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Abstract

We present a novel approach for modeling vegetation re-
sponse to weather in Europe as measured by the Sentinel 2
satellite. Existing satellite imagery forecasting approaches
focus on photorealistic quality of the multispectral images,
while derived vegetation dynamics have not yet received
as much attention. We leverage both spatial and temporal
context by extending state-of-the-art video prediction meth-
ods with weather guidance. We extend the EarthNet2021
dataset to be suitable for vegetation modeling by introduc-
ing a learned cloud mask and an appropriate evaluation
scheme. Qualitative and quantitative experiments demon-
strate superior performance of our approach over a wide
variety of baseline methods, including leading approaches
to satellite imagery forecasting. Additionally, we show how
our modeled vegetation dynamics can be leveraged in a
downstream task: inferring gross primary productivity for
carbon monitoring. To the best of our knowledge, this work
presents the first models for continental-scale vegetation
modeling at fine resolution able to capture anomalies be-
yond the seasonal cycle, thereby paving the way for predic-
tive assessments of vegetation status.

1. Introduction

Optical satellite images have been proven to be useful for
monitoring vegetation status. This is necessary for a vari-
ety of applications in agriculture, forestry, humanitarian aid
or carbon accounting. In all these cases, prognostic infor-
mation is relevant: Farmers want to know how their farm-
land may react to a given weather scenario [58]. Humanitar-
ian organisations need to understand the localized impact of
droughts on pastoral communities for mitigation of famine
with anticipatory action [32]. Afforestation efforts need to
consider how their forests react to future climate [52].

Figure 1: In this work, future vegetation status V̂ is pre-
dicted with deep learning models f from past satellite im-
agery X , past and future weather C and elevation E. The
underlying dataset spans across Europe with minicubes split
into train (red dots), temporal OOD test (ood-t, orange dots)
and spatio-temporal OOD test (ood-st, blue dots) subsets.

However, such prognostic information is often not avail-
able at fine resolution. Even near-realtime data, is often still
lacking. For instance in cloudy regions multiple weeks may
pass before a clear-sky observation is available.

Forecasting optical satellite imagery as a way to tackle
both issues has recently been investigated with video pre-
diction methods [10, 23, 43, 45] on the EarthNet2021
dataset [43]. These models are able to forecast satellite
imagery of high perceptual quality. However, their skill
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at modeling vegetation dynamics is harder to assess: de-
spite EarthNet2021 being the largest such dataset for high
resolution landscape forecasting [61], a faulty cloud mask,
insufficient baselines and a poorly interpretable evaluation
protocol still limit suitability of the EarthNet2021 dataset
for vegetation prediction.

In this paper, we approach continental-scale modeling of
vegetation dynamics. To achieve this, we predict remotely
sensed vegetation greenness at 20m conditioned on coarse-
scale weather. We extend the EarthNet2021 dataset [43]
to be suitable for the task by improving cloud mask and
spatio-temporal test sets. We then extend state-of-the-art
approaches for video prediction with weather conditioning.
Fig. 1 presents a sketch of our approach: Future vegetation
state (V̂ ) is predicted from satellite image spectra (X), past
and future weather data (C), and elevation information (E)
via deep learning (f ).

Our major contributions can be summarized as follows.
(1) We expand the EarthNet2021 dataset with a learned
cloud mask and a new evaluation scheme to be suitable for
vegetation prediction. (2) We present State-of-the-Art mod-
els for vegetation prediction, outperforming the top-3 ap-
proaches on the EarthNet2021 challenge and multiple other
strong baselines both qualitatively and quantitatively. (3)
We show how our results can be applied for prognostic car-
bon monitoring in a real-world use case.

Find our source code at https://github.com/
earthnet2021/earthnet-models-pytorch.

2. Related Work
Vegetation Modeling Vegetation modeling from remote

sensing has a long tradition at coarse resolution, e.g. from
the AVHRR or MODIS satellites [21, 25, 28, 66]. Since
2015, the Sentinel 2 satellites deliver imagery at high res-
olution (up to 10m). Several studies have used this data
for regional crop yield modeling [49, 12] and regional veg-
etation forecasting [14, 64]. With EarthNet2021 [43], the
first dataset for continental-scale satellite imagery forecast-
ing was introduced. Subsequent works leveraged the Con-
vLSTM model [50] for satellite imagery prediction [10, 23]
and for vegetation prediction in Africa [45]. Another line
of work focuses on imputing cloudy time steps [31, 63], yet
often with a focus on historical gapfilling instead of near-
realtime information.

Spatio-temporal learning The ConvLSTM [50] was
first introduced for precipitation nowcasting. Subsequently,
spatio-temporal forecasting of the Earth system has gained
traction, with strong results not only on precipitation now-
casting [42, 51], but also on weather forecasting [7, 26, 38],
climate projection [35] and wildfire modeling [24]. Beyond
the Earth system, video prediction is spatio-temporal learn-
ing. State-of-the-art video prediction models use ConvNets
[4, 17], ConvLSTM successors [57, 59] or Transformers

[18, 33]. A sub-area of video prediction uses action con-
ditioning: predicting future frames by giving a future action
in video games [36] or robot experiments [3, 15].

3. Methods
3.1. Task

We predict the future NDVI, a remote sensing proxy of
vegetation state (V t ∈ RH×W , t ∈ [T + 1, T +K]) condi-
tioned on past satellite imagery (Xt ∈ RH×W , t ∈ [1, T ]),
past and future weather (Ct ∈ R, t ∈ [1, T +K]) and static
elevation maps (E ∈ RH×W ). Hence, denoting a model
f(.; θ) with parameters θ, we obtain vegetation predictions
as:

V̂ T+1:T+K = f(X1:T , C1:T+K , E; θ) (1)

In this paper most models are deep neural networks, trained
with stochastic gradient descent to maximize a Gaussian
Likelihood. More specifically, the optimal parameters θ∗

are obtained by minimizing the mean squared error over
valid pixels V t∗ = V t � M t

Q � ML, where MQ ∈
{0, 1}H×W masks pixels that are cloudy, cloud shadow or
snow, ML ∈ {0, 1}H×W masks pixels that are not crop-
land, forest, grassland or shrubland and � denotes elemen-
twise multiplication. Hence the training objective (leaving
out dimensions for simplicity) is

θ∗ = argmin
θ

∑
(V − V̂ )2 �MQ �ML∑

MQ �ML
(2)

In this work H =W = 128px, T = 10 and K = 20.

3.2. Models

This study focusses modeling around meteo-guided deep
learning. We study in-depth four models which are rep-
resentative for their respective model class. Two models
perform next-frame prediction and leverage internal mem-
ory (ConvLSTM and PredRNN) to perform iterative roll-
out. Two models perform next-cuboid prediction (SimVP
and Earthformer), thereby modeling the full target period
temporal dynamics at once. PredRNN, SimVP and Earth-
former follow an encode-process-decode [6] configuration.
Encoders and decoders operate in the spatial domain with-
out any temporal fusion, while the processor translates la-
tent features spatio-temporally. For encoding and decoding
we leverage ConvNets, which are the standard in the do-
main of satellite remote sensing. The models are sketched
in fig. 2 and described below.

ConvLSTM-meteo We follow the original ConvLSTM
work [50] and use an encoding-forecasting setup (fig. 2c). It
consists of two networks, each containing two ConvLSTM
cells, without parameter sharing: One for the context period
which works with past satellite imagery and past weather,
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Figure 2: Simplified view of evaluated models. Baselines (a,b), weather-guided deep learning (c,d,e,f).

and one for the target period, only using future weather as
input. This is in contrast to the ConvLSTM flavors previ-
ously studied on EarthNet2021 [10, 23], but has been shown
to work better on a similar problem in Africa [45].

PredRNN-meteo The PredRNN video prediction model
[56, 57] is a ConvLSTM with two memory states: one for
longer-term dynamics that passes information at the same
depth level over time, and one for more complex short-term
dynamics, with an information flow that zigzags through
levels over time (called ST-LSTM). We propose a simi-
lar network to the action-conditioned PredRNN [57]: us-
ing ConvNet encoder and decoder and conditioning in each
memory cell. We generalize their action-conditioning by
using feature-wise linear modulation [39] for weather con-
ditioning on the inputs (fig. 2e).

SimVP-meteo The SimVP video prediction model [54]
is an encode-process-decode model with a ConvNet pro-
cessor called Gated Spatiotemporal Attention Translator. It
achieves temporal modeling by stacking the features of all
time steps along the channel dimension. Each block then
processes first with depth-wise convolution in the spatial
domain, then with channel-wise convolutions in the tem-
poral domain and finally gates with an attention layer. We
achieve weather conditioning by feature-wise linear mod-
ulation [39] on the latent embeddings at each stage of the
processor (fig. 2d).

Earthformer-meteo The Earthformer Earth system
forecasting model [16] uses cuboid attention to process
spatio-temporal chunks of information. It uses different
cuboids of each input tensor as tokens for self- and cross-
attention. Multiple cuboid attention modules are composed
in a UNet like architecture. To tame the memory usage of
the attention mechanisms, ConvNet encoder and decoder
are used. Weather conditioning is achieved with early fu-

sion during context steps and latent fusion during target
steps (fig. 2f).

3.3. Baselines

We compare against several baselines:
Non-ML baselines We build three non-ML baselines.

The persistence baseline, as in EarthNet2021 [43], con-
stantly predicts the last valid NDVI observation from the
context period. The previous year baseline [45] predicts the
NDVI that was observed one year ago, obtained by inter-
polating last years observations linearly. The climatology
baseline is produced by interpolating the NDVI timeseries
leaving out the desired target year, then taking the mean
over years, and then smoothing with a one month box-filter
(fig. 2a).

Local timeseries models We compare against three
commonly used time series models: Kalman filter, Light-
GBM [22] and Prophet [55] from the Python library darts
[19]. These are trained on timeseries from a single pixel
and applied to forecast this pixel, given future weather as
covariates. Since they are fit for every pixel separately, run-
ning such timeseries models is expensive. Predicting a sin-
gle minicube takes ∼ 3h on an 8-CPU machine, which is
O(104) slower than the deep learning approaches.

LSTM A much faster timeseries model is the LSTM
when trained globally. We implement a pixelwise LSTM
as a ConvLSTM with 1x1 kernel size. It can not make use
of spatial context, but does use temporal memory.

Next-frame UNet The next-frame UNet predicts autore-
gressively without memory the vegetation of the next time
step. This is a common baseline for weather prediction, a
task with insignificant memory effects [41].

Next-cuboid UNet The next-cuboid UNet works in
chunks: It stacks all context time steps along the channel
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Algorithm Works on EN21 Prec Rec F1

Sen2Cor Yes 0.83 0.60 0.70
FMask No 0.85 0.85 0.85
KappaMask No 0.74 0.88 0.81
UNet RGBNir Yes 0.91 0.90 0.90

/w SCL Yes 0.83 0.93 0.88
UNet 13Bands No 0.94 0.92 0.93

Table 1: Precision, recall and F1-score of different Sen-
tinel 2 cloud masking algorithms.

dimension and outputs all target time steps at once. It is
similar to SimVP, but does early spatio-temporal fusion.

3.4. Implementation details

We build all of our ConvNets with a PatchMerge-style
architecture similar to the one in Earthformer [16]. For
SimVP and PredRNN, such encoders and decoders are more
powerful, but also slightly more parameter-intensive, than
the variants used in the original papers. We use Group-
Norm [60] and LeakyReLU activation [62]. Skip connec-
tions preserve high-fidelity content between encoders and
decoders. Our framework is implemented in PyTorch, and
models are trained on Nvidia A40 and A100 GPUs. We use
the AdamW [29] optimizer and tune the learning rate per
model. More implementation details can be found in the
supplementary materials.

3.5. Data

EarthNet2021 [43] is a dataset for Earth surface fore-
casting, that is weather-conditioned satellite image predic-
tion. It contains spatio-temporal minicubes, that are a col-
lection of 30 5-daily satellite images (10 context, 20 tar-
get), 150 daily meteorological observations and an elevation
map. Spatial dimensions are 128× 128px (2.56× 2.56km).
We make the dataset suitable for vegetation modeling:

Cloud mask Vegetation proxies derived from optical
satellite imagery are only meaningful if observations with
clouds, shadows and snow are excluded. The cloudmask
in EarthNet2021 is faulty. We train a UNet with Mo-
bilenetv2 encoder [48] on the CloudSEN12 dataset [2] to
detect clouds and cloud shadows from RGB and Nir bands.
Tab. 1 compares precision, recall and F1 scores of detect-
ing faulty pixels. Our approach outperforms Sen2Cor [30]
(used in EarthNet2021), FMask [40] and KappaMask [11]
baselines by a large margin. If using the Sentinel 2 SCL
band in addition, to allow for snow masking, precision
drops, but recall increases: i.e. the cloud mask gets more
conservative. Using all 13 Sentinel 2 L2A bands is better
than just using 4 bands, however such a model would not be
directly applicable on EarthNet2021 data.

Test sets EarthNet2021 comes with four test sets. Yet,

all of them contain data during the same period as training
data, only at different locations (with varying degree of sep-
aration). Since weather has high spatial correlation lengths,
model performance might be overestimated by evaluating
at similar times but different locations. To tackle this, we
introduce four new test sets and a new validation set:

• OOD-t contains 245 minicubes from the EarthNet2021
IID testset, stratified by Sentinel 2 tile, years 2021-
2022

• val contains 245 minicubes from the EarthNet2021 IID
testset, stratified by Sentinel 2 tile, year 2020

• OOD-s contains 800 minicubes stratified over 1◦ × 1◦

lat-lon grid cells outside EarthNet2021 train regions,
years 2017-2019

• OOD-st contains 800 minicubes stratified over 1◦×1◦

lat-lon grid cells outside EarthNet2021 train regions,
for the years 2021-2022

OOD-t is the main test set used throughout this study. It
tests the models’ ability to extrapolate in time: i.e. we
allow it to learn from past information about a location
and want to know how it would perform in the future.
val follows the same reasoning and hence allows for early
stopping of models according to their temporal extrapola-
tion skill. OOD-s and OOD-st test spatial extrapolation,
as well as spatio-temporal extrapolation. For all test sets,
we create minicubes over four periods during the Euro-
pean growing season [47] each year: Predicting March-
May (MAM), May-July (MJJ), July-September (JAS) and
September-November (SON).

Additional Layers We add the ESA Worldcover Land-
cover map [65] for selecting only vegetated pixels during
evaluation, the Geomorpho90m Geomorphons map [1] for
further evaluation and the ALOS [53], Copernicus [13] and
NASA [9] DEMs, to provide uncertainty in the elevation
maps. Furthermore, we update meteorology to a newer ver-
sion of E-OBS [8], now containing the additional meteo-
rological drivers wind speed, relative Humidity and short-
wave downwelling radiation alongside the previously exist-
ing rainfall, sea-level pressure and temperature (daily mean,
min & max). In contrast to EarthNet2021, we only provide
one vector instead of a 3D tensor of meteorology, dropping
the meso-scale surrounding of each minicube. This reduced
the memory footprint of each minicube by > 5x and makes
the task easier. Finally, we provide proper georeferencing,
which was missing in EarthNet2021.

3.6. Evaluation

We resort to traditional metrics in environmental model-
ing:

• R2 squared pearson correlation coefficient
• RMSE root mean squared error

• NSE = 1−MSE(V, V̂ )

V ar[V ]
, the nash-sutcliffe efficiency
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Model R2 ↑ RMSE ↓ NSE ↑ |bias| ↓ Outperform
Climatology

↑ RMSE
25 days

↓ #Params

N
O

N
-M

L Persistence 0.00 0.23 -1.28 0.17 21.8% 0.09 0
Previous year 0.56 0.20 -0.40 0.14 19.3% 0.18 0
Climatology 0.58 0.18 -0.34 0.13 0.0% 0.16 0

L
O

C
A

L
T

S Kalman filter 0.41 0.19 -0.57 0.13 27.0% 0.16 O(10)
LightGBM 0.51 0.17 -0.22 0.12 42.2% 0.11 n.a.
Prophet 0.57 0.16 -0.05 0.11 60.6% 0.13 O(10)

E
N

21

ConvLSTM [10] 0.51 0.18 -0.37 0.12 43.9% 0.12 0.2M
SG-ConvLSTM [23] 0.53 0.19 -0.33 0.14 45.8% 0.11 0.7M
Earthformer [16] 0.49 0.17 -0.27 0.12 47.2% 0.11 60.6M

T
H

IS
S

T
U

D
Y ConvLSTM-meteo 0.62 ±0.01 0.14 ±0.00 0.11 ±0.03 0.10 ±0.00 68.2% ±1.8% 0.10 ±0.00 1.0M

PredRNN-meteo 0.62 ±0.00 0.15 ±0.00 0.03 ±0.00 0.10 ±0.00 64.7% ±1.2% 0.10 ±0.00 1.4M
SimVP-meteo 0.60 ±0.00 0.15 ±0.00 0.03 ±0.01 0.09 ±0.00 64.1% ±1.0% 0.10 ±0.00 6.6M
Earthformer-meteo 0.52 0.16 -0.13 0.10 56.5% 0.09 60.6M

Table 2: Quantitative Results. For ConvLSTM-meteo, PredRNN-meteo and SimVP-meteo, we report the mean (±std. dev.)
from three different random seeds.

[34], a measure of relative variability
• |bias| = |V − V̂ |, the absolute bias

In addition, we propose to measure if a model is better than
the NDVI climatology, by computing the Outperformance
score: The percentage of minicubes, for which the model is
better in at least 3 out of the 4 metrics. Here, better means
their score difference (ordering s.t. higher=better) exceeds
0.01 for RMSE and |bias| and 0.05 for NSE and R2. We
also report the RMSE over only the first 25 days (5 time
steps) of the target period.

We compute all metrics per pixel over clear-sky
timesteps. We then consider only pixels with vegetated
landcover (cropland, grassland, forest, shrubland), no sea-
sonal flooding (minimum NDVI > 0), enough observations
(≥ 10 during target period, ≥ 3 during context period) and
considerable variation (NDVI std. dev > 0.1). All these
pixelwise scores are grouped by minicube and landcover,
and then aggregated to account for class imbalance. Finally,
the macro-average of the scores per landcover class is com-
puted. In this way, the scores represent a conservative es-
timate of the expected performance of dynamic vegetation
modeling during a new year or at a new location.

4. Experiments

4.1. Baseline comparison

This work is the first to systematically evaluate vegeta-
tion prediction models at 20m resolution in Europe. How-
ever, previous work on satellite imagery forecasting is ap-
plicable, since the NDVI, our vegetation proxy, can be de-
rived from the red and near-infrared channels. Hence, we
evaluate the Top-3 models from the EarthNet2021 challenge

leaderboard1 using their trained weights: a regular Con-
vLSTM [10], an encode-process-decode ConvLSTM called
SGED-ConvLSTM [23] and the Earthformer [16].

We compare these against three Non-ML baselines: per-
sistence, previous year and climatology. Note, the climatol-
ogy uses a lot more information than our models (6 years
vs. 50 days). Additionally, we compare with Kalman filter,
LightGBM [22] and Prophet [55], local timeseries forecast-
ing models, which also work with the full timeseries instead
of just 50 context days.

We introduce four new model variants: ConvLSTM-
meteo, PredRNN-meteo, SimVP-meteo and Earthformer-
meteo (see sec. 3.2). These are weather-guided extensions
of four state-of-the-art approaches to video prediction, each
belonging to a different model class. For ConvLSTM-
meteo, PredRNN-meteo and SimVP-meteo, we report the
mean (±std. dev.) from three different random seeds.
Earthformer-meteo has an order of magnitude more param-
eters, making training more expensive, which is why we
only report one random seed.

The quantitative results are shown in table 2. Both the
climatology and Prophet are strong baselines, which outper-
form all of the top-3 models from the EarthNet2021 chal-
lenge. SimVP, PredRNN and ConvLSTM outperform all
baselines on all metrics except for the 25-day RMSE, where
a persistence baseline is slightly stronger. For all three mod-
els and metrics, differences to the climatology are highly
significant when tested for all pixels (with Wilcoxon signed-
rank test, α = 0.001), but also for each land cover or for
smaller subsets of 100 minicubes. Earthformer-meteo, has

1https://web.archive.org/web/20230228215255/
https://www.earthnet.tech/en21/ch-leaderboard/
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Figure 3: Qualitative Results. We plot results of PredRNN-meteo for one OOD-t minicube located near Oradea, Romania.
The top-left shows timeseries for all pixels (mean and std. dev.) and for a single pixel (green square on top right). The right
side shows image timeseries of cloud-masked target and predicted NDVI alongside their difference.

overall lower skill. It mostly excels at RMSE and |bias|,
where it can perform similar to other methods, yet has way
lower performance for NSE and R2. Here, NSE may be
weak and RMSE good because we aggregate over the full
dataset, hence indicating spatial patterns of model skill.

Qualitative results of the PredRNN model for one of the
minicubes from the OOD-t test set with the highest scores
are reported in fig. 3. The model clearly learns the com-
plex dynamics of vegetation, with a strong seasonal evolu-
tion of the crop fields. It interpolates faithfully those pix-
els, which are masked in the target, and contains a strong
temporal consistency. However, as the prediction horizon
increases, predictions become more blurry, even obscuring
field boundaries, which should stay consistent over time.

4.2. Weather guidance

Our meteo-guided models benefit from the weather con-
ditioning. Fig. 4 compares each one of the four models
(blue) against a variant without weather conditioning (or-
ange). For all metrics (except Earthformer-meteo R2), us-
ing weather outperforms not using it. The SimVP has the
largest performance gain due to meteo-guidance. This could
possibly be since it does not explicitly model memory ef-
fects, but rather learns to disentangle the temporal evolution
in one piece. The ConvLSTM without weather has only
slightly lower skill than the SimVP-meteo.

For PredRNN and SimVP, we perform an extended ab-
lation study regarding weather guidance, which we present
in the supplementary material. The different weather condi-
tioning approaches concatenation, feature-wise linear mod-
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R
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R2 ↑
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R
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Using Weather?
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Figure 4: Model performance comparing meteo-guided
models (blue) with the same those not using weather (black
bar is std. dev. from three random seeds).

ulation (FiLM, [39]) and cross-attention [46] have only a
small influence on performance scores, if applied at the
right location: cross-attention favors latent fusion, FiLM
generally outperforms concatenation and is suitable for
early fusion.
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Model R2 ↑ Diff ↑ RMSE ↓ Diff ↓
Climatology 0.58 0.18

1x1 LSTM 0.57 0.17
spatial shuffle 0.57 0.00 0.17 0.00

Next-frame UNet 0.51 0.19
spatial shuffle 0.48 -0.03 0.21 +0.02

Next-cuboid UNet 0.56 0.16
spatial shuffle 0.43 -0.13 0.21 +0.05

ConvLSTM 0.62 0.14
spatial shuffle 0.60 -0.02 0.16 +0.02

PredRNN 0.62 0.15
spatial shuffle 0.45 -0.17 0.22 +0.07

SimVP 0.60 0.15
spatial shuffle 0.49 -0.11 0.22 +0.07

Table 3: Model skill when spatial interactions are broken
through shuffling.

4.3. The role of spatial interactions

In contrast to video prediction, there is relatively little
spatial movement across frames of satellite images. Field
boundaries are mostly fixed in space as are forest limits.
The largest variations appear within these edges in the tem-
poral domain. Hence, it is not clear a-priori, that video
prediction models, which take into account spatio-temporal
interactions, are a good choice for modeling vegetation
dynamics. However, at 20m resolution, lateral processes
might appear, which cannot be captured by predictor vari-
ables. For instance, a grassland might react differently to a
meteorological drought if it is closer to a river or lays on a
north-facing slope. Also, trees at the forest edge are differ-
ently affected by weather than those at the center of a forest
plot.

We approach studying the role of spatial interactions by
comparing model performance against models trained with
spatially shuffled input, i.e. explicitly breaking spatial inter-
actions [44]. We perform the shuffling across spatial dimen-
sions and across the batch, to also destroy image statistics,
which may already give information on the local neighbor-
hood of a pixel. We evaluate three of our four models: Con-
vLSTM, PredRNN and SimVP. We skip the Earthformer
for this experiment since it is very expensive to train. In
addition we also study three baselines: a pixelwise (1x1)
LSTM, the next-frame UNet and the next-cuboid UNet (see
sec. 3.3). The pixelwise LSTM is a global timeseries model
unable to capture spatial interactions. The next-frame UNet
models spatial interactions, but does not consider temporal
memory. All other models can leverage spatio-temporal de-
pendencies, though the ConvLSTM only has a small local
receptive field (∼ 100m around each pixel).

The results are reported in tab. 3. As can be expected, the
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Figure 5: Model skill over different seasons for the
ConvLSTM-meteo on the OOD-t test set.

OOD-s OOD-st
Model R2 ↑ RMSE ↓ R2 ↑ RMSE ↓
Climatology 0.50 0.15 0.56 0.19
ConvLSTM 0.55 0.14 0.58 0.15
PredRNN 0.54 0.15 0.58 0.15
SimVP 0.50 0.15 0.54 0.15
Earthformer 0.47 0.15 0.47 0.16

Table 4: Model skill at spatial (OOD-s) and spatio-temporal
(OOD-st) extrapolation.

pixelwise LSTM can be trained with spatial shuffled pixels
without performance loss. All other models, though, exhibit
a drop in performance under pixel shuffling. For PredRNN,
SimVP and Next-cuboid UNet it can be very large, as they
have large receptive fields. For the next-frame UNet it is
smaller, as it itself is not a very skillful model. The Conv-
LSTM also exhibits only a small performance drop, which
may be due to its local receptive field. In turn, this may
indicate that spatial interactions relevant for vegetation re-
sponse to weather are of rather local nature and long-range
interactions seldom important.

4.4. Strengths and Limitations of SOTA model

The OOD-t test set contains minicubes from four differ-
ent 3-month periods each over two years. Fig. 5 dissects
the model skill of our best model: ConvLSTM-meteo (one
run). There are large differences between the years. Un-
til September, the growing season was better predicted in
2022. Afterwards it flips, and 2021 takes the lead. The
first half of the growing season is usually better predicted
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Figure 6: Panel a) shows a map of R2 on OOD-t and
OOD-st test sets and panel b) shows probability densities
of RMSE per geomorphon. Both use ConvLSTM-meteo.

than the second half. This is probably due to anthropogenic
influences, especially harvest, mowing, cutting and forest
fires, being more prevalent in the second half. Such events
are particularly hard to predict from the given weather co-
variates, and may be interpreted as random noise.

We assess the performance at spatio-(temporal) extrapo-
lation of all four meteo-guided models on the OOD-s and
OOD-st test sets and report in tab. 4. The SimVP and the
PredRNN can extrapolate in space and time. However, the
margin to the climatology does shrink. Here, more training
data might help: spatial extrapolation is theoretically not
necessary for modeling vegetation dynamics (only tempo-
ral extrapolation is). Practically speaking, however, it does
help to increase inference speed and enable potential appli-
cability over large areas.

Reassured by spatial extrapolation capabilities, we
present a map of R2 for the ConvLSTM-meteo in fig. 6a.
Cropland regions on the Iberian peninsula and in northern
France, as well as forests in the Balkans are regions with
great applicability of the model. For the former two, this
may be explained by many training samples in those re-
gions, for the last, it cannot. Grasslands and forests in
Poland and highly heterogenous regions (mountains, near
cities, near coasts) are more challenging for the model.

Geomorphons capture local terrain features, derived
from first and second spatial derivatives of elevation.
Fig. 6b shows densities of RMSE of the ConvLSTM-meteo
for different geomorphons from the Geomorpho90m map
[1]. Generally, the model performs well across all classes.
Summits and Depressions, two rather extreme types, seem
to be slightly easier to predict. Homogeneous terrain (red:
flat, shoulder, footslope) has a larger tail towards high error.
This may be as those regions are typically where there is a
lot of anthropogenic activity, possibly leading to dynamics
less covered by the predictors (harvest, clear-cut, etc.).

4.5. Downstream task: carbon monitoring

Carbon monitoring is of great importance for climate
change mitigation, especially in relation to nature-based so-
lutions. The gross primary productivity (GPP) represents
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Figure 7: Panel a) shows timeseries of observed (green) and
modeled GPP (blue from NDVI observations, orange from
NDVI prediction). Panel b) shows a satellite image of the
Grillenburg Fluxnet site with grassland boundaries in red.
Panel c) shows the RMSE over prediction horizons.

the amount of carbon that is taken up by plants through
photosynthesis and subsequently stored. It is not directly
observable. At a few hundred research stations around the
world with eddy covariance measurement technology, it can
be indirectly measured. For carbon monitoring, it would be
beneficial to measure this quantity everywhere on the globe.
It has been shown [37] that Sentinel 2 NDVI is correlated to
GPP measured with eddy covariance. We build on this cor-
relation to show how our models could potentially be lever-
aged to give near real-time estimates of GPP and to study
weather scenarios.

Fig. 7 compares modeled with observed GPP at the
Fluxnet site Grillenburg (identifier DE-Gri) in eastern Ger-
many distributed by ICOS [20]. First, we fit a linear model
between observed NDVI and GPP for the years 2017-2019.
Here, interpolated grassland NDVI pixels (fig. 7b, inside
red boundaries) are used. Next, we perform an out-of-
sample analysis and find anR2 = 0.53 for 2020-01 to 2021-
04 (fig. 7a, blue line). Finally, we forecast GPP with our
PredRNN-meteo model from May to July 2021(fig. 7a, or-
ange line). The resulting forecast has decent quality at short
prediction horizons, but low skill after 75 days (fig. 7c).
These results show a way to leverage models from this paper
for near real-time carbon monitoring. However, for appli-
cation at scale, it is likely beneficial to use a more powerful
GPP model (e.g. random forest [37] or light-use efficiency
[5]), fitted across many Fluxnet sites.

5. Conclusion
We proposed a novel approach for modeling vegetation

response to weather in Europe. In particular, we presented
four meteo-guided video prediction methods, taking past
satellite imagery and future weather as input to produce
future vegetation dynamics at 20m resolution. Our exper-
iments demonstrate that our models outperform existing
state-of-the-art satellite imagery forecasting methods and a
wide variety of strong baselines. To the best of our knowl-
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edge, we present the first study considering a climatology
baseline and outperforming it with models, which, given the
strong seasonality of vegetation dynamics, indicates real-
world usefulness of our models in impactful usecases such
as humanitarian anticipatory action or carbon monitoring.
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A. Model details

A.1. Cloud masking

Baselines (Table 1) The baselines reported in table 1 are
taken from CloudSEN12 [2]. Sen2Cor [30] is the process-
ing software from ESA used to produce the Scene Classi-
fication Layer (SCL) mask, which was also introduced in
EarthNet2021 [43]. FMask [40] is a processing software
originally designed for NASA Landsat imagery, but now
repurposed to also work with Sentinel 2 imagery. It re-
quires L1C top-of-atmosphere reflectance from all bands to
be produced (EarthNet2021 only containes L2A bottom-of-
atmosphere reflectance from four bands). KappaMask [11]
is a cloud mask based on deep learning, in table 1 we re-
ported scores from the L2A version, which uses all 13 L2A
bands as input.

UNet Mobilenetv2 (Table 1) Our UNet with Mo-
bilenetv2 encoder [48] was trained in two variants, one with
RGB and near-infrared bands of L2A imagery (i.e. works
with EarthNet2021) and one with all 13 bands of L2A im-
agery. We adopted the exact same implementation that was
benchmarked in the CloudSEN12 paper [2], with the only
difference being that in the paper, L1C imagery was used
(which is often not useful in practical use-cases). In detail,
this means we trained the UNet with Mobilenetv2 encoder
using the Segmentation Models PyTorch Python library2.
We used a batch size of 32, random horizontal and vertical

2https://segmentation-models-pytorch.
readthedocs.io/en/latest/

flipping, random 90 degree rotations, random mirroring, un-
weighted cross entropy loss, early stopping with a patience
of 10 epochs, AdamW optimizer, learning rate of 1e−3, and
a learning rate schedule reducing the learning rate by a fac-
tor of 10 if validation loss did not decrease for 4 epochs.

A.2. Vegetation modeling

Local timeseries models (Table 2) We train the local
timeseries models (table 2) at each pixel. For a given pixel
we extract the full timeseries of NDVI and weather vari-
ables at 5-daily resolution. All variables are linearly gap-
filled and weather is aggregated with min, mean, max, and
std to 5-daily. The whole timeseries before each target pe-
riod is used to train a timeseries model, for the target period
the model only receives weather. The Kalman Filter runs
with default parameters from darts [19]. The LightGBM
model gets lagged variables from the last 10 time steps and
predicts a full 20 time step chunk at once. For Prophet we
again use default parameters.

EarthNet models (Table 2) For running the leading mod-
els from EarthNet2021 we utilize the code from the re-
spective github repositories: ConvLSTM [10]3, SGED-
ConvLSTM [23]4 and Earthformer [16] 5. We derive the
NDVI from the predicted satellite bands red and near-
infrared:

NDV I =
NIR−Red

NIR+Red+ 1e−8
(3)

ConvLSTM-meteo (Table 2,3,4, Figure 4,5,6) Our
ConvLSTM-meteo contains four ConvLSTM-cells [50] in
total, two for processing context frames and two for pro-
cessing target frames. Each has convolution kernels with
bias, hidden dimension of 64 and kernel size of 3. We train
for 100 epochs with a batch size of 32, a learning rate of
4e−5 and with AdamW optimizer. We train three models
from the random seeds 42, 97 and 27.

PredRNN-meteo (Table 2,3,4, Figure 3,4,7) Our
PredRNN-meteo contains two ST-ConvLSTM-cells [56]
Each has convolution kernels with bias, hidden dimension
of 64 and kernel size of 3 and residual connections. We
use a PatchMerge encoder decoder with GroupNorm (16
groups), convolutions with kernel size of 3 and hidden
dimension of 64, LeakyReLU activation and downsampling
rate of 4x. We train for 100 epochs with a batch size of 32,
a learning rate of 3e−4 and with AdamW optimizer. We

3https://github.com/dcodrut/weather2land
4https://github.com/rudolfwilliam/satellite_

image_forecasting
5https://github.com/amazon-science/

earth-forecasting-transformer/tree/main/scripts/
cuboid_transformer/earthnet_w_meso
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use a spatio-temporal memory decoupling loss term with
weight 0.1 and reverse exponential scheduling of true vs.
predicted images (as in the PredRNN journal version [57]).
We train three models from the random seeds 42, 97 and
27.

SimVP-meteo (Table 2,3,4, Figure 4) Our SimVP-meteo
has a PatchMerge encoder decoder with GroupNorm (16
groups), convolutions with kernel size of 3 and hidden di-
mension of 64, LeakyReLU activation and downsampling
rate of 4x. The encoder processes all 10 context time steps
at once (stacked along the channel dimension). The decoder
processes 1 target time step at a time. The gated spatio-
temporal attention processor [54] translates between both
in the latent space, we use two layers and 64 hidden chan-
nels. We train for 100 epochs with a batch size of 64, a
learning rate of 6e−4 and with AdamW optimizer. We train
three models from the random seeds 42, 97 and 27.

Earthformer-meteo (Table 2,4, Figure 4) Our
Earthformer-meteo is a transformer combined with an
initial PatchMerge encoder (and a final decoder) to re-
duce the dimensionality. The encoder and decoder use
LeakyReLU activation, hidden size of 64 and 256 and
downsample 2x. In between, the transformer processor has
a UNet-type architecture, with cross-attention to merge
context frame information with target frame embeddings.
GeLU activation and LayerNorm, axial self-attention,
0.1 dropout and 4 attention heads are used. Weather
information is regridded to match the spatial resolution
of satellite imagery and used as input during context and
target period. We train for 100 epochs with a batch size of
32, a maximum learning rate of 1e−4, linear learning rate
warm up, cosine learning rate shedule and with AdamW
optimizer.

1x1 LSTM (Table 4) Our 1x1 LSTM is implemented as
a ConvLSTM-meteo with kernel size of 1. We train for 100
epochs with a batch size of 32, a learning rate of 4e−5 and
with AdamW optimizer.

Next-frame UNet (Table 4) Our next-frame UNet has a
depth of 5, latent weather conditioning with FiLM, a hid-
den size 128, kernel size 3, LeakyReLU activation, Group-
Norm (16 groups), PatchMerge downsampling and nearest
upsampling. We train for 100 epochs with a batch size of
64, a learning rate of 6e−4 and with AdamW optimizer.

Next-cuboid UNet (Table 4) Our next-cuboid UNet has
a depth of 5, latent weather conditioning with FiLM, a hid-
den size 256, kernel size 3, LeakyReLU activation, Group-
Norm (16 groups), PatchMerge downsampling and nearest

upsampling. We train for 100 epochs with a batch size of
64, a learning rate of 6e−4 and with AdamW optimizer.

B. Weather ablations
B.1. Methods

Most of our baseline approaches have been originally
proposed to handle only past covariates. Here, we condition
forecasts on future weather. A-priori it is not known how
to best achieve this weather conditioning. For PredRNN-
meteo and SimVP-meteo, we compare three approaches,
each fused at three different locations. The approaches op-
erate pixelwise, taking features xin ∈ Rd and conditioning
input ci ∈ Rn for weather variable i. The conditioning lay-
ers g(·, ·;φ) with parameters φ then operate as

xout = g(xin, c;φ) ∈ Rd (4)

We parameterize g with neural networks.

CAT First concatenates xin and a flattened c along the
channel dimension, and then performs a linear projection to
obtain xout of same dimensionality as xin. In practice we
implement this with a 1x1 Conv layer.

FiLM Feature-wise linear modulation [39] generalizes
the concatenation layer before. It produces xout with lin-
ear modulation:

xout = xin + σ(γ(c;φγ)�N(f(xin;φf )) + β(c;φβ))
(5)

Here, f is a linear layer, γ and β are MLPs, N is a nor-
malization layer and σ is a pointwise non-linear activation
function.

xAttn Cross-attention is an operation commonly found in
the Transformers architecture. In recent works on image
generation with diffusion models it is used to condition the
generative process on a text embedding [46]. Inspired from
this, we propose a pixelwise conditioning layer based on
multi-head cross-attention. The input xin is treated as a sin-
gle token query Q. Each weather variable ci is treated as
individual tokens, from which we derive keys K and val-
ues V . The result is then just regular multi-head attention
MHA in a residual block:

xout = xin (6)
+ f(N(MHA(Q(xin;φQ),K(c;φK), V (c;φV )));φf )

(7)

Here, f is either a linear projection or a MLP and N is a
normalization layer.

Each of the three approaches we apply at three locations
throughout the network:

10



0-25 25-50 50-75 75-100
Prediction horizon (days)

0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18

RM
SE

SimVP

0-25 25-50 50-75 75-100
Prediction horizon (days)

PredRNN

Climatology
CAT
FiLM
xAttn
Early
Latent
All

Figure 8: Model performance (RMSE) when using differ-
ent ways of weather conditioning over varying prediction
horizons.

Early fusion Just fusing all data modalities before pass-
ing it to a model. This Early CAT has been previously used
for weather conditioning in satellite imagery forecasting

Latent fusion In the encode-process-decode framework,
encoders are meant to capture spatial, and not temporal, re-
lationships. Hence, latent fusion conditions the encoded
spatial inputs twice: right after leaving the encoder and be-
fore entering the decoder.

All (fusion everywhere) In addition, we compare against
conditioning at every stage of the encoders, processors and
decoders. All CAT has been applied to condition stochastic
video predictions on random latent codes [27].

B.2. Results

Fig. 8 summarizes the findings by looking at the RMSE
over the prediction horizon. For the first 50 days, most
models are better than the climatology, afterwards, most are
worse. If using early fusion, FiLM is the best condition-
ing method. For latent fusion and fusion everywhere (all),
xAttn is a consistent choice, but FiLM may sometimes be
better (and sometimes a lot worse). CAT in general should
be avoided, which is consistent with the theoretical obser-
vation, that CAT is a special case of FiLM.

For SimVP, the best weather guiding method is latent fu-
sion with FiLM. For PredRNN, the best method is early fu-
sion with FiLM. This is likely due to the difference in treat-
ment of the temporal axis. For SimVP, early fusion would
merge all time steps, hence, latent fusion is a better choice.
For PredRNN on the other hand, early fusion handles only
a single timestep.

C. Performance per landcover type
Fig. 9 shows the model performance per landcover type.
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