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Tunneling ionization is characterized by a negative time delay, observed asymptotically as a specific shift
of the photoelectron momentum distribution, which is caused by the interference of the sub-barrier recolliding
and direct ionization paths. In contrast, a Gedankenexperiment following the peak of the wavefunction shows
a positive tunneling time delay at the tunnel exit, considering only the direct ionization path. In this paper we
investigate the effects of sub-barrier recollisions on the time delay pattern at the tunnel exit. We conclude that
the interference of the direct and recolliding trajectories decreases the tunneling time delay at the exit by the
value equal to the asymptotic time delay maintaining, however, its sizeable positive value. Finally, we discuss
the recent experiment [Light: Science & Applications 11, 1 (2022)] addressing the tunneling time in a modified
two-color attoclock setup. The analysis of the experimental findings with our theoretical model indicates the
physical necessity to introduce a new time characteristic for tunneling ionization – the time delay describing the
initiation of the tunneling wave packet.

I. INTRODUCTION

The tunneling ionization is at the heart of attoscience [1, 2].
The state-of-the-art attoclock technique [3, 4] provides an ex-
ceptional time resolution of the order of tens of attoseconds
via mapping the time to the attoclock offset angle in the an-
gular streaking process. This allows for an experimental in-
vestigation of the time delay problem during the quantum
tunneling process [5–9]. This fundamental question raised an
extensive discussion [5–46], which can be more appreciated in
the context of the general problem of the tunneling time [47–
62], with different tunneling time definitions corresponding
to different type of measurements: Eisenbud-Wigner [48–51],
Büttiker–Landauer [53], Pollak-Miller [54], and Larmor [52]
tunneling times, the latter being recently measured for cold
atoms [63].

Two definitions of the tunneling time delay are discussed
in strong field ionization, which are related to the Eisenbud-
Wigner time. The first is the asymptotic time delay (ATD),
which is investigated in the attoclock experiments and the
second is the time delay near the tunnel exit, exit time delay
(ETD), which is only observable in a Gedankenexperiment with
a virtual detector [64, 65]. The signal of the virtual detector
can be derived from the numerical solution of time-dependent
Schrödinger equation (TDSE) calculating the current density
of the tunneled electron wave packet. The time delay at the
tunneling exit calculated numerically with the virtual detector
method [9–12] has been shown to be positive.

The ATD is extracted from the photoelectron momentum
distribution (PMD) as a shift of PMD with respect to the ex-
pected distribution with the assumption of a vanishing time
delay. The extraction of the ATD can be implemented using
the method of the classical backpropagation [19–22]. In the
deep tunneling regime the ATD is vanishing [12, 13]. How-
ever, near the over-the-barrier ionization (OTBI) regime it is
nonnegligible and negative [18–20, 46]. This negative ATD
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is explained as arising due to interference of direct and the
under-the-barrier recolliding trajectories [29]. Note that the
depletion of the bound state also induces a negative time delay.
When investigating the time delay problem experimentally or
via the numerical solution of the time-dependent Schrödinger
equation, the depletion effect should be estimated separately
and subtracted from the total time delay. In the strong field
approximation (SFA) theory the depletion of the bound state is
not included. This is an advantage offered by the SFA theory:
the emergence of the time delay can be investigated avoiding
any complications stemming from the depletion effect.

The notion of a third time delay related to tunneling ioniza-
tion, physically different from ATD and ETD, can be deduced
from a recent experiment [45]. It is devoted to measuring the
tunneling time delay in a setup where the attoclock is aug-
mented by a second harmonic laser field of linear polarization.
In this setup, the ionization yield is modulated with respect to
variation in the time delay between the two components of the
laser field. The experiment showed that the yield is maximal at
vanishing time delay between the field components, i.e. when
the total field of the two-color laser field has the largest maxi-
mum. From the latter it has been concluded that the tunneling
time is vanishing. We analyzed the given experimental results
to clarify the physical interpretation of the obtained vanishing
tunneling time. Our analysis within the SFA model confirms
the experimental finding that the PMD peak is the largest when
the maximum of the total field is the largest. At the same time,
we confirm that the PMD shift due to the sub-barrier recolli-
sion, or the equivalent ATD, still is available. Therefore, we
conclude that the vanishing time delay measured in the experi-
ment of Ref. [45] provides no information on ATD, although it
is derived from the asymptotic PMD.

Can one introduce a time delay that describes the result of
this experiment? To this end let us recall the quantum orbit
picture of strong field ionization [66], where ionizing complex
trajectories start in the under-the-barrier region at a complex
time ts, asymptotically becoming classical trajectories. One
can call ts(p) as the time of initiation of the ionization wave
packet around the asymptotic momentum p. The delay of
Re{ts(pm)} corresponding to the peak of PMD p = pm with
respect to the peak of the laser field, we may define as the
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tunneling initiation time delay (ITD). With this definition, the
result of Ref. [45] can be interpreted as the measurement
of ITD to be vanishing, see the tunneling time delay scheme
in Fig. 1. Retrospectively, we can interpret the trajectory-
free tunneling time calculated in Ref. [30], using the saddle-
point of the numerical solution of TDSE expressed via the
Green function, as the calculation of ITD, and showing it to
be vanishing, similar to the experimental result of Ref. [45].
While ETD is determined by the peak of the electron wave
packet near the tunnel exit, ATD – by the shift of the peak of
the asymptotic PMD, the ITD is determined by the emerging
time ts(pm) of the quantum orbit corresponding to the peak of
PMD.

Recently, we have investigated the time delay in tunnel-
ing ionization using the first-order strong-field approximation
(SFA) within the virtual detector approach [67]. The calcula-
tion of the SFA wave function based on the direct ionization
amplitude showed a positive time delay in the region of the tun-
nel exit, without invoking recollisions. It has been confirmed
that reflections of the electron wavepacket under the tunneling
barrier are responsible for this non-zero time delay around
the tunnel exit. While the ETD is not directly measurable in
an experiment, it is amenable to measurement in a numerical
experiment via a solution of the TDSE. In [29] it has been
clarified that the nonnegligible negative ATD emerges due to
the interference of the direct and sub-barrier recolliding paths,
however, the relationship between asymptotic and exit time
delays was not clear. In the present paper, we address the issue
of the quantitative relationship between ATD and ETD.

In this paper we continue the investigation of the time delay
in tunneling ionization within SFA. Our aim is to analyze the
role of the under-the-barrier recollisions for the tunneling time
delay at the tunnel exit. To this end we calculate the wave-

ITD=0 ETD>0 ATD<0

VSR

VSR-xE0

-Ip

distance
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Figure 1. Time delays related to the tunneling ionization: the initial
time delay (ITD), describing the emergence of tunneling ionization
wavepacket inside the barrier (it is vanishing), the exit time delay
(ETD), describing the peak of the tunneling wave packet near the
tunnel exit (it is positive); asymptotic time delay (ATD) deduced from
the asymptotic PMD (it is negative); VS R is the short-range atomic
potential, VS R − xE0 is the tunneling ionization barrier through the
laser field modified atomic potential, −Ip is the bound state energy.

function of the tunneling electron with an accuracy up to the
second-order SFA, which includes the recolliding quantum
orbits. The Wigner trajectory is constructed corresponding to
the peak of the ionized part of the wave function, and the time
delay is extracted from the latter. While already the Wigner
trajectory based on the first-order SFA wavefunction shows a
positive ETD [67], here we examine how it is perturbed by the
sub-barrier recollisions. Firstly, we employ the same simple
model for tunnel-ionization as in the previous study [67], con-
sidering a one-dimensional (1D) atom, with an electron bound
by a short-range potential, which is ionized by a half-cycle
laser pulse. This simple model contains major features of the
tunneling ionization and allows a fully analytical treatment.
The 1D treatment is justified as the ionization occurs mainly
in the direction of the electric field. The use of a half-cycle
laser pulse excludes recollisions via the electron continuum
dynamics, that are not related to the tunneling time delay. We
consider the regime close to the OTBI regime. In this regime
the ATD induced by sub-barrier recollisions is not vanishing,
in contrast to the deep tunneling regime discussed in [67]. Sec-
ondly, we extend the 1D model into three dimensions keeping
the short-range character of the binding potential, and show
that the qualitative features of the tunneling time delay are
maintained in the 3D case. Finally, we discuss the recent exper-
iment [45] measuring the tunneling time delay in a two-color
attoclock setup. Our SFA model confirms the experimental
findings, however, shows that the latter provides no informa-
tion on the ATD, and a new definition of a time delay (ITD) is
necessary to physically interpret the experimental results.

The structure of the paper is as follows: in Sec. II we in-
troduce the theoretical approach based on the SFA formalism,
in particular, the applied low-frequency approximation (LFA).
The results for 1D and 3D cases are discussed in Sec. III, the
two-color experiment is analyzed in Sec. IV, and our conclu-
sion is given in Sec. V. Atomic units (a.u.) are used throughout
the paper.

II. THEORY

A. Statement of the problem

We consider strong-field ionization of an atom in a unipolar
laser field, aiming at the investigation of the tunneling time
delay. A short-range potential, V(r), is chosen to model an
atomic potential. This allows the discussion to focus uniquely
on the presence of time delay effects, unlike angular streak-
ing experiments for which long-range Coulomb effects must
be accounted. The ionization process is described by the
Schrödinger equation

i
∂

∂t
Ψ(r, t) = (H0 + Hi)Ψ(r, t), (1)

with the atomic Hamiltonian

H0 = −
∇2

2
+ V(r), (2)
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and the interaction Hamiltonian of the electron with the time-
dependent laser field E(t) in the length gauge

Hi = r · E(t) . (3)

A unipolar laser pulse is employed to avoid multi-half-cycle
interference effects, which could hinder the observation of the
time-delay signature. The pulse is linearly polarized and has a
Gaussian form:

E(t) = −E0 exp
[
−(ω t)2

]
x̂, (4)

with the field strength E0, and the angular frequency ω. We
are interested in the tunneling ionization regime, when the
dimensionless Keldysh parameter [68] γ = ωκ/E0 � 1 is
much smaller than unity. Here, −Ip = −κ2/2 is the atomic
binding energy, Throughout this paper we choose γ = 0.3
and are, therefore, always in the quasistatic ionization regime,
while varying the laser field strength and, accordingly, the
frequency.

B. The Strong Field Approximation

A formal solution to Eq. (1), is given by the time evolu-
tion operator U(t, ti) which unitarily evolves the wavefunction
according to the full Hamiltonian H = H0 + Hi, from the ini-
tial state |ψ(ti〉 at time ti into the state |ψ(t)〉 = U(t, ti)|ψ(ti)〉
at time t. In the interaction picture the unitary time evolution
operator obeys the Dyson equation

U(t, ti) = U0(t, ti) − i
∫ t

ti
dt1 U(t, t1)Hi(t1)U0(t1, ti), (5)

where U0 is the evolution operator corresponding to the Hamil-
tonian H0. We work within the well-known SFA [68–70],
which assumes that after ionization the electron dynamics are
dominated by the laser field, treating any further interactions
with the atomic core perturbatively. That is, the full time evo-
lution operator is iterated with respect to the atomic potential
V [66]:

U(t, t1) = U f (t, t1) − i
∫ t

t1
dt2 U(t, t2) V U f (t2, t1). (6)

Here U f (t, t1) is the time evolution operator for the electron
dynamics purely in the laser field:

U f (t, t1) =

∫ ∞

−∞

dp |Ψp(t)〉 〈Ψp(t1)| , (7)

expressed via Volkov states of the electron in the laser field
[71], |Ψp(t)〉 = |P(t)〉 exp[−i S p(t)], with the kinetic momentum
P(t) = p + A(t), the phase S p(t) =

∫ t
dτP(τ)2/2, and the

laser vector potential A(t) =
∫ ∞

t E(τ) dτ; the state 〈r |p〉 =

exp
[
i p · r

]
/(2π)

d
2 is the d-dimensional plane wave state.

Thus, the electron wavefunction in the SFA is obtained as a
truncated series with respect to the atomic potential V:

|Ψ(t)〉 = |Ψ0(t)〉 + |Ψi(t)〉 + |Ψr(t)〉 , (8)

which describes the ionization of the ground state |Ψ0(t)〉 via
the direct path,

|Ψi(t)〉 = −i
∫ t

ti
dt1

∫
dp |Ψp(t)〉 〈Ψp(t1) |Hi(t1) |ψ0(t1)〉 ,

(9)
and via the recollison path, involving one further interaction
with the atomic core, given by

|Ψr(t)〉 = −

∫ t

ti
dt1

∫ t

t1
dt2

∫
dp

∫
dk |Ψp(t)〉 (10)

× 〈Ψp(t2) |V |Ψk(t2)〉 〈Ψk(t1) |Hi(t1) |ψ0(t1)〉 ,

with each further interaction with atomic potential correspond-
ing to a higher order term in V .

The canonical interpretation of the above term, Eq. (10), is
that it corresponds to the event of an ionized electron being
driven by the oscillating laser field back towards the core and
scattering from it. However, in the case where the electron
is not driven back towards its parent ion, in particular, in the
case of the applied unipolar laser field, this term takes on a
different meaning. In the quantum orbit picture, this additional
perturbative interaction with the atomic core is described as
a recollision in the complex (imaginary) time during the sub-
barrier dynamics [72, 73].

Such processes were dubbed “under-the-barrier recolli-
sions” in Ref. [29], where it was shown that, for ionization
near the threshold for over-the-tunnelling-barrier ionization
(OTBI), the interference between the direct ionization terms
and under-the-barrier-recollision terms (i.e. between the first
order term in the SFA, Eq. (9) and higher orders in the SFA,
e.g. Eq (10)) produced a measurable shift in the resulting
asymptotic photoelectron momentum distribution (PMD).

The aim of the current work is to investigate in which extent
the time delay around the classical tunnel exit is altered due to
the under-the-barrier recollisions, i.e., due to the higher order
terms in the SFA. To this end the time dependent wave function
Ψ(r, t) is calculated and the time delay around the classical
tunnel exit is deduced via the maximum in time, t, of the spatial
probability |Ψ(r, t)|2 for a given coordinate, r.

For comparison we also consider the asymptotic PMD
|M(p)|2 measurable at a detector. This is calculated by the
projection of the time-dependent wave function in the momen-
tum representation

m(p, t) = 〈Ψp(t) |Ψ(t)〉 , (11)

on the free electron Volkov state |Ψp〉, in the limit of asymptotic
times:

M(p) = lim
t→∞

m(p, t). (12)

In terms of the SFA wave function of Eq. (8), the amplitude,
m(p, t) = m1(p, t)+m2(p, t) , with m1(p, t) = 〈Ψp(t) |Ψi(t)〉, and
m2(p, t) = 〈Ψp(t) |Ψr(t)〉, which generates the asymptotic PMD
as a similar perturbation series M(p) = M1(p) + M2(p). The
wave function via m1(p, t) we will call 1SFA wave function,
while that via m1(p, t) + m2(p, t), 2SFA one.
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C. The Low Frequency Approximation

In the second-order SFA, recollisions are treated in the first-
order Born approximation, which is inaccurate for intermediate
energy electrons |p| ∼ κ. For the under-the-barrier recollisons,
given by Eq. (10), exactly this condition applies and so the
recollision treatment must be improved.

In order to do this, we make use of LFA [74, 75]. In the
LFA, the recollision matrix element in the Born approximation
is replaced by the exact T (p)-matrix for the field free scattering
off the zero-range potential:

〈Ψp(t2) |V |Ψk(t2)〉 → 〈Ψp(t2) |T (p + A(t2)) |Ψk(t2)〉 . (13)

In the LFA, the amplitude including recollisions with the core
is then approximated by the integral:

|Ψr(t)〉 = −

∫ t

ti
dt1

∫ t

t1
dt2

∫
dp

∫
dk |Ψp(t)〉 (14)

× 〈Ψp(t2) |T (p + A(t2)) |Ψk(t2)〉 〈Ψk(t1) |Hi(t1) |ψ0(t1)〉 .

We simplify more LFA by correcting the second-order SFA
by the so-called LFA-factor. This factor provides an analytical
estimate of the effect of the LFA in the quasistatic limit. By
considering a constant electric field E = −E0x̂, we derive
the LFA-factor via the ratio of the second-order momentum
amplitude in the LFA to that in the second-order SFA:

TLFA =
m2

∣∣∣∣
LFA

m2

∣∣∣∣
S FA

. (15)

This is a relatively straightforward calculation, details of which
can be found in Appendix A. In one dimension this ratio is
calculated to be

T
(1D)
LFA = 1 −

√
π

2
κ3

E0
. (16)

In three dimensions, the calculation contains additional inte-
grations on the transversal coordinate and momentum. Under
the assumption that the final momentum lays in the polarization
axis py = pz = 0, we obtain a similar scaling

T
(3D)
LFA =

√
π

2
κ3

E0
. (17)

The LFA-factor is then inserted as a prefactor into the time
dependent second-order SFA amplitude and the latter is calcu-
lated numerically in the quasi-static regime of γ = 0.3.

D. The electron wavefunction in momentum space

The electron wavefunction in momentum space m(p, t) =

m1(p, t) + m2(p, t) reads in LFA:

m1(p, t) = − i
∫ t

ti
dt1 〈Ψp(t1)|Hi(t1)|ψ0(t1)〉 (18)

m2(p, t) = − TLFA

∫ t

ti
dt1

∫ t

t1
dt2

∫ ∞

−∞

dk 〈Ψp(t2)|V(r)|Ψk(t2)〉

(19)

× 〈Ψk(t1)|Hi(t1)|ψ0(t1)〉

In the 1D case the first-order amplitude can be expressed as

m(1D)
1 (p, t) =

∫ t

ti
dt1

∫ ∞

−∞

dx1 m̃(1D)
1 (p, x1, t1), (20)

where for convenience we define the integrand of the matrix
element

m̃(1D)
1 (p, x1, t1) = −iΨ∗p(x1, t1)Hi(t1)ψ0(x1, t1). (21)

The second-order amplitude can be simplified via analytical
integration of the recollision coordinate x2 in the first matrix
element and the intermediate momentum k, which yields

m(1D)
2 (p, t) =

∫ t

ti
dt1

∫ t

t1
dt2

∫ ∞

−∞

dx1 m̃(1D)
2 (p, x1, t1, t2)

(22)

with

m̃(1D)
2 (p, x1, t1, t2) = −iT 1D

LFA

√
2π

i(t2 − t1)

× Ψ∗p(0, t2)(−κ)Ψks (0, t2) m̃(1D)
1 (ks, x1, t1).

(23)

where ks = (−x1−α(t2)+α(t1))/(t2− t1) and α(t) =
∫ t

dτ A(τ).
Both amplitudes now are expressed via the integral

Ii =

∫ ∞

−∞

dx1 x1 exp
[
ai x1 + bi x2

1 − κ | x1 |
]
, (24)

with corresponding coefficients ai and bi for i = 1, 2, shown in
Table I.

I1 I2

ai −i(p + A(t1)) −i(k̃s + A(t1))

bi 0
i

2(t2 − t1)

Table I. Coefficients of the integral Eq. (24) for the first- and second-
order SFA. In the above k̃s = −(α(t2) − α(t1))/(t2 − t1)
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The integral of Eq. (24) has an analytic solution

Ii =

√
πe−

(ai+κ)2

4bi

4 (−bi)3/2

{
e

a2κ
bi (ai − κ)

[
1 + erf

(
ai − κ

2
√
−bi

)]
+ (ai + κ)

(
1 − erf

(
ai + κ

2
√
−bi

))}
; (25)

In the limit bi → 0, we have Ii = 4aiκ

(a2
i −κ

2)2 .
Finally, the amplitudes are calculated using the function I

defined above:

m(1D)
1 (p, t) =

∫ t

ti
dt1 m̃(1D)

1 (p, 0, t1)I1(t1), (26)

m(1D)
2 (p, t) =

∫ t

ti
dt1

∫ t

t1
dt2m̃(1D)

2 (p, 0, t1, t2)I2(t1, t2).(27)

The derivation of the approximate SFA amplitudes in three
dimensions is given in Appendix B.

E. The electron wavefunction in coordinate space

The coordinate wavefunction can be represented straightfor-
wardly via a 1D-Fourier transformation using the SFA ampli-
tudes m1 and m2 as follows:

Ψi(x, t) =

∫ ∞

−∞

dp m1(p, t) Ψp(x, t) (28)

Ψr(x, t) =

∫ ∞

−∞

dp m2(p, t) Ψp(x, t) (29)

We underline that the amplitudes m1,2(p, t) in the equations
above are time-dependent. For the calculation of ATD we use
M1,2(p) = m1,2(p, t)|t→∞, while for the exit delay m1,2(p, t)|t=te ,
at the exit time te (close to zero), is employed. The momentum
integration is performed by SPA yielding an extra factor:

Ψi(x, t) =

∫ t

ti
dt1

∫ ∞

−∞

dx1 m̃(1D)
1 (ps1, x1, t1)

√
2π

i(t − t1)
Ψps1 (x, t)

(30)

Ψr(x, t) =

∫ t

ti
dt1

∫ t

t1
dt2

∫ ∞

−∞

dx1 m̃(1D)
2 (ps2, x1, t1, t2)

×

√
2π

i(t − t2)
Ψps2 (x, t), (31)

where ps1 = [x− x1−α(t)+α(t1)]/(t− t1), and ps2 = [x−α(t)+

α(t2)]/(t − t2). The coordinate integration can be represented
again by the functions Ii, with the coefficients ai in the integral
of Eq. (24) are now given by those of Table II.

Ψi(x, t) =

∫ t

ti
dt1 m̃(1D)

1 (p̃s1, 0, t1)I1(t1)

√
2π

i(t − t1)
Ψp̃s1 (x, t),

(32)

Ψr(x, t) =

∫ t

ti
dt1

∫ t

t1
dt2m̃(1D)

2 ( p̃s2, 0, t1, t2)I2(t1, t2)

×

√
2π

i(t − t2)
Ψ p̃s2 (x, t), (33)

I1 I2

a1 −i( p̃s1 + A(t1)) −i(k̃s + A(t1))

bi
i

2(t − t1)
i

2(t2 − t1)

Table II. Coefficients of the integral Eq. (24) for the first- and second-
order SFA wavefunction in the coordinate representation. In the above
p̃s1 = (x − α(t) + α(t1))/(t − t1), k̃s = −(α(t2) − α(t1))/(t2 − t1).

with p̃s1 = (x − α(t) + α(t1))/(t − t1), and p̃s2 = (x − α(t) +

α(t2))/(t − t2). Further, the probability distribution at the exit,
x = xe, is calculated via the wavefunction |Ψ(xe, t)|2. Here, the
average exit coordinate xe is obtained by averaging over the
tunneling probability (Keldysh-exponent), similar to Ref. [67]:

xe =

∫ ∞
−∞

dt Ip

|E(t)| exp[− 2κ3

3|E(t)| ]∫ ∞
−∞

dt exp[− 2κ3

3|E(t)| ]
. (34)

The 3D wavefunction in coordinate space is given in Ap-
pendix C.

III. DISCUSSION

A. The Wigner Trajectory

The dynamics of the laser driven electron during strong-field
ionization are described by the SFA wavefunction Ψi(x, t) +

Ψr(x, t). The Wigner trajectory τW(x) is derived using the
probability P(x, t) = |Ψi(x, t) + Ψr(x, t)|2 of the laser driven

classical

0 2 4 6 8 10 12
0

2

4

6

8

10

Figure 2. Wigner trajectories in the 1D case: (orange triangles) the
trajectory τ(x) calculated via the 2SFA wave function including the
direct and sub-barrier recolliding paths; (blue circles) the trajectory
τi(x) calculated via the 1SFA wave function including only the direct
ionization path; (green diamonds) the classical trajectory starting at
the tunnel exit with a vanishing velocity. The shaded area indicates
regions under the barrier, i.e. smaller than the tunnel exit coordinate
xe given by Eq. (34). The field strength E0 = 0.15 a.u. is below the
OTBI threshold.
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Figure 3. Time delay at the tunnel exit vs the laser field: (a) in the 1D case, (b) in the 3D case, using the first order SFA (blue circles), as well
as the second order SFA (orange triangles). Both time delays δtexit = maxt[P(xe, t)] −maxt[E(t)], are calculated as the peak of the temporal
probability distribution at the tunnel exit xe, as laid out in the text. In the 2SFA (orange triangles), the probability P(x, t) = |Ψi(x, t) + Ψr(x, t)|2

includes the effects of recollisions, whereas as in the 1SFA the probability distribution Pi(x, t) = |Ψi(x, t)|2 accounts only for direct ionization.
The difference of these two delays, |δt(r)

exit | = |δtexit(2S FA) − δtexit(1S FA)| increases with field strength, an effect directly attributable to the
under-the-barrier recollision.

wavepacket in the following way: for each fixed space point x,
τW(x) corresponds to the peak of the probability P(x, t). For
comparison, we additionally consider an analogous “direct
ionization” Wigner trajectory, τ(i)

W (x), calculated only using
the maximum of the direct ionization probability Pi(x, t) =

|Ψi(x, t)|2. These Wigner trajectories for the field strength E0 =

0.15 a.u. are shown in Fig. 2, beginning at the typical value
|xs| ∼ 1/κ, which is the x1-saddle point of the product of the
1D bound state ∼ exp[−κ|x1|] with the interaction Hamiltonian
Hi ∼ E(t)x1. The field value is chosen not to exceed, but to be
close to the threshold for OTBI, when the tunneling time delay
is significant.

-0.5 0.0 0.5
0.04

0.05

0.06

0.07

0.08

Figure 4. Asymptotic momentum distribution in 1D for the wavefunc-
tion using the SFA up to first (blue, solid) and second order (orange,
dashed). A positive momentum shift δp ≈ 0.08 a.u. is observed in
the peak of the distribution when one under-the-barrier recollison is
considered, corresponding to a negative time delay of −0.53 a.u. The
grid lines, and associated coloured dots, indicate the peaks of the
distributions.

Both the direct ionization Wigner trajectory, τ(i)
W (x), and the

one via the full ionization amplitude including a recollision,
τW (x), show a positive time delay at the tunnel exit compared
to the peak of the laser field. However, the recollision under
the barrier acts to reduce the time delay slightly. In Ref. [67]
we have shown that the positive time delay of the direct ion-
ization path arises due to reflections inside the barrier, and it
is positive as the reflections hinder the wavepacket crossing
the barrier. The positive ETD is reduced by the sub-barrier rec-
ollision, which can be intuitively explained by the additional
positive probability current induced by the recollision. That is,
accounting for the additional possibility of ionization through
a recollision increases the probability current by accounting
for an additional ionization channel. An increase in probability
flux implies reduced hindrance of the tunnelling wavefunction
which in turn implies a smaller time delay.

Far from the exit, the direct trajectory approaches the clas-
sical trajectory, i.e. the trajectory of a classical electron ap-
pearing at xe at the peak of the laser field, with a vanishing
momentum. Thus, the direct trajectory shows vanishing ATD
with respect to the “simple man” model (tunneling, followed
by classical motion), while the trajectory containing an under-
the-barrier recollision tends to a negative ATD with respect to
the simple man model. The latter is in accordance with the
previous result of Ref. [29].

B. Time Delay Dependence on Field Strength

The dependence of ETD, δtexit, on the laser field strength, E0,
is shown in Fig. 3. With larger fields, the time delay decreases,
which was already established for direct ionization in Ref. [67].

However, the effect of recollisions on the time delay, i.e., the
difference of the time delay between the direct and recolliding
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Figure 5. Relationship between ETD and ATD in the (a) 1D and (b) 3D cases. Plotted are the variation of the peak of the tunnelling wave
packet at the tunnel exit due to the recollision, δt(r)

exit = δtexit(1S FA) − δtexit(2S FA) (orange triangles), ATD δtasymp = δpasymp/E0 (blue circles).
The dashed line shows an estimate of ATD in a static field calculated via the Wigner derivative and given by Eq. (40) and its 3D equivalent.

trajectories,

δt(r)
exit = δtexit(2S FA) − δtexit(1S FA), (35)

in this case increases by absolute value, as shown in Fig. 3.
Thus, on the one hand, the sub-barrier recollision decreases

the positive ETD, i.e. has a negative contribution to the ETD.
On the other hand, it is known [29, 46] that the sub-barrier
recollision also induces a shift of the peak

δpasym = maxp{|M1(p) + M2(p)|2} −maxp{|M1(p)|2} (36)

of the asymptotic PMD, corresponding to a negative ATD

δtasym = −δpasym/E0. (37)

We illustrate the latter in Fig. 4, where the asymptotic PMD,
|M1(p) + M2(p)|2, via the SFA up to first and second orders
is shown for a field strength E0 = 0.15 a.u.. A positive mo-
mentum shift δp ≈ 0.08 a.u. (corresponding to the negative
time delay δtasym ≈ −0.53 a.u.) is observed in the peak of
asymptotic momentum, which is directly attributable to the
under-the-barrier recollison.

We can give an estimate of the scaling of δtasym with respect
to the field strength by calculating the Wigner time delay[50]
of an electron in an adiabatic field [12, 76]. The Wigner delay
corresponds to the energy derivative,

δtasym = i
∂ ln(Ψκ)
∂Ip

, (38)

of the electron wavefunction in a static field, which in the SFA
reads

Ψκ ∼ exp{−κ3/(3E0)} + iT (1D)
LFA exp{−κ3/E0}. (39)

This equation has a simple intuitive explanation. The first term
(exp{−Ea/(3E0)}) describes the direct tunneling amplitude and

its module square (exp{−2Ea/(3E0)}) is proportional to the
tunneling exponent of Keldysh theory. The second term de-
scribes the recolliding path, which includes triple tunneling
through the barrier: from the atom to the surface of the barrier,
tunneling again toward the atom with a recollision, and the
final tunneling leading to ionization. Due to the triple tunnel-
ing, the tunneling exponential factor is repeated three times
(exp{−Ea/E0}). The recollision is included via perturbation
theory, therefore, the amplitude is proportional to the scattering
amplitude by the core (T (1D)

LFA ). For an explicit derivation, we
refer the reader to Eq.(2) of Ref. [29]. Thus, a straight forward
calculation (recalling the binding energy −Ip = −κ2/2) yields

|δtasym| ∼
e−

2 κ3
3 E0

κ2

−3
√
π

8

(
κ3

E0

) 1
2

− 2
(
κ3

E0

)
+
√

2π
(
κ3

E0

) 3
2

(40)

which for E0 � κ3 is dominated by the last term

|δtasym| ∼
√

2π
e−

2 κ3
3 E0

κ2

(
κ3

E0

)3/2

. (41)

A similar derivation yields a three dimensional es-
timate δt(3D)

asym ∼ (E0/κ
3) δtasym, when the 3D SFA

wavefunction is employed, ψ(3D)
κ ∼ exp{−κ3/(3E0)} +

i c2(0, ts1, ts2) T (3D)
LFA exp{−κ3/E0}, where c2(0, ts1, ts2) is given

by Eq. (B7), ts1 = 3 ts2 = 3iκ/E0 are the saddle points of time
integration in a constant field, for details see Ref. [29].

These estimates are in good qualitative accordance with the
time dependent SFA results shown in Fig. 5.

C. Relationship Between Asymptotic and Exit Delays

It is interesting to see whether there is a relationship be-
tween these two time delays, δtasym and δtexit. This question is
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Simple man model 1SFA 2SFA characteristic values
ITD 0 0 0 0

ETD 0 E −2/3
0 E −2/3

0 − τ0 exp(− 2κ3

3E0
) . 10 a.u.

ATD 0 0 −τ0 exp(− 2κ3

3E0
) & −1 a.u.

Asymptotic momentum shift 0 0 E0τ0 exp(− 2κ3

3E0
) . 0.4 a.u.

Table III. Scaling of tunnelling times and asymptotic momentum w.r.t field strength, E0, for E0 � κ3, for three different models of ionization in
one dimension (the classical simple man model, direct ionization using the first order SFA, and ionization including one recollision using the
second order SFA). These estimates provide upper or lower bounds for these measures which are indicated above as characteristic values. Here

τ0 =
√

2π
κ2

(
κ3

E0

)3/2
, as in Eq. (41). For the scaling via 1SFA see Ref. [67].

particularly relevant to attosecond streaking techniques which
attempt to extract information on the tunnelling process from
measurements at distances much greater than the atomic scale.
This question is analyzed in Fig. 5, comparing these two time
delays.

The qualitative features of the ETD are similar in both the
1D and 3D cases. The ETD is positive and decreases with
larger fields. The sub-barrier recollision reduces the ETD
[Fig. 3], and the sub-barrier recollision effect increases with
the field [Fig. 5]. The value of the time delay in the 3D case is
smaller than in 1D, because of the decreasing contribution of
the recolliding wave packet which spreads in three dimensions
for the case of a short-range atomic potential.

IV. TUNNELING TIME DELAY IN A TWO-COLOR
LASER FIELD

Recently, a new scheme for the determination of the tunnel-
ing time has been proposed and experimentally implemented
in Ref. [45]. The new scheme uses an elliptically polarized
infrared (IR) streaking laser field along with an additional per-
turbative second-harmonic field, linearly polarized along the
major axis of the elliptical polarization. Due to the second
harmonic field, the total laser field is slightly modified, which
leads to slight modification of PMD.

Due to the total field modification, the ionization yield at
a given attoclock angle oscillates with respect to the phase
difference (time delays) between the color fields. The experi-
ment shows that the yield is the largest for the attoclock angle,
which corresponds to the vanishing phase difference between
the two color fields ∆φ = ωtd = 0, with the time delay be-
tween the laser pulses. In the ∆φ = 0 case, the peak field of
the second-harmonic wave is added to that of the elliptical
polarization, creating the largest total field inducing the ion-
ization. Therefore, according to the experiment, the tunneling
of the electron which produces the largest yield (largest PMD
peak), happens at the maximum of the field. From the latter, a
conclusion is drawn that the tunneling time delay is vanishing.
While the results of this accurate experimental measurement
raise no doubt, the conclusion drawn from the results needs
clarification. One needs to understand the physical meaning of

the measured time delay.
We have tested the conclusion of these experimental results

with our simple analytical 1D SFA model developed in previ-
ous sections, which uses a short-range potential for the atomic
potential and two half-cycle laser pulses. We mimic the two-
color driving laser pulse with a field strength

E(t) = −E0

{
exp[(ωt)2] + ξ exp[−(2(ω(t − td)))2]

}
, (42)

which has the same property as the total field in the experimen-
tal setup: the total field is the largest when the time delay td
between the color field is vanishing, see Fig. 6.

We calculate the PMD using Eqs. (26)-(27) (for the asymp-
totic time t → ∞) as a function of the time delay td. The chosen
parameters are E0 = 0.25 a.u., ω = 0.075 a.u. and ξ = 0.05.
The probability of the PMD peak varies depending on td as
is shown in Fig. 7(a). We observe the same result as in the
experiment of Ref. [45] that the probability of the PMD peak is
the largest at vanishing time delay between the pulses, td = 0,
i.e. when the field inducing ionization is the largest. Thus, the
correspondence of the largest PMD peak to the largest field is
confirmed, i.e., the largest PMD peak is initiated at the peak of
the field.

We find from PMD the momentum pm corresponding to the
PMD peak at any given td, and translate it to the ionization
time via the time delay δtasymp = −(pm + A(0))/E0, taking into
account that at t = 0 the asymptotic momentum is −A(0), with
the vector potential A(t). Note that δtasymp for 1SFA coincides
with the simple man prediction for the peak momentum pm =

−A(tm), where tm corresponds to the peak of the field E(t).
We calculate also the saddle-point time ts of the SFA am-

plitude, which corresponds to the time of the initiation of the
quantum orbit of tunneling ionization. Both, 1SFA and 2SFA
give the same value for Re{ts}. Both, δtasymp and Re{ts} are
shown in Fig. 7(b), which indicates that Re{ts} coincides with
the 1SFA result, which is similar to the simple man model,
i.e. the ionization is initiated at the time of the maximum of
the laser field. Thus, ITD corresponds to the difference be-
tween Re{ts} and 1SFA and it is vanishing for any td. The
same conclusion that Re{ts} corresponding to the PMD peak
is vanishing, has been derived in Ref. [30] via analysis of the
numerical amplitude. The numerical solution of TDSE has
been expressed in [30] via the time integral containing the
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Figure 6. The two-color field of Eq. (42): (a) The total two-color field for td = −1 a.u. (blue solid), td = 0 (orange dashed), and td = 1 a.u.
(green dotted); (b) The peak value of the two-color field E(tm) vs the time delay td.
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Figure 7. Tunneling ionization in a two-color laser field: (a) The probability w for the peak of PMD vs the time delay td between the color fields;
(b) δtasymp = −(pm + A(0))/E0 vs td, with the pm corresponding to the PMD peak. The ATD corresponds to the shift of δtasymp between 2SFA
and 1SFA, which is due to the interference of the direct and the sub-barrier recolliding paths; (dashed line with blue cycles) via 1st-order SFA,
(orange triangles) via 2nd order SFA, (green triangles) Re{ts} via 2SFA. The ITD corresponds to the difference between Re{ts} and 1SFA and it
is vanishing for any td.

numerical Green function, and the saddle-point of this time
integration has been obtained, identifying it with the tunneling
time delay. We argue that in this way, in fact, the vanishing
ITD has been calculated.

From Fig. 7(b) we can deduce also the value of ATD, which
corresponds to the shift of δtasymp between 2SFA (full SFA
amplitude, including the 1st and 2nd order SFA amplitudes)
and 1SFA (1st order SFA). This shift is due to the interference
of the direct and the sub-barrier recolliding paths. The ATD
(shift between 2SFA and 1SFA) is about 1 a.u. at any td.
The ATD at td = 0 (when the ionization yield is maximal) is
δtasymp = −1 a.u., while ITD via ts is vanishing. Thus, in this
two-color setup, the largest PMD peak of the ionization wave
packet originates at the peak of the laser field, td = 0. The
latter can be interpreted as the ITD vanishing.

Further, there are two paths of ionization: the direct path,
described by the 1st-order SFA amplitude, and the sub-barrier

recolliding one, described by the 2nd-order SFA amplitude.
While these paths originate at the peak of the laser field, their
interference is observed in the PMD as a shift of the momentum
distribution (with respect to the case only with the direct SFA
path), which is equivalent to the nonzero ATD. Consequently,
the emergence of the ionization wave packet at the peak of the
laser field, i.e., the vanishing of ITD, does not preclude the
nonvanishing ATD due to the sub-barrier dynamics.

V. SUMMARY AND CONCLUSION

We have considered the tunneling time delay of an electron
in strong-field ionization in a unipolar time-dependent laser
field, accounting for under-the-tunneling-barrier processes.
The electron wave function within a simplified model of ioniza-
tion, with a short-range atomic potential, has been calculated
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analytically using SFA. We considered the direct ionization (via
the first-order SFA), and the full ionization amplitudes includ-
ing the direct tunneling path and the path with the sub-barrier
recollision (via the second-order SFA). Employing the wave-
function in its spatial representation, we derived the Wigner
trajectory near the tunnel exit. The Wigner trajectory shows
a positive time delay near the tunnel exit both with and with-
out under the barrier processes. However, we find that when
one accounts for sub-barrier recollisions the ETD is decreased
slightly, see the summary in Table III.

As is known from Ref. [29], the interference of the direct and
sub-barrier recolliding paths induces an asymptotic momentum
distribution shift, which is equivalent to a negative time delay
with respect to the simple man model. We found a relationship
between the change of ETD due to sub-barrier recollisions and
the ATD. Furthermore, we proved that these time delays are
equal in the tunneling regime, as expected because of the same
origin related to the effect of the sub-barrier recollision. The
field dependence of these time delays is also obtained.

We provided also the 3D generalization of our results. The
features of the tunneling time delay were shown to be similar
to those in one dimension.

Finally, we tested with our model the conclusion drawn from
the experiment on the accurate measurement of the ionization
PMD in a two-color laser field. The result of the experiment
shows that the ionization wave packet corresponding to the
largest PMD peak emerges at the peak of the laser field. We
introduced the notion of ITD and relate it to the two-color
experiment, as well as to the theoretical calculation of the
trajectory-free tunneling time of Ref. [30]. While the two-
color experiment shows vanishing ITD, this does not preclude,
according to our theoretical analysis, the nonvanishing ATD
due to the sub-barrier dynamics.
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Appendix A: The LFA factor

1. 1D LFA Factor

We derive the LFA factor in the 1D case. To this end we
compare the second-order SFA amplitude with that of LFA in
the quasistatic limit, namely, in a static field. The second-order
SFA amplitude in a constant field E(t) = −E0 has the follow-
ing structure in the 1D case after performing the coordinate
integrations analytically:

m(1D)
2S FA =

∫ ∞

−∞

dt1

∫ ∞

t1
dt2

∫
dk P2S FA (A1)

exp
[
− i

p2

2
(t − t2) − ip(α(t) − α(t2))

−i
k2

2
(t2 − t1) − ik (α(t2) − α(t1)) + iβ(t1) + i

κ2

2
t1
]
,

where α(t) = E0t2/2 and β(t) = E2
0t3/6. In the above,

P2S FA = −κ5/2/(
√

2π)3 is the pre-exponential factor of the
second-order SFA, which we is weakly dependent on the inte-
gration variables. Without loss of generality we can set p = 0
and simplify. Then, using SPA for the k- and t1-integrations
yields

m(1D)
2S FA =

∫ ∞

t1,s
dt2

2π
κ
P2S FA exp

− κ3

E0
−

E0κ

2

(
t2 − i

κ

E0

)2 ,
(A2)

where the exponent is already expanded quadratically around
the saddle point in t2. The integration contour in Eq. (A2)
consists of two parts: 1) from t1,s to iκ/E0, and 2) from iκ/E0
to∞. The integration along the first part of the contour gives
the direct ionization amplitude m1, see Appendix D, cf. [77],
which is dropped because in this section our aim is to derive
the LFA factor for the recollision amplitude. Then, the integral
along the second part of the contour yields

m(1D)
2S FA = P2S FA

(2π)3/2

2κ
√
κE0

exp
[
−
κ3

E0

]
. (A3)

Now we calculate the corresponding LFA amplitude. In the
1D LFA, the SFA pre-exponential factor P2S FA is replaced by

P
(1D)
LFA(t2) =

E0t2
E0t2 − iκ

P2S FA, (A4)

see [78], and we consequently arrive at

m(1D)
LFA =

∫
t1,s

dt2
2π
κ
PLFA(t2) exp

− κ3

E0
−

E0κ

2

(
t2 − i

κ

E0

)2 .
(A5)

The latter is calculated analytically in the same way as that of
Eq. (A2), yielding

m(1D)
LFA =

∫
dt2

π

κ
PLFA(t2) exp

− κ3

E0
−

E0κ

2

(
t2 − i

κ

E0

)2
=

1 −
√
π

2
κ3

E0

 m(1D)
2S FA. (A6)

Thus, we derive the LFA factor in the 1D case:

T
(1D)
LFA = 1 −

√
π

2
κ3

E0
, (A7)

which corrects the SFA recollision amplitude as it incorporates
the exact scattering amplitude in the SFA recollision matrix
element.

2. 3D LFA factor

In the LFA for a 3D system with a short-range potential, the
SFA pre-exponential factor P2S FA is replaced by

PLFA =
−iκ

E0t2 − iκ
P2S FA, (A8)
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see [78]. A calculation similar to 1D gives the following ex-
pression for the LFA recollision amplitude in the 3D case:

m(3D)
LFA =

√
π

2
κ3

E0
m(3D)

2S FA. (A9)

Thus providing the LFA correction factor in the 3D case:

T
(3D)
LFA =

√
π

2
κ3

E0
. (A10)

Appendix B: 3D wavefunction in momentum space

The SFA amplitudes in three dimensions contain additional
integrations on the transversal coordinate and momentum. We
work under the assumption that the final momentum lays in
the polarization axis py = pz = 0, justified by the fact that
ionization occurs primarily in the direction of the driving laser
field. Thus, as before, we have the momentum amplitude
defined by the integral

m(3D)
1 (px, t) =

∫ t

ti
dt1

∫ ∞

−∞

dx1 m̃(3D)
1 (px, x1, t1), (B1)

where

m̃(3D)
1 (px, x, t) =

∫ ∫
dy1 dz1 m̃(1D)

1 (px, x1, t)
exp

(
−κr1 + κ

√
x2

1

)
(2π)3/2 r1

= 2π
∫

dρ1 ρ1m̃(1D)
1 (px, x1, t)

exp
(
−κr1 + κ

√
x2

1

)
(2π)3/2 r1

=
1
√

2πκ
m̃(1D)

1 (px, x1, t) (B2)

with r1 =

√
x2

1 + y2
1 + z2

1 =

√
x2

1 + ρ2
1. Thus, the additional

integral in Eq. (B2) yields an extra factor c1 = 1/
√

2πκ2 in the
first-order amplitude:

m̃(3D)
1 (px, x1, t1) = c1m̃(1D)

1 (px, x1, t1). (B3)

Analogously the second-order amplitude in 3D,

m(3D)
2 (px, t) =

∫ t

ti
dt1

∫ t

t1
dt2

∫
dx1 m̃(3D)

2 (px, x1, t1, t2),

(B4)
can be expressed via the corresponding 1D amplitude

m̃(3D)
2 (px, x1, t1, t2) = −

∫
dy1 dz1 dky dkz m̃(1D)

2 (px, x1, t1, t2)
exp[−ikyy1 − ikzz1 −

i
2 (k2

y + k2
z )(t2 − t1) − κr1 + κ

√
x2

1]√
(2π)3 r1κ2

(B5)

After the application of a 4D SPA over y1, z1, ky and kz
integrations, we obtain the 3D amplitude

m̃(3D)
2 (px, x1, t1, t2) = c1 c2(x1, t1, t2) m̃(1D)

2 (px, x1, t1, t2),
(B6)

with the following correction factor to the 1D case:

c2(x1, t1, t2) = −
1

i(t2 − t1)κ2 + |x1|κ
. (B7)

In the consequent x1-integration in the second-order amplitude
a typical value of |xs| ∼ 1/κ in c2(x1) is assumed [79], after
which the integration is carried out analytically. This choice is
justified because xs is the x1-saddle point of the product of 1D
bound state wavefunction ∼ exp[−κ|x1|] with the interaction
Hamiltonian Hi ∼ E(t)x1.

Thus, the total amplitude (in the px plane) in three dimen-
sions can be calculated from the amplitude in one dimension,
using Eqs. (21), (23):

m(3D)
1 (px, t) =

∫ t

ti
dt1 m̃(3D)

1 (px, 0, t1)I1(t1), (B8)

m(3D)
2 (px, t) =

∫ t

ti
dt1

∫ t

t1
dt2m̃(3D)

2 (px, 0, t1, t2)I2(t1, t2).(B9)

Appendix C: 3D wavefunction in coordinate space

In the 3D case we use the wavefunction in a mixed repre-
sentation Ψi(x, py, pz, t) to derive the Wigner trajectory, choos-
ing the most probable values for the transverse momentum
py = pz = 0:

Ψi(x, py, pz, t)|py=pz=0 =

∫ ∞

−∞

dpxm(3D)
1 (px, t)Ψpx (x, t) (C1)

Ψr(x, py, pz, t)|py=pz=0 =

∫ ∞

−∞

dpx m(3D)
2 (px, t)Ψpx (x, t).(C2)

With the assumption py = pz = 0, the spreading of the tunnel-
ing wave packet in the continuum, after leaving the tunneling
barrier, is neglected. Meanwhile, the spreading during the
tunneling inside the barrier has been fully accounted for via
the intermediate transverse momentum ky, kz-integration in
Eq. (B5). As the tunneling time delay is formed during the
tunneling, the latter is relevant for the tunneling time delay,
while the former has no effect on the tunneling time delay, and
its neglect is thus justified. The calculations similar to the 1D
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case provide:

Ψi(x, py, pz, t)|py=pz=0 =

∫ t

ti
dt1 m̃(3D)

1 ( p̃s1, 0, t1)I1(t1)

×

√
2π

i(t − t1)
Ψp̃s1 (x, t), (C3)

Ψr(x, py, pz, t)|py=pz=0 =

∫ t

ti
dt1

∫ t

t1
dt2 m̃(3D)

2 ( p̃s2, 0, t1, t2)I2(t1, t2)

×

√
2π

i(t − t2)
Ψp̃s2 (x, t), (C4)

Further, the probability distribution at the exit, x = xe, is
calculated via the wavefunction |Ψ(xe, py = 0, pz = 0, t)|2.

Appendix D: Calculation of the integral along the vertical
contour

The V-SFA momentum amplitude in one dimension in a
constant field reads after the two coordinate integrations

m(1D)
2S FA =

∫ ∞

−∞

dt1

∫ ∞

t1
dt2

∫
dk P2S FA (D1)

exp
[
−i

k2

2
(t2 − t1) − ik (α(t2) − α(t1)) + iβ(t1) + i

κ2

2
t1

]
,

where p = 0 was used. We carry out firstly the integration over
the intermediate momentum k by SPA and arrive at

m(1D)
2S FA =

∫ ∞

−∞

dt1

∫ ∞

t1
dt2 P2S FA

√
2π

√
i(t2 − t1)

(D2)

exp
[
−i

k2
s

2
(t2 − t1) − iks (α(t2) − α(t1)) + iβ(t1) + i

κ2

2
t1

]
with ks = −(α(t2) − α(t1))/(t2 − t1). The following t2-integral
consitsts of a vertical contour from t1 to t2,s and a horizontal
contour from t2,s to∞. In this section we want to estimate the
first which has its dominant contribution in the region around
t2 = t1. We therefore expand the integrand in t2 around t1:

m(1D)
2S FA = −

∫ ∞

−∞

dt1

∫ ∞

t1
dt2

κ5/2

2π
√

i(t2 − t1)
(D3)

exp
[ i
2

E2
0(t2 − t1)t2

1 +
i
6

(E2
0t3

1 + 3κ2t1)
]

and integrate analytically

m(1D)
2S FA =

∫ ∞

−∞

dt1
κ5/2

√
2πE0t1

exp
[ i
6

(E2
0t3

1 + 3κ2t1)
]
. (D4)

The final integral is again evaluated via SPA, where the expo-
nent is expanded quadratically at the saddle point t1,s = iκ/E0

and the latter is inserted into the prexponential. With these
approximations we derive the direct ionzation amplitude

m(1D)
2S FA =

iκ
√

E0
exp

[
−
κ3

3E0

]
. (D5)

Appendix E: The numerical time integrations

The derivation of the ionization amplitudes leads to time
integrals, that are calculated numerically. We consider inter-
mediate observation times t, when the electron is close to the
tunnel exit, and the structure of the integrands is the following

m̃ =

∫ t

ta
dt′

exp[ f (t′)]
√

t − t′
, (E1)

where the function f (t′) has a singularity at t′ = t. To handle
the integration at the singularity, we single out the singular
part of f (t′) as f (t′) = −i f−1/(t − t′) + O(1), with a constant
coefficient f−1 > 0, and rewrite the integral

m̃ =

∫ t

ta
dt′

exp
[
f (t′)

]
√

t − t′
−

exp
[
−i f−1
t−t′

]
√

t − t′

 +

∫ t

ta
dt′

exp
[
−i f−1
t−t′

]
√

t − t′

(E2)

Now it is possible to perform the first integration numerically,
since the singularity is omitted, and second integral to calculate
analytically, which yields

m̃ =

∫ t

ta
dt′

exp
[
f (t′)

]
√

t − t′
−

exp
[
−i f−1
t−t′

]
√

t − t′

 − (1 + i)
√

f−1
√

2π (E3)

+(1 + i)
√

2π
√

f−1erf

(1 + i)

√
f−1

2(t − ta)

 + 2
√

t − ta exp
[

i f−1

ta − t

]
,

For asymptotic observation times t → ∞, we approximate
the integrand function, expanding it near the final time t f :

f (t′) ≈ f (t f ) + (t′ − t f ) f ′(t f )

≈ f (t f ) exp
{

ln
[
1 +

(t′ − t f ) f ′(t f )
f (t f )

]}
≈ f (t f ) exp

[
(t′ − t f ) f ′(t f )

f (t f )

]
, (E4)

and calculate the integrals as follows

m̃ =

∫ ∞

ta
dt′ f (t′)

≈

∫ ∞

ta
dt′ f (t f ) exp

[
(t′ − t f ) f ′(t f )

f (t f )

]
≈ −

f (t f )2

f ′(t f )
, (E5)

where t f is a time after the turn-off of the laser pulse.
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