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Abstract

Forecasting the state of vegetation in response to climate and weather events
is a major challenge. Its implementation will prove crucial in predicting crop
yield, forest damage, or more generally the impact on ecosystems services rele-
vant for socio-economic functioning, which if absent can lead to humanitarian
disasters. Vegetation status depends on weather and environmental conditions that
modulate complex ecological processes taking place at several timescales. Inter-
actions between vegetation and different environmental drivers express responses
at instantaneous but also time-lagged effects, often showing an emerging spatial
context at landscape and regional scales. We formulate the land surface forecasting
task as a strongly guided video prediction task where the objective is to forecast
the vegetation developing at very fine resolution using topography and weather
variables to guide the prediction. We use a Convolutional LSTM (ConvLSTM)
architecture to address this task and predict changes in the vegetation state in Africa
using Sentinel-2 satellite NDVI, having ERA5 weather reanalysis, SMAP satellite
measurements, and topography (DEM of SRTMv4.1) as variables to guide the
prediction. Ours results highlight how ConvLSTM models can not only forecast
the seasonal evolution of NDVI at high resolution, but also the differential impacts
of weather anomalies over the baselines. The model is able to predict different
vegetation types, even those with very high NDVI variability during target length,
which is promising to support anticipatory actions in the context of drought-related
disasters 1.

1 Introduction

Climate change is leading to an increase in extreme weather events, affecting both ecosystem and
human livelihoods. Africa is one of the most vulnerable continents to climate change with droughts
in the region expected to increase in severity according to the IPCC [1]. Given current projections of
population growth and impacts from climate change, many more people will be affected by extreme
drought events in the future [2]. Any insight into predicting their occurrences can help prepare
short-term solutions to alleviate potential impacts on local and regional communities [3].

The local scale response to extreme events is often not homogeneous [4]. Abiotic (e.g. soil type,
topography, water bodies) and biotic (e.g. vegetation type, plant rooting depth) factors and the
interactions between them affect how vegetation responds to atmospheric extreme events [5, 6].In

1https://github.com/earthnet2021/earthnet-models-pytorch.git

Accepted in Artificial Intelligence for Humanitarian Assistance and Disaster Response: workshop at NeurIPS
2022, and in Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.

ar
X

iv
:2

21
0.

13
64

8v
2 

 [
cs

.L
G

] 
 3

0 
N

ov
 2

02
2



Figure 1: Model prediction frame by frame. The frames are temporally interpolated in a spatio-
temporal cube (Left side). (Top row) RGB satellite imagery. (Second row) NDVI target. (Third
row) ConvLSTM predictions. (Bottom row) L1-norm of the difference between the target and the
prediction. Location: 13°16’34.8"N 16°07’10.4"W, The Gambia.

addition, weather impacts with temporal lagged responses can have a significant influence on ecosys-
tem responses to weather variability [7–9]. This so-called ’memory effect’, arises from the complex
processes involved in vegetation dynamics leading to non-linear interaction on several time scales
[10, 11] (e.g. the time-lagged effect of precipitation on vegetation due to the water soil recharge [12],
legacy effect of earlier drought [6, 13] or early starting season [14]).

Predicting the evolution and impacts of vegetation at the very local level is therefore a challenge
to support anticipatory action before a disaster In this paper, we aim to create a model capable
of learning the relationship between vegetation states, local factors and weather conditions, at a
very fine resolution in order to characterise and forecast the impact of weather extremes from an
ecosystem perspective. We use the Normalized Difference Vegetation Index (NDVI) [15] as a proxy
for vegetation health monitoring. Our work can be easily extended to predict other vegetation indices,
depending on the ecological process of interest.

Contributions Our main contributions are summarized as follows:

• A proof-of-concept of forecasting vegetation greenness in Africa at high spatial resolution.
• A spatio-temporal analysis of the prediction, both of the dataset and of individual samples.

Application context Anticipatory action, such as Forecast-based Financing (FbF) [16], implement
short-time action (e.g. commercial animal destocking or early procurement of food) during the period
of time between a warning and a disaster to reduce both the impact of the disasters and the financial
cost of humanitarian aid [17]. One of the main obstacles to anticipatory action is the uncertainty of a
disaster actually taking place, what is its magnitude and where and when exactly respond [18] [19].
This context leads to protracted debates about response strategy and a reluctance to make decisions
on the part of donors and policymakers during these precious time windows [16].

Since drought vulnerability is very context specific and location specific [? ], a forecast vegetation
evolution tool predicting at the very local scale from an ecosystem perspective can be impactful
for the drought vulnerability assessments in term of location and magnitude to support anticipatory
action. Additionally, our model is relevant for area not well covered by in situ meteorological and
vegetation monitoring instruments (which is notably the case in Africa [20]) since we use only on
satellite data.

Related work At low spatial resolutions, machine learning models have been proposed for both
vegetation modeling [11, 21–27] and crop forecasting [28–30]. Requena-Mesa et al. [31] introduced
Earth surface forecasting as modeling the future spectral reflectance of the Earth surface and provided
the first dataset in this respect, EarthNet2021. Concurrent to our work, Diaconu et al. [32] and Kladny
et al. [33] have built ConvLSTM variants for EarthNet2021. Both study the influence of weather on
the predictions by providing artificial meteorological inputs.
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2 Method

This paper follows the works of Requena-Mesa et al. [31], who introduced EarthNet2021, focusing
instead on Africa and a specific deep learning model: the Convolutional LSTM (ConvLSTM).

Dataset Similar to EarthNet2021 [31], our dataset contains Sentinel 2 satellite imagery (bands
red, blue, green and near-infrared), weather variables from ERA5 reanalysis (evaporation, surface
pressure, surface net solar radiation, 2m temperature, total precipitation, potential evaporation) [34]
and SMAP (latent and sensible heat flux, rootzone and surface soil moisture, surface pressure) [35]
and topography from SRTMv4.1 DEM [36]. The data is collected at high spatial resolution for over
40000 locations in Africa, each resulting sample we call a minicube. For more information, see
supplementary materials 5.1 and 5.2.

Task We define an Earth surface forecasting task [31] as a strongly guided video prediction task.
The objective is to forecast a length-k sequence of future NDVI satellite imagery (Ŝn+1, ..., Ŝn+k)
based on previous length-n sequence of satellite imagery (S1, ..., Sn), topography T and guiding envi-
ronmental variables during both the context and prediction periods (E1, ..., En, ..., En+k). Formally,
the task is to learn a function f such that:

(Ŝn+1, ..., Ŝn+k) = f(S1, .., Sn, E1, ..., En, ..., En+k, T )

In this paper, deep learning models use a context period of one year and then forecast the next three
months of NDVI at a 10-daily timestepping.

Model We use a ConvLSTM [37], that is an LSTM [38] using convolution to operate in the spatial
domain. We stack two ConvLSTM units (each designed as in Patraucean et al. [39]) into an encoder
and another two into a decoder (for forecasting). The encoder is used during the context period,
it gets as inputs the concatenated satellite imagery, environmental variables and topography. The
decoder uses only the environmental variables and the topography as inputs, but gets the hidden
states from the encoder to propagate information from the context period. The model is visualized in
supplementary material fig. 3. The training procedure is detailed in supplementary material 5.4.

Baselines and ablation We compare our model against a constant baseline (last valid pixel from
context period) and a previous season baseline (observations from previous year). Furthermore we
ablate our model by removing the environmental variables (ConvLSTM w/o weather), i.e. doing
an ablation without weather to see how much the model learns from just the first order process
underlying vegetation dynamics: the seasonal cycle.

Evaluation We evaluate the models using two mean squared error (MSE) derived scores: the
root mean squared error (RMSE) and the Nash-Sutcliffe model efficiency (NSE) [40]. The latter
rescales the MSE with the variance of the observations σ2

0 , it is defined as:

NSE = 1−MSE/σ2
0 , (1)

Both the MSE and the NSE can be decomposed into parts:

MSE = phase_err + var_err + bias_sq (2)

NSE = 2αr − α2 − β2, (3)

Here we introduced the bias bias_sq = (µ0 − µ̂)2, the variance error var_err = (σ0 − σ̂)2, the
phase error phase_err = (1− r) ∗ 2 ∗ σ0 ∗ σ̂, the correlation r, the rescaled bias β = (µ̂− µ0)/σ0
and a measure of relative variability α = σ̂/σ0. µ represents means, σ2 represents variances, ·0 refers
to observations and ·̂ stands for predicted quantities. For the NSE decomposition, the components’
ideal values are r = 1, α = 1 and β = 0 [41].

3 Results

For our evaluation, we removed minicubes with more than 75% missing pixels. The evaluation is
computed per pixel of the time series: we compute the metrics for each unmasked pixel of each
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Model RMSE ↓ NSE ↑ α β r

Constant baseline 0.3365 -1.3922 0.0 0.1559 0.0
Previous season baseline 0.2937 -1.0561 1.0169 -0.0084 0.5504
ConvLSTM without weather 0.2331 -0.3356 0.6512 0.1699 0.7348
ConvLSTM (ours) 0.1882 0.0270 0.7570 0.0628 0.8024

Table 1: Test set model performance. All values are computed on minicubes with less than 75%
masked values, shown are the median values over all pixels. We additionally exclude the 5% worst
pixels as outliers because the metrics are unbounded.
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Figure 2: Probability density plots of pixelwise test set performance. ECD is the empirical
cumulative distribution function. (First row) NSE decomposition. Performance distributions are
closer to ideal values for NSE α, β and r with weather than without it. The same pattern is observed
for RMSE, normalized RMSE (NRMSE) and the decomposition of MSE into bias sequence,
variance error and phase error.

minicube. Central estimates of our models’ performance are reported in tab. 1. Our ConvLSTM
model beats the baselines by a large margin in both RMSE and NSE. The previous season baseline
has the same NDVI distribution over the whole dataset as the target (since it is the same season one
year ago), so we have

∑
σ̂ '

∑
σ0 and

∑
µ̂ '

∑
µ0. Negative errors compensate for positive

ones, which explains a median of α and β very close to their ideal value (but not for r). An ablation
of it not using weather covariates performs worse than our model using them. This supports the
intuition that weather should be driving vegetation dynamics. Supplementary figs. 5 and 6 visualize
the performance against the baselines clustered by land cover type. Our model is stronger than the
baselines across all classes.

Fig. 2 shows the decomposition for both NSE and RMSE on the test set. We find 50% of the pixels
in our model reach NSE ≥ 0, while this is only 35% in the ablation without weather. This difference
mostly stems from a reduction in bias (fig. 2c) and a reduction in relative variability (fig. 2b).

While already good, our ConvLSTM does have limitations. Fig. 1 visualizes a prediction on one
example minicube. One visible limitation is due the dataset. On 2019-12-09, the gapfilled RGB
satellite image has noise due to undetected clouds. Clouds lower the target NDVI and lead to an
apparent overestimation of the model on that day. Additionally, since such artifacts are common in
the training dataset, the model learns a biased estimate, slightly underestimating NDVI to account for
occasional clouds. Such underestimation is visible on 2019-12-19 in fig. 1. We present the pixelwise
decomposition of the NSE for this pixel in the supplementary material, fig. 4.

4 Conclusion

This work presents a ConvLSTM deep learning model to predict vegetation greenness in Africa at
high spatial resolution from coarse-scale weather. Our model obtains a higher Nash-Sutcliffe model
efficiency than two baselines. In an ablation we train a model variant without weather covariates
with lower performance. Hence, our final model is able to extract information from meteorology. We
trained our model on a diverse dataset, thus it is applicable to a wide variety of landcover classes
and climate zones. Decomposing the NSE into parts, we find a vulnerability of our model to data
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noise: some clouds were not flagged during pre-processing, thereby biasing our model towards
lower greenness values. Nevertheless, our model is a proof-of-concept of high resolution vegetation
modeling in Africa. Future work should now focus on improving predictions by better understanding
of spatial context, on the applicability of our model during extreme events and on building a bridge to
the anticipatory action community.
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5 Supplementary material

Figure 3: An Encoding-forecasting architecture. The encoding network is a stack of two ConvLSTM, the
forecasting network is a stack of two ConvLSTM. The hidden states of the first network are initialized at zero,
the hidden states of the second network are initialized with the the hidden states’ values of the first network. We
use skip connections between two predictions, to predict only the difference. The first network is useful to to
store as much information as possible during the context period while the second focuses on prediction..

5.1 Dataset description

Following the EarthNet2021 challenge [31], we design a dataset for landsurface forecasting task on
the African continent. The dataset contains over 40,000 samples, each sample is called a minicubes
given that they are three dimensional arrays. The temporal resolution is 10 days, with 45 time-step.
There is 36 time-step per year and each minicube contains 5 seasons. The data come from 2016 to
2021, with a start in four different dates: first of March, June, September or December. Minicubes’s
length is 15 months. The resolution of the spatial data is around 30 meters per pixels, so an image of
with a size of 128× 128 pixels represent an area of 3.84× 3.84 km. Minicubes in the same location
never overlap temporally, but the same location can be in the test and the train set (for different
years). Auto-correlation between different nearby locations is a limitation of the data set. We chose
to randomly split the years in the training and test sets due to interannual climate variability, e.g.
El Niño. Splitting the years with only a few years can potentially add a potential out-of-domain
problem for training, we preferred to simplify this problem in this proof of concept. Therefore, the
years are considered independent. Half of the samples are dominated by croplands, the other half is
dominated by other land cover classes present in Africa (e.g. forest, mangroves, savanna, meadows,
scrub, shrubs or bare land).
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Figure 4: Nash-Sutcliffe Efficiency decomposition (Top left) Calculation of the average of each
frame, to study the temporal variability. Before the red lines, it is the context, after, the prediction.
(Top right) Landcover. Bottom NSE decomposition, the NSE is per pixel, computed on the time
series.

Figure 5: Correlation between the error of our model against the ablation study and the con-
stant baseline. The x-axis is the error of the ablation study, the y-axis is the error of our model. Each
point below equation x = y is better predicted by our model, each point above is less well predicted.
(Right) Correlation between the error prediction of our model and the constant baseline. Con-
stant baseline predicts constantly the last NDVI values seen during the context period. The worse the
baseline performance, the greater the variation in NDVI during the target period, and thus the more
difficult the prediction task can be considered.(Left) Correlation between the error prediction of
our model and the ablation study without weather information.
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Figure 6: Correlation between the error prediction of our model and the previous season base-
line. Previous baseline predicts the NDVI values of the previous season. The x-axis is the error of the
baseline, the y-axis is the error of our model. The worse the baseline performance, the greater the
evolution of the NDVI is different from the previous year, which may be due to different weather
conditions.

5.2 Data sources

Each minicube contains 45 time-step of high resolution Sentinel-2 satellite imagery in the red, blue,
green, and near-infrared, so respectively the B02, B03, B04 and B08 reflectance bands [42]. We
additionally compute the Normalized Difference Vegetation Index (NDVI) [15], a vegetation index
(VI) for vegetation health monitoring based on the red and near-infrared bands. This is the target
for the landsurface forecasting task. Each minicube contains the topography of the location based
on a digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTMv4.1) [36].
The original spatial resolution is 90 meters, we use interpolation to get a 30 meters resolution for
each of the 128 × 128 pixels. For the weather, we use the reanalysis dataset ERA5 [34]. We use
observational weather to reduce both the uncertainty and the computation cost of a seasonal weather
forecasting, the only information available when used for real forecasts. We use the following weather
variables: surface pressure, surface net solar radiation, 2m temperature, potential evaporation, and
total precipitation. We additionally use the SMAP satellite measurements of the land surface soil
moisture [43], the soil moisture surface and soil moisture rootzone variables. Finally, each minicube
also contains the ESRI2020 landcover map [44]. We use the landcover to detect the non-vegetation
pixels (water, build area, bare ground, snow or cloud) and mask them during training and evaluation,
we also use it for results analysis, but not during the training.

5.3 Pre-processing

The data has been processed using the Level-2A algorithm [45] to the cloud detection following
by interpolation on the cloudy data. Then we apply a custom timeseries jump filter based on [46]
but adapted for the sentinel-2 data to reduce the noise due to the undetected clouds. However, the
pre-processing is imperfect, due to the difficulty of correctly detecting clouds and their shadows. This
issue leads to artifacts in the data. The undetected clouds distort the subsequent calculation of NDVI,
additionally, when the interpolation is made from undetected cloud images, the result propagates the
clouds in the following time steps.

5.4 Training procedure

The loss function is the L2-norm. We apply during training and evaluation a mask to remove all
the missing and non-vegetation pixels based on the landcover map. The target is the NDVI and the
prediction is done timestep by timestep recurrently. When weather and environmental variables are
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in input of the ConvLSTM, their dimensions are upscaled to 128× 128, moreover, future weather
is on input even during the prediction period since it is a strongly guided task. The topography is
attached to each timestep. We train our models for 150 epochs with a batch size of 32 and a learning
rate of 10−6. Models were implemented using the deep learning framework PyTorch Lightning [47]
which is built on top of PyTorch [48].

5.5 Limitation of the evaluation

The accuracy of the model for different seasons and for latitudes and longitudes depends strongly on
the type of vegetation (agricultural or natural vegetation), without showing any particular pattern.
There is a strong correlation between target variance and prediction accuracy (i.e., the sample with
the most variance, e.g., during the growing season, is more difficult to predict than those without
variance), see Fig. 5 and Fig. 6. In addition, samples with many clouds often have poor prediction.
However, the limitation of the dataset prevents a finer prediction: many clouds have not been detected,
and therefore it is difficult to attest the influence of clouds on the accuracy of the model. Moreover, we
are working with a whole continent, containing several types of vegetation, climate and ecosystems,
so the drivers are radically different [12], as as well as the time scales. Without any information on
meteorological and vegetation anomalies, we cannot propose a more accurate evaluation at this point.
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