The sum of weighted scattering enables us to consider all existing scat-
tering for the nuclear system. A newly defined refractive index matrix will be used
to describe the propagation effect on the electric field.

E(z +∆z)− E(z) = iηE(z)∆z

→ E(z) = eiηzE(0) (2.31)

2.2.3.2 Nuclear forward scattering matrix

The NFS is described by the NFS matrix, F(ω), corresponding to η in Eq. (2.30)
[57, 65]. The NFS matrix contains information on the number density of nuclear
ensemble and possible scattering paths. The forward scattering matrix is usually a
2x2 matrix to include two polarization dependent scattering processes. It can be
divided into an electronic scattering matrix and a nuclear scattering matrix.

13



Chapter 2 Background: Nuclear forward scattering of 57Fe

F(ω) = E(ω) +N(ω), (2.32)

where N(ω) and E(ω) indicates scattering off of nucleus and electrons, repsectively.
The electronic scattering matrix is defined as [57, 65],

Eµν(ω) = (ϵµ · ϵν)[−Zr0 +
ik0
4π
σe(ω)], (2.33)

where ϵµ and ϵν refer the polarization direction of the fields. Z is the Atomic number
and r0 is the classical electron radius, and σe is the total absorption cross section of
electrons.

The nuclear part of the scattering matrix is written as, for 2L-pole transitions [57,
65],

Nµν(ω) =
4πfLM
k0

(ϵµ · YLM(k0))(Y
∗
LM(k0) · ϵµ)FLM(ω) (2.34)

The fLM is the recoilless fraction, called the Lamb-Mössbauer factor. The anisotropic
scattering process, different refractive indices for different scattering channels, is de-
scribed by the spherical harmonics YLM(k0) and its inner product with polarization
vector. Here YLM(k0) is the vector spherical harmonic function which is used to
represent the nuclear state to best use its spherical symmetry. The FLM is the part
describing the energy dependence of nuclear transition.

FLM(ω) =
∑
α,n

pαpα(η)Γ(αMη;L)

E(η)− E(α)− ℏω − iΓ(n)/2
(2.35)

The quantity FLM includes all information on possible transitions of the nuclear
system under the study [57, 65]. The α denotes all initial states while η indicates
potential excited states. pα represents a probability for the α state to be occupied.
And pα(n) is the conditional probability for the state η is empty while the state α
is occupied. Lastly, Γ(αMη;L) describes one single scattering process from the α
state to the η state after experiencing M magnetic quantum number changes via
2L-multipole. And Γ(η) stands for the full resonance width.

2.2.3.3 Nuclear forward scattering matrix of 57Fe

The M1 transition is in particular interest for the Mössbauer isotope 57Fe [57, 65].
The M1 transition set variables to L=1 for FLM(ω), and requires to replace ϵ by
ϵ× k0 at the Eq. (2.34), where k0 is the unit vector of the photon propagation axis.

Nµν(ω) =
3

16π

(
(ϵµ × k0) · (ϵν × k0)

)
(F1 + F−1)

− i
(
((ϵµ × k0)× (ϵν × k0)) ·m

)
(F1 − F−1)

+
(
(ϵµ × k0) ·m

)(
(ϵν × k0) ·m

)
(2F0 − F1 − F−1), (2.36)
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2.2 Semi-classical model for Nuclear forward scattering

where one can read the magnetization sensitive matrix components, in our case
nuclear magnetic dipole moment. The first component is independent of nuclear
magnetic dipole moment. The second term causes a dichroic propagation effect for
the circularly polarized light. And the last term indicates a linear dichroic scattering
channel for a similar reason.

Newly introduced F1, F0, F−1 are transition amplitudes of excitations with ∆m =
−1, 0, 1, in order.

F1 = fLM(
1

1 + α
)(

1

2j0 + 1
)(|C−1|2

Γ

ℏ(ω1 − ω)− iΓ/2
+ |C1|2

Γ

ℏ(ω4 − ω)− iΓ/2
)

(2.37)

F0 = fLM(
1

1 + α
)(

1

2j0 + 1
)(|C0|2

Γ

ℏ(ω2 − ω)− iΓ/2
+ |C0|2

Γ

ℏ(ω5 − ω)− iΓ/2
)

(2.38)

F−1 = fLM(
1

1 + α
)(

1

2j0 + 1
)(|C1|2

Γ

ℏ(ω3 − ω)− iΓ/2
+ |C−1|2

Γ

ℏ(ω6 − ω)− iΓ/2
)

(2.39)

The parameters Cγ are Clebsch Gordan coefficients reflecting different coupling am-
plitudes for nuclear excitations (ωi, values in Table 2.1). The α = 8.21 is the internal
conversion coefficient, fLM = 0.86 is the recoilless fraction, and j0 = 1/2 indicates
the spin quantum number of the nuclear ground state [57, 65].

With a choice of basis, it is possible to explicitly represent the nuclear scattering
matrix of 57Fe. The most popular basis is defined on the orthogonal plane of the
propagation axis. A set of virtual two orthogonal linear axes on the plane, {σ̂, π̂},
are frequently chosen for the experiment.

N(ω) =

(
Nσσ Nσπ

Nπσ Nππ,

)
(2.40)

where

Nσσ =
3

8

λ

2π
p{F1 + F−1 + (π ·m)2(2F0 − F1 − F−1)} (2.41)

Nσπ =
3

8

λ

2π
p{−i(k0 ·m)(F1 − F−1) + (π̂ ·m)(σ̂ ·m)(2F0 − F1 − F−1)} (2.42)

Nπ̂σ =
3

8

λ

2π
p{+i(k̂0 ·m)(F1 − F−1) + (π̂ ·m)(σ̂ ·m)(2F0 − F1 − F−1)} (2.43)

Nππ =
3

8

λ

2π
p{F1 + F−1 + (σ̂ ·m)2(2F0 − F1 − F−1)} (2.44)

The scattering matrix shows clear polarization mixing effects depending on the
magnetic dipole moment alignment [57, 65]. For example, two scattering paths, Nσσ

and Nσπ, explain scatterings scatter off in σ̂ polarization from the same σ̂ and π̂
polarization component of the incident field. Further, p is used to consider different
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Chapter 2 Background: Nuclear forward scattering of 57Fe

polarity between the excited state and the ground state, where the M1 transition
has p = 1.

p = (−1)L for 2L electric transition
p = (−1)L+1 for 2L magnetic transition

2.3 Measurables of static 57Fe target

We investigated the quantum mechanical models for the NFS of the 57Fe. Often, the
NFS predicts a complicated spectrum due to its polarization dependent scattering.
Assuming vanishing Hyperfine interactions for a simple discussion, off-diagonal com-
ponents of the NFS matrix become zero. The stainless steel, Fe55Cr25Ni20, shows
vanishing hyperfine interactions [57, 77]. Then, it enables us to describe the scat-
tering independently as follows:

Eσ(ω, d) = eiNσσdEσ(ω, 0) (2.45)

Eπ(ω, d) = eiNππdEπ(ω, 0), (2.46)

where Eî(ω, d) indicates the scattered field in î polarization state.

The target is prepared in a way that its virtual σ̂ axis is parallel to the polarization
direction of synchrotron pulse [30]. Such preparation will simplify the discussion
since the incident field has no components on π̂ direction, Eπ(ω, 0) = 0. Then it
degenerates existing six transitions into one for the 57Fe, all ωi = ω0 = 14.4keV, and
consequently F1 = F0 = F−1 [65].

Explicitly,

E(ω, d) = e
iΓc[

1
ℏ(ω0−ω)−iΓ/2

]d
E(ω, 0) = e

−ib
ℏ(ω−ω0)+iγE(ω, 0)

= R(w)E(w, 0)

= 1︸︷︷︸
non interacting part

+(R(w)− 1)︸ ︷︷ ︸
scattered part

= 1 + T (w), (2.47)

where γ = Γ/2 and b = Γcd. The Γc is the enhanced decay width defined as
λ
2π
fLM

1
1+α

1
2j0+1

Γ. The R(w) is defined as e
−ib

ℏ(ω−ω0)+iγ , which has transition infor-
mation and is named as NFS response function. The last equation assumed the
synchrotron pulse for an incident pulse, E(ω, 0) = 1, and decomposes the response
function into non-interacting part( = 1) and scattered part( = T (w)).

Applying Fourier transformation to get the scattering field as a function of time,

Erest(t) = δ(t)eiωt︸ ︷︷ ︸
non-interacting part

− b
J1(

√
2bt)√
bt

e−γte−iω0tθ(t)︸ ︷︷ ︸
scattered part=T (t)

. (2.48)
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2.4 Measurables of moving 57Fe target

We can confirm that the same result is outcome for the vanishing hyperfine assump-
tion with Eq. (2.29). The eikz is dropped in the above equation and is going to be
omitted after assuming the scattered field is measured at the detector fixed in one
position.

The scattering field is composed of two parts. The first part is the prompt pulse
which just passed the nuclei ensemble, as written in δ(t)eiωt. The ultranarrow
linewidth, Γ = 4.66neV, for the 57Fe nucleus and meV frequency band of syn-
chrotron pulse makes it possible to assume the non-interacting part remains same
as the incident part. The T (t) is the dipole radiation arriving after the t > 0. In ad-
dition to the exponential decay e−γt, the amplitude has been modulated by bJ1(2

√
bt)√

bt
,

called as Dynamical beating [62, 63, 74]. The Dynamical beating is caused by
the interference of the scattering fields radiated from the nuclei at different depths
of the target.

Time intensity The time intensity as a function of time can be directly studied
from Eq. (2.48).

Irest(t) = |Erest|2 = δ(t) + |bJ1(
√
2bt)√
bt

|2e−2γtθ(t), (2.49)

where any function multiplied with δ(t) function is re-expressed as δ(t) due to its
property [78].

Agreeing with Eq. (2.49), the high intensity of synchrotron pulse locates at t = 0
and the pure scattering field is radiated over hundreds of nanoseconds in Fig. 2.2.
The pure scattering field exhibits a clear dynamical beating feature which can be
seen as a slow oscillation in which zeros at t ≈ 125 can be observed [62, 65].

Frequency spectrum The frequency spectrum of the NFS is calculated with
Eq. (2.47),

Irest(ω) = |R(ω)|2 = |e
−ib

ℏ(ω−ω0)+iγ |2 (2.50)

The overall y ≈ 1 in Fig. 2.2 features the frequency band of the synchrotron pulse.
The spectrum explains a feature near ω = ω0. The scattered field is radiated in
out-of-phase with the incident field and imprints a dip feature in the spectrum. A
thickness effect causes a broadened absorption spectrum, it is approximated by a
Lorenztian curve if a thin target is used, b = Γcd≪ 1 [62, 65].

2.4 Measurables of moving 57Fe target

The nuclear radiates the field over a long period of time. The relative phase of
the scattering field can be modified if the position of the Mössbauer target can be
controlled on the wavelength level. Considering the nanosecond time scale for the
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Chapter 2 Background: Nuclear forward scattering of 57Fe

(a) (b)

Figure 2.2: (a) The time intensity of a single target without the Hyperfine interaction is
plotted. A 1µm thick target is chosen for the simulation. (b) The absorption spectrum of
the same target is plotted.

Mössbauer effect and the 10−10m magnitude of the X-ray wavelength, not many of
them are feasible for the experiment. For this reason piezo-transducer [49, 52, 53],
ultrasonic [51], and time-dependent magnetic field [70] are the most frequently cho-
sen techniques to realize phase control. For our research, the mechanically induced
phase with a piezo-transducer is chosen to study the effect of the motion on the
observables. The mechanical displacement manifests the phase control by enlarging
or shortening the propagation distance, eikz to eik(z+∆z) [52, 53].

2.4.1 Phase modification of nuclear forward scattering

If the target is at rest, the position of the scattering is fixed over the scattering.
When the pumping field arrives at the target, the field propagates ztarget(ta)−zsource

to arrive at the target. When the field is re-emitted, the scattered field propagates
the distance of zdetector − ztarget(tr) to arrive at the detector.

{ztarget(ta)− zsource}︸ ︷︷ ︸
incident field to target

+ {zdetector − ztarget(tr)}︸ ︷︷ ︸
scattered field tar. to det.

The total distance for the scattered field to propagate is constant if the target is not
moving. Therefore the scattering field and synchrotron pulse propagates the same
distance and is impinged with same phase at the detector.

However the propagation distance changes for the moving targets. The total
propagation distance is modified since the position of absorption and emission is
no longer the same, ztarget(ta) ̸= ztarget(tf ). This difference in the phase can cause
interference on the measurables. One method to account for the correct phase
is to describe the scattering in the target rest frame where the position of
absorption and radiation are fixed [54]. Then the scattering field will be transformed
back to the lab frame to explain the intensity that the detector measures in the
experiment.
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2.4 Measurables of moving 57Fe target

Transformation matrix
Our goal in this section is to find a proper coordinate transformation between the
lab frame and the target rest frame to express an electric field in a different frame.

Let’s assume one observer in the lab frame measures the Elab(z, t) and imagine
one observer A in the target rest frame sees the same field as Etar(z

′, t). The passive
transformation of the electric field can relate two observations [69],

Etar(z
′, t) = (T−1{Elab})(T{z}, t)

The bold T represents a linear coordinate transformation between the coordinates,
where often the Lorentizan transformation is used. The T−1 is the inverse trans-
formation of the T. The same electric field is observed as T−1{Elab} at the new
coordinate T{z}. The T−1{Elab} can be approximated to Elab if the speed of the
target is not comparable to the speed of the light [71].

Etar(z
′, t) = Elab(T{z}, t) = Elab(z −∆z, t) (2.51)

Variable z′ is the coordinate of the target rest frame where T{z} = z −∆z is held
for the non-relativistic approximation (v ≪ c).

The inverse operation is achieved in a similar fashion.

Elab(z, t) = Etar(T
−1{z′}, t) = Etar(z

′ +∆z, t) (2.52)

Nuclear forward scattering with synchrotron pulse
Assuming the incident synchrotron pulse is observed by observer A in the target
rest frame,

Ei
tar(z

′, t) = δ(t)eik(z−∆z(t))e−iωt, (2.53)

where superscript ′i′ indicates the incident field and subscript ’tar’ stands for the
target rest frame.

The scattered field is described in the target rest frame as,

Escatt
tar (z′, t) =

∫
R(t− τ)δ(τ)eik(z−∆z(τ))e−iωτdτ

= R(t)eikze−ik∆z(0) = (δ(t)e−iωt + T (t))eikze−ik∆z(0),

where superscript ′scatt′ notes the scattering field. The scattering response function,
R(t), is decomposed into non-interacting part δ(t)eωt and interacting part T (t) in
the last equation.

It is required to transform into the lab frame to account for the measured intensity
by the detector with Eq. (2.52).

Escatt
lab (z, t) = δ(t)e−iωteikz + T (t)eikzeik∆z(t)e−ik∆z(0)

= δ(t)e−iωteikz︸ ︷︷ ︸
non-interacting part

− b
J1(

√
2bt)√
bt

e−γte−iω0teikzeik(∆z(t)−∆z(0))θ(t)︸ ︷︷ ︸
phase modified scattered part

(2.54)

The property of δ(t)eik∆z(t) = δ(t)eik∆z(0) is used. The motion determines a relative phase
(eik(∆z(t)−∆z(0))) between interacting part and non-interacting part [49, 52, 53, 71].
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Chapter 2 Background: Nuclear forward scattering of 57Fe

2.4.2 Single target in step-motion

Let’s consider the following motion,

∆z(t) = ∆z0θ(t− t0), (2.55)

where ∆z0 is a constant value and indicates the distance of jump of the nuclear
target and the θ(t − t0) is the Heaviside function which takes the value of 1 for
t > t0 and 0 for other times.

Time intensity Substituting the step motion into Eq. (2.54) the new scattering
field is written as,

(t < t0) → Estep(t) = δ(t)e−iωt − b
J1(

√
2bt)√
bt

e−γte−iω0tθ(t). (2.56)

(t > t0) → Estep(t) = δ(t)e−iωt − b
J1(

√
2bt)√
bt

e−γteik∆z0e−iω0tθ(t), (2.57)

where the z variable is omitted after assuming the fixed position of the detector. The
relative phase between the non-interacting field and the scattered field can suddenly
change after t0 as a result of motion.

The time intensity can be easily calculated to be,

Istep(t) = δ(t) + |bJ1(
√
2bt)√
bt

|2e−2γtθ(t) (2.58)

[71]. Although the step motion affects the phase of the electric field, its time intensity
is invariant since the product of the electric field cancels modified phases. The
computed intensity proves that the time intensity of the applied step motion is
equal to that of a motionless target in Fig. 2.3(b).

Spectrum The effect on the spectrum is transformed from Eq. (2.56) and Eq. (2.57).
For simplicity, we assume the onset of step motion is right after the arrival of the
synchrotron, t0 = 0.

Estep(ω) =
1

2π

∫ ∞

−∞
Estep(t)e

iωtdω = 1︸︷︷︸
non interacting

+ eik∆z0(R(ω)− 1)︸ ︷︷ ︸
scattered part

(2.59)

The part of the scattering field that just passes the target doesn’t experience any
phase modification. And it is the scattered part which reveals phase modification.
The spectrum is,

Istep(ω) = 1︸︷︷︸
non interacting

+ eikz0(R(ω)− 1) + e−ikz0(R∗(ω)− 1)︸ ︷︷ ︸
interference

+ |(R(ω)− 1|2︸ ︷︷ ︸
scattered part

(2.60)
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2.4 Measurables of moving 57Fe target

An interesting effect of the phase modification is that the phase-modified spectrum
can show various features in Fig. 2.3(b), which is called Fano-resonance [53, 79]. The
∆z0 = λ

2
is in particular interest because the extra phase is eik∆z0 = −1 and can

enhance spectrum [53]. Besides, dynamical beating imprints double hump features
around the tip of the peak.

(a) (b)

Figure 2.3: (a) The same intensity is found for the step-motioning target as the stationary
target. (b) The enlarged distance makes the field propagate a longer distance, therefore a
Fano line can be found in the spectrum. In this subfigure, a peak is visible while the static
case exhibits an absorption dip.
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Chapter 3

Shaping Mössbauer scattering waveform
into short pulses

Implementation of a coherent nuclear pump probe measurement scheme has still
been challenged, especially for the Mössbauer nuclear transitions which it requires
two X-ray pulses with long delays (10 to several 102ns) [54]. Its difficulties can be
found in a lack of sources with enough high-intensity and coherent radiation in this
energy regime. One idea of shaping coherent Mössbauer scattering into pulse-shpaes
in X-ray wavelength will be suggested as an effort to detour the experimental chal-
lenges in this X-ray field. Especially, the long lifetime of 57Fe makes the generated
pulses to be coherent for a long time.

With two targets’ scattering equations, we will see how two Mössbauer targets
scattering is different from the single target experiment and how the motionally in-
duced phase can modify the scattering field. Based on the control of the scattering
fields with the motion, one example motion will be introduced that can produce
pulses with few nanoseconds duration at a desired time. We will discuss the prop-
erties and limitations of the generated pulse as a function of the targets’ thickness.
The next part of this chapter is about one application with iron with hyperfine
interactions. A set of magnetic dipole moment alignments is introduced to sup-
press intensities at both sides of the generated pulses. And the achieve higher pulse
contrast and property will be discussed based on the pulse’s equation.

3.1 Nuclear forward scattering of two targets

By far we have treated the case that a single Mössbauer target scatters with a
synchrotron pulse. When the δ(t)-shape pump field is incident to the single target,
it was simple to encounter the effect of motion. The total propagation distance,
(ztarget(tr) − ztarget(ta)), is only function of current motion ztarget(tr) because the
synchrotron pulse interacts with target only once at ta which is again constant.

However, a continuous pumping field requires a sophisticated consideration.
The difference for the continuous pumping field is that it can interact with a target
over a long period of time. The scattering field needs to include modified phases by
its motions over the entire past to include the absorptions correctly and needs to
consider the current motion for the radiation at present.
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

3.1.1 Scattering channels of two targets

When the two targets are installed for the NFS experiment, the total scattering can
be seen as a sequence of two scatterings: the early scattering at target A and the
second scattering at target B at a later time. The scattering of target A is the same
as the single target NFS in that only the synchrotron pulse can pump the target.
On the other hand, the scattering of target B has another pumping field in addition
to the synchrotron pulse. The scattered field radiated by target A pumps the second
target located downstream of the beamline.

Let us assume that both targets are at rest and homogeneous for a simple discussion.
The synchrotron pulse interacts with the A target at an earlier time. The scattering
field from the A target is,

Escatt
A (t) = RA(t)⊗ δi(t)e−iω0t

= (δ(t) + TA(t))⊗ δi(t)e−iω0t, (3.1)

where the δi(t)e−iωt indicates the incident synchrotron pulse. The superscript ’i’ is
introduced to distinguish with the δ(t) in the response function. The subscript ’A’
labels the scattering targets.

Both of Escatt
A (t) scatter off at the second target located in the backstream.

Escatt
B (t) = RB(t)⊗ Escatt

A (t)

= RB(t)⊗ {(δ(t) + TA(t))⊗ δi(t)e−iω0t}
= δi(t)e−iω0t + TA(t) + TB(t) + TBA(t), (3.2)

with the following notations.

• TA(t) = TB(t) = −bJ1(
√
2bt)√
bt

e−γte−iω0tθ(t) (if two targets are homogeneous)

• TBA(t) = TB(t)⊗ (TA(t)⊗ δi(t)e−iωt)

The Eq. (3.2) is composed of four terms explaining specific scattering channels. The
corresponding schematic figure is presented in Fig. 3.1. The first channel is the scat-
tering which doesn’t engage in any scattering processes at both targets. The TA(t),
and TB(t) are the scattered fields that have interacted only once with either of the
targets. These scattered fields will be called singly scattered field over this thesis.
The TBA(t) is the scattering field radiated from the B target as well. But this scat-
tering shows different properties with TB(t) because it is the TA(t) that pumps the
second target. The TBA(t) will be called radiative coupling (scattering) field.
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3.1 Nuclear forward scattering of two targets

Figure 3.1: The figure schematically depicts possible scattering channels of the two Möss-
bauer targets scattering. The first channel is the non-interacting part which has interacted
with none of the two targets, δ(t). The TA(t) and TB(t) indicate the singly scattered field
from each of the two targets. The TA(t) doesn’t interact with the second target and arrives
at the detector. The TB(t) is defined similarly. The last TBA(t) is the scattering path that
experiences two interactions at both targets during its propagation. The targets are able
to move independently.

3.1.2 Scattering of targets at rest

The Eq. (3.2) is explicitly written as,

Erest(t > 0) = δ(t)eikze−iω0t − 2b
J1(

√
2bt)√
bt

e−γteikze−iω0t

+
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γteikze−iω0t, (3.3)

where the non-interacting channel, doubled singly scattered field due to homoge-
neous targets assumption, and the radiative coupling scattering field can be found
in order. The integral range is given as 0 to t after evaluating θ(τ) and θ(t− τ) in
the TA(τ) and TB(t − τ). The superscript ’scatt’ in Erest(t) and ’i’ in δ(t)eikze−iωt

are dropped without losing the meaning. The field considers the arriving electric
field at the detector during t > 0, thereby the θ(t) is omitted from the equation.
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

The time intensity is calculated as,

Irest(t > 0) = δ(t) + |2bJ1(
√
2bt)√
bt

e−γt|2︸ ︷︷ ︸
=|TA(t)+TB(t)|2

+ |
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2︸ ︷︷ ︸

=|TBA(t)|2

− 4b3
J1(

√
2bt)√
bt

e−2γt
(∫ t

0

J1(
√
2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)

(3.4)

The time intensities of identical two targets are plotted in the Fig. 3.2(a)-(d) in
an orange solid line with various thicknesses. The thicknesses with d = 0.1µm,
d = 0.33µm, d = 0.66µm, d = 1µm are chosen for the figures. All four subplots
have a common feature that the high intensity of synchrotron pulse locates at t = 0
and the intensity of the pure scattering field follows after t > 0. Expectedly, the
stronger Dynamical beating and radiative coupling field can be found in the time
intensity of the thicker targets Eq. (2.48) [80].

The timely varying amplitude of the singly scattered field, TA(t)+TB(t) = 2TA(t)
(for two homogeneous targets), and radiative coupling scattering field, TBA(t) gives a
complicated behavior for the time intensity Irest(t). Not all four scattering channels
equally make up the time intensity at given times. Rather it is the singly scattered
field that comprises most of the time intensity at early measurement time. However,
the amplitude of TBA(t) increases and becomes comparable and even higher than
the singly scattered fields over the early measurement time. Because its importance
at future discussion, |TBA(t)|2(green) and |2TA(t)|2(blue) are numerically calculated
to see its magnitude, independent to Irest(t > 0). Notice that Irest(t) = |TA(t) +
TB(t) + TBA(t)|2 = |2TA(t) + TBA(t)|2, since the oscillating terms |TBA(t)|2 can be
greated than Irest(t). Manually produced each scattering intensities are computed
by the PYNUSS [81]. The details of the calculation are outlined in Appendix A.3.

3.1.3 Moving two homogeneous targets

When moving targets are in consideration, it is necessary to describe each scattering
event Eq. (3.1) and Eq. (3.2) in each target’s rest frame. The scattering of the
target A is already obtained in Section 2.4.1. The required work is to transform
the Eq. (2.54) into the B target rest frame and to describe the scattering in its rest
frame. Later, the total scattering field will be transformed back to the lab frame.

The obtained equation is capable to describe the scattering fields of two moving
targets if the motions are non-relativistic. The details of the calculation can be
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3.1 Nuclear forward scattering of two targets

(a) (b)

(c) (d)

Figure 3.2: (*)The motions of resting two homogenous targets are excluded in this figure
panel. (a)-(d) The time intensities of two resting targets are plotted with various thickness
parameters. The manually produced intensity of singly scattered fields and the intensity
of the radiative coupling field are presented together for future purposes. Notice that
Irest(t > 0)(orange)̸= δ(t) + |TA(t) + TB(t)|2(blue)+|TBA(t)|2(green)

found in Appendix A.2.

Emotion(t > 0) = δ(t)eikze−iω0t

+ TA(t)e
ik(z+∆zA(t))e−ik∆zA(0)

+ TB(t)e
ik(z+∆zB(t))e−ik∆zB(0)

+ (TB(t)⊗ TA(t)e
−ik(∆zBA(t)−∆zBA(0)))eik(z+∆zB(t))e−ik∆zB(0), (3.5)

where the δ(t)eikze−iω0t refers to the non-interacting synchrotron pulse, TA(t) and
TB(t) are the singly scattered fields, the radiative coupling field can be found in
order. The ∆zA(t) , ∆zB(t) are the motions of each target that modifies the phases
of each term. Expectedly, the radiative coupling field includes a relative distance
∆zBA(t) = ∆zB(t) − ∆zA(t). The convolution TB(t) ⊗ (TA(t)e

−ik(∆zBA(t)−∆zBA(0)))
explains the radiation at the current time requires to consider scatterings that have
taken over its entire past.

Step motion
The first example of motion is step motion. It supposes that the motion will only
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

take place at the B target installed at the backstream for this example.

The motions are formulated as,{
∆zA(t) = 0

∆zB(t) = ∆z0θ(t− t0)
(3.6)

The Fig. 3.3(a),(b) show examples of motions of A and B targets with variables
∆z0 = λ/2 = 4.3× 10−11m, t0 = 10 or 20ns, respectively.

Substituting, the motion parameters into the Eq. (3.5), the scattering field in the
lab frame is given as.

Estep(t > 0) = δ(t)e−iω0t − b
J1(

√
2bt)√
bt

e−γte−iω0t (1 + eik∆z0θ(t−t0))︸ ︷︷ ︸
interference b/w TA & TB

+
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ

J1(
√
2bτ)√
bτ

e−ik∆z0θ(τ−t0)dτ
)

× e−γteik∆z0θ(t−t0)e−iω0t, (3.7)

where a constant overall phase, eikz, is omitted by assuming the scattering field is
measured at a fixed position. A noticeable feature for the scattering of two homo-
geneous targets is the interference between two singly scattered fields. The
∆z0 = λ/2 is of particular interest since the two singly scattered fields destructively
interfere together. Before and after the t0, the relative phase of singly scattered
fields is reversed and no singly scattered field is observed.

• when t < t0: bJ1(
√
2bt)√
bt

(1 + 1) = 2bJ1(
√
2bt)√
bt

• when t > t0: bJ1(
√
2bt)√
bt

(1 + eiπ) = 0

The time intensity for the step-motioning targets is,

Istep(t > 0) = δ(t) + |bJ1(
√
2bt)√
bt

e−γt|2|1 + eik∆z0θ(t−t0)|2︸ ︷︷ ︸
=|TA(t)+TB(t)|2step

+ |
∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

e−ik∆z0θ(τ−t0)dτ × e−γt|2︸ ︷︷ ︸
=|TBA(t)|2step

− 2b3
J1(

√
2bt)√
bt

(

∫ t

0

J1(
√
2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

e−ik∆z0θ(τ−t0))e−2γt

× (2 + e−ik∆z0θ(t−t0) + eik∆z0θ(t−t0)) (3.8)

28



3.1 Nuclear forward scattering of two targets

The motion, Fig. 3.3(a), is applied to targets with 0.1µm and 0.66µm thickness for
the modified intensity Fig. 3.3(c)(e). While it is the intensity of 0.33µm and 1µm
that represented in Fig. 3.3(d)(f) with the motion, Fig. 3.3(b). The Fig. 3.3(c)-(f)
describes the effect of motion on the time intensity. The orange solid line plots
Istep(t > 0) in all four figures (c)-(f). The independently calculated singly scattered
fields part (in broken blue) and radiative coupling field part (in broken green) are
presented together to explain the effect of the motion to Istep(t > 0). The computed
results support the interference effect at the time intensities. The Istep is the same
as the time intensity of Irest(t > 0) (grey), in Eq. (3.4)(c)-(f), before the motion at
10ns and 20ns. After the displacement. it is governed by the radiative coupling field
|TBA(t)|2step (green) because of motionally induced destructive interference featured
as |TA(t) + TB(t)|2step (blue)=0.

Although it is difficult to solve the radiative coupling scattering field thoroughly,
its upper boundary is obtainable as followed. The detailed discussion is presented
at the Appendix A.4

|TBA(t)|2step ≤ |TBA(t)|2rest, (3.9)

where the intensity of the radiative coupling scattering field of the step motioning
targets cannot exceed that of the static case. The agreeing numerical result can be
found by comparing each subplots of Fig. 3.3 and Fig. 3.2. Lastly, the decreasing
radiative coupling scattering field after the motion can be also understood with
the sign flips in the integrand of TBA(t)|step in Eq. (3.8). The |TBA(t)|2step starts
increasing again since when decreasing integration crosses zero.

Ramp(uniform) motion
The next set of motions in consideration is,{

∆zA(t) = 0

∆zB(t) = vt× θ(t),
(3.10)

where the v is a constant velocity for the B target. The motion of the B target
starts immediately after the arrival of the synchrotron pulse while the A target
doesn’t move. The figure of applied motion is provided in Fig. 3.4(a) with v =
0.05[ λns ] =4.3mm/s.

Substituting the motion variables into Eq. (3.5),

Eramp(t > 0) = δ(t)e−iω0t − b
J1(

√
2bt)√
bt

e−γte−iω0t − b
J1(

√
2bt)√
bt

e−γt e−i(ω0−kv)t︸ ︷︷ ︸
Doppler Shift

+
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ

J1(
√
2bτ)√
bτ

e−ikvτdτ
)
e−γt e−i(ω0−kv)t︸ ︷︷ ︸

Doppler Shift

(3.11)
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: (a),(b) The motions of two targets with different step motion parameters.
(c),(e) The time intensities of 0.1µm, 0.66µm targets with ’(a)’ motion. The effect of
motion cancels two singly scattered fields (blue) and only remained radiative coupling
scattering field (green) explains the scattering field (blue). (d),(f) The time intensities of
the 0.33µm, 1µm targets with ’(b)’ motion.
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3.1 Nuclear forward scattering of two targets

While the two earlier examples have the same frequency for all scattered fields, the
scattered field of the uniformly moving target radiates in a shifted frequency due to
the Doppler shift, as marked with underbrace in Eq. (3.11). Notice that the same
Doppler-shifted scattering field can be found in the radiative coupling scattering
field as a function motion of the B target(∆zB(t)) because the radiative coupling
scattering is also radiated from the B target.

The scattering of moving targets with a constant velocity is available to be expressed
in terms of the frequency response function of static targets, analytically.

First, the non-interacting part transforms as,∫ ∞

−∞
δ(t)e−iω0te−iωtdt = 1

We understand Fourier transform of the singly scattered field of the static A target
is,

−
∫ ∞

−∞
b
J1(

√
2bt)√
bt

e−γte−iω0te−iωtθ(t)dt = TA(ω) = RA(ω)− 1,

with R(ω) = e
−ib

ℏ(ω−ω0)+iγ

The B target’s Doppler shifted singly scattered is calculated as,

−
∫ ∞

−∞
b
J1(

√
2bt)√
bt

e−γte−i(ω0−kv)te−iωtθ(t)dt = TB(ω − kv) = RB(ω − kv)− 1

The part of radiative coupling scattering can be re-expressed to,

{TB(t)⊗ (TA(t)e
−ikvt)}eikvt =

∫
TB(t− τ)TA(τ)e

−ikvτeikvtdτ

=

∫
TB(t− τ)eikv(t−τ)TA(τ)dτ

= (TB(t)e
ikvt)⊗ TA(t)

The Fourier transformation transforms the convolution operation into a simple mul-
tiplication operation.∫ ∞

−∞
(TB(t)e

ikvt)⊗ TA(t)e
−iωtdt = (RB(ω − kv)− 1)(RA(ω)− 1),

where TB(t)eikvt is the Doppler shifted singly scattered field of B target.
The total scattered field can be represented as

Eramp(ω) = RB(ω − kv)RA(ω)E0(ω)

=
(
1 + (RA(ω)− 1) + (RB(ω − kv)− 1)

+ (RB(ω − kv)− 1)(RA(ω)− 1)
)
, (3.12)
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

where E0(ω) is 1 if a synchrotron pulse is incident to the targets.

Each response function has a value of about 1 for most of the frequencies, except
regions near transition frequency ω0 or ω0 − kv with the same γ = 4.66neV width.
Recalling that 0.194mm/s corresponds to the one linewidth, the radiative coupling
scattering channel is able to be set off-resonant scattering condition by even
slow velocity. If we assume the applied velocity is enough fast to create a off-
resonant scattering condition, we can see that radiative coupling scattering field can
be neglected with the following argument.

First, we discuss ω near ω0 and introduce ∆ = ω − ω0.

(RB(ω − kv)− 1)(RA(ω)− 1) = (1 +
−ib

ℏ(∆− kv) + iγ
+ · · · − 1)(e

−ib
ℏ∆+iγ − 1)

≃ (
−bγ

(ℏkv)2 + γ2
+

−iℏbkv
(ℏkv)2 + γ2

)× (e
−ib

ℏ∆+iγ − 1)

≃ (
−bγ
(ℏkv)2

+
−ib
ℏkv

)︸ ︷︷ ︸
≃0

×(e
−ib

ℏ∆+iγ − 1) ≃ 0,

where ∆ ≪ kv is assumed for first approximation. Neither b
ℏkv nor γ

ℏkv has a com-
parable value at the second approximation. Similar discussions are valid for ω near
ω0−kv and other frequencies. Therefore, the vanishing radiative coupling scattering
field can be held.

The spectrum is

Iramp(ω) ≃ 1 + |RA(ω)− 1|2 + |RB(ω − kv)− 1|2

+ 2Re(RA(ω)− 1) + 2Re(RB(ω − kv)− 1)

= |RB(ω − kv)|2 + |RA(ω)|2 − 1, (3.13)

where the productions of two different response functions are assumed zero for the
same reason.

The spectrum Iramp(ω) (blue dot) of uniformly moving B target with vB = 0.05[ λns ]
and static A target is plotted in Fig. 3.4(b). The Iramp(ω) features two absorption
curves at ω = 0[γ] and near ω = −44.3[γ]. The spectrum of scattered part of
1− |RB(ω− kv)|2(red) is calculated independently to demonstrate moving target B
is responsible for the shifted absorption curve. Notice that |RB(ω−kv)−1|2 doesn’t
contain the interference term. Expectedly, the manually produced transition centers
at the same ω = −kv = −44.3[γ]. While the scattered field of static A target’s
spectrum is represented as 1− |RA(ω)|2(orange) at the ω = 0. It also well displays
the created off-resonant scattering conditions between two transitions. The spectrum
of produced |(RB(ω−kv)−1)(RA(ω)−1)|2 (green) confirms that the scattering field
has extremely low contributions from the radiative coupling scattering channel.

Equivalently, the radiative coupling scattering field can be considered negligible for
the scattering field in time if we transform each term of Eq. (3.12).
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3.1 Nuclear forward scattering of two targets

Eramp(t > 0) ≃ δ(t)e−iω0t − b
J1(

√
2bt)√
bt

e−γte−iω0t(1 + eikvt), (3.14)

The time intensity is obtained as,

Iramp(t > 0) ≃ δ(t) + |b2J1(
√
2bt)√
bt

e−γt|2

induced beating︷ ︸︸ ︷
cos2(kvt/2)︸ ︷︷ ︸

|TA(t)+TB(t)|2ramp

(3.15)

The main information of the Fig. 3.4(c)-(f) is in the Iramp(orange). The Iramp(orange)
is calculated without assuming the vanishing raidiative coupling field with Eq. (3.11).
Each figure confirms the validity of approximation in Eq. (3.15). The Iramp(orange)
are well explained by the singly scattered fields, |TA(t) + TB(t)|2ramp (blue). The
reasons can be found in the created weak raditive coupling field represented as
green lines (|TBA|2ramp) in all figures. The motions also make the arriving time
intensity to beat. The targets in Fig. 3.4(c)(e) show the 2.5 cycles(= 5π) of beatings
for every 50ns. That is consistent with applied motion variables ∆ϕ = kv∆t =
2π
λ
×0.05[ λns ]×50[ns]= 5π. The same information can be found in Fig. 3.4(d)(f), but

the v = 0.025[ λns ] is applied. As a result, half speed of induced beating is observed for
these two examples. The two other lines are related to the existing radiative coupling
field that is assumed vanishing for this subsection. Despite its low intensity, it has
value and it will be discussed in the next subsection after finding an approximation.

3.1.4 Radiative coupling scattering in off-resonant condition

In this subsection, we will find the proper approximation for the radiative coupling
scattering field in off-resonant conditions.

Let’s consider the following two samples having different transition frequencies at
ω = ω0−kv and ω0 respectively. The two different transition frequencies are achieved
with the Doppler shift at uniform motion example. Rewritting the scattering field
in frequency,

E(ω) = RB(ω − kv)RA(ω)E0(ω)

= 1 + (e
−ib

ℏ(ω−ω0)+iγ − 1) + (e
−ib

ℏ(ω−ω0+kv)+iγ − 1) + (e
−ib

ℏ(ω−ω0+kv)+iγ − 1)(e
−ib

ℏ(ω−ω0)+iγ − 1)
(3.16)

!
= 1 + (e

−ib
ℏ(ω−ω0)+iγ − 1)(1 + κ0) + (e

−ib
ℏ(ω−ω0+kv)+iγ − 1)(1 + κ1), (3.17)

where E0(ω) is the incident field which is considered as 1 for the synchrotron pulse.
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: (a) The exemplary motions of two targets with uniform motion parameters
with ∆zA = 0 ∆zB = 0.05t[ λns ][ns]. (b) The spectrum of the 0.1µm thick targets in the (a)
motion. Auxillary two spectra 1−|RB(ω−kv)|2 and 1−|RA(ω)|2 are presented together to
demonstrate the Doppler shift. It also verifies the vanishing radiative coupling scattering
field (green). (c)(e) The time intensity Eq. (3.11) is plotted in orange for 0.1µm, 0.66µm
thick targets in (a) motion. Because of the weak radiative coupling field (green), most of
the Iramp is explained with the |TA+TB|2ramp (blue), as seen in Eq. (3.15). (d)(f) The same
targets’ time intensities are calculated with ∆zA = 0[λ] ∆zB = 0.025t[ λns ][ns] motion to see
the different beating. One approximation of radiative coupling field (Ioff-res in Eq. (3.20))
explains the thickness and detuning dependency of the off-resonant radiative coupling field.
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3.1 Nuclear forward scattering of two targets

The κ0 and κ1 are introduced to describe the radiative coupling field in off-resonant
condition. We want to solve κ0 and κ1 that make Eq. (3.17) satisfy Eq. (3.16). Start-
ing from the simplest case, the simplest candidates for the κ0 and κ1 are the constant
values. So that we can approximate the total scattering by giving constant modifi-
cation to each transition. The physical meaning of the constant κ0 and κ1 is weak
coupling between two transitions. One possible approach is to use the asymptotical
method. The approximation must hold for every ω, we can find κ0 and κ1 with the
values of E(ω) in ω → ω0 and ω → ω0 − kv limits.

In case of ω → ω0 and ω0 − kv, the Eq. (3.16) is evaluated as,

E(ω → ω0) = 1 + (e−
b
γ − 1) + (e

−ib
ℏkv+iγ − 1) + (e

−ib
ℏkv+iγ − 1)(e−

b
γ − 1)

= e−
ib

ℏkv+iγ e−
b
γ

E(ω → ω0 − kv) = e
ib

ℏkv+iγ e−
b
γ

While the Eq. (3.17) is give as,

E(ω → ω0) = 1 + (e−
b
γ − 1)(1 + κ0) + (e−

ib
ℏkv+iγ − 1)(1 + κ1)

E(ω → ω0 − kv) = 1 + (e−
b
γ − 1)(1 + κ1) + (e

ib
ℏkv+iγ − 1)(1 + κ0)

Solving two coupled equations with matrix,(
e−

ib
ℏkv+iγ e−

b
γ − 1

e
ib

ℏkv+iγ e−
b
γ − 1

)
=

(
e−

b
γ − 1 e−

ib
ℏkv+iγ − 1

e
ib

ℏkv+iγ − 1 e−
b
γ − 1

)(
1 + κ0
1 + κ1

)

Using off-resonant condition e±
ib

ℏkv+iγ ≃ 1 ± ib
ℏkv + · · · and considering terms by

O( b
ℏkv ), {

κ0 ≃ −i b
2ℏkv

κ1 ≃ i b
2ℏkv ,

(3.18)

where the κ0 and κ1 = ±(9.18 × 10−3)i with ℏkv = −44.3γ, respectively. And the
b = Γcd with Γc is the enhanced decay width defined as λ

2π
fLM

1
1+α

1
2j0+1

Γ, introduced
in Eq. (2.47).

The time intensity of the radiative coupling field with the off-resonant conditions
is then calculated as,

Eoff-res(t) = −i b

2ℏkv
× b

J1(
√
2bt)√
bt

e−γt(e−iω0t − e−i(ω0+kv)t)θ(t), (3.19)

Ioff-res(t) = | b

2ℏkv
|2|2bJ1(

√
2bt)√
bt

|2e−2γt sin2(
kv

2
t), (3.20)
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

which states the intensity of the radiative coupling field is dependent on the detuning
and the thickness.

The direct calculation of radiative coupling field is difficult from the Eq. (3.11)
specifically for the off-resonant condition. Instead, the Eq. (3.20) can approximate
the radiative coupling field in static off-resonant condition. The numerical results
are presented in the Fig. 3.4(c)-(f) as green and grey lines. Green lines indicate
the intensity of off-resonant radiative coupling field in Eq. (3.11). And the grey
lines are the apporximated equations, Eq. (3.20). All results are calculated with
PYNUSS [81]. Overall, the approximation explains well the |TBA|2ramp(green), ex-
cept some deviations near zero of Dynamical beating. Expectedly, the detuning
depedent radiative coupling field can be observed between (c)(d) and (e)(f). The
thickness also affect to the intensity of the off-resonant radiative coupling field (c)(e)
as the relative intensity between Iramp(orange) and |TBA|2ramp(green). The thickness
dependency can be caomparable only as relative intensity between Iramp(orange)
and |TBA|2ramp(green) because of different Dynamical beating amplitude for different
thickness. Furthermore, it also explains the same speed of induced beating patterns
as well as the advanced phases by π/2 compare to Eq. (3.15).

3.2 Recipe for shaping waveform into short pulses

A couple of simple motions of two targets and their effect on the time intensity
have been investigated. Then, one might ask what can we achieve with such
motionally induced phase modifications?. A recipe for shaping scattering

waveform into short pulses will be proposed based on the same principles we have
seen. The two targets are controlled in a way that the destructive interference
condition is kept for the most of measurement times. Such interference conditions
will be relaxed in purpose to produce a pulse. An induced beating from the
Doppler-shifted scattering field enables to produce a pulse in a desired time. Specif-
ically, the long lifetime of nuclear excitation allows the pulses to be coherent for a
long time 141ns, for 57Fe nuclei.

3.2.1 Assumptions

Over this chapter, few assumptions will be made on the target for the sake of simple
discussion.

• Thin-enough homogenous targets

• Vanishing hyperfine interaction

• Fast and precise piezotransducer control

The suggested scheme is sensitive to the amplitude of the radiative coupling field.
We will see the scheme succeeds to produce a good pulse only when the radiative
coupling field satisfies a condition in Section 3.2.4. A thicker target exhibits rapidly
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3.2 Recipe for shaping waveform into short pulses

(a) Setting for the waveform modification (b) Recipe motions for waveform shaping

Figure 3.5: (a) This figure captures a Mössbauer scattering shaping scheme into pulses.
The pulses include a synchrotron pulse and produced pulses from the scattering. Well-
designed motions of two targets can shape the scattering field into pulses of nanosecond
duration. The produced pulse can arrive at the detector at a chosen time. Lastly, it is
the coherent property of the synchrotron and nuclear resonant scattering that promise
a well-defined phase for two arriving pulses. (b) Example motions of shaping scattering
waveform into pulse-shape that locates 15ns later of synchrotron pulse.

increasing radiative coupling field [80], which imposes a more strict condition for
the pulse generation. A thin-enough targets assumption is encouraged to consider
this restriction at a minimum extend during the discussion. The section will start
without considering the restriction at the beginning, however, we will return to this
assumption. Moreover, the vanishing hyperfine interaction is assumed to keep the
discussion for the sake of simplicity. The fast piezotransducer is assumed to get
a timely narrow pulse. The speed isn’t necessarily comparable to chosen velocity
over this section. However, speed becomes an important parameter for a successful
generation if targets are showing strict time conditions, dynamical beating, and,
most of all, quantum beating.

3.2.2 Recipe motions

Let’s consider the following set of motions of two Mössbauer targets.


∆zA(t) = vt× (θ(t)− θ(t− t1))

−v(t− 2t1)× θ(t− t1)

∆zB(t) = vt× (θ(t)− θ(t− t1 − τ))

−v(t− 2t1 − 2τ)× θ(t− t1 − τ)− λ
2
θ(t)

(3.21)

To describe the scattering in the target rest frame, it is desirable to separate the
time into three intervals according to the relative motions of two targets.

• 0 < t < t1 : ∆zA(t) = vt & ∆zB(t) = vt− λ
2

• t1 < t < t1 + τ : ∆zA(t) = −v(t− 2t1) & ∆zB(t) = vt− λ
2
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

• t1 + τ < t <∞ : ∆zA(t) = −v(t− 2t1) & ∆zB(t) = −v(t− 2t1) +
λ
2

The Fig. 3.5(b) describes the recipe motion of A and B targets. The onset of
motion is synchronized with the arriving synchrotron pulse at t = 0. A constant
velocity(v = 1

4
[ λns ] = 21.5mm/s) is applied to the A target before the t1 = 15ns, and

the A target is driven by a new velocity vnew = −v for the remained time. The same
velocity(v = 1

4
[ λns ] = 21.5mm/s) is applied to the B target until the t1 + τ = 17ns.

Afterward, the B target follows the same motion(vnew = −v) which A target has
already started since 15ns.

(a) (b)

(c) (d)

Figure 3.6: (a)-(d) The time intensity of two moving targets of various thicknesses targets.
With a magnificient synchrotron pulse at t = 0ns, the controlled moving targets create a
second pulse at t = 15ns. The radiative coupling field composes the intensity of each side
of the pulses. The related motions are presented at Fig. 3.5(b).

3.2.3 Scattering equation with recipe motion

The scattering field with controlled motions is naturally divided into the same three
time intervals. In this subsection, the resultant scattering fields are discussed for
each time interval according to motions.

Preliminary step
The purpose of this preparatory step is to prepare the destructive interference con-
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3.2 Recipe for shaping waveform into short pulses

dition between two targets at the beginning. The selected method is to use one
step motion at t = 0 because of its mathematical simplicity. We assume to the step
motion is taking place to the B target right after the pulse arrival. The effect of
the step motion is the addition of the phase to the singly scattering field of the B
target, while the radiative coupling scattering field remains the same. It satisfies
the destructive interference after t = 0 when the step distance is controlled to λ/2.

1st time interval 0 < t < t1 :
The A and B targets start designed motions immediate after the arrival of the
synchrotron pulse, {

∆zA(t) = vt× θ(t)

∆zB(t) = (vt− λ/2)× θ(t),
(3.22)

where ∆zA(0)=∆zB(0) = 0.

The motion variables decide the property of the scattering fields, substituting mo-
tions into Eq. (3.5),

E1st(t) =δ(t)e
−iω0t −bJ1(

√
2bt)√
bt

e−γteikvte−iω0t − b
J1(

√
2bt)√
bt

e−γteikvte−iπe−iω0t︸ ︷︷ ︸
=(TA(t)+TB(t))1st

+
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

eiπdτ
)
e−γteikvte−iπe−iω0t

︸ ︷︷ ︸
=(TBA(t))1st

=δ(t)e−iω0t +
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γteikvte−iω0t, (3.23)

where the t > 0 is dropped since the time information is already given by each time
interval.

Two singly scattered fields have opposite signs due to finely tuned relative distance
implied as eiπ at the singly scattered field of B target. Two out-of-phased singly
scattered fields cancel each other. Remained radiative coupling field governs the time
intensity during this time period, underbraced as (TBA(t))1st. Since the radiative
coupling scattering is scattered off from the B target, its phase is relevant to the
motion of the B target. It contains the same Doppler-shifted frequency as that of
the singly scattered field of the B target. Because the radiative coupling field is also
scattered from the B target. The net phase eikvt modifies the radiative coupling
field because the enlarged relative distance, ∆zA(t) − ∆zB(t) = λ/2, is offset by
∆zB(t) = kvt− λ/2.
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

The time intensity is,

I1st(t) = δ(t) + |
(∫ t

0

b2
J1(
√
2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2 (3.24)

The consistent result can be found in Fig. 3.6(a)-(d) during 0ns< t < 15ns. The
I1st(t) is plotted in an orange line for three different thicknesses. The δ(t) explains
the high intensity of synchrotron pulse located at the t = 0. The manually produced
radiative coupling field |TBA(t)|21st (green) proves that the I1st(t) after t = 0 is only
composed of radiative coupling scattering field. Comparing from Fig. 3.6(a) to (d),
the |TBA(t)|21st is dependent to the chosen thickness of the targets and tend to have
higher intensity for the thick targets. Often the evaluation of the |TBA(t)|21st requires
the numerical calculation.

2nd time interval t1 < t < t1 + τ :
The second set of motions is designed to produce a pulse.

{
∆zA(t) = −v(t− 2t1)× (θ(t− t1)− θ(t− t1 + τ))

∆zB(t) = (vt− λ/2)× (θ(t− t1)− θ(t− t1 + τ))
(3.25)

The feature of this time period is two different velocities for the two targets, as
seen in Fig. 3.5(b) during 15ns< t < 17ns. This allows two singly scattered fields to
make up the time intensity together with the radiative coupling field.

Substituting the motional variables of this time period into Eq. (3.5),

E2nd(t) = −bJ1(
√
2bt)√
bt

e−γte−ikvte−iω0teiϕ1θ(t)− b
J1(

√
2bt)√
bt

e−γteikvte−iπe−iω0tθ(t)︸ ︷︷ ︸
=(TA(t)+TB(t))2nd

+
(∫ t

0

b2
J1(
√
2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

e−i∆zBA(τ)dτ
)
e−γteikvte−iπe−iω0t

︸ ︷︷ ︸
=(TBA(t))2nd

,

where the eiϕ1 = e2ikvt1 is a constant phase determined by the velocity and chosen
time.

Purposely, the ∆zBA(τ) is not substituted in the radiative coupling field term.
Because we need to separate the integration according to two different ∆zBA(t) at
0 < t < t1 and t > t1.
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(∫ t

0

b2
J1(
√

2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

e−i∆zBA(τ)dτ
)
e−γteikvte−iπe−iω0t

=
(∫ t1

0

b2
J1(
√

2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

eiπdτ︸ ︷︷ ︸
Const.

)
e−γteikvte−iπe−iω0t

+
(∫ t

t1

b2
J1(
√

2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

e−2ivτeiϕ1eiπdτ
)

︸ ︷︷ ︸
≃0

e−γteikvte−iπe−iω0t

≃
(∫ t

0

b2
J1(
√

2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

eiπdτ
)
e−γteikvte−iπe−iω0t

The first integration shows exponential decay while the second integration can be as-
sumed zero since it contains the radiative coupling field with off-resonant conditions.
Therefore, the overall radiative coupling field stops increasing but exponentially de-
cays during this time period. The existing radiative coupling field can be understood
in a way that the decay of nuclear excitation at t > t1 which was pumped during
the 0 < t < t1 by scattered field from A target. The radiative coupling channel was
opened during the 0 < t < t1 since two targets move at the same velocity and the
in-resonant condition has been satisfied. The last approximation is valid when con-
sidered time is near t1, t ≃ t1, and the decay rate γ is small. Considering we desire
to produce a timely narrow pulse and long lifetime of the 57Fe¸ above condition are
valid.

Using above appoximation, an equation of timely narrow pulse is read as

E2nd(t) ≃− b
J1(

√
2bt)√
bt

e−γteiϕ1/2e−iω0t(e−i(kvt−ϕ1/2) − ei(kvt−ϕ1/2))

+
(∫ t

0

b2
J1(
√

2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

eiπdτ
)
e−γteikvte−iπe−iω0t (3.26)

The time intensity is,

I2nd(t) ≃ |2bJ1(
√
2bt)√
bt

e−γt|2| sin(kvt− ϕ1/2)|2︸ ︷︷ ︸
Pulse term 1

+ 4b3
J1(

√
2bt)√
bt

e−2γt
(∫ t

0

J1(
√
2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
| sin (kvt− ϕ1/2)|2︸ ︷︷ ︸

Pulse term 2

+ |
(∫ t

0

b2
J1(
√

2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2︸ ︷︷ ︸

=|TBA(t)|22nd

, (3.27)
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where one trigonometry identity, 1− cos 2x = 2 sin2 x, is used for the second term.
The pulse equation contains two more terms in addition to the radiative coupling

field. These two terms imprint a beating pattern to the time intensity. The pulse
terms are zero at t1 with kvt1 − ϕ1/2 = 0. And its maximum intensity of the pulse
is equal to |TA + TB − TBA|2 at t = t1 + τ/2, where the TA, TB, TBA are the singly
scattered fields and radiative coupling field of static two targets scattering equation,
Eq. (3.2).

Max{I2nd(t)} = |TA + TB − TBA|2t=t1+τ/2 (3.28)

where the Irest is defined as |TA + TB + TBA|2 in Eq. (3.4) for the reference.
The speed of beating imposes a condition for the current time interval and pulse

duration. By restricting the beating to oscillate once, we can see a single beating
that can be regarded as a pulse in time intensity. If the two targets follow the
proposed motion(Eq. (3.25)) for a longer time, the time intensity keeps oscillating
and several beating patterns will be observed.

The time condition for the one beating pattern is,

τ =
λ

2v
(3.29)

The Eq. (3.27) and Eq. (3.29) explain a produced pulse in Fig. 3.6(a)-(d) located
15ns< t < 17ns. Because pulse terms are zero at t1, the intensity starts from
I2nd(t1) = |TBA(t1)|22nd. Later, the intensity (orange) is increased because of the
pulse terms during this period. The intensity reaches the maximum point at the t =
t1+τ/2 = 16ns which is equal to |TA+TB−TBA|2(t)(grey), labeled as IMAX(t) to show
maximum pulse intensity at a different choice of t1. And it starts decreasing down.
At the t = t1 + τ = 17ns, the intensity becomes to I2nd(t1 + τ) = |TBA(t1 + τ)|22nd.

3rd time interval t1 + τ < t
Assuming the earlier set of motions is continued during τ = λ

2v
, new positions of two

targets are ready to satisfy the second destructive interference condition. Driving
the B target into the same velocity as the A target, the destructive interference
can be recovered after the pulse. Then it produces another radiative coupling field
governing period.{

∆zA(t) = −v(t− 2t1)× θ(t− t1 + τ)

∆zB(t) = −(v(t− 2t1)− λ/2)× θ(t− t1 + τ)
(3.30)

Substituting motional variables into Eq. (3.5), a similar scattering field equation is
obtained with that of the first time interval.
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E3rd(t) =− b
J1(

√
2bt)√
bt

e−γte−ikvteiϕ1e−iω0t − b
J1(

√
2bt)√
bt

e−γte−ikvteiπeiϕ1e−iω0t

+
(∫ t1

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

eiπdτ
)
e−γte−ikvteiπeiϕ1e−iω0t

+
(∫ t1+τ

t1

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

e−2ivτdτ
)
e−γte−ikvteiπeiϕ1e−iω0t

+
(∫ t

t1+τ

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

e−iπdτ
)
e−γte−ikvteiπeiϕ1e−iω0t

≃
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γte−ikvteiϕ1e−iω0t, (3.31)

where the two singly scattered fields don’t contribute to the time intensity because
of recovered destructive interference. If pulse generating motion is finished after a
very short period of time, the radiative coupling field equation corresponding to t1
to t1 + τ becomes negligible and the last approximation can be held.

The intensity is approximated in a similar fashion,

I3rd(t) ≃ |
(∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2 (3.32)

The second radiative coupling field governing period is observed after the pulse
(17ns<t) in Fig. 3.6(a)-(d). The radiative coupling field has increased over most
of the measurement time, but its intensity is still lower than the intensity of the
produced pulse. Comparing each figure, it becomes clear that the advantage of
using a thin target. The thinner targets provide a higher intensity contrast between
the produced pulse and the intensity of the radiative coupling field.

3.2.4 Time condition for delay time of pulse

The pulse origins from the singly scattered fields and contributes to the time intensity
which were referred as pulse terms in Eq. (3.27). However, the added pulse terms
are not always making the intensity increase, the time intensity during this time can
also fall if too late time is chosen for a pulse generation. The t1 = 15ns has chosen
to make the sum of pulse terms to be positive for all targets.

The pulse is generated when the sum of the two pulse terms is positive in Eq. (3.27).
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Formulating the condition,

0 < |2bJ1(
√
2bt)√
bt

e−γt|2| sin(kvt− ϕ1/2)|2︸ ︷︷ ︸
Pulse term 1

+ 4b3
J1(

√
2bt)√
bt

e−2γt
(∫ t

0

J1(
√
2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
| sin (kvt− ϕ1/2)|2︸ ︷︷ ︸

Pulse term 2

Dividing by | sin(kvt− ϕ/2)|2 and adding |
(∫ t

0
b2

J1(
√

2b(t−τ)√
b(t−τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2 at

both hand sides,

|
(∫ t

0

b2
J1(
√
2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2

< |
(∫ t

0

b2
J1(
√
2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)
e−γt|2

+ |2bJ1(
√
2bt)√
bt

e−γt|2 + 4b3
J1(

√
2bt)√
bt

e−2γt
(∫ t

0

J1(
√
2b(t− τ)√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ
)

This inequation can be re-expressed in terms of the TA(t), TB(t) and TBA(t)
defined in Eq. (3.2) for the static two targets. The left-hand side is equal to the
intensity of the radiative coupling field |TBA(t)|2. And the right-hand side is turned
to |TA(t) + TB(t)− TBA(t)|2 at t > 0.

|TBA(t)|2 < |TA(t) + TB(t)− TBA(t)|2 (3.33)

The motion will shape the waveform into pulse if the chosen t1 satiesfies the given
conditions. However, the produced pulse is also necessary to be more intensive than
background over the measurement time. Besides, the relative intensity between ra-
diative coupling field and the produced pulse’s intensity can be another consideration
to set the maximum delay time for the pulse.

In these reasons, we can set the effective maxium pulse delay at t = tM satisfying
{|TBA(tM)|2}| = Max{|TBA(t)|2}. Then, there are following benefits. First, the time
before Max{|TBA(t)|2} always satisfy Eq. (3.33). Second, it allows an acceptable
relative intensity between the produced pulse and the radiative coupling field, though
the exact values are only accessible by numerical calculation. Imagine that if the t1
is chosen at 100ns for 1µm target. The pulse will be undesirably produced with its
maximum intensity as |TA(t)+TB(t)−TBA(t)|2t=100ns(grey) after the huge intensity of
the radiative coupling field. We can safely set the maximum pulse-to-pulse delay by
the Max{|TBA(t)|2}. Numerically computing the effective maximum pulse delay, it
is 198.94ns(20.05), 113.44ns(7.968), 69.40ns(6.097), 49.65ns(5.497) can be found for
0.1µm, 0.33µm, 0.66µm, and 1µm. The numbers in bracket refer respective relative
intensity at the effective maximum pulse delay.
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3.2 Recipe for shaping waveform into short pulses

3.2.5 Pulse-to-pulse coherence

The motivation of the study is to find an alternative way to imply the coherent
pump and probe measurement in the hard X-ray regime. Following the recipes, the
motions of the two targets successfully generate a pulse with nanoseconds duration
at the desired time t = t1 which follows after the synchrotron pulse at t = 0. But
the pulse-to-pulse coherence is not yet answered during the last subsection.

The pulse to pulse coherence is imprinted from the property of a synchrotron pulse
and coherent scattering of the Mössbauer targets. It might sound unreasonable to
use a synchrotron pulse for coherent two pulses scheme since the synchrotron pulse is
known for its poor temporal coherence [30]. It seems even unable to coherently excite
two distanced targets. However, the key is photons with frequency ωi can preserve
its phase quite well even after long propagation despite of fast loss of coherence
with other ωj photons [54]. Such a phenomenon is not a unique property of the
synchrotron pulse, rather it is the property of any light source even one white bulb
can show. Back to the suggested scheme, the concept of coherent two pulses can be
well established if we restrict the scattering to process near natural frequency, ω0

where a large advantage comes with a long lifetime of nuclear excitation of 57Fe.

3.2.6 General motion for shaping

Lastly, the Eq. (3.21) might mislead that two linear motions are necessary for the
shaping waveform into pulses. The key to the suggested scheme is controlling inter-
ference conditions for long periods of time except for the short period for a pulse.
Recalling the destructive interferences are only dependent on the targets’ relative
distance and the beating can be produced with other motions, there are several more
options that can be adopted for the other scheme.

The general motions are
0 < t < t1 : ∆zA(t) = ∆zB(t)± λ

2

t1 < t < t1 + τ : ∆zA(t), and ∆zB(t)

t1 + τ < t : ∆zA(t) = ∆zB(t)± λ
2
,

(3.34)

where corresponding pulse duration equation can be found as

k

∫ t1+τ

t1

(∂t∆zB(t)− ∂t∆zA(t))dt = π. (3.35)

In other words, the motions can generate a pulse if the relative distance is con-
trolled as λ

2
for most of the time, and its relative motions make the evolving phase

(or pulse area) equal to π during pulse generation time.
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

3.3 Application: shaping scheme with enhanced
intensty contrast

A perfectly generated pulse would expect absolute suppressions of intensity before
and after the pulse. However, the scattering field is ceaselessly impinged at detector
via radiative coupling channel and set the time condition as well as lower intensity
contrast for the produced pulse. The radiative coupling scattering is difficult to
cancel with the motional control since its amplitude is more complicate than the
singly scattered fields and have no counterpart.

There might be largely two different approaches to improve the proposed scheme.
The first idea is to enhance the intensity of the pulse, directly. The latter is to
suppress down the level of radiative coupling field. The beating-origined pulse al-
ready restricts a dramatic improvement by the first approach Eq. (3.28). Hyperfine
interaction enables the nuclei to exhibit polarization depedent scattering. Using the
polarization dependent scattering, the radiative coupling field will be suppressed
and the consequently intensity contrast of pulse will be enhanced. The principle
of the supression can be found in the different propagation effect depending on po-
larization state of the incident field. The polarization dependent scattering makes
the in-resonant radiative coupling fields interfere destructively [82] and the radiative
coupling fields in off-resonant condition only contribute to the time intensity.

3.3.1 Nuclear forward scattering with k̂,−k̂ targets

(a) Setting of two targets in k̂,−k̂ configuration (b) Recipe motion for waveform shaping

Figure 3.7: (a) The figure shows a set of aligned Mössbauer targets to realize high intensity
contrast pulse. Magnetic dipole moments of two targets are aligned along k̂ and −k̂,
respectively. This alignment cancels in-resonant radiative coupling channel. The analyzer
is installed at the backstream of the two targets to screen fields scattered to π̂ polarization
state. (b) The example motions of waveform shaping with pulse at 40ns. The shaped
waveform equation is discussed in Section 3.3.2.

External magnets can align the internal nuclear magnetic dipole moments in a
desired direction [68]. In this chapter the nuclear dipole moments are set to k̂
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3.3 Application: shaping scheme with enhanced intensty contrast

and -k̂ direction for high intensity contrast pulse, where k̂ points the propagation
direction of synchrotron pulse.

Nuclear forward scattering matrix
The total scattering of the two targets system are described as series of two scatter-
ings at A and B targets in order.(

Eσ(ω)
Eπ(ω)

)
= eiNBdeiNAdE0(ω) = eiNBdeiNAd

(
E0σ(ω)
E0π(ω)

)
, (3.36)

where the E0(ω) represents the incoming pumping field to the two nuclear targets.
The E0(ω) has two polarization components σ̂ and π̂. The scattering is described
with the nuclear forward scattering matrix of each target, eiNAd and eiNBd .

The nuclear forward scattering matrix of the resting A target aligned in k̂ is
calculated from Eq. (2.40),

NA =
3

8

λ

2π

(
F1 + F−1 −i(F1 − F−1)
i(F1 − F−1) F1 + F−1

)
(3.37)

The two transition amplitudes F±1, are defined as,

F1 = fLM(
1

1 + α
)(

1

2j0 + 1
)× (

Γ

ℏ(ω1 − ω)− iΓ/2
+

1

3

Γ

ℏ(ω4 − ω)− iΓ/2
) (3.38)

F−1 = fLM(
1

1 + α
)(

1

2j0 + 1
)× (

1

3

Γ

ℏ(ω3 − ω)− iΓ/2
+

Γ

ℏ(ω6 − ω)− iΓ/2
), (3.39)

where the Clebsch-Gordan coefficients are explictly evaluated, and each ωi represents
the transition frequency of corresponding transitions Eq. (2.37).

Diagonalize the nuclear forward scattering matrix,

NA =
3

4

λ

2π

(
1√
2

i√
2

i√
2

1√
2

)(
F1 0
0 F−1

)( 1√
2

− i√
2

− i√
2

1√
2

)
=UAFAU

†
A, (3.40)

where matrix UA and U†
A absorb 1

2
from the coefficient.

We will use the following definitions for a simple notation.

• UA =

(
1√
2

i√
2

i√
2

1√
2

)

• FA = 3
4

λ
2π

(
F1 0
0 F−1

)
• U†

A represents the complex conjugate of UA
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

The similar result can be found at the nuclear forward scattering matrix of the B
target which is aligned in anti-parallel direction, -k̂.

NB =
3

8

λ

2π

(
F1 + F−1 i(F1 − F−1)

−i(F1 − F−1) F1 + F−1

)
=

3

4

λ

2π

(
1√
2

− i√
2

− i√
2

1√
2

)(
F1 0
0 F−1

)( 1√
2

i√
2

i√
2

1√
2

)
= UBFAU

†
B (3.41)

with following definitions.

• UB =

(
1√
2

− i√
2

− i√
2

1√
2

)
= U†

A

• FB = 3
4

λ
2π

(
F1 0
0 F−1

)
= FA

• U†
B represents the complex conjugate of UB

The matrix exponential is easily calculated with a diagonalized matrix.

eiNAd = (1 +UAFAU
†
A +

1
2!
UAF

2
AU

†
A + · · ·)

= UAe
iFAdU†

A,

where the identity matrix outcomes from the matrix calculation of UA and U†
A,

I = UAU
†
A.

Similarly,

eiNBd = (1 +UBFBU
†
B +

1
2!
UBF

2
BU

†
B + · · ·)

= UBe
iFBdU†

B

= U†
Ae

iFAdUA,

where the UB = U†
A and FB = FA are used at the last equation.

The scattering field of the two targets is,

E(ω) = eiNBdeiNAdE0(ω)

= U†
Ae

iFAdUAUAe
iFAdU†

AE0(ω)

= iU†
Ae

iFAd

(
0 1
1 0

)
eiFAdU†

A

(
E0σ(ω)
E0π(ω)

)
, (3.42)

where UAUA and two polarization components for the incident field are explictly
written at the last equation.
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And the FA also satisfies

eiFAd =

(
ei

3
4

λ
2π

F1d 0

0 ei
3
4

λ
2π

F−1d

)
=

(
e

3
4

−ib
ℏ(ω−ω1)+iγ

+ 1
4

−ib
ℏ(ω−ω4)+iγ 0

0 e
1
4

−ib
ℏ(ω−ω3)+iγ

+ 3
4

−ib
ℏ(ω−ω6)+iγ ,

)
¸

with three definitions γ = Γ/2, b = Γcd, and the Γc = is the enhanced decay width
defined as λ

2π
fLM

1
1+α

1
2j0+1

Γ.

Each component of the eiFAd describes the scattering with certain transitions. Be-
cause hyperfine transitions of iron are far separated than its ultranarrow transition
width γ, the each transition can be regarded independently.

e
3
4

−ib
ℏ(ω−ω1)+iγ

+ 1
4

−ib
ℏ(ω−ω4)+iγ ≃ e

3
4

−ib
ℏ(ω−ω1)+iγ + e

1
4

−ib
ℏ(ω−ω4)+iγ ≡ R1(ω) +R4(ω), (3.43)

where the response function of ω1 and ω4 transitions are defined, respectively.
The response function of ω3 and ω6 transitions are defined in the same way for

the (2,2) component of eiFAd.

e
1
4

−ib
ℏ(ω−ω3)+iγ

+ 3
4

−ib
ℏ(ω−ω6)+iγ ≃ e

1
4

−ib
ℏ(ω−ω3)+iγ + e

3
4

−ib
ℏ(ω−ω6)+iγ ≡ R3(ω) +R6(ω), (3.44)

Substituting Eq. (3.43) and Eq. (3.44), into Eq. (3.42), the scattering field is repre-
sented as followed.

(
Eσ(ω)
Eπ(ω)

)
= iU†

A


0 (RB

1 +RB
4 )︸ ︷︷ ︸

Target B

(RA
3 +RA

6 )︸ ︷︷ ︸
Target A

(RB
3 +RB

6 )︸ ︷︷ ︸
Target B

(RA
1 +RA

4 )︸ ︷︷ ︸
Target A

0

U†
A

(
1
0

)

=
1

2

(
(RB

1 +RB
4 )(R

A
3 +RA

6 ) + (RB
3 +RB

6 )(R
A
1 +RA

4 )
i
(
(RB

1 +RB
4 )(R

A
3 +RA

6 )− (RB
3 +RB

6 )(R
A
1 +RA

4 )
)) ,

where the target’s σ̂ is aligned parallel to polarization direction of synchrotron pulse,
E0σ(ω) = 1 and E0π(ω) = 0 in Eq. (3.42). The superindices ’B’ and ’A’ indicate the
owner of the response function. Order of each matrix component follows in a way
that scattering response function of the B target comes after scattering response
function of the A target.

σ analyzer
The k̂,−k̂ dipole alignment scatters incoming field into both σ̂, π̂ polarized states.
Because we plan to use both the synchrotron pulse and the Mössbauer scattering field
for the coherent two pulses, let us apply an analyzer parallel to σ̂ at the backstream
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

of the target B.(
Eσ(ω)
Eπ(ω)

)
=

1

2

(
1 0
0 0

)
︸ ︷︷ ︸
σ analyzer

(
(RB

1 +RB
4 )(R

A
3 +RA

6 ) + (RB
3 +RB

6 )(R
A
1 +RA

4 )
i
(
(RB

1 +RB
4 )(R

A
3 +RA

6 )− (RB
3 +RB

6 )(R
A
1 +RA

4 )
))

=
1

2

(
(RB

1 +RB
4 )(R

A
3 +RA

6 ) + (RB
3 +RB

6 )(R
A
1 +RA

4 )
0

)
(3.45)

Scattering field of static targets
Response functions are decomposed into two parts, non-interacting part and the
scattered part: Ri(ω) + Rj(ω) = 1 + Ti(ω) + Tj(ω), where the Ri(ω) refers the
response function of ωi transition and its scattered part is Ti(ω), as defined in
Eq. (3.43), and Eq. (3.44).

Considering only the σ̂ component,

Eσ(ω) =
1

2
((RB

1 +RB
4 )(R

A
3 +RA

6 ) + (RB
3 +RB

6 )(R
A
1 +RA

4 ))

= 1 +
1

2
(TA

1 + TA
3 + TA

4 + TA
6 ) +

1

2
(TB

1 + TB
3 + TB

4 + TB
6 )

+
1

2
(TB

1 T
A
3 + TB

4 T
A
3 + TB

1 T
A
6 + TB

4 T
A
6 + TB

3 T
A
1 + TB

3 T
A
4 + TB

6 T
A
1 + TB

6 T
A
4 ),

(3.46)

where all functions are defined in the frequency space. The noticible feature of
this configuration is found on the radiative coupling scattering terms. There is no
radiative coupling channel between same transitions, such terms: TB

i T
A
i .

Instead, the radiation from A target interacts with B target under off-resonant
conditions [82].

Because of similarity we can use the same method in Section 3.1.4 to approximate
the complicate radiative coupling field. Then, all terms relevant to off-resonant
radiative coupling field can be expressed as read.

Eσ(ω) = 1 + (TA
1 + TA

3 + TA
4 + TA

6 ) + (TA
1 T

A
3 + TA

4 T
A
3 + TA

1 T
A
6 + TA

4 T
A
6 )

≃ 1 + TA
1 (1 + κ1) + TA

3 (1 + κ3) + TA
4 (1 + κ4) + TA

6 (1 + κ6) (3.47)

where the calculation can be found in Appendix A.5.

And the κ1 and κ3 are evaluated as

κ1 = −κ6 = −i1
4
(
1

2

b

∆13

+
1

2

3b

∆16

) (3.48)

κ3 = −κ4 = −i1
4
(
1

2

3b

∆31

+
1

2

b

∆34

), (3.49)
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where the detuning between the two transitions are defined as ∆ij = ℏ(ωi − ωj) in
Table 2.1. The κ1 and κ3 for the 0.1µm, κ1 = (2.55×10−3)i and κ3 = −(4.43×10−3)i
are evaluated, and the κ1 and κ3 increases proportional to the target’s thickness.

Our interest is the time intensity measurement. Transforming each term to obtain
the scattering field function in time with off-resonant radiative coupling field,

Eσ(t) = δ(t)e−iωt − 3

4
b
J1
(√

2× 3
4
bt
)√

3
4
bt

× e−γt(e−iω1t + e−iω6t)

− 1

4
b
J1
(√

2× 1
4
bt
)√

1
4
bt

× e−γt(e−iω3t + e−iω4t)

+O(weak radi. coup.), (3.50)

where the O(weak radi. field) is the transformed radiative coupling field.

O(weak radi. field) = κ1 ×
3

4
b
J1
(√

3bt/2
)√

3bt/4
e−γt(e−iω1t − e−iω6t)

+ κ3 ×
b

4

J1
(√

bt/2
)√

bt/4
e−γt(e−iω3t − e−iω4t), (3.51)

3.3.2 Shaped pulse waveform with high contrast

Motions
The scattering waveform for the k̂, -k̂ configurations can be shaped into short pulses
with the same recipe motion, Eq. (3.21).

∆zA(t) = vt× (θ(t)− θ(t− t1))

−v(t− 2t1)× θ(t− t1)

∆zB(t) = vt× (θ(t)− θ(t− t1 − τ))

−v(t− 2t1 − 2τ)× θ(t− t1 − τ)− λ
2
θ(t)

The Fig. 3.7(b) shows a set of motions with v=1
4
[ λns ], t1 = 40ns to compute Fig. 3.8(a)-

(d).

Scattering field of moving targets
The Eq. (3.50) and Eq. (3.51) describe the scattering field for the resting two targets
in k̂ and −k̂ configuration. We need to evaluate the scattering fields based on
Eq. (3.5). The singly scattered fields are easily evaluated for the moving targets, and
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Chapter 3 Shaping Mössbauer scattering waveform into short pulses

(a) (b)

(c) (d)

Figure 3.8: (a)-(d) Shaped scattering waveforms into a high contrast pulse at 40ns with
various thicknesses. The orange line represents the calculated intensity Ik̂,−k̂ from PYNUSS
[81]. The decomposed |TBA|2k̂,−k̂

(green) supports that the field at each side of the pulse are
explained by the radiative coupling field. We approximated the complicate the radiative
coupling field into relatively simple equation (Ioff-res, Eq. (3.53))(grey) that partially ex-
plains the radiative coupling field |Tk̂,−k̂|

2(green). The blue line represents the achievable
maximum intensity of the pulse for different choice of t1. (*)The relevant motion can be
found in Fig. 3.7(b).

are simple to write. On the other hand, the eight numbers of complicate radiative
coupling channels exist for this setting as seen in Eq. (3.46). For TB

1 T
A
3 coupling

example,

(TB
1 (t)⊗ TA

3 (t)e
−ik(∆zBA(t)−∆zBA(0)))eik∆zB(t)e−ik∆zB(0)

=
3

16
b2
(∫ t

0

J1(
√

3
2
b(t− τ))√

3
4
b(t− τ)

J1(
√

1
2
bτ)√

1
4
bτ

e−i(ω3−ω1)τe−ik(∆zBA(τ)−∆zBA(0))dτ
)

× e−2γte−iω1teik∆zB(t)e−ik∆zB(0)

Furthermore, the detuning of the coupled transitions are no longer constant when
targets’ velocities are varying. This makes difficult to apply the approximation for

52



3.3 Application: shaping scheme with enhanced intensty contrast

the radiative coupling field used at Eq. (3.19) or Eq. (3.50) in general motions. It
even cannot be considered weak field since the Doppler effect is able to make two
transitions back in-resonant condition.

Instead of finding formulas of radiative coupling field, let’s denote as theO′(radi. field)
for the scattering fields of two moving targets in k̂ and −k̂ configuration.

Emotion(t) = δ(t)e−iω0t +
1

2
Tk(t)(e

−ik(∆zA(t)−∆zA(0)) + e−ik(∆zB(t)−∆zB(0)))

+O′(radi. field) (3.52)

with

Tk(t) = −3

4
b
J1(
√

2× 3
4
bt)√

3
4
bt

e−γt(e−iω1t+e−iω6t)− 1

4
b
J1(
√
2× 1

4
bt)√

1
4
bt

e−γt(e−iω3t+e−iω4t)

But we can make one approximation with given recipe motion Eq. (3.51). It can be
found that the ∆zBA(t) = ∆zB(t)−∆zA(t) are kept as ±λ

2
for most of time, except

the time for the short pulse generation period (t1 < t < t1 + τ). This condition sets
the detunings for all radiative coupling channels are kept same for long period of
time. Based on this we can apply the same approximation as Eq. (3.51).

O′(radi. field) ≃ O(weak radi. field)e−ik(∆zB(t)−∆zB(0)), (3.53)

where O(weak radi. field) is defined as off-resonant radiative coupling field for sta-
tionary targets.

1st time interval 0 < t < t1:
Substituting motions into Eq. (3.52), the weak radiative coupling field becomes the
most dominant field in this time period due to constructed interference condition.
The scattering field is,

E1st(t) = δ(t)e−iω0t +O′(radi. field), (3.54)

The time intensity is

I1st(t) = δ(t) + |O′(radi. field)|2

≃ δ(t) + |κ1 ×
3

4
b
J1(
√

3bt/2)√
3bt/4

e−γt(e−iω1t − e−iω6t)

+ κ3 ×
b

4

J1(
√
bt/2)√
bt/4

e−γt(e−iω3t − e−iω4t)|2, (3.55)

where κ1 = −2.55 × 10−3 and κ3 = 4.43 × 10−3 are evaluated for the 0.1µm. It
increases proportional to the thickness, as seen in Eq. (3.48).
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In Fig. 3.8(a)-(d), the time intensity with applied motions and magnetic dipole mo-
ment configuration is represented as Ik̂,−k̂(t) (orange). It displays the synchrotron
pulse at t = 0 and the suppressed intensity prior to the pulse t < 40ns. The green
curve(|TBA|2k̂,−k̂

) proves that the radiative coupling field still explains the suppressed
time intensity during this time period. Because the radiative coupling field is dif-
ficult to calculate, we have made approximation to simply explain the off-resonant
scattering field. The grey line is the approximated intensity, Eq. (3.55), not includ-
ing synchrotron pulse, that shows good agreements with the Ik̂,−k̂(t) for all targets.
According to Eq. (3.55), the suppression is a function of thicknesses as well as the
energy differences.

2nd time interval t1 < t < t1 + τ :
The constructed interference condition is broken during this time period in purpose
to generate a pulse. Assuming the motionally induced beating is faster than the
Quantum beating and Dynamical beating, we can regard the intensity as slowly
varying envelope modulated by the rapidly oscillating motionally induced beating.

E2nd(t) ≃− {3
4
b
J1(
√

2× 3
4
bt)√

3
4
bt

(e−iω1t + e−iω6t) +
1

4
b
J1(
√
2× 1

4
bt)√

1
4
bt

(e−iω3t + e−iω4t)}e−γt

︸ ︷︷ ︸
Slower varying envelope

× eiϕ1/2(e−i(kvt−ϕ1/2) − ei(kvt−ϕ1/2)) +O′(radi. field) (3.56)

where eiϕ1 = e2ikvt1 is a constant phase determined by the choice of t1 and ϕ1.
Using the defined Tk in Eq. (3.52) to write down the envelope of singly scattered

fields,

I2nd(t) = 4b2|Tk|2 sin2 (kvt− ϕ1/2)

+ 4bTk ×O(weak. radi. field)× sin2 (kvt− ϕ1/2)

+ |O(weak. radi. field)|2

(3.57)

where the O(weak radi. field)e−ik(∆zB(t)−∆zB(0)) substitutes the O′(radi. field) ac-
cording to Eq. (3.53)

Following previous disussion, its maximum intensity of pulse is located at kvt −
ϕ1/2 = π/2 or equivalently at t = t1 + τ/2. Because sin2 (kvt− ϕ1/2)|t=t1+τ = 1,
the maximum intensity can be represented in terms of the fields of resting taregts,
≃ |Eσ(t)− 2O(weak. radi. field)|2. (Eq. (3.50)).

Max{I2nd(t)} ≃ |Eσ(t)− 2O(weak radi. field)|2 ≃ |Eσ(t)|2, (3.58)
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where the last approximation holds when we don’t consider O(weak radi. field)
terms, it is further approximated into |Eσ(t)|2.

The same condition is required for the motionally induced beating to oscillate
once.

τ =
λ

2v
(3.59)

Expectedly, a short pulse is produced at the 40ns< t < 42ns in Fig. 3.8(a)-(d).
Because the pulse is generated from the beating, its maximum intensity is bound to
|Eσ(t)|2(blue dot lines) as discussed in Eq. (3.50).

3rd time interval t1 + τ < t
After production of a pulse, the new positions of two targets are back to the favor-
able condition for the destructive interference. The singly scattered fields interfere
if the new motion is applied to the second target.

The radiative coupling channel governs this time intensity measurement.

E3rd(t) ≃ O′(radi. coup.)

It calculates the time intensity as,

I3rd(t) ≃ |O′(weak radi. field)|2

= |κ1
3

4
b
J1(
√

3bt/2)√
3bt/4

e−γt(e−iω1t − e−iω6t) + κ3
b

4

J1(
√
bt/2)√
bt/4

e−γt(e−iω3t − e−iω4t)|2

(3.60)

Seeing the Ik̂,−k̂(t), the desirable low-intensity period is created with the motion
and polarization depedent scattering at t > 42 after the pulse, in Fig. 3.8(a)-(d).
When we decompose the Ik̂,−k̂(t), we can see it is still the radiative coupling field
(|TBA|2k̂,−k̂

)(green) that makes up this time period. However, the approximation of
this radiative coupling field (Eq. (3.60))(grey) starts showing deviation from real
time intensity (orange). The reason can be found in the temporary created radia-
tive coupling channels during the pulse generation time, 40ns< t < 42ns. Different
features are all related to the created different conditions for the radiative coupling
scattering channels. First, the approximated calculation(grey) advances by 2ns. It is
because the approximation (Eq. (3.53)) keeps radiating during the 40ns< t < 42ns
while the real radiative coupling field scatters off with different conditions. Dur-
ing this short time, the different detuning condition assigns different evolution for
the coefficients, thereby κ1 and κ3 are modified. Despite the rough approximation,
the approximation can still be used to explain the magnitude of the radiative cou-
pling field after the pulse because the pulse duration was too short to change the
coefficients by a lot.
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High intensity contrast pulse and time condition
First, compared to the discussed waveform shaping scheme in the previous Sec-
tion 3.2, the produced pulse has similar limitations regarding its maximum intensity
in Eq. (3.28), Eq. (3.58) and pulse duration in Eq. (3.29), Eq. (3.59). But, the
enhanced pulse’s contrast is achieved by suppressing the intensity at both sides of
the produced pulse. One method to quantify the pulse’s contrast is to compare the
relative intensity between the intensity of pulse and the intensity at its wings [83]. In
our case, it computes to 3.129×104, 2.33×103, 5.86×102, and 1.78×102 for 0.1µm,
0.33µm, 0.66µm, 1µm thick targets, where it shows order of 101 to 103 improvement
from the non-hyperfine iron example. It is difficult to select the intensity level for
the non-hyperfine iron, therefore the maximum radiative coupling field intensity is
assumed for the calculation within t < 141ns.

In addition to the enhanced contrast, the k̂, -k̂ configuration provides each one
advantage and one drawback regarding the time condition. The significantly sup-
pressed radiative coupling field for the k̂, -k̂ configuration enables to produce pulse
at a longer time with good intensity contrast. Following the similar arguement in
Section 3.2.4, the motion can shape the scattering waveform into short pulses if
following condition is met,

|O(weak. radi. field)(t)|2 < |Eσ(t)− 2O(weak. radi. field)(t)|2 ≃ |Eσ(t)|2,

where the last inequation assumes O(weak. radi. field) << Eσ(t). Because the coef-
ficients κ1, κ3 are enough small, the inequation puts no effective restriction regarding
the delay time. The inequation holds for longer than 1000ns for all examined targets.

On the other hand, the existing Quantum and Dynamical beating imposes con-
dition for the choice of the delay time. As read in Eq. (3.57), if the chosen delay t1
makes amplitude (Tk) zero, the generated pulse I2nd(t) cannot have high intensity.
This condition decides that t1 cannot be chosen at 4.7ns, 12.53ns, 20.45ns, and · · ·
for the all targets. Most of zeros are irrelevant to the thickness because it is the
Quantum beating related to (e−iω1t + e−iω6t) term that oscillates at fastest speed.
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Chapter 4

Characterization of the electronic
response of the piezo transducers

In this chapter, the electronic response function of the electronics and piezo trans-
ducer will be discussed as a part of motion system charcterization.

First, we will introduce part of synchrotron experiments to explain the used elec-
tronic set-ups. The electronics has been built for the past beamtime to test the peizo
transducer. We need to understand its arrangement because it is related to the ob-
tained raw data. The specific information of the electroncis will be also presented
together during the introduction. At Section 4.2, we will discuss the data process
to get response function of the system from the raw data. Averaging, choosing the
768ns data, threshold for the response function calculateion, time-jitter elimination
will be discussed in order. With the processed response functions, the analysis on
the system will be followed at the end of this project.

Brief on motion system
The real motion of Mössbauer target in experiment doesn’t exactly follow the desired
profile because of the motion units’ imperfect/non-linear response [54, 55]. To di-
agnose the problem in the experiment, first, we need to understand that the motion
system is composed of largely two parts. The first part is the piezoelectric crystal
which expands as a response of an induced electric field [84, 85]. The next part is
the Mössbauer nuclei from where the scattered fields are radiated out. The motion
of Mössbauer nuclei is achieved in a way that piezoelectric crystal experiences a
lattice deformation. Later, crystal’s mechanical deformation transfer the motion to
the Mössbauer nuclei which are mounted on the top of the piezo transducer. This
way promises the control of displacement in wavelength order [49, 53].

The principle gives us natural separation for the research, the electronic response
of the piezoelectric transducer, and the mechanical response of the both piezoelectric
transducer and Mössbauer nuclei. The electronic response includes the accumulation
of charge on the lattice as a response of the external voltage source. While the
mechanical response of the target is more complicates that it includes the lattice
deformation of the piezo transducer and the delivery of motions to the Mössbauer
target from the lattice deformation. The characterization of mechanical response
of the system requires us to measure the position of the targets in Ångstrom meter
precision. It can currently only be achievable at synchrotrons or XFELs [54, 82].
However, the electronic response of the piezo transducer can be easily prepared and
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Chapter 4 Characterization of the electronic response of the piezo transducers

studied in the laboratory with electronics [54].

4.1 Experimental components

Our measurement set-up has already been set-up to give a test before beamtimes over
the last years [54]. In this reason, it is designed to resemble the data acquisition
environment in the synchrotron experiment. Before describing the design of the
electronics in our laboratory, first, the brief set-up of the synchrotron experiment
will be introduced.

4.1.1 Synchrotron experiment

Mentioning all details of the synchrotron would be out of scope of this thesis, instead,
describing the relevant parts may provide enough information to understand our
electronic set-up [30, 54, 57, 82].

Photon
Synchrotron radiation is a tool of an excellent light source from far-infrared to hard
X-ray regimes. The synchrotron radiation is achieved when a bunch of electrons
experiences transverse acceleration. The property of the electron bunch determines
many of produced pulse’s properties. For example, its time duration (≃ 100 ps)
is set by the electron’s bunch length (44 psec at PETRA III). And the energy of
the generated light (near 14.4keV for 57Fe Mössbauer scattering) is determined by
the speed of the electrons. Many of the synchrotron stores several electron bunches
in the storage ring, where two electron bunches are timely separated by 8 ns (960
bunches) to 192 ns (40 bunches) for PETRA III [30].

Therefore a target is bombarded by the timely narrow pulses every 192ns. How-
ever, the limitation of synchrotron radiation brilliance produces less than one res-
onant photon on average for each pulses at hard X-ray regime. This environment
sets the detector to measure at most one scattered photon between two synchrotron
pulses.

The stored electron bunches offer a master clock for all electronics in the syn-
chrotron experiment, called bunch clock [30]. When each electron bunch passes
an installed module inside the storage ring, the induced electricity is generated that
informs the time and spatial information of each electron bunch. Based on this in-
formation, it is possible to trace the pulse arrival time for the targets and detectors.

Mössbauer target
The mechanical motion system is of special interest to understanding our electronic
set-up. First, the input voltage signal is synchronized with the pulse arrival time
by the bunch clock. So that desired phase control can be implied properly. The
experiment sets one sequence of measurement to take 4 × 192ns, so four pulses
can arrive meantime. One trace of the motion usually consists of four sub-motions:
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4.1 Experimental components

Figure 4.1: The figure captures the principle of the detection scheme of scattered fields in
the synchrotron experiment with the APD. All electronics are synchronized to the bunch
clock.

first pulse + a displacement (192ns) → second pulse +target at rest (386ns) → third
pulse + another displacement (576ns)→ and the last pulse + second stationary phase
(768ns) [82]. In this way, we can measure the effect of motion at first and third pulses
while the second and fourth measurement will function as reference measurements
for the fluctuating synchrotron’s intensity [54, 55]. Besides, the motion is designed
in a way that it returns the Mössbauer target at fixed starting point for every 768ns.

Detector
The Avalanche Photodiode Detector (APD) is employed to measure the photon
arrival times. The APD also needs a bunch clock to run the APD in veto mode
because the measurement of a pulse can saturate the APD up to about 15ns [30,
57]. When the APD runs in veto mode, the Data Acquisition stops collecting photon
count so that photons of the synchrotron pulses are ignored and only the photons
from the 57Fe are collected. Lastly, considering the low number of the resonant
photons at the hard X-ray regime, the experiment needs to take numerous repetitions
to construct the time spectrum.

4.1.2 Electronics

The studies of the electronic response of piezo don’t necessarily require X-ray pho-
ton sources. Instead, we can produce a fake APD clicks which will trigger the
Data Acquisition and start collecting a trace of the voltage signal that contains the
response of piezo about the given input.

The virtual synchrotron environment set-up requires 5 electronics.

• Function generator, Agilent 81160A

• Delay Unit, Stanford Research Systems DG645
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Chapter 4 Characterization of the electronic response of the piezo transducers

• Quadra Constant Fraction Discriminator (Quad CFD), Tennelec TC454

• Data Acquisition System(DAQ), Roentdek

• Piezo transducer, with PVDF element by Measurement Specialities Inc

The electronic set-up is presented in Fig. 4.2(a) and its details will be introduced
in the following.

Function generator
The Function generator locates at the top of the shelf, in the left top corner in
Fig. 4.2(a). Two independent voltage patterns can be outlet from the Function gen-
erator (Agilent 81160A) which are synched with internal frequency divider. The
Agilent 81160A can provide good signal sampling rates (2.5GSa/sec) and an inter-
nal speed when it runs in arbitral-function-generation mode [86] for both channels.
Moreover, the Agilent has an internal impedance of 50Ω and transition times of 1ns.
The first voltage signal is used to measure the electronic response of the system for
our purpose, but its role in the synchrotron can be found as motion inducement.
Since the motion of Mössbauer targets repeats for every 4 pulses in the synchrotron
experiment, the generated voltage pattern also repeats for every 4×192ns, 1.25MHz
rate.

The purpose of the second voltage signal is to produce a raw “fake APD signal”
which will onset the data acquisition process. A box-shape voltage is chosen to trig-
ger the next electronics, the Delay unit. The produced box-shape voltage contains
rising/falling time of 1ns with amplitude of 1.4Vpp and 10ns width. The voltage is
produced with inverted polarity.

Ch1 Ch2
Purpose: to induce motions to generate fake APD

Repetition rate: every 768ns every 196µs
Voltage signal: Designed functions (see Section 4.2.3) box-shape (details in text)

Table 4.1: Specifications of generated signals in Agilent 81160A

Delay unit
The Delay unit receives a box-shape voltage from the Function generator via BNC
cable, placed above the Function generator in Fig. 4.2(a). The internal impedance
of the Delay unit, Function generator, and BNC cable are matched to 50Ω to avoid
reflections at each terminal. The Delay unit produces a precisely defined pulse with
good timing and low time-jitter which will be used as the fake APD signals [87]. The
Delay unit is set to external trigger mode at the falling edge of the input voltage with
trigger level of 750mV. Once the Delay unit is triggered, the inputs will be neglected
for 600µs. Meantime it produces a fast inverted pulse with 20ns duration, which is
one electronic standard named after its developer, Nuclear Instrumentation Module
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(a)

(b)

Figure 4.2: (a)The actual electronic set-up. Each electronic device is marked with a
yellow box in the photo and is labeled outside the figure. (b) The above electronic set-
up is presented in a schematic diagram. (Yellow circles refer the outputs of the system
and orange circles indicate the inputs for the system) The installed piezo reacts to the
one trace of voltage (768ns). The responsed voltage signal flows into the DAQ. Another
voltage is sent to the Delay unit to be converted into the fake APD signal. With a successful
generation of fake APD signals (NIM pulse), it triggers the DAQ at a 1.67kHz rate after
passing Quad CFD. The triggered DAQ collects the voltage signals from the piezo during
the 978ns, which is longer than one trace time.
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(NIM). The usage of the Delay unit can be found its precise timing. The Function
generator Agilent produces the signal with frequency divider, which is not greater
than 255. On the other hand, the produced NIM signal is precisely determined with
the Delay unit [54].

• Trigger mode: External trigger at falling edges

• Output: NIM (CD channel w/ 600 µs, and 20ns for stable operation)

It is important to point the chosen delay parameters are not related to the property
of the APD. Rather, the APD installed in the PETRA III can resolute less than a
couple of nanoseconds [88]. The 600µs rate and 20ns width are chosen because of
its stable functioning.

Quad CFD
The NIM pulse flows into the QUAD CFD box, located on the shelf (left) in
Fig. 4.2(a), which copies the input signal (fake APD clicks) into four equivalent
outputs. Three of outputs enter the DAQ unit for triggerings.

Piezo transducer
Another voltage pattern is transmitted to the piezo transducer from a different
channel of the Agillent 81160A, right bottom in Fig. 4.2(a). Considering the internal
impedance of the Function generator, the same impedance of the BNC cable is used
and the 50Ω resister is added at another termination of the BNC cable for the best
signal transmission to the piezotransducer. The charges are stacked on one side of
the crystal as a response of the timely varying input voltage.

The used piezo element is a thin polyvinylidene fluoride piezoelectric transducer(PVDF)
manufactured by Measurement Specialities Inc [89]. Each PVDF is glued onto a
4mm thick acrylic glass plate with two-part epoxy glue to reduce the vibrations
[82]. To understand the electronic response of each piezo by thickness, three differ-
ent piezo transducers are examined in this project. Labels (4) and (6) distinguish
two same thickness of piezo transducers.

• Model: DT1-028K (4) (thickeness: 28µm)

• Model: DT1-028K (6) (thickeness: 28µm)

• Model: DT1-052K (thickeness: 52µm)

Data Acquisition System Both the response of the piezo and the fake APD signal
flow into the DAQ unit. The DAQ is triggered when the fake APD signal arrives
and starts storing the arrived voltage traces over 978ns [90]. The DAQ digitizes
the arriving voltage traces every 0.8ns and resolutes the voltage values with 10 bit
resolution (details in Section 4.3.3). Besides, the DAQ cannot resolute two photon
clicks if they are too timley close in the synchrotron experiment. In this reason the
Delay unit is also desired to avoid the occuring errors in DAQ [54].
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4.2 Response function

4.2 Response function

4.2.1 Definition

The response function is defined as a ratio of the output function and input function
of a given system in the frequency domain. The response function is used to under-
stand the response of the linear system or subsystem for given inputs [91, 92]. The
system needs to respond linearly for characaterization by response function, other-
wise, the analysis on frequency domain lost the meanings and we need to study the
system in time domain, instead.

The responsed output voltage is represented as the multiplication of the system’s
response function and input voltage. From this,

Hsys(ω) =
Vsys(ω)

Vinput(ω)

In this study, the response function will be defined as the ratio between the mea-
sured voltage after one electronic set-up and one ideal input voltage. The electronic
set-up varies in choice of piezo tranceducer. If no piezo transducer is applied, cal-
culated Hel(ω) contains response of electronics, only. Depending on the type of
installed piezo transducer, the Hpz+el can contain the combined transfer of the piezo
transducer and the electric components including the resister, BNC cable, etc.

{
Hpz+el(ω) =

Vpiezo+elec(ω)

Vinput(ω)

Hel(ω) =
Velec(ω)
Vinput(ω)

(4.1)

The above definition is decided for this study because Vinput(ω) doesn’t contain any
error and it is the combined response that we aim to characterize to understand for
future synchrotron experiments.

4.2.2 Conventional characterization method

The conventional characterization method of the response function uses a lot of
single sinusoidal functions to probe the system’s response one frequency by one
frequency [92, 93]. The entire response function of the system is constructed by
repeating the measurements. Although this method provides a concrete method for
characterization, it takes too long times and many repetitions to fully understand
one single piezo considering the frequency range in interest.

4.2.3 Employed characterization method

Our approach and used method in synchrotron experiment employ (analytic) func-
tions as an input voltage, instead [54]. Chosen functions are composed of a wide
range of frequency bands. By measuring the system’s response with the function,
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Chapter 4 Characterization of the electronic response of the piezo transducers

we can measure a wide range of response function at once. As known from the
Fourier transformation, a timely narrow function has a corresponding Fourier trans-
formed function defined in broad frequency ranges. Another type of function we
can choose is the functions defined with a discontinuous point, such as the Heavi-
side function. In these fashions, following several functions are chosen to test the
response functions of the system. The examples of employed functions (orange)
are given in Fig. 4.3(a)-(d), Gaussian with 8ns FWHM, DESY Ramp function, two
Rectangular and Exponential functions. The relevant measurement data (blue) are
plotted together with its input signal to display the response of the piezo transducer
and electronics. However, the measured voltage signal requires few processes to be
understood. The data processes and plots will be discussed at Section 4.3.2 and will
give short explaintion at there.

(a) (b)

(c) (d)

Figure 4.3: (a)-(d) The examples of input voltage signal (in broken orange) and aver-
aged response of the piezo transducer (in solid blue) are plotted: Gaussian function with
8ns FWHM, DESY Ramp function, Rectangular function + Exponential decay functions.
The Rectangular function has 20ns or 10ns of width. The Exponential, e−γt, has decay
coefficients γ = 0.1, and 0.05GHz. To convert from the raw data to the proper voltage
responses (blue), it requires averaging, tailoring, calibration measurement. The responsed
voltage shares common properties: attenuated voltage, long response time of the system,
phase retard at rising edges. However, it is difficult to extract meaningful data from the
time domain.
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Gaussian function
Well-known analytic functions (Gaussian, Sinc, etc) are tested at the early mea-
surements with several parameters. The Gaussian is specifically chosen because its
Fourier transformed function is also Gaussian function and it was expected to probe
a broad frequency range at once.

V (t) = e−
1
2

(t−µ)2

σ2 (4.2)

Corresponding transformed function is,

V (ω) = σ
√
2πe−

1
2
ω2σ2

(4.3)

The chosen parameter, σt = 3.39ns from 8ns FWHM, is equivalent to the σω =
295MHz and it is expected to provide responses of piezo transducer and electronics
over broad frequency at once.

DESY ramp function
The DESY Ramp function is a type of function tested to understand the suspicious
charge losses in the static targets in past beamtime. The function is composed of two
slow ramp functions with opposite gradients so that it can compensate the charge
losses [54].

The DESY Ramp function has chosen because we thought its discontinuous point
and slowly increasing/decreasing slopes will offer a good test for the electronic re-
sponse of the piezo transducer.

The DESY Ramp function is represented as

V (t) = v0t× θ(t)− 2v0t× θ(t− T/2) + v0t× θ(t− T), (4.4)

where T is 768ns and v0 = 990
384

[mV
ns ].

The corresponding function in frequency is,

V (ω) = − v0
ω2

× (1− 2e−iωT
2 + e−iωT)− v0

4
T 2 × sinc(

ωT
4

)e−iω 3
4
T

= − v0
ω2

× (2− 2e−inπ)− v0
4
T 2 × sinc(

nπ

2
)e−i 3

2
nπ, (4.5)

where the last equation uses the property of the Fast Fourier Transformation, ω =
2nπ
T . Despite of its repeating zeros for every even n, the DESY Ramp function allows

us to investigate the broad range. To answer how broad range we can measure
with this function, we need to understand when the component of signal (V (ω))
gets smaller than components of the noise. It is difficult to expect the probable
frequency range with the formula and current measurement data, however, it allows
us to measure the response of the system by 400 MHz range.
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Rectangular + Exponential decay functions
Although it were able to get a wide range of frequency components with the DESY
Ramp function, more cases are needed to verify the obtained response function.
Because we have supposed that the measured data is carrying non-linear response
of the piezo transducer and the electronics.

To double-check the linear responses, we bring a type of functons which is com-
posed of Rectangular function + Exponential decay. We assume that the same
non-linear response will appear for the Rectangular function because it is the same
the Heaviside function mathematically. The various width (10ns or 20ns) of the
Rectangular function and the different decay speed (0.1 or 0.05 GHz) of Exponen-
tials are chosen for the purpose.

The functions can be represented as,

V (t) = V0 × (θ(t)− θ(t− t1)) + V0e
−γt × θ(t− t1), (4.6)

where t1 is a variable of the width of the Rectangular function (5 or 10ns) and the
γ determines the decay speed of the Exponential function (0.1 or 0.05 GHz) next to
the Rectangular function, and V0 is a height of the Rectangular function which is
fixed to 1.5V.

The corresponding function in frequency space is,

V (ω) = V0 × (
e−γt1

γ + iω
e−iωt1 +

1

iω
(1− e−iωt1)), (4.7)

which offers a way to characterize a broad frequency range at once. It is also difficult
to predict the available frequency range, but this function also provides the response
function by 400MHz.

4.3 Measurement and Data process

The measurement collects the voltage traces that contains information about the
responses of the systems as a function of given input voltage. The measurements
are also conducted with varying type of piezo transducers. We aim to extract the
response of the piezo transducer and relevant electronics in the frequency space.
However, the acquired data is the voltage traces in time which contains both signals
and errors, including the time-jitter (different time-zeros for each data, the details
will be discussed in Section 4.3.5), thermal nosie as well as the systemical errors. The
collected data needs few processes before being calculated to the response function.
The schematic diagram plots the required data process, in Fig. 4.4. Each section
will discuss about each steps of the diagram

4.3.1 Statistic

To run proper statistics, in total 150,000 to 200,000 voltage traces are collected for
each measurement. By calculating deviations of total traces of one measurement,
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it is possible to check raw data before running the statistics. Even though it rarely
takes place, one over several hundreds of thousands of raw data, the raw data is
excluded if the wrong voltage trace is saved for a better statistical process. After
running the averaging the data, it is expected to reduce some random noises such as
thermal noise. However, the averaged data still contains time-jitter and systemical
errors. Despite the measured traces have respective time-zeros, we will average the
data first and will eliminate this time-jitter in Section 4.3.5.

Figure 4.4: The diagram describes the data process to calculate a response function. The
raw data will be processed as followed order: Averaging, time selection, fourier transfor-
mation, response function calculation, time-jitter elimination

4.3.2 Time trace selection

The 968ns long averaged traces are needed to be tailored into 768ns for the Fourier
transformation. Because it is 768ns that system’s response repeats, not 968ns. We
can simply obtain the 768ns length of data for most of the averaged voltage traces
by choosing the proper part of the data. It is important to cut irrelevant part of the
averaged voltage and chosen data to contain all characteristic points, for example,
the rising (falling) edges, curves, etc.
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4.3.3 Calibration measurement

When the responsed voltage enters the DAQ after interactions, the DAQ digitizes
the voltage traces into 1024 pixels [90]. It is required to understand the internal
calibration of the DAQ to represent the stored data into voltage correctly. For
this reason, an additional calibration measurement is performed to understand the
internal conversion ratio.

For this purpose, we directly connected the Function generator to the DAQ sys-
tem without any other electronics and generated a slow sine function, with period of
192ns, at the Function generator to minimize signal attenuation via installed elec-
tronics. The amplitude is chosen to Vamp = 1.5V because we suspected that the
DAQ has ±1V acceptance range. And we know that the installed DAQ resolute the
measured voltage in 1024 pixels (10bit resolution) from the data and manual book
[90]. It enables us to trace the total voltage range from the measured maximum
and minimum of the sine function. The produced amplitude of the sine function is
stored as ±374 pixels in the DAQ. Therefore, we conclude that the DAQ can receive
±2V signals with 10bit points.

Figure 4.5: This figure shows the raw data of calibration measurement. The sine function
oscillating every 192 ns with maximum/minimum at ±374 pixels is used for the calibration.
It verifies that the installed DAQ system converts 1.5 Vamp to 374 pixels. The calibration
measurement concludes that the DAQ has ±2V band with 10-bit resolution.

Now, we can discuss about the second curves in Fig. 4.3(a)-(d). The blue curves
represent the measured voltage traces after having statistics, trace selection which
is converted into Voltage after the calibration. The measured voltage traces are
manually shifted to locate near the input function to give an easy observation. It
is difficult to extract meaningful information from the time trace, except few trivial
information: attenuated voltage, slowly responing system as well as phase retard at
rising edges. This motivates us to investigate the system in the frequency domain
with the response function.
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4.3.4 Raw response function

With tailored traces, the conversion ratio of the DAQ, and the input signal, every-
thing is prepared to calculate the response functions with Eq. (4.1).

Because the raw response function is not a final product for the study, let’s focus
on the how those functions are calculated. In Eq. (4.1), we used the ideal input
function to calculate the response functions to minimize the effect of errors. Despite
we carefully choose input functions that are composed of broad range of frequency
components, there is certain point since where the component of error is larger than
the component of function. Not to contain such region in the calculated response
function, the threshold is introduced for the calculation. Normally 10−5 is chosen
for other response functions. But, the threshold of the response functions of the
Gaussian input is set to 10−4 because of quantization errors.

Considering the Function generator produces the voltage at speed of 2.5GSa/sec,
the Gaussian with FHWM 8ns is consist of 17 samplings for the ±σt. We suspect
insufficient number of samples cause a quantization error. The small number
of sampling points causes the produced voltage to deviate from the real Gaussian
function. If this quantization error assigns non-zero values for the high frequency
components, it can cause zero-division errors because the real values approaches to
zero at this ranges. The threshold value is chosen to exclude this potential zero-
division errors starting after 150MHz and restricts the available frequency range.
Although it turns out that the timely narrow functions are not a good option for
the characterization method, still its response functions are consistent with the other
figures within 150MHz.

The calculated raw response functions are presented in Fig. 4.6(a)-(f). Each figure
contains the response of different piezo transducer + electronics (dashed lines) with
various input voltages functions. The figures include the response function of pure
electronics (blue), which is a measured response function after uninstalling piezo
transducer. Especially, we can find the limited frequency ranges for the Gaussian
input. The response function of DESY Ramp shows only one data point for every
two points. Discussed in Eq. (4.5), the transformed voltage has repeating zeros for
every even n. The Fig. 4.6(c) contains an unexpected measurement result at the pure
electronic response. We suspect unknown-error took place on this measurement. If
it is the real response of the system, the similar effects should be observed at the
response functions of combined system, Hpz+el represented in colored lines.

4.3.5 Time-jitter elimination

All response functions in Fig. 4.6 show severe damping over the entire frequency
range. The reason of the damping can be found at the time-jittered voltage traces
which were survived after the statistics. The measured each raw voltage traces has
had respective time-zero, so that one data looks like being translated to the another
data as shown in Fig. 4.7(a). We determined the time-jitter at the characteristic
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: (a)-(f) The raw response functions as a function of different piezo transducers
and different voltage signal inputs. The Gaussian response function is severely limited
because of quantization error. The Fig. 4.6(c) contains an unexpected measurement error
at pure electronic response function. The raw response functions contains the time-jitter
effect that is featured as the modulation over whole frequency and zeros at near 200MHz.
The strong time-jitter effect will be deconvoluted in Section 4.3.5.
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point of the raw data (voltage traces). The maximum point is chosen for most of
the raw data after assuming the maximum point is real response of the system.

The Fig. 4.7(a) displays randomly chosen 5 raw traces with 28µm thick piezo
transducer and Rectangular+Exp input. The histogram of maximum position of
entire voltage traces is presented in next subplot. As seen, maximum positions are
nearly equally distributed between 503.2ns and 508ns. Indirectly, the agreeing time
jitter is observed at the voltage functions produced at the Function generator with
the oscilloscope. In this reason, we suspect the time jitter is originated from the
produced input voltage, rather than other electronics we employed.

(a) (b)

Figure 4.7: (a)Plot of ramdomly chosen 5 raw data to show the error density function.
The raw data is composed of 968ns, and represented in bit. (b) Histogram of the maximum
position of the same raw traces for entire set of measurements. The raw trace is digitized
by every 0.8ns. Maximum points only locate between 503.2ns and 508ns (7 dots with more
than 20, 000 counts), if we neglect 17 counts and 1 count at 502.4 and 508.8ns time bins.

Then let’s fomulize the effect of the time jitter. When one voltage signal finally
flows into the DAQ after interactions, it is delayed by t0 compare to the input voltage
due to response as well as transmissions, which both can be treated as signal. But
real data doesn’t have consistent t0 for all traces. Instead, each trace has jittered
time-zero ti = t0 +∆ti around true time-zero t0.

As mentioned, averaging cannot solve the time-jitter errors. We will define V ′(t)
as µ(Vi(t)) to represent that it still contains the effect of time jitter.

µ(Vi(t)) = V ′(t) =
1

N

N∑
i=0

{Vi(t− ti) + σi(t)}

There might be the voltage traces sharing the same jittered time-zeros. Such traces
are defined as V (t − t0 − ∆ti) with the jittered-time zero as t0 + ∆ti. We can
count how many traces are having the t0 +∆ti as time-zero. The n(∆ti) is density
function of error which is defined with above information after being divided by the

71



Chapter 4 Characterization of the electronic response of the piezo transducers

total sample number N.

V ′(t) =
∞∑

∆ti=−∞

n(∆ti)V (t− t0 −∆ti) + 0

≃
∫ ∞

−∞
n(∆ti)V (t− t0 −∆ti)d∆ti = n(t)⊗ V (t− t0), (4.8)

where the discreted convolution equation approximated into continuous convolution
after assuming a large number of measurements and continuous time jitter assump-
tion which is centered at 0, so that µ(∆ti) = 0.

The influence of time jitter is represented as a convolution of true signal V (t− t0)
with the error density function. As shown, the n(t) of the our system is measured
by counting the maximum point for one input functions. The result is that n(t) is
a uniform distribution with 4.8ns wide, in Fig. 4.7(b).

When the two producted functions are Fourier transformed,

V ′(ω) = n(ω)V (ω), (4.9)

where the corresponding n(ω) is defined as Sinc( ω
208[MHz]). It describes that the time-

jitter modulates the original signal function V (ω) by the Sinc function determined
by the Fourier transformation of error density function n(t).

Then the true signal can be simply obtained as,

V (ω) = V ′(ω)/n(ω) (4.10)

The effect of time jitter can be eliminated from the already-calculated raw re-
sponse functions in the same method.

Hno jitter(ω) = Hraw(ω)/n(ω) (4.11)

The time-jitter free response function are presented in Fig. 4.8(a)-(f) with varying
different piezo transducers and input functions. Each subplot contains responses
of the system (piezo transducers+electronics) in broken lines and a pure electronic
response function in blue. After getting rid of the time-jitter effect, the most fea-
tures are remained same for the calculated response function. First, we checked
the response function of Gaussian inputs are still severly restricted by the quan-
tization errors, though computed response functions are in good agreement with
the other input functions within the computable range, in Fig. 4.8(a). Moving to
the general feautres, we can observe the strong piezo transducers’ response at near
25MHz while no response is observed for the electronics at this frequency ranges
(blue). The response functions of two 28µm piezo transducers are nearly consistent
over most of the frequency range for all inputs voltage. The piezo transducer with
52µm absorbs higher frequency than the 28µm piezo transducers does. The piezo
transducers rarely respond to the frequencies faster than the 120MHz therefore it is
the response of electronics (blue) that determines the response of the system at this
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4.3 Measurement and Data process

regime. Because, the raw response function are divided by the Sinc function (time
jitter error density function), significant deviations are observed at near 208MHz
frequency. The second responses of piezo transducers are observed at the higher fre-
quency regime near 300MHz. It requires additional measurement to understand the
origins of this features. Lastly, it is difficult to answer the origin of overall 40MHz os-
cillation with current data except it is irrelevant to the piezo transducer because the
response function without piezo transducer(blue) already shows the same feature.

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: (a)-(f) The response functions of different voltage signals after eliminating
the time jitter noise. The unusual features around 208MHz are due to zero-division error.
The response function of pure electronics is in (c) contains an errored measurement at near
25MHz.
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Chapter 4 Characterization of the electronic response of the piezo transducers

Despite of the general similarity, the response functions of DESY Ramp function
starts deviating after 150MHz compared to the Rectangular and Exponential func-
tions. The overall response function with DESY Ramp function shows diminished
amplitudes than that of the Rectangular and Exponential functions. To under-
stand this feature, we decompose the computed response function into two parts,
electronics part and the pure piezo transducer part.

We can obtain the pure piezo transducer’s reponse with Hpz(ω) =
Vpz+el(ω)

Vel(ω)
. The

Vel(ω) are already measured and used for Hel (blue lines in Fig. 4.8). The Fig. 4.9
presents the obtained response function of the piezo transducer part. Each subplot
contains only the piezo transducer’s response function with various input voltage
functions. The left subplot displays the responses of 28µm piezo transducer and
it is 52µm piezo transducer’s response for the right subplot. With Hpz, we can
trace the reason of different response in DESY ramp input. From the agreeing Hpz

functions for same thicknesses, we succeed to trace the source of deviation. This
signfies that the employed piezo transducer responds linearly to the given
signal within the 400MHz and 1.5V. But the electronics can show a different
response depending on the input function.

(a) (b)

Figure 4.9: The response functions of pure piezo transducer responding to different types
of input signals. This shows the responses of the piezo transducers are similar within the
tested input voltages. The Gaussian’s Hpz also fails after 150MHz due to quantization
errors, therefore manually processed to have constant 1.
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Chapter 5

Summary and Outlook

Summary
Two projects are carried over this Master’s thesis. The Chapter 3 proposed a
scheme shaping the waveform of the Mössbauer scattering field into short pulses
with nanoseconds duration, with expectations of future application of nuclear co-
herent pump-probe measurement. And the second project aims to characterize the
electronic response of the piezo transducer and relevant electronics to understand
existing errors in motion of Mössbauer targets in Chapter 4. Complementing with
future studies in mechanical response of system, it is expected to contribute to the
control of the motion with better precision at future beamtime.

With a single Mössbauer target, the time intensity remains invariant though the
motion can successfully modify its phases in the electric field. Instead, we used two
Mössbauer targets to control the time intensity with the piezo transducers. When
two targets are employed for the scattering, the intensity of the scattering field can
be modified because the two scattering fields from two targets can interfere or beat
depend on the applied motions.

Using the already-known scattering equation of two moving Mössbauer targets as
a starting point, we first verified a few examples of the modified scattering field.
The destructive interference of two fields is available with the step motions. When
the step motion is applied, the two singly scattered fields are interfered and only the
radiative coupling field are arriving at the detector. The second example is uniform
motion where we saw the Doppler shifted field dresses a beating pattern at the time
intensity. Furthermore, suppression of the radiative couplings was observed due
to off-resonant condition. If the off-resonant condition is invariant over time, the
intensity of the radiative coupling field can be approximated by the κ as a function
of the detuning of two transitions and the targets’ thicknesses.

The Section 3.2 introduces a way to control the waveform of the scattering field
based on the destructive interference and beating effect. The proposed motions are
composed of two linear motions for each target. When a low intensity is desired
the motions create a destructive interference condition by driving two targets in
the same profile of motion but keeping their relative distance as same to (=λ

2
). So

that two singly scattered fields are canceled each other. Purposely, if another set
of motions is introduced to the targets, this interference condition is broken and
a beating pattern emerges in the time intensity. If we control the duration of this
motion, we can modify the decaying waveform into shape-pulse at a chosen time.
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Chapter 5 Summary and Outlook

Soon after, the motions quickly recover the destructive interference conditions to
introduce a second weak-intensity period before and after the produced pulse. The
targets’ thickness and velocity determine the time conditions of the pulse generation
scheme, including the pulse’s intensity, pulse duration, pulse-to-pulse delay. For the
purpose of pulse generation, more variant motions can perform the same role to
generate pulses. The conditions of the motions are discussed.

It is difficult to expect control of the intensity of radiative coupling field and singly
scattered field by motions at the same time. Moreover, the maximum intensity of
the pulse is also limited by the maximum intensity of the beating. To increase the
contrast of the produced pulse, the property of polarization dependent scattering is
exploited, alternatively, in Section 3.3. The proposed k̂,−k̂ configuration scatters
the field in a way that its in-resonant radiative scattering field cancels each other
due to the polarization mixing effect. Therefore, only a weak off resonant radiative
scattering field can contribute to the intensities over the entire measurement time.
The achieved lower intensity of radiative coupling field at the both sides of the
produced pulse and pulse’s intensity contrast gets enhanced.

The measurement reports that the displacement of Mössbauer targets don’t follow
the designed motion profile, exactly. To understand the reason for the imperfect mo-
tion, we investigate the electronic property of the motion system in the synchrotron
experiment. By understanding the system we have used, we expect to have a better
controlability at Mössbauer targets’ motions and optimization of the motions for
the coherent control of the Mössbauer scattering .

We measured the voltage traces that contains electronic response of the piezo
transducer and electronics. The measurements are conducted with varying input
voltage functions and different choices of the piezo transducers. The input voltage
functions are chosen to characterize the response of the system over broad frequency
components and the limitation of linear response. It is required to process the raw
data to calculate the meaningful response function of the system. The average suc-
cessfully reduces the thermal noise, and random noises. Because the DAQ stores
more than 768ns, one sequence of the motion in synchrotron measurement, the data
is tailored into 768ns long. The Fourier transformed averaged data then calculated
into the response function with threshold. Then, the last time-jitter error is elimi-
nated at the frequency space with using the time-jitter error function.

Restricting down to the response function of the piezo transducer, the study
confirms that the piezo transducer responds fairly well and consistently to the in-
put functions within 400MHz and 1.5V ranges. The linear response of the tested
piezo transducer is what follows. The significant absorption takes place at the
low frequency(<100MHz). After thickness-dependent absorption features at low
frequency(<100MHz), the piezo transducer rarely responds to higher frequency
ranges, though another unexpected but thickness-dependent absorption peak is
found at 330MHz. And linear response of the piezo transducers are varying with
their thicknesses. The thicker piezo transducer (52µm) has different absorption fre-
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quencies (34MHz) than the piezo transducers (28µm) do (26MHz). On the other
hand, we also observed the responses of electronics can show different response after
150MHz for different type of input functions.

Outlook
The pulse generation scheme requires a precise and fast speed of motion, which
might be yet difficult to achieve in the laboratory. One possible project in the near
future can direct to find an optimized motion. As discussed at the end of the pulse’s
property, other motions can replace the role of suggested recipe motions if they can
control the destructive interference conditions. Specifically, the motions requiring
instantaneous changes are difficult in a real experiment. Accepting the limitations
in the achievable motions, more feasible motions can be studied. When the pulse is
produced with continuously changing motions, it can bring additional points for the
study. The instantaneous frequency of the pulse is determined by the instantaneous
velocities of the two targets. For this reason, it has the application of generating a
chirped pulse with the optimized motion.

The result of the second project can be re-stated as the verification of the piezo
transducer’s linear response within 400MHz and 1.5V amplitude. First, we can aim
to build a more concrete understanding of obtained linear responses in the near
future. The piezo transducer’s linear response can be studied with various types
of test input functions. Or the higher frequency range as well as the measurement
with an amplifier can be carried out to see the limitation of linear responses. The
result would accompany the understanding of the adopted electronics together. Of
course, a few properties in response functions (overall 40MHz oscillation, second
absorption feature of the piezo) are also required to be solved. Another important
plan is to extend investigated response functions to include phases. The response
function can carry different phase responses for the different frequency values, even if
their magnitudes are the same. Without understanding the different phase response,
the outcoming result would be far away from the expectations. After achieving a
concrete understanding of the electronic response of the piezo, the next step would
straightforwardly be to study the response of real displacement with the photon
sources.
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Appendix A

Additional material

A.1 Maxwell equation in medium and first order
wave equation

The electromagnetic field inside material is expressed as the sum of external field
and the induced internal field.

For the purpose the following auxiliary fields are defined [69].


−→
D = ϵ0

−→
E +

−→
P

−→
H = 1

µ0

−→
B −

−→
M

−→
J f = σ

−→
E

(A.1)

The
−→
P is the Polarization, a measurable in the experiement. It is the averaged dipole

moments over sizable area of medium. And the Displacement
−→
D is represented a sum

of external field
−→
E and induced field

−→
P . Similarly the auxiliary field

−→
H is adopted to

represent the total magnetic field inside the material with sum of external magnetic
field

−→
B and induced magnetic field, Magnetization

−→
M . The last equation explains

an induced current, proportional to external field and conductivity σ.

It is neccessary to consider the total fields in one position to describe the behavior
of the electromagnetic fields [69].



−→
∇ ·

−→
D = ρf−→

∇ ·
−→
B = 0

−→
∇ ×

−→
E = −∂t

−→
B

−→
∇ ×

−→
H =

−→
J + ∂t

−→
D

(A.2)

One of solution of the set of equations is the electromagnetic wave equation.
Taking curl operation for third Maxwell’s equation,

−→
∇ × (

−→
∇ ×

−→
E ) = −∇× (∂t

−→
B ) = −∂t(∇×

−→
B ) (A.3)

= −µ0∂t(∇×
−→
H )
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Assuming there is no free current
−→
J f = 0, the wave equation in medium without

free charge and free current is obtained.

−→
∇ × (

−→
∇ ×

−→
E ) = −µ0∂tt

−→
D (A.4)

The second order wave equation in medium can be reduced into first order.
Using vector identity,

−∇2−→E +∇(∇ ·
−→
E ) =− µ0∂tt

−→
D (A.5)

=− µ0∂tt(ϵ0
−→
E +

−→
P ) (A.6)

Since we are supposing the medium without free charge, ρf = 0, and isotropic
medium, ∇ ·

−→
P = 0,

∇2−→E − 1

c2
∂tt

−→
E = (∇− 1

c
∂t)(∇+

1

c
∂t)

−→
E = µ0∂tt

−→
P . (A.7)

The operations can be replaced as ∇ = ik, and ∂t = −iω.

(ik + i
ω

c
)(∇+

1

c
∂t)

−→
E = −µ0ω

2−→P

→(∇+
1

c
∂t)

−→
E = i

k

2ϵ0

−→
P , (A.8)

A.2 Scattering equation of two moving targets

When moving targets are in consideration, it is necessary to describe each scattering
event in respective target’s rest frame.

E0(z, t): Scattering field from the A target observed in the lab frame.

E0(z, t) = δ(t)eikze−iωt + TA(t)e
ikzeik∆zA(t)e−ik∆zA(0),

where the TA(t) indicates the amplitude of the A target. The effect of motion is
included by the ∆zA(t), the motion of the A target.

Ei
B(z

′, t): Incident field of the B target (E0(z, t)) observed in the B target rest
frame.

The total incident fields for the B target include the non-interacting part and the
scattered field of the A target. In the B target rest frame, the two incident fields
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A.2 Scattering equation of two moving targets

are observed as,

Ei
B(z

′, t) = E0(TB{z}, t) = E0(z −∆zB(t), t)

= δ(t)eik(z−∆zB(t))e−iωt + TA(t)e
ik(z−∆zB(t))eik∆zA(t)e−ik∆zA(0)

= δ(t)eik(z−∆zB(t))e−iωt + TA(t)e
ikze−ik∆zBA(t)e−ik∆zA(0)

The subscript ′B′ of the electric field stand for the B target rest frame. The z′ is the
coordinate of the B target rest frame. The bold TB represents the transformation
from the lab frame to the rest frame of the B target. Similar to ∆zA(t), ∆zB(t)
represents the motion of the B target. The ∆zBA(t) is introduced after defining
∆zBA(t) = ∆zB(t)−∆zA(t).

Escatt
B : Scattering at the B target in its rest frame.

Escatt
B (z′, t) =RB(t)⊗ Ei

B(z
′, t)

=eikz
∫

{δ(t− τ)e−iω(t−τ) + TB(t− τ)}

× {δ(τ)e−iωτe−ik∆zB(τ) + TA(τ)e
−ik∆zBA(τ)e−ik∆zA(0)}dτ

=δ(t)eikze−iωte−ik∆zB(0) + TB(t)e
ikze−ik∆zB(0)

+ TA(t)e
ikze−ik∆zBA(t)e−ik∆zA(0) + {TB(t)⊗ TA(t)e

−ik∆zBA(t)}eikze−ik∆zA(0)

The RB(t) is the response function of the resting target. It is possible to use RB(t)
to describe the scattering of the moving target since the scattering is currently de-
scribed in the B target’s rest frame.

Escatt
lab (z, t): Scattering field in the lab frame.

The field is required to transform back to the lab frame object.

Escatt
lab (z, t) = Escatt

B (T−1
B {z′}, t)

= Escatt
B (z +∆zB, t),

where T−1
B indicates the transformation matrix from the B target rest frame to the

lab frame.

Escatt
lab (z, t) =δ(t)eikze−iωt

+TB(t)e
ik(z+∆zB(t))e−ik∆zB(0)

+TA(t)e
ik(z+∆zA(t))e−ik∆zA(0)

+(TB(t)⊗ TA(t)e
−ik(∆zBA(t)−zBA(0)))eik(z+∆zB(t))e−ik∆zB(0), (A.9)

where the zBA(0) is put explicitly. The above equation describes the scattering fields
of two moving targets with arbitral motions.
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A.3 Radiative coupling scattering field calculation
with PYNUSS

PYNUSS is a Python package, which is based on the software package conuss [94],
used to compute for the NFS spectra of moving target over this thesis [81]. The
PYNUSS calculates the spectra based on the frequency space with already-known
variables for various kind of Mössbauer targets.

One simple approach to describe the scattering is to use response matrix as in
Eq. (2.40). The response matrix contains the transition information as well as
information about the polarization dependent scatterings. The response matrix of
the employed targets are straightforward for the static cases. The scattering of two
targets are described as,

E(ω) = RB(ω)RA(ω)E0(ω)

On the other hand, the response matrix of the targets becomes different when the
targets are moving. The PYNUSS calculates the new RA(ω) and RB(ω) with given
motions to reflect the effect of the motions based on Eq. (2.54).

R′(ω) =

∫ ∞

−∞
{δ(t)e−iωteikz − b

J1(
√
2bt)√
bt

e−γte−iω0teikzeik∆z(t)θ(t)e−ik∆z(0)}e−iωtdt

Therefore, the response function of moving targets are not equal to the static cases
and the scattering equation should reflect the modified response functions.

Emoving(ω) = R′
B(ω)R

′
A(ω)E0(ω)

General idea
Following computation of PYNUSS for the two targets scattering, it always results
the total time intensity which includes the synchrotron pulse, the singly scattered
fields, as well as the radiative coupling scattering field.

The same approach is exploited to separate the each field from the R′(ω). We can
suppose that one response function is composed of two part, non-interacting part
matrix I ′(ω) and the scattered part matrix T ′(ω). The I ′(ω) is not equal to identical
matrix, rather its components are complex values because the field experiences a
phase modification for all frequency values.

R′(ω) = I ′(ω) + T ′(ω)

Second assumption needs to be made to find the I ′(ω) from the R′(ω). We suppose
that R′(ω) at ω ≫ ω0 contains only I ′(ω) and further assume that I ′(ω) is defined
as same for all ω.
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Decomposition
The scattering field can be expressed by each terms as,

Emoving(ω) = R′
B(ω)R

′
A(ω)× E0(ω)

= (I ′B(ω) + T ′
B(ω))(I

′
A(ω) + T ′

A(ω))× E0(ω)

= (I ′B(ω)I
′
A(ω) + I ′B(ω)T

′
A(ω) + T ′

B(ω)I
′
A(ω) + T ′

B(ω)T
′
A(ω))× E0(ω)

Our interest is to see sole value of the term T ′
B(ω)T

′
A(ω).

To see the effect of T ′
B(ω)T

′
A(ω), the same method will separate R′

A(t) into I ′A(ω),
and T ′

A(ω) by running independent PYNUSS code with only A target is involved.
The I ′B(ω), and T ′

B(ω) can be obtained in an opposite way.
Then,

(R′
B(t)− I ′B(t))(R

′
A(t)− I ′A(t))× E0(ω) = (T ′

B(ω)T
′
A(ω))× E0(ω)

Lastly, the manually computed field is transformed into time,

Eradi(t) =
1

2π

∫ ∞

∞
(T ′

B(ω)T
′
A(ω))× E0(ω)e

iωtdω.

A.4 Radiative coupling field of step motion

What we aim to prove is the upper boundary of amplitude of radiative coupling
scattering field of the step motioning targets. The raidaitve coupling field of static
targets is∫ t

0

b2
J1(
√

2b(t− τ))√
b(t− τ)

J1(
√
2bτ)√
bτ

dτ × e−γteikze−iω0t =

∫ t

0

Y (t, τ)e−γteikze−iω0t,

where Y (t, τ) = b2
J1(

√
2b(t−τ))√
b(t−τ

J1(
√
2bτ)√
bτ

.

Since the resultant phase satisfies |e−ik∆z0θ(t−t0)| ≤ 1, the following inequation also
holds for each integrand:

|Y (t, τ)e−ik∆z0θ(τ−t0)| ≤ |Y (t, τ)|,

There is another inequation that always holds.

|
∫ t

0

(Y (t, τ)e−ik∆z0θ(τ−t0))dτ | ≤
∫ t

0

|Y (t, τ)e−ik∆z0θ(τ−t0)|dτ

Therefore,

|
∫ t

0

(Y (t, τ)e−ik∆z0θ(τ−t0))dτ︸ ︷︷ ︸
TB⊗TAe−ik∆z0θ(t−t0)

| ≤
∫ t

0

|Y (t, τ)|dτ =

∫ t

0

Y (t, τ)dτ︸ ︷︷ ︸
TB⊗TA
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The last equation additionally holds when |Y (t, τ)| = Y (t, τ) during entire inte-
gration times, equivalently when the t solving Y (t, τ) = 0 doesn’t locate within
integration range. The proposed numerical result (Fig. 3.2) can answer the location
of such t as a function of thickness. The figures confirm that such t locates beyond
150ns for thickness within 1µm.

Therefore it concludes the |TB ⊗ TAe
−ik∆z0θ(t−t0)|2 < |TB ⊗ TA|2. The same con-

clusion can be found if |Y (t, τ)| = −Y (t, τ), as well.

A.5 Radiative coupling field with off-resonant
condition with HF iron

The idea can be directly extended to the iron with hyperfine structures. In our case,
the scattering field is

E(ω) = R′(ω)R(ω)E0(ω)

= 1 + (e
−3ib/4

ℏ(ω−ω1)+iγ + e
−ib/4

ℏ(ω−ω3)+iγ − 1)

+ (e
−ib/4

ℏ(ω−ω4)+iγ + e
−3ib/4

ℏ(ω−ω6)+iγ − 1)

+ (e
−3ib/4

ℏ(ω−ω1)+iγ + e
−ib/4

ℏ(ω−ω3)+iγ − 1)(e
−ib/4

ℏ(ω−ω4)+iγ + e
−3ib/4

ℏ(ω−ω6)+iγ − 1) (A.10)

Similarly, we can introduce κ1 to κ4 to reflect the off-resonant radiative coupling
fields.

E(ω) = 1 + (e
−3ib/4

ℏ(ω−ω1)+iγ − 1)(1 + κ1) + (e
−ib/4

ℏ(ω−ω3)+iγ − 1)(1 + κ3)

+ (e
−ib/4

ℏ(ω−ω4)+iγ − 1)(1 + κ4) + (e
−3ib/4

ℏ(ω−ω6)+iγ − 1)(1 + κ6), (A.11)

Because the approximation has to hold for all ω, one can find the κ1 to κ6 with
asymptotical approach.

Solving four sets of coupled equation with off-resonant conditions,

κ1 = −κ6 = −i1
4
(
1

2

b

∆13

+
1

2

3b

∆16

) (A.12)

κ3 = −κ4 = −i1
4
(
1

2

3b

∆31

+
1

2

b

∆34

), (A.13)

with ∆ij is defined as ∆ij = ℏ(ωi−ωj). The detunings and the thickness parameters
are defined in the Table 2.1 and Eq. (2.28).

The scattering field is read as

Efar-off(t > 0) =κ1 ×
3b

4

J1(
√

3bt/2)√
3bt/4

e−γt(e−iω1t − e−iω6t)

+ κ3 ×
b

4

J1(
√
bt/2)√
bt/4

e−γt(e−iω3t − e−iω4t)) (A.14)
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