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ABSTRACT

The ordinal pattern-based complexity–entropy plane is a popular tool in nonlinear dynamics for distinguishing stochastic signals (noise) from
deterministic chaos. Its performance, however, has mainly been demonstrated for time series from low-dimensional discrete or continuous
dynamical systems. In order to evaluate the usefulness and power of the complexity–entropy (CE) plane approach for data representing
high-dimensional chaotic dynamics, we applied this method to time series generated by the Lorenz-96 system, the generalized Hénon map,
the Mackey–Glass equation, the Kuramoto–Sivashinsky equation, and to phase-randomized surrogates of these data. We find that both the
high-dimensional deterministic time series and the stochastic surrogate data may be located in the same region of the complexity–entropy
plane, and their representations show very similar behavior with varying lag and pattern lengths. Therefore, the classification of these data by
means of their position in the CE plane can be challenging or even misleading, while surrogate data tests based on (entropy, complexity) yield
significant results in most cases.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147219

The complexity–entropy (CE) plane is a popular tool in time series
analysis for the separation of stochastic and chaotic processes. It
is based on the concept of ordinal patterns, an approach to map-
ping a real-valued time series into a symbolic sequence whose
statistical properties can be quantified in terms of entropies
and complexity measures. We investigate the usability of the CE
plane for the analysis of time series generated by different types
of high-dimensional dynamical systems and find that there are
data from random processes that exhibit the same behavior in
the CE plane that was originally thought to be characteristic of
high-dimensional chaos.

I. INTRODUCTION

The term “complexity” is one that is widely used across many
fields, and there are many definitions of it. In dynamical systems
theory, “complexity” is usually associated with a system that displays
chaotic behavior, in contrast to periodic or stochastic systems. The
characterization of such systems, and the distinction from purely

(“boring”) random behavior, has been a subject of study for a long

time now. Many (often very similar) approaches have been sug-
gested to classifying a time series from an unknown origin as either

“complex” or random.1–8
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A straightforward approach to characterizing the complex-
ity of a time series has been dynamical entropies.3 Their disad-
vantage is, however, that they are large both for chaotic systems
and purely random ones, rendering them incapable of differenti-
ating between the two.1,4 This has inspired several authors to find
an alternative or additional measure to better distinguish noise
from chaos. The method investigated in this work is the complex-
ity–entropy plane (CE plane, sometimes also referred to as complex-
ity–entropy–causality plane) introduced by Rosso et al.4 It is based
on ordinal pattern statistics,3 an approach to the symbolization of
time series. In addition to the widely used permutation entropy, it
uses a second quantity, the so-called statistical complexity of a time
series for characterization of data.

The statistical complexity is defined by Rosso et al.4 via the
Jensen–Shannon divergence of a distribution of symbols (patterns)
to a uniform distribution. This way, a time series with maximum
entropy has zero complexity. To ensure that regular data (with a
non-uniform distribution of patterns and a low entropy) also dis-
play low complexity, the Jensen–Shannon divergence is multiplied
with the permutation entropy value. This results in two dependent
quantities, the entropy and the complexity, that both compare a
distribution of patterns to a uniform distribution. The permutation
entropy and the statistical complexity of a time series, i.e., its position
in the CE plane, are widely used to characterize the complexity (or
chaoticity) of time series or to distinguish between data of different
origins.10–18

While several studies have examined the separation of stochas-
tic time series and low-dimensional discrete chaotic dynamical sys-
tems in the complexity–entropy (CE) plane, the analysis of data
from dynamical systems exhibiting high-dimensional chaos has
been somewhat neglected. An exception is a study of Zunino et al.12

who investigated high-dimensional times series generated by the
Mackey–Glass equation19 and found that the estimated complexity
values highly depend on the lag of the ordinal patterns used. In this
work, we aim to investigate the influence of increasing dimension of
the attractor underlying the analyzed time series on estimated com-
plexity and entropy values and to develop a guide on how to analyze
(possibly very high-dimensional) real-world time series using the CE
plane.

To do so, we chose high-dimensional dynamical systems from
four different categories, representing continuous, discrete, time
delay, and spatiotemporal chaos. For each system, we varied the
attractor dimension, here estimated by the Kaplan–Yorke dimen-
sion. We compared the position of phase randomized surrogates
in the CE plane with that of the original hyperchaotic time series
and found that a visual distinction between the two is often barely
possible, even in cases where a surrogate data test yields signif-
icant results. Even more important for the interpretation of the
CE-diagrams, however, is the fact that stochastic surrogate data and
time series from deterministic systems occur close together in the
same region of the CE plane. This suggests that the more popular
practice of visual distinction via the position on the CE plane can be
problematic.

II. DYNAMICAL SYSTEMS

We chose four different high-dimensional dynamical sys-
tems for our comparison: the Lorenz-96 system20 as a continuous

FIG. 1. Patterns of different lags in original time series with 1(KY) ≈ 43 (corre-
sponding values for D, τ , L are given in Table I). The time series for the Lorenz-96
system, the generalized Hénon map, and the Kuramoto–Sivashinsky equation
are from one individual variable or spatial measurement point in the case of the
Kuramoto–Sivashinsky equation.

system, the discrete generalized Hénon map,21–23 the Mackey–Glass
equation19 as an example of a time-delay system, and the spatiotem-
porally chaotic Kuramoto–Sivashinsky equation.24,25 The dynamical
rule of each system is given in the following. The sampling times
δt of the continuous-time systems were adjusted such that a given
number of samples shows approximately the same number of oscil-
lations for comparability; see also exemplary plots of time series in
Fig. 1. The sampling rates δt, as well as all other parameters necessary
to reproduce the simulations, are given in Table I.

a. The Lorenz-96 system20 is a continuous-time dynamical sys-
tem that can be simulated for an arbitrary number of dimensions
D ≥ 4. It is defined by

ẋi = (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, . . . , D. (1)

The dynamical elements are grouped together as a ring such that
x−1 ≡ xD−1, x0 ≡ xD, and xD+1 ≡ x1. For the purpose of this work,
the constant forcing is set to F = 24. Due to the structure of the
equation, the Lorenz-96 system can also be considered a one-
dimensional spatiotemporal system with periodic boundary condi-
tions.

b. The generalized Hénon map21–23 is a discrete-time dynamical
system and can be implemented for an arbitrary number of dimen-
sions D ≥ 2. In this work, the definition by Baier and Klein21 is used
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TABLE I. Integration parameters of investigated systems. We refer to the sampling time step as δt and to the integration time step as 1t. The dimensionality column gives the

range of the parameter, which determines the Kaplan–Yorke dimension. In all cases, 1(KY) ranges between approximately 3 and 50.

System Initial condition Parameters Integration Dimensionality

Lorenz-96 xj(0) = j · 0.1 for
j = 0, . . . , D − 1

F = 24 Tsit5,9 adaptive
time step,
δt = 0.02

D = {4, 5, 6, . . . , 50}, 1(KY) ≈ 43 for D = 50

Generalized Hénon xi(0) = 0 ∀i a = 1.76, b = 0.1 . . . D = {2, 3, 4, . . . , 50}, 1(KY) ≈ 43 for D = 44
Mackey–Glass x(0) = 1.0,

x(t) = 0 for t < 0
β = 2, γ = 1, ν = 9.65 RK4, 1t = 0.1,

δt = 0.2
τ = {2, 3, 4, . . . , 50}, 1(KY) ≈ 43 for τ = 39

Kuramoto–Sivashinsky y(t = 0, x) = cos
(x) + 0.1sin

(x/8) + 0.01cos
(2πx/L)

. . . Tsit59 in
spectral
domain,

adaptive time
step, 1x = 0.2,

δt = 1

L = {4, 5, 6, . . . , 38}, 1(KY) ≈ 43 for L = 30

such that the ith variable at time step n + 1, xi(n + 1) is given by

x1(n + 1) = a − (xD−1(n))2 − b xD(n), (2)

xi(n + 1) = xi−1(n) for i = 2, . . . , D. (3)

This map has D − 1 positive Lyapunov exponents for D dimensions,
as is also displayed in Fig. 2.

c. The Mackey–Glass equation was introduced by Mackey and
Glass19,26 and is a delay-differential equation that models physiolog-
ical control systems. It can, depending on the time delay τ , display
high-dimensional chaos.27 The equation is given by

ẋ(t) = β
x(t − τ)

1 + x(t − τ)ν − γ x(t), (4)

with β , γ , ν ∈ R>0.
d. The Kuramoto–Sivashinsky equation25,28 describes a one-

dimensional spatiotemporal system, where

∂ty = −∂2
x y − ∂4

x y −
1

2
(∂xy)

2. (5)

For the purpose of this work, it is simulated with periodic boundary
conditions on different domain sizes L.

Each of the systems is capable of displaying high-dimensional
chaos. We calculated the Lyapunov spectrum of each system to esti-
mate the Kaplan–Yorke (KY) dimension28 1(KY). The KY dimension
and the Lyapunov spectra are displayed in Fig. 2. The simulations
and calculation of the KY dimension were performed in Julia using
the DynamicalSystems.jl29 library.

A. The surrogate data approach

To address the question whether (high-dimensional) chaotic
time series can be distinguished from stochastic data by their posi-
tion in the CE plane, we are interested in the most challenging cases,
i.e., in time series that are random but share as many features as pos-
sible with the given observable from the deterministic system. Such

stochastic time series are often called surrogate data, and there are
many ways to generate them.30

The method of surrogate data was introduced by Theiler et al.31

in 1992 as a statistical approach for identifying nonlinearities in
time series, based on the widely known and applied bootstrapping
method.32 It is a way of generating new “surrogate” time series from
original (measured) data to test a specific null hypothesis.30

Surrogate data are often generated by phase randomization.
The original time series is transformed into Fourier space, where
the phases of the spectrum are randomized. This keeps the power
spectral density, and, thus, also the autocorrelation, unchanged.33,34

The spectrum with the randomized phases is then transformed back,
which results in a time series that has the same autocorrelation as
the original data, but could have been generated by a linear Gaus-
sian process. This type of surrogates is usually referred to as FT
surrogates.30

In addition to FT surrogates, we used surrogates generated by
an amplitude adjusted Fourier transform31 (AAFT surrogates). Here,
the amplitude distribution is rescaled to resemble a Gaussian distri-
bution before randomizing the phases. After phase randomization,
the amplitude distribution is rescaled again to match that of the
original time series.

Once the surrogate time series have been generated, a discrim-
inatory quantity of choice can be applied. It is calculated for both
original and surrogate data. If the values of the original data dif-
fer significantly from those of the surrogates in a statistical test, the
null hypothesis is rejected. Assuming Gaussian distributed surro-
gates, this test can be as simple as calculating the standard deviation
of the surrogate distribution and rejecting the null hypothesis if the
original data differ several standard deviations from the mean of the
surrogates.

Here, all pairwise distances between the surrogates on the
CE plane are calculated to generate a distribution. A second dis-
tribution is estimated from the distances between the original
data point to each surrogate. The significance is then calculated
using a two-sample Kolmogorov–Smirnov test35 in order to not
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FIG. 2. Kaplan–Yorke dimension1(KY) and the (largest) Lyapunov exponents for different dimensionalities D of (a) and (e) the Lorenz-96 system, (b) and (f) the generalized
Hénon map, (c) and (g) the Mackey–Glass equation, and (d) and (h) the Kuramoto–Sivashinsky equation. System parameters are listed in Table I. For small values of the
domain size L, periodic and low-dimensional chaotic attractors occur.

depend on any underlying assumptions about the distribution of
surrogates.

III. THE COMPLEXITY–ENTROPY PLANE

The concept of ordinal patterns was introduced by Bandt and
Pompe3 in 2002 and can be considered a subbranch of symbolic
dynamics.36 Originally introduced to measure complexity in time
series, ordinal pattern-based methods have, for example, been suc-
cessfully used to classify physiological time series,17,37–44 quantifying
complex networks and synchronization,45–47 and finding similari-
ties between neuronal and optical (laser) spikes.48–51 All complex-
ity–entropy values in this paper were calculated using the open-
source library ComplexityMeasures.jl.52

A. Ordinal patterns and permutation entropy

In ordinal pattern analysis, a real-valued time series xt ∈ R,
where t = nδt with n ∈ N and δt being the sampling time, is trans-
formed into a sequence of symbols from a finite alphabet. Given a
length m and a lag l = jδt, j ∈ N, a pattern is defined by the sam-
ple points xt, xt+l, . . . , x(m−1)(t+l). For a specific length m, there are
m! different possible patterns. Each pattern is assigned a unique per-
mutation index π . If the pattern contains two identical amplitudes,
these amplitudes are ordered with respect to their occurrence in time
in the original formulation in Ref. 3. However, this can lead to false
conclusions,68 which is why here, one of the two values is randomly
chosen to be the “larger” value.

Once a time series is translated into a sequence of symbols, this
sequence can be statistically analyzed: The probabilities of occur-
rence of each pattern can be estimated from the series, and the
Shannon entropy53 S[P] of that probability distribution P can be
calculated.

This approach was introduced by Bandt and Pompe3 as the
permutation entropy (PE) of the given time series.54 It is often nor-
malized with respect to the entropy of a uniform distribution with
m! bins. We define the normalized PE as

HS =
S[P]

Smax
=

∑

j pj log pj

log(m!)
. (6)

For a signal generated by a deterministic dynamical system,
only some of the possible patterns of a given length m occur if one
chooses a large enough pattern length. Patterns that cannot occur
due to the underlying deterministic dynamical rule are called forbid-
den patterns. This results in a non-uniform distribution of patterns
and, thus, a lower entropy than a more “complex” signal, where
almost all patterns occur with similar probability.

It must be noted, though, that the interpretation of the word
“complexity” needs to be thought of very carefully. In a (finite) time
series containing only white noise, all possible patterns will occur
with (almost) the same probability, resulting in the highest possible
entropy—that of the uniform distribution. Thus, a more unbiased
interpretation of the PE would be that it quantifies the irregularity
of a signal.

On the other hand, a highly complex time series, containing not
(only) white noise but an underlying deterministic complex dynam-
ics, can also, for (too) short patterns, have a uniform distribution
of patterns, thus giving the same entropy as a solely stochastic time
series.

To distinguish stochastic and deterministic (chaotic) time
series with non-uniform distributions, Rosso et al. suggested a sec-
ond quantity, the statistical complexity,4 and generalized it later on.55

In this work, only the original formulation is considered. The statis-
tical complexity CJS[P] of a time series with an ordinal distribution
P is defined as

CJS[P] = HS · QJS[P, Pe]. (7)
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Here, HS is the normalized permutation entropy as defined in
Eq. (6), and QJS is the normalized Jensen–Shannon divergence
between the ordinal distribution P and a uniform distribution Pe

with m! bins, where

QJS[P, Pe] =
DJS[P, Pe]

DJS,max
. (8)

The Jensen–Shannon divergence DJS is calculated from the Shannon
entropy S as

DJS = S

[

P + Pe

2

]

−
S [P]

2
−

S [Pe]

2
. (9)

The two quantities CJS and HS are usually used in combination with
one another. Together, they span the complexity–entropy plane (CE
plane). For a distribution with a given permutation entropy HS, there
is a minimum and maximum possible value for the complexity CJS.
These so-called minimum and maximum complexity–entropy curves
P 7→ (HS[P], CJS[P, Pe]) can be calculated according to Martin et al.56

It is important to note that the above considerations are not
directly applicable to continuous-time dynamical systems because
the lag l = j δt can become very small with respect to the typical
time scales of the time series if the sampling time δt is (very) small.
A chaotic, oversampled time series can still display comparatively
low normalized permutation entropy and high complexity due to
the fact that some patterns are (extremely) unlikely to occur simply
because they would violate the smoothness of the curve.57

IV. STATISTICAL COMPLEXITY OF HIGH-DIMENSIONAL

DYNAMICAL SYSTEMS

While the separation of stochastic and deterministic time
series in the complexity–entropy (CE) plane has been investigated
by many authors for data from low-dimensional and often dis-
crete dynamical systems,10,11,13–16 only very few studies for high-
dimensional systems exist.12

The first problem to consider here is the general problem of
the amount of available data: Eckmann and Ruelle58 argued that
for a faithful estimation of the Lyapunov exponents of a dynami-
cal system with attractor dimensionality 1, N > 101 data points are
required. While to our knowledge no such estimation exists for the
permutation entropy of a system, one could use this estimate as an
orientation for the needed amount of data for ordinal pattern-based
quantities. For a time series consisting of N ≈ 104 points, for exam-
ple, this limits the resolvable attractor dimension to 1 ≈ 4. Not to
mention a number of other conservative estimates for the required
number of data points.59–61

Viewing ordinal patterns from the delay embedding62–64 point
of view, where classically, the embedding dimension d should be d ≥

21 with the attractor dimension 1, there arises a second compu-
tational problem. If the embedding dimension in delay embedding
would be equivalent to the pattern length m, one would need very
large m to resolve high-dimensional systems, for example, m = 8,
even for just a four-dimensional attractor. While this case would
technically be covered by the rule of Eckmann and Ruelle, the
estimation of a histogram with 8! ≈ 4 · 104 bins cannot be done
faithfully from 104 data points, only. Additionally, the resulting
histogram would differ from a uniform distribution due to the

inevitable empty bins by construction, leading to possibly spuriously
low entropy and high statistical complexity.

All of these considerations raise the question of whether anal-
yses with ordinal pattern-based quantities provide the expected
results even for data from high-dimensional dynamical systems.
Zunino et al.12 have done an investigation of the CE plane for high-
dimensional data using the Mackey–Glass equation19,26 and found
that the estimated complexity values highly depend on the lag of
the ordinal patterns used. In this work, we confirm this result for
data from different dynamical systems as well as stochastic time
series obtained via phase randomization (FT and AAFT surrogates).
Furthermore, we investigate the influence of increasing attractor
dimension on estimated complexity and entropy values and demon-
strate the potential and limitations of CE-plane analysis of (possibly
very high-dimensional) real-world time series.

To investigate these issues in more detail, we studied the influ-
ence of parameters that can be chosen during the analysis, such as
the pattern length and the lag used for sampling the patterns and
others that are given (and unknown), such as the dimensionality of
the process generating the data or the amount of data available.

A. Control parameters: Pattern length and lag

The pattern length m and the lag l used for sampling and com-
posing the pattern can be chosen by the user performing the time
series analysis and both have a major impact on the results obtained.
If the pattern length m is too small, the patterns obtained cannot
encode the dynamics similar to a too low embedding dimension.
Therefore, the ordinal pattern distributions are (almost) uniform,
resulting in high entropy and low complexity values, even in cases
with a clear deterministic structure.65 If, on the other hand, m is
chosen very large, the given length of the time series is not suffi-
cient anymore to fill all m! bins, and there is a systematic bias in the
opposite direction where distributions appear more non-uniform
than the true distribution for this given m and l. Therefore, there
is a threshold mmin that has to be exceeded by the pattern length
m to unfold a relevant structure in the data and another, mmax,
which must not be exceeded to guarantee a sound estimation of
the distribution (for a given length of the time series). As long as
mmin < mmax, any choice of m ∈ [mmin, mmax] should provide use-
ful ordinal pattern distributions, but for data from high dimensional
systems, this may become a major challenge because there mmin can
be larger than mmax.

Figure 3 shows the dependency of the complexity–entropy val-
ues on the pattern length m for a fixed lag l for the original time
series of the systems investigated and for their FT and AAFT sur-
rogate data. As expected, for the small values of m shown there,
the entropy decreases and the complexity increases with the length
m. No minimum- and maximum complexity–entropy curves are
plotted in this diagram because these curves depend on the pattern
length. For the continuous-time systems, we fixed the lag to the same
value, but still, we find different behavior: While for the Lorenz-96
system, a clear separation between original data and surrogates is
visible, this does not happen for the Mackey–Glass system. It should
be noted that one can tune the parameters (lag) in a way that data
from the Mackey–Glass system show the same behavior as the time
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FIG. 3. Complexity–entropy values for patterns of different pattern lengths. Time
series of lengths 106 points were considered obtained from attractors with dimen-
sions 1(KY) ≈ 43 (corresponding values for D, τ , and L are given in Table I).
The lags were fixed to l = 10δt for the continuous-time systems and l = 1 for
the generalized Hénon map.

series of the Lorenz-96 system, but we found it also noteworthy that
for similar time scales, the two data sets display very different results.

In fact, the lag l is the other relevant control parameter, which
has a major influence on the estimates of entropy and complexity.
Large lags result in patterns, which are composed of samples far
apart in time, which are (almost) statistically independent. There-
fore, the resulting ordinal pattern distributions are (almost) uniform
with (almost) maximum permutation entropy and vanishing com-
plexity. For densely sampled smooth time series from continuous-
time systems, another pitfall exists. For small lags l, a few patterns,
such as increasing or decreasing time series values, occur with a
(very) high probability due to correlations on short time scales.
The corresponding very non-uniform distributions result in low or
medium entropies and medium or high complexity. If the lag is
increased, the complexity reaches a maximum before it decreases
to zero for very large l. This characteristic dependency was first
reported by Zunino et al.12 for the Mackey–Glass system and is
shown in Fig. 4 for the systems investigated in this study. It is impor-
tant to note that for the values of the highest complexity, original and
surrogate data can lie close together and follow a similar path when
the lag is increased, suggesting that the intermediate entropy and
high complexity values stem from fine sampling and the resulting

FIG. 4. Complexity–entropy values for patterns with different lags. 106 points
were considered for systems of1(KY) ≈ 43 (corresponding values forD, τ , and L
are given in Table I). The pattern length was fixed to m = 6. The solid black lines
indicate the minimum and maximum possible complexity values for given entropy.

smoothness of the time series in combination with relatively small
lags.

Interestingly, the CE values of the FT surrogates and the AAFT
surrogates do not differ significantly. We conjecture that this agree-
ment is due to the fact that ordinal patterns are invariant with
respect to monotonously increasing transformations of the data, and
thus, the amplitude adjustment of the AAFT method has no major
impact on the results (see the Appendix).

In order to evaluate the combined impact of pattern length m
and lag l, Fig. 5 shows the significance of an AAFT-surrogate data
test depending on (m, l). It can be seen that there is no common
dependency of the significance on lag and word length across dif-
ferent dynamical systems. While the distinction tends to be more
prominent for Mackey–Glass and Kuramoto–Sivashinsky systems
with larger pattern lengths, time series of the Lorenz-96 system are
always distinguishable from their surrogates for large amounts of
data (106 data points). The generalized Hénon map displays a depen-
dency mostly on the chosen lag and not so much for the pattern
length. This is presumably a result of the “cyclic” structure of the
map. We find that the significance is high specifically for the cases
where l = D, and in fact, there are only a few cases for very short data
lengths (103) (not shown here), in which significance is not given for
l = D for any chosen pattern length between 3 and 7. To be able to
use patterns up to length m = 7, of course, one needs to be able to
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FIG. 5. Significance of an AAFT-surrogate data test across different pattern
lengths m and lags l for the considered dynamical systems. Each system had
a KY dimension of1(KY) ≈ 43 (corresponding values for D, τ , and L are given in
Table I), and time series with N = 106 points were considered. The p-value was
calculated in a two-sample Kolmogorov–Smirnov test35 with 50 FT surrogates
each and one original time series. The corresponding plots for FT surrogates are
shown in Fig. 8 of the Appendix.

measure enough data. For this estimation, we used the large amount
of N = 106 data points.

B. Given parameters: Attractor dimensionality and

the amount of data

In this study, we address the scientific question what happens
with the CE-analysis if the time series of interest was generated
by a deterministic system with a chaotic attractor of (unknown)
high dimensionality. Therefore, we investigated the influence of the
attractor dimensionality on the position of points in the CE plane
as shown in Fig. 6. For a constant pattern length m and lag l, the
position of a time series in the CE plane quickly moves to the lower
right corner of the plane, where purely stochastic systems would be
expected. It should be mentioned again that for the continuous-
time systems, this depends significantly on the chosen lag l for a
given sampling time δt. For very small sampling times and lags,
even systems with 1(KY) ≈ 43 display a high complexity and low to
intermediate permutation entropy, as can also be observed in Fig. 4.
In this case, the high complexity values are mostly a result of the
smoothness of the finely sampled smooth continuous time series,
which leads by construction to some patterns appearing significantly

FIG. 6. Complexity–entropy values for time series from dynamics with different
Kaplan–Yorke attractor dimensions. 106 points were considered with a pattern
length of m = 6. The lags were fixed to l = 10δt for the continuous-time sys-
tems and l = 1 for the generalized Hénon map. The solid black lines indicate the
minimum and maximum possible complexity values for given entropy.

more often than others (e.g., strictly increasing or decreasing pat-
terns). Again, in Fig. 4, there is almost no difference in CE values of
FT- and AAFT-surrogate time series.

Figure 7 is an illustration of how statistical complexity and per-
mutation entropy can be significantly over- and underestimated,
respectively, if calculated from too little data. Both of these biases
are expected due to the already discussed fact that the bins of the
histograms must be properly filled.

Interestingly, the convergence to a limit appears to happen
faster than one can naïvely expect when considering the amount of
m! possible ordinal patterns. This could be considered an indica-
tion of forbidden patterns66,67 in the here considered chaotic systems,
meaning that there are much less truly possible ordinal patterns, and
thus, a significantly smaller amount of data is needed to correctly
estimate the ordinal probability distribution.

V. DISCUSSION

Previous work has shown that time series generated by
low-dimensional dynamical systems can be distinguished from
stochastic time series (noise) by means of their entropy and
statistical complexity values, both computed using ordinal pat-
tern statistics.4 In this work, we addressed the question, whether
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FIG. 7. Complexity–entropy values for patterns of different data lengths. Systems
with 1(KY) ≈ 43 (corresponding values for D, τ , L are given in Table I) were
considered with patterns of length m = 6. The lags were fixed to l = 10δt for
the continuous-time systems and l = 1 for the generalized Hénon map. The solid
black lines indicate the minimum and maximum possible complexity values for
given entropy.

this approach is also feasible with data from systems with
high-dimensional chaotic attractors. As examples, we used time
series from the Lorenz-96 system, a generalized Hénon map,
the Mackey–Glass delay-differential equation, and the spatially
extended Kuramoto–Sivashinsky equation given by a partial dif-
ferential equation. For these systems, control parameters exist that
allow one to increase the attractor dimension in a systematic man-
ner that we used to generate data with Kaplan–Yorke dimensions
ranging from 1 up to 50. The representation (i.e., location) of the
time series in the complexity–entropy plane was studied, not only
for varying attractor dimensions, but also its dependence on the
length of the time series available and the length and lag of the ordi-
nal patterns used. Furthermore, these results were compared with
the corresponding values obtained for phase-randomized surrogate
time series.

Both the entropy and the statistical complexity measure a devi-
ation of the distribution of patterns to a uniform distribution, albeit
in different ways. There are, however, at least two reasons why this
deviation can be overestimated resulting in spuriously low entropies
and spuriously high values of the statistical complexity. In the case
of very densely sampled smooth continuous time series, (highly)
nonuniform distributions of ordinal patterns occur even for stochas-
tic data, obtained by phase randomization, for example. In this case,

any (complexity, entropy)-curve in the CE plane parameterized by
the lag exhibits a local maximum of the complexity for intermedi-
ate pattern lags, and it had been suggested to focus at complexity
values at this maximum for distinguishing chaotic and stochastic
dynamics.12 Our results show, however, that phase-randomized sur-
rogate data follow the same path along the CE plane and have a very
similar maximum. This limitation and the characteristic shape of the
lag curve in the CE plane (Fig. 4) also occur with time series from
low-dimensional chaotic systems (not shown here). Interestingly,
amplitude adjusted phase-randomized (AAFT) and (just) phase-
randomized (FT) surrogates provide essentially the same results
because the adjustment has almost no impact on ordinal pattern
distributions.

The second reason for observing (highly) non-uniform distri-
butions is too few data points required for a sound estimation of
ordinal pattern distributions. This problem occurs, in particular, for
high dimensional time series. There, the pattern length has to exceed
some lower bound to resolve or unfold the dynamics. Below this crit-
ical pattern length, the resulting distribution is close to a uniform
distribution and not suitable for distinguishing the data from noise.
If, however, the pattern length m is increased, the number of bins
grow as m! and the corresponding distribution has empty or poorly
filled bins due to too few data points, even for long time series.

To avoid or at least detect both pitfalls resulting in spuriously
low entropy and spuriously high complexity values, we suggest a
comparison with the corresponding values of phase-randomized
surrogate data because both reasons for highly nonuniform distri-
butions have essentially the same effect for smooth stochastic data.
If the null hypothesis that the given time series deviates from a lin-
ear stochastic process cannot be rejected using a combination of
permutation entropy and statistical complexity as a discriminating
statistic (see Sec. II A), any resulting position in the CE plane should
be interpreted with caution. For this evaluation, diagrams, such as
those shown in Figs. 3–5, provide valuable information, whether
the desired characterization of the data using the location in the CE
plane can be considered meaningful at all. Keeping in mind that for
very high-dimensional data, large pattern lengths would be needed
to properly separate chaos from noise, the often limited amount of
data makes the estimation of such finely partitioned distributions
difficult to impossible.
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APPENDIX: FT VS AAFT SURROGATES

Figure 8 shows the significance of an FT surrogate data test
depending on (m, l). It can be seen that the results are very similar
to those shown in Fig. 5.

Figure 9 shows the distributions of the normalized permuta-
tion entropy for both AAFT and FT surrogates, once for each of
the dynamical systems considered in this paper. We find that the

FIG. 8. Significance of an FT surrogate data test across different pattern lengths
m and lags l for the considered dynamical systems. Each system had a KY dimen-
sion of 1(KY) ≈ 43 (corresponding values for D, τ , and L are given in Table I),
and time series withN = 106 points were considered. The p-value was calculated
in a two-sample Kolmogorov–Smirnov test35 with 50 FT surrogates each and one
original time series.

FIG. 9. Distributions of the normalized permutation entropy HS (m = 6, l = 10δt
for the continuous-time systems and l = 1 for the generalized Hénon map) for
400 FT/AAFT surrogates each. The surrogates were generated from the time
series of length N = 106 from systems with 1(KY) ≈ 43. The p-value was cal-
culated in a two-sample Kolmogorov–Smirnov test35 with 50 FT surrogates each
and one original time series.

distributions of normalized permutation entropy of FT and AAFT
surrogates are indistinguishable. Presumably, this is due to the fact
that ordinal patterns are invariant with respect to monotonous
amplitude transformations.
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