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M A C R O P H A G E S

A common framework of monocyte-derived 
macrophage activation
David E. Sanin1,2*, Yan Ge3, Emilija Marinkovic3, Agnieszka M. Kabat1,2, Angela Castoldi1, 
George Caputa1, Katarzyna M. Grzes1,2, Jonathan D. Curtis2, Elizabeth A. Thompson2, 
Sebastian Willenborg4, Stefanie Dichtl5, Susanne Reinhardt6, Andreas Dahl6,  
Erika L. Pearce1,2,7*, Sabine A. Eming4,8,9,10*, Alexander Gerbaulet3*, Axel Roers3*,  
Peter J. Murray5*, Edward J. Pearce1,2,11,12*†

Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and 
heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these obser-
vations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to 
contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming 
to define a common framework of macrophage activation. We built a predictive model with which we mapped the 
activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and 
finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as 
defined stages along four conserved activation paths. These activation paths include a “phagocytic” regulatory 
path, an “inflammatory” cytokine-producing path, an “oxidative stress” antimicrobial path, or a “remodeling” 
extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified 
transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that 
this integrative approach of macrophage classification allows the establishment of a common predictive frame-
work of monocyte-derived macrophage activation in inflammation and homeostasis.

INTRODUCTION
Macrophages can be found in every organ displaying distinct tran-
scriptional profiles (1, 2) and specializing to their tissue of residence 
during homeostasis (3). Macrophage tissue engraftment occurs early 
during embryonic development (4, 5), with site-specific contribu-
tions from circulating monocytes to the replenishment of tissue- 
resident pools (5–9). The extent to which tissue macrophages are 
replenished by monocytes during adulthood is an area of debate 
with ongoing revisions of macrophage ontogeny models (4, 6, 10) 
only recently expanding to humans (11). Because focus has shifted 
to the origin of macrophages and the impact of tissue imprinting (1), 
the engagement of recruited versus resident macrophages during 
the immune response has received greater scrutiny. However, these 

efforts have been hampered by the limitations inherent to pheno-
typing techniques that rely on bulk population averaging (e.g., RNA 
sequencing), few simultaneous measurements (e.g., flow cytometry), 
and poorly characterized macrophage subset markers. This is espe-
cially challenging because incoming monocytes are able, with time, 
to adopt nearly indistinguishable transcriptional profiles to resident 
macrophages in the tissue that they enter (12). Despite these limita-
tions, some have suggested that macrophages in different tissues 
should be regarded as entirely different cells (3) or that paradigms 
of macrophage M1 (classical)/M2 (alternative) activation should be 
abandoned (13–15). This latter view in particular is supported by the 
extensive plasticity that macrophages display when stimulated with 
cocktails of cytokines, pattern recognition receptor ligands, and other 
immunomodulatory molecules (16, 17). Thus, the emerging picture 
of macrophage activation suggests a flexible spectrum of different 
activation states, with tissue- and context-specific parameters viewed 
as dominant predictors of macrophage function.

This complex landscape of macrophage phenotype has been 
further advanced by the emergence of single-cell RNA sequencing 
(scRNA-seq), which overcomes the limitations of bulk population 
averaging and does not rely on previously defined surface markers 
for macrophage subset sorting. As more studies using this technique 
are published, the observed heterogeneity in macrophage activation 
states has further increased, with previously unidentified subsets 
or phenotypes frequently identified (18–27). Consequently, macro-
phage biology currently lacks a common framework to describe the 
state of activation of macrophages in tissues.

In light of this evolving situation, we asked whether the construc-
tion of such a common framework would be possible, reasoning 
that a unifying model could be built by comparing macrophage ac-
tivation profiles across tissues under multiple inflammatory condi-
tions. We expected that either we would succeed in finding common 
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activation features or that tissue-specific transcriptional programs 
would dominate the data. Accordingly, we built a predictive model 
with which we mapped the activation of macrophages across 
12 mouse tissues and 25 biological conditions, finding a common and 
finite number of transcriptional profiles which we modeled as stages 
along four conserved activation paths. These activation stages placed 
cells with varying frequencies along a “phagocytic” regulatory path, 
an “inflammatory” cytokine-producing path, an “oxidative stress” 
antimicrobial path, or a “remodeling” extracellular matrix (ECM) 
deposition path. We verified our model with adoptive cell transfer 
experiments, noting that incoming monocytes adopt all the tran-
scriptional signatures that we detected. Moreover, we identified 
transient resistin-like molecule alpha (RELMɑ) expression as a fea-
ture of macrophage tissue engraftment and propose that historical 
RELMɑ expression may serve to identify monocyte contribution to 
tissue-resident macrophage populations. Last, we propose that this 
integrative approach of macrophage classification allows the estab-
lishment of a common predictive framework of monocyte-derived 
macrophage activation (https://t.jh.edu/macrophage-framework) 
that may serve to contextualize these cells in future studies and, 
for this reason, we provide a validated list of surface markers that 
may be used to identify these cells.

RESULTS
Macrophages in inflammatory conditions coexist in diverse 
functional states
We aimed to contextualize macrophage heterogeneity across tissues 
in diverse inflammatory conditions, specifically defining common 
aspects of macrophage activation during infection and inflammation 
(Fig. 1A). For this purpose, we built a reference dataset (Fig. 1, A 
and B) based on two inflammatory conditions representing either a 
classical inflammatory response during bacterial infection using 
Listeria monocytogenes (L. mono) or a type 2 immune response during 
Heligmosomoides polygyrus (H. poly) helminth infection (fig. S1). 
We reasoned that these settings, which induce multicellular and 
systemic responses, provide a broad spectrum of macrophage acti-
vation improving the completeness of our reference dataset. We 
performed scRNA-seq on all stromal vascular fraction cells from 
mesenteric fat (fig. S2A), adjacent to the site of H. poly infection, 
and popliteal fat (fig. S2B), which is directly invaded by L. mono 
after footpad injection. We observed a rich infiltration of CD45+ 
cells expressing archetypical cytokines associated with type 2 and 
type 1 immunity (fig. S1). We then examined macrophage gene 
expression markers in these datasets (fig. S2, A and B) and extracted, 
balanced (500 cells per condition), integrated, and reclustered iden-
tified macrophages. Gene expression was distinct within each 
resulting cluster (fig. S2C and data file S1) and associated with specific 
biological processes (Fig. 1C and table S1).

We observed that clusters 0 and 3 were enriched for genes asso-
ciated with macrophage alternative activation (e.g., Cd36, Clec10a, 
and Mrc1), antigen presentation (e.g., H2-Aa, H2-Eb1, and H2-Ab1), 
and the complement cascade (e.g., C1qc and C1qb) (Fig. 1C, fig. 
S2C, and data file S1). Cluster 2 was enriched for genes involved in 
ECM-receptor interactions (e.g., Cd44, Sdc1, and Fn1) and cyto-
skeleton regulation (e.g., Pfn1, Actg1, and Tmsb4x). Cluster 4 dis-
played high expression of genes participating in antigen presentation 
(e.g., H2-Oa, H2-DMb2, and Cd74). Clusters 5, 6, and 7 were en-
riched for genes associated with the phagosome (e.g., Fcgr1, Ncf4, 

and Fcgr3) and oxidative stress (e.g., Prdx5, Txn1, and Gsr), with 
cluster 6 in particular enriched for innate immune response genes 
(e.g., Ifitm3, Fcgr1, and Isg20). ECM organization genes (e.g., Col1a1, 
Col3a1, and Ddr2) were highest in cluster 8, whereas cluster 9 dis-
played high expression of cell cycle–associated genes (e.g., Cks1b, 
H2afx, and Cks2). Cluster 1, which occupied the center of the Uniform 
Manifold Approximation and Projection (UMAP), had no distinctly 
regulated genes (fig. S2C and data file S1) and therefore no pathway 
assignment (Fig. 1C). Thus, our analysis shows that macrophages 
within a tissue simultaneously specialize into multiple functional 
categories, corroborating findings in other studies where this diver-
sity has been reported (21, 23, 26).

Macrophages in inflammatory conditions are arranged 
along activation paths
Cluster 1 could not be associated with a distinct function as it dis-
played no up-regulated genes using the thresholds that we estab-
lished (average log fold change > 1, percent cells expressing gene > 0.4, 
and an adjusted P < 0.01). We reasoned that cluster 1 could repre-
sent an intermediate state of activation, suggesting that rather than 
different populations of macrophages, our analysis captured activa-
tion paths being followed by infiltrating monocyte-derived macro-
phages. To test this hypothesis, we used Slingshot (28) to generate a 
model of macrophage activation in the tissue (Fig. 1, D and E). To 
establish a starting point for this analysis, we calculated a mono-
cyte gene set score (Fig. 1D and table S1) (1) and then selected 
cluster 4 (Fig. 1, B to D, black arrow), as it displayed a monocyte sig-
nature as well as increased major histocompatibility complex class 
II (MHC-II) expression, in line with reported monocyte-to-macrophage 
transitions (29).

Our analysis identified four activation paths that we labeled as 
phagocytic, oxidative stress, inflammatory, and remodeling accord-
ing to the enriched pathway at the end point clusters of each lineage 
(Fig. 1E). Our analysis also revealed three common stages of macro-
phage activation, which we named according to their relative position 
in the pseudotime progression as initial-, early-, and intermediate- 
stage (clusters 4, 2, and 1, respectively). The remaining clusters were 
renamed as either late.P#- or final.P#-stage (Fig. 1F); for example, 
late.P1-stage corresponded to cells in the cluster in activation path 
1 (P1) that is between the intermediate and final stage. We comple-
mented our approach with two alternative strategies of data integra-
tion, specifically the Seurat (30) implementation of Harmony (fig. 
S2D) (31) and the scanpy (32) implementation of batch balanced 
k-nearest neighbors (BBKNN) (33) followed by a partition-based 
graph abstraction (PAGA) (34) to infer activation trajectories (fig. 
S2E). Both approaches broadly recapitulated our initial results. Ini-
tial-stage cells were closely connected to those in early-stage, which 
then transitioned through intermediate- stage that split into cells 
in the phagocytic (P1), inflammatory (P3), and remodeling (P4) 
paths. Our clustering and labeling results were not greatly altered by 
alternative data processing approaches (fig. S2, D and E), with the 
overall conservation of global structure and relationship between 
the proposed stages supporting further exploration.

Next, we investigated how these activation stages were distributed 
across biological conditions (Fig. 1G). We observed that the distri-
bution in macrophages from naïve mice into different functional 
stages in different fat deposits was comparable, and diverse, perhaps 
indicating an active process of macrophage activation as monocytes 
replenish these sites in steady state (Fig. 1G). We noted that L. mono 
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infection favored the oxidative stress 
path, whereas H. poly infection 
favored the phagocytic path when 
compared with each other (Fig. 1G). 
However, all activation stages were 
present in each condition, under-
scoring the limitations of bulk 
phenotyping to capture macro-
phage activation ex vivo. Moreover, 
the changes in diversity induced by 
infection were notably different 
between the inflammatory condi-
tions studied. Whereas H. poly 
infection resulted in increases 
in numbers of cells within less 
well- represented activation stages, L. mono infection resulted in two 
activation stages becoming dominant. These differences could be 
explained not only by the specific immune responses tailored to 
the pathogens involved but also by the time at which samples 
were collected [table S2; day 1 p.i. (post-infection), for the L. mono 
dataset, day 14 p.i. for the H. poly dataset].

In summary, our model predicts that macrophages in an inflamed 
tissue progress through activation stages with distinct transcriptional 
profiles and that the balance of this progression is influenced by the type 
of immune response that dominates the microenvironment. Last, our 
model suggests that tissue can become dominated by relatively few 
activation stages, yet macrophages committed to multiple paths coexist.
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Fig. 1. Macrophage activation in inflamed 
tissues follows predefined paths. (A) Sche-
matic depiction of reference dataset con-
struction, outlining overall goals of strategy. 
(B) scRNA-seq analysis of macrophages 
(cells = 2000) from the stromal vascular 
fraction of adipose tissue from naïve, H. poly–, 
or L. mono–infected animals (n = 1 to 8 per 
group) shown as a UMAP, highlighting iden-
tified clusters. og, oral gavage; sc, subcu-
taneous. (C) Relative levels (low, gray; high, 
blue) of gene set scores associated with 
identified clusters. (D) Relative levels (low, 
gray; high, blue) of gene set scores associ-
ated with monocyte signature (left) and 
predicted lineage breaking points (right). 
(E) Lineage and pseudotime calculation 
showing activation trajectories. Cells assigned 
to identified paths are colored to match 
stage labels. Nonparticipating cells are shown 
in gray. (F) UMAP labeled according to 
path progression indicating shared (initial 
> early > intermediate) and path specific 
(phagocytic: late.P1 > final.P1; oxidative 
stress: late.P2 > final.P2; inflammatory: 
final.P3; remodeling: final.P4) macrophage 
activation stages. Cluster number indicated 
in brackets. (G) Activation stage distribu-
tion shown as a percentage of total cells 
per biological condition.
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Macrophages transition through a RELMɑ-expressing 
activation stage
We complemented our differential gene expression analysis (fig. S2C) 
by modeling gene expression as a function of pseudotime (Fig. 2A), 
reasoning that transcript levels would be regulated as macrophages 
progress along activation paths (Fig. 1, E and F). We included in this 
analysis only the top 2000 most variable genes in the cells of each 
path and ranked the resulting models on the basis of the P value of 
the association of pseudotime and gene expression (fig. S3A). We 
found that collectively, the expression of 828 genes (P < 1 × 109) 
could be modeled in this way, and we show the top most significant 
association for each pathway (Fig. 2B). We observed that the regu-
lation of typical macrophage activation markers corresponded to 
defined activation paths (Fig. 2C and fig. S3B). For instance, cells 
in the phagocytic path exhibited a steep and continuous increase in 
the alternative activation marker Mrc1 and the mitochondrial me-
tabolism gene mt-Co1 as a function of pseudotime (Fig. 2C). Con-
versely, expression of inflammatory Il1b was only retained at high 
levels in the inflammatory and remodeling paths (Fig. 2C).

Exploring the relationship between RELMɑ encoding gene Retnla 
and pseudotime, we observed that our model predicted a wave of 
expression early during activation (Fig. 2D). Our data revealed that 
Retnla was expressed not only in cells committed to the phagocytic 
path (P1) (Fig. 2D), which also expressed other markers of alterna-
tive macrophage activation (Fig.  2C and data file S1), but also in 
early-stage cells shared by all paths (Fig. 2D). Moreover, we identified 
Retnla and Ear2 coexpression as unique to early-stage cells (Fig. 2D). 
We reasoned that if our model was correct, then monocytes would 
express Retnla shortly after entering a tissue regardless of the in-
flammatory condition. To test this, we isolated bone marrow mono-
cytes from CD45.1+ mice (fig. S3C) and adoptively transferred them 
into the peritoneal cavity of CD45.2+ naïve hosts (Fig. 2E). We 
evaluated the abundance of Retnla mRNA and RELMɑ protein in 
CD45.1+ macrophages recovered 2, 4, and 8 days after adoptive 
transfer (Fig.  2F and fig. S3D). Confirming our predictions, 
monocyte-derived macrophages expressed RELMɑ 4 days after adop-
tive transfer, and ~80% of the cells were positive for this molecule 
after 8 days (Fig. 2F). RELMɑ induction occurred in the absence of 
interleukin-4 receptor alpha (IL-4Rɑ) signaling, as we did not detect 
changes in RELMɑ expression in host tissue-resident macrophages 
in the peritoneal cavity and IL-4Rɑ−/− monocytes displayed similar 
RELMɑ expression compared with IL-4Rɑ+/+ cells (Fig. 2G). Last, 
mature CD45.1+ peritoneal macrophages did not express RELMɑ 
after transfer into CD45.2+ naïve recipients (Fig. 2G). Thus, our 
experimental data support the view that monocytes differentiating 
into macrophages early after entry into a tissue begin to express 
RELMɑ independently of IL-4 signaling.

Macrophage-specific RELMɑ deficiency leads to poor monocyte/
macrophage infiltration of the lung in a model of fibrosis (35), which 
suggests that RELMɑ might be required for macrophage tissue 
engraftment. To test this, we isolated monocytes from the bone 
marrow of RELMɑ−/− animals (36) and then adoptively transferred 
them into the peritoneal cavity of CD45.1+ hosts and evaluated their 
ability to engraft compared with wild-type (WT) macrophages 
(Fig. 2H). We recovered fewer RELMɑ−/− cells 8 days after transfer 
(Fig. 2H). Furthermore, the proportion of CD115+F4/80+ macro-
phages was significantly reduced in RELMɑ−/− versus WT controls. 
These results indicate that RELMɑ serves as a marker of macrophage 
tissue engraftment and may also function to maintain the identity 

of the infiltrating cells, because CD115 (CSF1R) is a critical macro-
phage growth factor receptor. These findings support our predicted 
model of macrophage activation and explain evidence of historical 
Retnla expression in tissue-resident macrophages (37). Moreover, 
RELMɑ expression has been used to identify cells of a distinct tissue- 
restricted phenotype (21) or in an immature state of differentiation 
(8). Our data are broadly in agreement with these past reports and 
indicate that historical RELMɑ expression should be evident in 
tissues where circulating monocytes replace tissue-resident macro-
phages. Moreover, our data suggest that transit via a RELMɑ+ stage 
is a common feature of all macrophages and not restricted to a sin-
gle tissue or macrophage subset.

Macrophage activation stages are conserved across tissues 
and inflammatory conditions
Our findings in the adipose tissue datasets indicate that observed 
heterogeneity in macrophage activation can be accounted for by 
macrophages transiting through defined activation paths after they 
enter a tissue. To evaluate these ideas further, we used our adipose 
tissue dataset as a reference to interrogate multiple other situations 
of tissue inflammation (table S2). We took advantage of a recent 
data transfer implementation that enables the construction of large 
cell atlases (38), assigning probability-scored labels and performing 
data imputation (i.e., inferring and assigning missing gene expres-
sion values). This strategy is highly accurate for label transfer from 
a reference dataset (39) yet can overcorrect batch effects while sac-
rificing biological variability (40). We tested this approach on data-
sets that contained a mixture of macrophages and other CD45+ cells, 
using the adipose tissue as a reference and extensively optimizing 
label transfer/imputation parameters, reasoning that only macro-
phages should have high probability scores resulting from transfer 
of activation stage labels (fig. S4, A to H). Using a probability 
threshold of 80% (or 0.8), almost exclusively macrophages were as-
signed an activation stage label in datasets with abundant (fig. S4, A 
to D) and scarce macrophage populations (fig. S4, E to H). Thus, we 
proceeded to interrogate multiple tissues and inflammatory condi-
tions using this approach.

We retrieved publicly available scRNA- seq datasets spanning nine 
tissues and 13 inflammatory conditions plus healthy controls, in-
cluding infections, injuries, cancer, and dietary interventions (Fig. 3 
and table S2). We retained only macrophages by filtering cells based 
on established markers (table S1), harmonized the data within 
each tissue to remove batch effects, and applied the transfer pro-
cess, assigning cells to a previously defined activation stage, with a 
label probability (Fig. 3) and imputed gene expression data (fig. S4, I 
to Q). Imputed data were used to cluster and calculate a UMAP for 
each dataset (fig. S5). Where a single label dominated a cluster, and 
a portion of the cells within the cluster had a high-label probability 
score, the corresponding label was assigned to the entire cluster 
(e.g., fig. S5B, clusters 3, 4, 6, and 7). Macrophages that did not meet 
these criteria were marked as “not classified.” We identified most of 
the activation stages defined in our reference with a reasonable pro-
portion of cells with a high-label transfer probability in all interrogated 
datasets (Fig. 3).

The distribution of activation stage labels was different in each 
studied tissue and then modified by the corresponding inflammatory 
condition (Fig. 3). This could reflect the influence of the tissue mi-
croenvironment in shaping the immune response, as well as the way 
in which the immune response is tailored to a specific insult. For 
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example, in the large intestine lami-
na propria (Fig. 3A), infiltrating 
initial-stage cells were abundant in 
steady state (Fig. 3A, bottom right) 
in line with the reported turnover of 
macrophages in this tissue (9). How-
ever, after 12 weeks of high-fat diet 
(HFD), the proportion of initial- stage 
macrophages diminished, being re-
placed by cells in the final.P2-stage 
of the inflammatory path (Fig. 3A), 
which is consistent with HFD-induced 
gut inflammation (20), and tumor 
necrosis factor (TNF) production by 
intestinal macrophages (41). This 
correspondence between our label-
ing strategy and established biology 
could be seen in all datasets. In sciatic 
nerve injury (21), a wave of inflam-
matory path cells (final.P3) could be 
seen 1 day post-wounding (dpw), 
which receded by day 5, when phago-
cytic path final.P1-stage cells took 
over (Fig. 3B). In breast tumors (22), the 
macrophage landscape was dominated 
by phagocytic path cells (Fig. 3C), 
which displayed markers of alter-
natively activated cells. The same 
appeared true in regressing athero-
sclerotic plaque lesions (Fig. 3D) (23) and in liver fibrosis (Fig. 3E) 
(24), whereas fungal infection in the lung (25) resulted in an increase 
in inflammatory path cells (Fig.  3F). In infarcted heart (26) and 
retinal damage (27), an expansion of phagocytic path cells was also 
evident (Fig. 3, G and H), although the diversity of activation stages in 
each tissue was different, with few identified stages in the retina both 
in steady state and after light-induced neurodegeneration (Fig. 3H). 

In contrast, skeletal muscle macrophages (18) displayed diverse activa-
tion stages, with chronic parasitic infection having a modest effect 
on the stage distribution in this tissue (Fig. 3I), although increased 
inflammatory path macrophages were apparent (final.P3). Last, we 
observed early-stage cells, coexpressing Retnla and Ear2, in nearly all 
analyzed datasets (Fig. 3, A to D, G, and I), underscoring how this 
activation step appears to be common to macrophages in most tissues.
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Despite demonstrable utility of our labeling approach, there re-
mained a number of cells with no label assignment (i.e., not classi-
fied). We developed two potential explanations for the abundance 
of these cells in the studied datasets. First, our approach hinges on 
stringently identifying anchor pairs between the data, obtaining a 
high score, and/or having dominant labels in the clusters. Conse-
quently, we are less efficient at identifying transcriptional profiles of 
cells in between defined activation stages. For this reason, many of 
the not classified cells in our analysis could be seen in between la-
beled clusters in the UMAP and would often share low-probability 
labels for flanking clusters with a more defined signature (e.g., 
fig. S5D, cluster 2 flanked by 1, 4, 7, and 9). Likely for this reason, 
intermediate-stage cells were relatively rare in query datasets, because 
these were the least defined transitional state that we identified in 
our reference data. Second, tissue-resident macrophages have a dis-
tinct transcriptional profile (4, 5) and thus might not easily relate to 
activated macrophages originating from circulating monocytes in 
inflammatory settings. We observed more unclassified cells in tis-
sues where monocyte infiltration is rare (retina; Fig. 3H) or where 
specialized macrophage subsets are common (alveolar macrophages 
in the lung; Fig. 3F). The distinct cluster of not classified cells pres-
ent on the left of the lung UMAP (Fig. 3F) was enriched for alveolar 
macrophage markers, thus explaining the notable bimodal label dis-
tribution in this dataset (Fig. 3F). By contrast, the label assignment 
in the atherosclerotic plaque dataset was nearly global (Fig. 3D) likely 
as only circulating monocyte-derived macrophages were studied (23).

We explored the issue of macrophage embryonic origin and tis-
sue immune privilege in more detail by studying a dataset where 
microglia were recovered at different developmental steps from 
naïve mice (Fig. 4A and table S2) (42). In line with our expectations, 
we observed poor label probability distributions for all investigated 
ages (Fig. 4A). The probability threshold was never surpassed, and 
these distributions were skewed progressively toward 0 as the age of 
the investigated animals increased.

Together, our label transfer analysis shows that macrophages 
across tissues and inflammatory conditions share common tran-
scriptional profiles that correspond to definable activation paths. 
Our analysis also suggests that embryonically seeded and highly 
specialized tissue-resident macrophages do not respond to inflam-
matory conditions in a way analogous to that of infiltrating mono-
cytes, with the latter encapsulating most of the functional diversity 
found in all the studied datasets. Consequently, our model best cap-
tures the activation of monocyte-derived macrophages that replace 
tissue-resident cells during inflammation. Last, well-established 
paradigms of macrophage biology are reinforced by the functional 
stages that we defined, making these labels a potential tool to probe 
deeper into the functional specialization of macrophages during 
inflammation.

Exploiting the predictive nature of the proposed 
macrophage activation model
We decided to explore in greater detail potential biological insights 
that might be obtained from our activation model. For this purpose, 
we turned to the atherosclerotic plaque and breast tumor datasets 
(Fig. 4), both of which included interventions that ameliorated dis-
ease progression (table S2) (22, 23). Dietary and pharmacological 
intervention (table S2) was reported to induce regression of athero-
sclerotic plaque lesions (23), which are dominated by phagocytic path 
macrophages (Fig. 4B). There was a shift between late.P1- and final.

P1-stage cells in regressing lesions, with a sizable decrease in the 
proportion of late.P1-stage cells (Fig. 4C). We investigated which 
genes were altered in expression within cells in this activation 
stage between progressing and regressing lesions. We performed 
this analysis on the original unimputed expression data to enable 
our label predictions to orient the analysis without affecting the 
underlying measurements. We compared these regulated genes with 
those associated with the phagocytic path based on our pseudotime 
analysis (Fig. 2). Expression of all but one of the genes in this acti-
vation stage increased in regressing lesions (Fig. 4D). Moreover, all 
but one of these genes tended to be expressed more strongly as cells 
progressed from the late.P1; (Fig. 4E, dashed lines) to the final.P1-
stage. Collectively, these data suggest that the intervention causing 
lesions to regress induced the accelerated transit of macrophages 
along the phagocytic path, as indicated by the increased expression 
of genes associated with this trajectory in late.P1-stage cells, which 
concomitantly decrease in abundance.

Next, we examined the breast cancer dataset, where macrophage- 
specific Dab2 deletion was reported to dampen tumor progression 
(Fig. 4, F to J, and table S2) (22). We observed that Dab2 was most 
highly expressed in phagocytic path late.P1- and final.P1-stage macro-
phages (Fig. 4, F and G), with the former being more abundant. We 
observed an increase in late.P1-stage Dab2-deficient macrophages 
(Fig. 4H), leading us to examine differentially expressed genes be-
tween these cells and their WT counterparts. Our results show that 
from 15 regulated genes also included in the pseudotime analysis, 
11 were differentially down-regulated between these two groups 
(Fig. 4I). Of these 15 genes, 13 were highly expressed at this stage of 
activation in our reference data (Fig. 4J, dashed lines). The down- 
regulation of these path-associated genes and the accumulation of 
late.P1-stage cells could indicate that the absence of Dab2 stalls the 
progression of macrophages in the phagocytic path.

Monocytes enter wounds populating the functional diversity 
predicted by the proposed macrophage activation model
Our model predicts that incoming monocytes are able to assume 
the phenotype of existing macrophages in the tissue and populate 
all functional stages described. In the atherosclerotic plaque dataset, 
all sequenced cells were derived from circulating precursors (23). 
To formally evaluate this, we traced the influx of monocytes into 
wounded skin (Fig. 5, A and B, and fig. S6). Red fluorescent mono-
cytes (tdRFP+) were administered intravenously 2 or 12 dpw, and 
all wound macrophages were harvested 4 and 14 dpw (Fig. 5B), us-
ing index sorting to retain fluorescence values from barcoded cells 
for further analysis. We mapped, clustered (fig. S6A), and labeled 
the sequenced cells (Fig. 5A) as described above, applying similar 
thresholds and evaluating label probability distributions for the en-
tire dataset (Fig. 5C) and across clusters (fig. S6, A and B). Wounded 
skin exhibited most previously defined activation stages, again 
demonstrating the robustness of our activation model.

We observed a global label probability distribution skewed to-
ward a value of 1 (Fig. 5C), indicating a good agreement with our 
reference data. Moreover, label distribution across conditions was 
consistent with expectations based on established literature (43), 
with an early wave of inflammatory cells at 4 dpw (Fig. 5D) and a 
later increase in phagocytic path cells at 14 dpw (Fig. 5D). Trans-
ferred monocytes were detected at both 4 and 14 dpw (fig. S6C), 
although only when given on day 2 (fig. S6D). Infiltrating mono-
cytes were distributed across all detected clusters and assigned stage 
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labels (Fig. 5, E to G) mirroring closely the distribution for all mac-
rophages sequenced (Fig. 5, D and G). As predicted by our model, 
fluorescent cells were assigned to the initial stage and inflammatory 
path 4 dpw (Fig. 5G), emphasizing the transitory nature of the early 
inflammatory wave that occurs during tissue repair. By contrast, 
transferred monocytes mapped preferentially to the early stage and 
phagocytic path 14 dpw (Fig. 5G). The fact that transferred cells 
only mapped to the initial stage on day 4, and that by day 14 they 
had assumed other identities, reflects the number of days since 
these cells accessed the wound and supported our model, showing 
monocyte flux through distinct activation stages. More early- 

stage macrophages coexpressing Retnla and Ear2 were detected at 
14 dpw (Fig. 5, G and H) compared with day 4, despite the presence 
of inflammatory path cells at this time point that, according to our 
model, should have transited through the early stage. Previously, 
2 days were insufficient to observe Retnla expression in infiltrating 
cells (Fig. 2F), and increased proportion of early-stage cells at 14 dpw 
(Fig. 5G) aligns with our earlier findings that, after 8 days, a higher 
percentage of infiltrating cells would fall in this stage (Fig. 2F). To 
reconcile these observations, we propose that the relative speed at 
which macrophages traverse defined activation paths is influenced 
by the inflammatory conditions at the site of immunological insult, 
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so that cells may accelerate their passage through identified stages 
to better adapt to the required immune response.

Next, we took advantage of the indexed nature of the skin wound 
dataset to validate our labeling strategy with common macrophage 
phenotypic markers. For this purpose, we scaled the fluorescent sig-
nal of CD301b, CD45, F4/80, CD11b, MHC-II, and Ly6C, as well as 
the side and forward scatter parameters, across all cells and calculated 
a UMAP from this flow cytometry data, retaining the stage labeling 
based on the transcriptional profile of the cells (Fig. 5I). We then 
identified clusters using k-means (Fig. 5J and fig. S6E). We observed 
that late.P1-, final.P1-, and final.P3-stage cells each dominated a cluster 
(Fig. 5L, clusters 4, 5, and 6, respectively), whereas early-stage cells 
localized predominantly to cluster 2 (Fig. 5, J and L). As expected, 
transferred monocytes were evenly distributed across these clusters 
(Fig. 5K and fig. S6F), further emphasizing the ability of these cells 
to differentiate into all identified functional stages. Last, we show that 
these flow cytometry–based clusters are associated with significantly 
different protein expression levels (P < 0.001; Fig. 5M). Collectively, 
these data show that monocytes entering a wound respond to this envi-
ronment by becoming activated in accordance with the model proposed 
in this study and provide surface protein validation of these stages.

Macrophage activation stages in tissues have distinct 
transcriptional markers
Our approach relies on the quality of anchor pairs identified across 
datasets to transfer labels and impute gene expression data. In this 
manner, we identified all activation stages in different proportions 
across all the datasets studied (Fig. 6A). Because this approach by 
necessity transforms the original expression data, we sought to de-
termine its robustness by interrogating labeled cells directly (Fig. 6B). 
For this purpose, we took all high-label probability cells (>80%) 
from 10 query datasets and combined these with a randomly sam-
pled portion (n = 500) of macrophages from our reference, retaining 
only the label assignment and original uncorrected gene expression 
data (Fig. 6B). Once extracted, these macrophages (n = 2843) were 
integrated across tissues, without giving priority to any dataset, and 
then clustered and visualized as a UMAP (Fig. 6C).

Our expectation for this analysis was that the transcriptional tis-
sue signature would not obscure the activation stage label. That is, 
our model would predict that tissues would not define the resulting 
cell clustering but rather that the activation stage of these cells 
would be sufficient to group them in this unsupervised analysis. 
Critically, this was the outcome that we observed (Fig. 6D). Cells 
with identical activation labels clustered together, regardless of the 
tissue of origin or the inflammatory condition, demonstrating that 
our initial approach was valid. We next performed a complemen-
tary trajectory inference analysis on this data using Monocle (44), 
which organized cells into two main branches of macrophage acti-
vation, chiefly one directed to the phagocytic path (P1) and one to-
ward the inflammatory pathways (P2 and P3) (fig. S7A). Although 
this analysis is unable to resolve the differences between P2 and P3, 
the overall architecture of the projection is reminiscent of our refer-
ence data. Cells in the initial, early, and cycling stage clustered near 
each other, while intermediate-stage macrophages separated the 
bottom phagocytic and remodeling paths from the oxidative stress 
and inflammatory paths at the top of the UMAP (Fig. 6D). This 
distribution of clusters adds weight to our proposed activation tra-
jectories and emphasizes the relative relationship between the acti-
vation stages defined.

Having all macrophages clustered in this manner allowed the 
extraction of tissue-independent transcriptional markers for all ac-
tivation stages. We found up-regulated genes (Fig. 6E and data file 
S2) corresponding to each identified activation stage, which largely 
aligned with the genes that we originally associated with each label 
(fig. S2C and data file S1). Moreover, we extracted from this result 
potential cell surface markers (data file S3) and selected those with 
commercially available antibodies (Fig. 6F and fig. S7B). We rea-
soned that combining these markers would enable us to identify 
macrophages at different activation stages. We injected the peritoneal 
cavity of mice with 106 CFU of L. mono and tracked macrophage 
recruitment 1, 4, and 8 days p.i. (Fig. 6G). The resulting fluores-
cence intensities for the macrophage populations were scaled using 
a linear regression model and used to cluster cells and calculate a 
principal components analysis and UMAP for visualization (Fig. 6H). 
These scaled fluorescence values were relative to the cells retained 
in the analysis, so rather than positive or negative, we used high (hi) 
or low (lo) to score protein expression. This analysis was able to 
capture a high degree of heterogeneity in the population of macro-
phages in the peritoneal cavity (Fig. 6H and fig. S7C), with cells 
originating from different time points after infection clustering sep-
arately. Next, we assigned our model’s activation stage labels to the 
identified clusters based on the distinct staining patterns that we 
observed in the data (fig. S7C). For some markers, we found no 
correlation between transcript and protein levels (Nrp1, CD304; 
Fcgr4, CD16-2; Cd14, CD14; Tnf, TNF); however, we were reasonably 
confident of the annotation based on the remaining markers and 
identified at least three proteins that are distinctly expressed in each 
of the identified activation stages (Fig. 6H, right, and fig. S7C).

Next, we used the assigned labels to explore the population 
dynamics across our experimental peritonitis model (Fig. 6I). Our 
annotation was consistent with the population dynamics that our 
model would predict and are expected of an inflammatory process 
(Fig. 6I). We observed a wave of initial-, early- and late.P2-stage 
macrophages replacing the tissue-resident cells shortly after infection, 
followed by a progressive appearance of cells in the intermediate- 
stage, and lastly an accumulation of final.P2-, final.P3-, late.P1-, 
and final.P1-stage cells (Fig. 6I). RELMɑ expression was greatly en-
riched in the early-stage macrophages, which were most abundant 
4 days p.i. (Fig. 6H). These findings provide further support to our 
proposed model, and the identified markers may be used by re-
searchers to explore macrophage heterogeneity in other contexts.

Transcriptional network analysis reveals information hubs 
and upstream regulators
Earlier, we hypothesized that changes in the regulation of genes as-
sociated with defined activation paths were likely to stall or promote 
macrophage activation. To explore this final aspect of the data, we 
returned to the pseudotime-regulated genes (Fig. 2) and built and 
then filtered a network based on known protein-protein interac-
tions and gene expression regulation along identified paths (fig. S8, 
A and B). Next, we clustered the resulting network, performed Gene 
Ontology (GO) term enrichment analysis in each cluster (fig. S8C) 
and labeled the network according to the most enriched term in the 
gene set. The resulting network (Fig. 7A, 242 genes) showed 10 clusters 
associated with distinct functions. These gene sets were not engaged 
similarly by all activation paths, as revealed by subsetting the net-
work to include only genes significantly associated with pseudotime 
in each path (Fig. 7B).

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on M

ay 10, 2023



Sanin et al., Sci. Immunol. 7, eabl7482 (2022)     15 April 2022

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  R E S O U R C E

11 of 18

We extracted three types of in-
formation from this transcriptional 
network. First, we examined highly 
connected nodes, which articulated 
the network by connecting two or 
more clusters and were overrepre-
sented in the paths connecting pairs 
of nodes in the network (i.e., high 
betweenness). Examining genes meet-
ing these criteria (Fig.  7C) high-
lighted not only some well-known 
macrophage regulators (e.g., Lyz2 
and Csf1r) but also genes whose 
function has not been widely studied in the context of macrophage 
activation (e.g., Gngt2 and Srgn), thus warranting further explora-
tion. Second, we identified transcription factors (TFs) upstream of 
the transcriptional network clusters (Fig. 7D), of which six (Rel, 
Maf, Fos, Jun, Spi1, and Jund) were themselves regulated dynami-
cally along the activation paths. Some TFs had opposing behaviors 
(Rel versus Maf), whereas others behaved similarly in all paths 

except one, where they suddenly veered in opposing directions 
(Spi1 versus Fos/Jun). Last, we took the top three GO-enriched terms 
in each cluster (Fig. 7E and fig. S8C) and all enriched Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways detected (Fig. 7F) 
and calculated gene set scores for each of these (table S1). We then 
estimated the variance of each gene set score within the activation paths 
and represented these data as a heatmap (Fig. 7, E and F), finding 
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a distinct profile for each path for these functions. In this manner, 
we highlight the relative regulation of several processes of interest in 
the activation paths that we defined, as a guide to researchers wishing 
to explore these aspects of macrophage function in more detail.

In summary, we used a predictive model of label transfer to en-
compass macrophage activation irrespective of tissue or inflammatory 

condition. We demonstrate that this model is robust, aligning with 
well-established paradigms of macrophage function, while providing 
original avenues for investigation. We provide surface and global 
gene expression profiles for these activation stages to aid in their 
identification in future studies. We have prepared an online tool 
(https://t.jh.edu/macrophage-framework) to aid in exploring the data 
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contained in this study. Our results emphasize the conservation 
and relative homogeneity of macrophage activation across tissues, 
transcending macrophage tissue residence, while still allowing for 
activation diversity.

DISCUSSION
Advances in the understanding of macrophage ontogeny and of dif-
ferential gene expression signatures linked to macrophage tissue 
residence have revealed inherent complexity within this cell type. 
Moreover, the transcriptional profile of macrophages after expo-
sure to a broad range of stimuli for which they are known to express 
receptors revealed a spectrum of potential activation states not cap-
tured by in vitro models. In light of these findings, it has become 
difficult to relate macrophage activation across investigations. Our 
study offers an alternative view of macrophage activation in tissues 
during inflammation. By comparing the transcriptional profiles of 
macrophages recovered from different tissues from mice experienc-
ing distinct diseases/conditions, we identified a limited and consist-
ent number of transcriptional profiles that were unobscured by the 
tissue or stimulus studied. We modeled these conserved and yet 
diverse signatures as stages across four activation paths, finding that 
phagocytic and inflammatory paths were most common. These paths 
have features in common with M2 and M1 respectively, encom-
passing those references while offering a broader and dynamic al-
ternative. Last, our analysis offers insights into the information hubs, 
TFs, and gene expression programs that are responsible for shaping 
macrophage function.

The macrophage activation model that we propose, where cells 
transit through an initial and early stage of commitment to a partic-
ular path, is evident in other independent analyses. For instance, in 
a murine model of nonalcoholic steatohepatitis (NASH) a mono-
cyte-derived population of Ly6Clo macrophages expressed high 
levels of Ccr2, Klrd1, and MHC-II (45), comparable with genes ex-
pressed in initial-stage cells in our analysis (data file S1 and https:// 
t.jh.edu/macrophage-framework). Ccr2 expression in particular gives 
credence to our choice of starting point for the model because this 
encodes a critical tissue-homing receptor in circulating monocytes 
(46). A closely associated cell population in the NASH dataset 
expressed both Ear2 and Fn1, mirroring early-stage macrophages 
(data file S1). Moreover, in the context of this disease, this popula-
tion gave rise to Kupffer cells (45), which expressed high levels of 
Mrc1, Apoe, and complement-associated genes, similarly to phago-
cytic path macrophages. Another instance where this progression is 
evident is in joint synovial macrophages (47). In this setting, two 
populations of interstitial macrophages, one MHC-IIhigh and one 
RELMɑ+ reminiscent of the initial- and early-stage cells described here, 
respectively, replenished long-lived synovial tissue-resident cells (47). 
The possibility to reconstruct our model in these independent anal-
yses demonstrates the robustness and universality of our findings.

Our model highlights the role of incoming monocytes into tis-
sues, both under homeostasis and inflammatory conditions. The input 
of monocyte-derived macrophages to the overall tissue macrophage 
pool during homeostasis varies from organ to organ (4), and under 
these conditions, we found that the contribution of the four identi-
fied activation paths was diverse between tissues, likely as a result 
of microenvironmental signals that are themselves heterogeneous. 
Thus, our data indicate that the commitment of monocytes to these 
activation paths is regulated not only by the inflammatory settings, 

which invariably altered the proportion of cells in each stage, but 
also by the specific nature of the tissue. We further demonstrated 
that the emphasis of our model on monocyte-derived macrophages 
was likely due to the distinct transcriptional profile of embryoni-
cally derived macrophages (2), which were labeled as not classified 
in our analysis. One implication of this finding is that incoming 
monocytes give rise to most of the functional diversity in any given 
tissue, whereas the resident cells remain more transcriptionally sta-
ble regardless of the insult. Similar conclusions were drawn recently 
(10) from observations on alveolar macrophages, which have been 
shown to be less plastic, less phagocytic, more permissive to infec-
tion, less responsive to IL-4 stimulation, and generally less engaged 
in ongoing local immune responses than are monocyte-derived cells 
(48–50). Tissue-resident macrophages in other tissues, specifically 
the peritoneal cavity, have also been shown to be less immunologi-
cally active (51), even if they are highly proliferative (52). Likewise, 
monocyte-derived macrophages have been shown to play a domi-
nant role in tumors (53). The mechanisms restricting tissue-resident 
macrophage activation have not been elucidated, although epigene-
tic imprinting (1, 10) and autophagy-enforced quiescence (54) are 
likely candidates. Overall, the emerging picture is one where macro-
phage functional plasticity in response to a loss of homeostasis 
within tissues is a feature of cells derived from recruited monocytes, 
which participate in the induction and resolution of inflammation 
by moving along defined activation paths. This view does not 
exclude the possibility that tissue-resident macrophages are con-
tributing to the response to tissue damage, but it does predict 
that monocyte-derived cells are the major contributors in this re-
gard. In addition to this limitation, we did not explore datasets 
originating from viral infections, which could give rise to different 
transcriptional profiles. Furthermore, our analysis is largely based on 
data from one strain of mice (C57BL6), and it remains to be seen 
how fully the findings can be recapitulated in other mouse strains 
or species.

In our model, we postulate that macrophages become activated 
through four possible paths, and we infer that only cells in the phago-
cytic path go on to replace tissue-resident macrophages. Several 
independent lines of investigation support this hypothesis: Increased 
expression of complement genes has been reported in Kupffer cells 
(45) and alveolar macrophages (55) derived from monocytes; phago-
cytosis appears to be a key feature of tissue-resident macrophages 
(56); phagocytic receptors like Mrc1, Cd163, Timd4, and Mertk, 
all highly expressed in phagocytic path cells, are associated with 
tissue-resident macrophages (56). It is possible that through phago-
cytosis, macrophages become tissue imprinted. Thus, by engulfing 
apoptotic cells, macrophages might indirectly absorb factors that con-
vey tissue identity.

By far, the most abundant gene signature that we observed in 
our analysis was that of the later stages of the phagocytic path. As 
mentioned above, this transcriptional profile is evident elsewhere 
(45, 55). During lung fibrosis, Apoe and complement gene expression 
became dominant features of disease progression (19). This gene 
signature can be extended to human macrophages involved in injury 
resolution (57). Our proposal that these cells give rise to tissue- 
resident macrophages explains in part this relative abundance. How-
ever, their transcriptional profile also overlaps with genes associated 
with alternative activation (16). Moreover, the complement pro-
duct C1q has been linked to macrophage proliferation (58), a charac-
teristic of alternatively activated macrophages. It is intriguing that 

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on M

ay 10, 2023

https://t.jh.edu/macrophage-framework
https://t.jh.edu/macrophage-framework


Sanin et al., Sci. Immunol. 7, eabl7482 (2022)     15 April 2022

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  R E S O U R C E

14 of 18

these macrophages are critical to restoring homeostasis by removing 
dead cells, which boosts their IL-4–driven phenotype (59), yet they 
also have a clear role in the pathology of several of the conditions 
explored herein. Our findings suggest that stalling macrophages 
along the phagocytic path can be both beneficial, as seen in the case 
of breast tumors, and detrimental, as observed in atherosclerotic 
plaques (Fig. 4). Even tissue-imprinted pathogenic microglia associ-
ated with Alzheimer’s disease converged into an Apoe-expressing phe-
notype (60). On the basis of this, we postulate that determining how 
to manipulate progression along the phagocytic path may offer 
therapeutic opportunities.

Although in-depth identification of the drivers of macrophage 
transit through the proposed activation paths is beyond the scope of 
this study, our initial exploration of the data revealed 242 highly 
interconnected genes with some common upstream regulators and 
mapping to diverse functions. How this transcriptional network is 
shaped within each tissue will be of great interest moving forward. 
However, the fact that the number of macrophage activation stages 
that we defined was conserved and limited, despite the diversity of 
insults and tissues studied, suggests that common undercurrents 
guiding macrophage activation might be built into tissues. One po-
tential set of candidates for orchestrating these processes would be 
signals associated with tissue damage, which is ubiquitous during 
inflammation. The production of alarmins by stromal cells leading 
to the activation of resident innate immune cells [e.g., type 2 innate 
lymphoid cells (ILC2s) and mast cells] might be an important driver of 
macrophage tissue engraftment, in particular because the signals that 
they produce are capable of guiding both pro- and anti-inflammatory 
phenotypes. Thus, seemingly opposing signals (i.e., IL-4, TNF, 
IL-1, IL-10, IL-13, and prostaglandin E2) produced concomitantly by 
tissue-embedded mast cells (61, 62) and ILC2s (63) might be partly 
responsible for the diversity of observed macrophage activation paths 
in all conditions. It is feasible that additional signals provided by 
metabolites (64) might contribute to these outcomes.

In particular, as we move into the era of single-cell genomics, 
establishing a lingua franca that allows us to describe macrophage 
biology in humans and other animals, and across tissues and diseases, 
is critical. Not only is this a matter of transferring insights from 
one study to another but also in shaping our understanding of the 
function of macrophages in vivo, especially in inflammatory diseases. 
Moreover, moving the focus away from individual genes and toward 
gene signatures might allow for better transferability of findings be-
tween mouse and human models. Our data readily find parallels in 
human conditions (57). Last, understanding how the local micro-
environment shapes the immune response is possible only if we are able 
to define the common threads of that response in the first place. In 
this context, our approach highlights the overarching similarity that 
can be found in the way in which macrophages diversify their func-
tion, without dismissing the influence that inflammatory condi-
tions and tissue niches impose on that functionality. We consider 
our approach is a step toward building a common framework to 
describe macrophage activation that can be applied broadly to 
explore the biology of these important cells.

MATERIALS AND METHODS
Study design
The objective of this study was to integrate the transcriptional pro-
file of macrophages retrieved from diverse inflammatory conditions 

and in steady state. We used scRNA-seq technologies and flow 
cytometry to study cells ex vivo. Tissues were obtained from ani-
mals infected with several pathogens, wounded or fed experimental 
diets. We adoptively transferred monocytes and phenotyped these 
and other macrophages after specified times. Collected data were 
analyzed with bioinformatic and computational tools with the goal 
of developing a unified framework for monocyte-derived macrophage 
activation. Group sizes and end points were determined on the 
basis of experimental purposes using previous experience or estimated 
on the basis of preliminary data and expected power of 95%. No 
outliers were detected in the data. Age- and sex-matched mice were 
assigned randomly to experimental groups. This study was not 
blinded. Sampling and experimental replicates are indicated in each 
figure legend.

Mouse models
C57BL/6 J [Research Resource Identifier (RRID)]: IMSR_JAX:000664), 
B6.129P2-Lyz2tm1(cre)lfo/J (RRID: MGI:5014089), CD45.1 congenic 
(RRID: IMSR_JAX:002014), and C57BL/6 N (RRID: MGI:5882504) mouse 
strains were purchased from The Jackson Laboratory. IL-4Rɑ−/− mice 
were generated from B6.129P2-Lyz2tm1(cre)lfo/J and B6-Il4ratm(loxp) (65). 
Mice were maintained at the Max Planck Institute for Immunobiology 
and Epigenetics or at the Bloomberg-Kimmel Institute for Cancer 
Immunotherapy at Johns Hopkins. C57BL/6JRj (RRID: MGI:2670020) 
and R26LSL-tdRFP (66) mice were maintained at the Experimental 
Center of the Medical Faculty, TU Dresden. Bone marrow from 
RELMɑ- deficient animals was donated by M. Nair from University 
of California Riverside. Animal care was undertaken in accordance 
with Institutional Animal Use and Care Guidelines with approval 
by the corresponding animal care committee. All animals used for 
tissue harvest or experimental procedures were aged between 6 and 
9 weeks at the start of the experiment. Animals were humanely 
euthanized by carbon dioxide asphyxiation followed by cervical 
dislocation and tissue dissection. Mice were bred under specific 
pathogen–free standards.

Experimental infections and diets
L3 infectious-stage H. poly larvae were provided by J. Urban Jr, 
U.S. Department of Agriculture, Agricultural Research Service, Beltsville 
Human Nutrition Research Center, Diet Genomics and Immunol-
ogy Laboratory, Beltsville, USA. To induce H. poly infection, mice 
were gavaged with 200 L3 infectious-stage larvae in phosphate- 
buffered saline. Mice were left for 13 days before being euthanized. 
A WT strain of L. mono was used for infections. Mice were infected 
subcutaneously on the footpad with a sublethal dose of 1 × 106 
colony-forming units (CFU). Mice were left for 1 day before being 
euthanized. Alternatively, mice were injected intraperitoneally 1 × 
106 CFU and left for 1, 4, or 8 days before being euthanized. Obesity 
was induced by ad libitum feeding of C57/BL6 mice for 12 week 
with irradiated HFD (rodent diet 60% kcal from fat; catalog no. 
D12492, Research Diets Inc.). Control diet (chow) containing 24% 
protein, 47.5% carbohydrate, and 4.9% fat was given to age- and 
sex-matched animals as a control group. Cells were isolated from 
tissues obtained from euthanized animals (see Supplementary Methods). 
Single live cells were purified via fluorescence-activated cell sorting, 
excluding dead cells labeled with LIVE/DEAD dyes (Thermo Fisher 
Scientific) and doublets based on side and forward light scatter. 
Lamina propria cells were further sorted on the basis of CD45 ex-
pression (BioLegend, clone: 30-F11).
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Monocyte/macrophage isolation and transfer
Monocytes were isolated from bone marrow using with MojoSort 
Mouse Monocyte Isolation Kit (BioLegend) following the manufac-
turer’s instructions or via fluorescence-activated cell sorting using 
fluorochrome-conjugated monoclonal antibodies: CD11b (BioLegend, 
clone: M1/70), F4/80 (Biozol, clone: BM8), SiglecF (BD Horizon, 
clone: E50-2440), Ly6G (BioLegend, clone: 1A8), CD11c (BioLegend, 
clone: N418), MHC-II (BioLegend, clone: M5/114.15.2), and Ly6C 
(BioLegend, clone: HK1.4). Macrophages were isolated from peri-
toneal lavage via magnetic sorting using biotinylated monoclonal 
antibody against T-cell immunoglobulin and mucin domain con-
taining 4 (TIM4) (Miltenyi Biotec, clone: REA999), and Anti- Biotin 
MicroBeads (catalog no. 130-090-485, Miltenyi Biotec) following the 
manufacturer’s instructions. Isolated cells were stained with Cell-
Trace Violet (Life Technologies), assessed for purity via flow 
cytometry, and then 0.5 × 106 to 1 × 106 cells per mouse were trans-
ferred via intraperitoneal injection to littermates randomly assigned to 
experimental groups. RFP+ monocytes were isolated from B6.RFP mice 
via immuno-magnetic depletion of whole bone marrow by incubating 
samples with biotinylated antibodies against CD3 (eBioscience, clone: 
145-2C11), CD4 (eBioscience, clone: GK1.5), CD8 (eBioscience, clone: 
53-6.7), CD45R (BioLegend, clone: RA3-6B2), CD19 (eBioscience, 
clone: eBio1D3), NK1.1 (eBioscience, clone: PK136), Ter119 
(BioLegend), CD49b (BioLegend, clone: DX5), Ly6G (BioLegend, clone: 
1A8), and CD117 (BioLegend, clone: 2B8). Anti-Biotin MicroBeads 
(Miltenyi) were then used according to the manufacturer’s protocol. 
Enrichment was validated by staining purified bone marrow mono-
cytes with antibodies against CD115 (BioLegend, clone: AFS98) 
and Ly6C (BD Bioscience, clone: AL-21).

Skin wounding model
Wounding, preparation of wound tissue, and cell isolation were 
performed as previously described (67). A total of 3 × 106 RFP+ 
monocytes were adoptively transferred into each previously wounded 
C57/BL6 recipient via intravenous injection, either 2 or 12 days after injury. 
Wounds were excised 4 or 14 days after injury. Recovered cells were 
stained for flow cytometry and cell sorting using CD11b (eBioscience, 
clone: M1/70), F4/80 (eBioscience, clone: BM8 or AbD Serotec, clone: 
CI:A3-1), MHC-II (eBioscience, clone: M5/114.15.2), Ly6C (BD, clone: 
AL-21), CD45 (eBioscience, clone: 30-F11), and CD301b (BioLegend, 
clone: URA-1). Dead cells were excluded by 4′,6-diamidino-2- 
phenylindole staining (50 ng/ml; Thermo Fisher Scientific).

Flow cytometry
Cells were stained for flow cytometric analysis using TIM4 
(BioLegend, clone: F31-5G3), CD45.1 (BioLegend, clone: A20), 
CD115 (BioLegend, clone: AFS98), and F4/80 (BioLegend, clone: BM8). 
Detection of intracellular Retnla mRNA and RELM protein (catalog 
no. 500-P214, PeproTech) was performed using PrimeFlow RNA 
Assays (Thermo Fisher Scientific) following the manufacturer’s in-
structions. Data from stained cells were collected using LSRFortessa 
flow cytometers (BD Biosciences) with FACSDiva v.9.0, and data 
were processed using FlowJo v.10.6. For spectral flow cytometry, 
cells were stained with specified antibodies (see Supplementary 
Methods) and collected using a Cytek Aurora (Cytek) spectral flow 
cytometer at the Sidney Kimmel Comprehensive Cancer Center High 
Parameter Flow Core. Data were processed using CytoExploreR 
v.1.1.0 (68), followed by UMAP calculation and fluorescence data 
scaling with a linear regression model in R v.4.0.0 (69) using Seurat 

v.4. Data clustering was performed using the Leiden algorithm (70). 
Stage assignment was performed manually.

Single-cell sequencing and analysis
Detailed strategy is included in Supplementary Methods. Briefly, 
scRNA-seq of cells from adipose tissue and lamina propria was 
performed using a 10x Genomics Chromium Controller. Single cells 
were processed with GemCode Single Cell Platform using GemCode 
Gel Beads, Chip, and Library Kits (v2) following the manufacturer’s 
protocol targeting 5000 cells sequenced on HiSeq 3000 (Illumina) 
with 50,000 reads per cell. scRNA-seq of wounded skin was per-
formed as described previously (71, 72) with Illumina 50–base pair 
paired-end sequencing on a NovaSeq 6000 aiming for 0.5 mio reads 
per cell. Samples were demultiplexed and aligned using Cell Ranger 
(10x Genomics), gsnap v.2018-07-04 (73), and featureCounts v.1.6.2 
(74) to genome build GRCm38 release 87. Read count matrices were 
processed, analyzed, and visualized using Seurat v.4 (38) in R v.4.0.0 
(69) and scanpy v.1.8 (32) in Python v.3 (75), complemented by SC-
Transform (30), Clustree (76), Harmony (31), BBKNN (33), PAGA 
(34), Slingshot v.1.6.1 (28), and Monocle v.3 (44) plus visualized with 
a UMAP (77) as a dimensionality reduction approach. Pathway 
enrichment and protein interaction network were determined using 
goseq v.1.40.0 (78), StringDB (79), igraph v.1.2.5 (80), and ggraph 
v.2.0.2 (81). Network clustering was performed using the cluster_
louvain function (82). Trajectory-dependent gene regulation was 
calculated on top 2000 most variable genes using gam v.1.20 (83). 
Query datasets available from public repositories were retrieved 
(table S2), macrophages extracted based on a “Macrophage score” 
(table S1) and processed as described above. Flow cytometry data 
associated with individually barcoded cells were used to calculate a 
UMAP projection using uwot (84), which was then clustered with 
k-means v.4.0.0 (69), setting k based on the total within cluster sum 
of squares. TF enrichment analysis was performed with RcisTarget 
v.1.8.0 (85, 86) and visualized using wordcloud2 v 0.2.1 (87).

Quantification and statistical analysis
Statistical analysis was performed in R v.4.0.0 (69), using functions 
from the base stats package to calculate a single-factor analysis of 
variance (ANOVA) with AOV followed by Tukey’s honest signifi-
cant differences to determine statistically significant differences 
between means (Fig. 2, G and H) with a Bonferroni correction or only 
a single-factor ANOVA to establish significant clustering effects 
(Fig. 5M).Tests were two-sided and  = 0.05. Ex vivo results are 
represented as dots for individual mice.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/sciimmunol.abl7482
Methods
Figs. S1 to S8
Tables S1 to S3
Data files S1 to S3
Materials Design Analysis Reporting (MDAR) Checklist

View/request a protocol for this paper from Bio-protocol.
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A macrophage classification system
Monocytes infiltrating tissues in response to infection or inflammation rapidly differentiate into macrophages that
can display a wide range of activation states. Using single-cell transcriptomics, Sanin et al. develop a framework for
classifying macrophage activation states across different tissues and stimuli. On the basis of analysis of adipose tissue
macrophages collected from mice infected with Listeria monocytogenes or the helminth Heligmosomoides polygyrus,
the authors defined four activation paths including “phagocytic,” “inflammatory,” “oxidative stress,” and “remodeling”
paths. Transient RELM# expression occurring independently of IL-4 signaling was a conserved feature of all early-
infiltrating macrophages. This predictive framework was validated using a large-scale, integrated analysis of published
transcriptomic data, highlighting that specific features of macrophage activation are conserved across a wide range of
tissues and disease states (see the related Focus commentary by Loke et al.).

View the article online
https://www.science.org/doi/10.1126/sciimmunol.abl7482
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on M

ay 10, 2023

https://www.science.org/content/page/terms-service



