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Abstract
Observations of gravitationalwaves fromcompact binarymergers have enabled unique
tests of general relativity in the dynamical and non-linear regimes. One of the most
important such tests is constraints on the post-Newtonian (PN) corrections to the phase
of the gravitational wave signal. The values of the PN coefficients can be calculated
within standard general relativity, and these values are different in many alternate
theories of gravity. It is clearly of great interest to constrain the deviations based
on gravitational wave observations. In the majority of such tests which have been
carried out, and which yield by far the most stringent constraints, it is common to
vary these PN coefficients individually. While this might in principle be useful for
detecting certain deviations from standard general relativity, it is a serious limita-
tion. For example, we would expect alternate theories of gravity to generically have
additional parameters. The corrections to the PN coefficients would be expected to
depend on these additional non-GR parameters, whence, we expect that the various PN
coefficients to be highly correlated. We present an alternate analysis here using data
from the binary neutron star coalescence GW170817. Our analysis uses an appropri-
ate linear combination of non-GR parameters that represent absolute deviations from
the corresponding post-Newtonian inspiral coefficients in the TaylorF2 approximant
phase. These combinations represent uncorrelated non-GR parameters which corre-
spond to principal directions of their covariance matrix in the parameter subspace.
Our results illustrate good agreement with GR. In particular, the integral non-GR
phase is �int−non−GR = 0.0447 ± 25.3000 and the deviation from GR percentile is
pDev−GR
n = 25.85%.
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1 Introduction

The problem of binary motion in a gravitational system is one of the oldest in astron-
omy. Newton’s explanation of Kepler’s laws was a milestone of science. Relativistic
corrections to Keplerian motion under Newton’s laws have been studied since the time
of Einstein [1]. These corrections can be calculated within the post-Newtonian (PN)
formalism as an expansion in the ratio v/c of the typical relative velocity v between
the two components of the binary to the speed of light c. Low order corrections can
be observed in the motion of binary pulsar systems where typical values of v/c are
O(10−4) [2]. The recent observations of coalescing compact binary systems (see e.g.
[3–9]) have much higher values of v/c ∼ O(10−1). These observations therefore
probe regimes where the gravitational field is strong and also dynamical.

The relation between the binary motion and the observed gravitational waves was
first expounded byPeters andMathews [10]. Thiswork obtained the gravitationalwave
phase by calculating theEinstein quadrupole formula for underlyingKeplerianmotion.
Whilst this analysis gives a very approximate fit for LIGO data [11] it has been known
for a long time that more accurate fits require a large number of relativistic corrections
[12]. Several different approaches have been able to model the expected signal for the
inspiral and coalescence of compact objects with sufficient accuracy within standard
general relativity. These include the Effective-one-body models (see e.g. [13–21]),
the Phenomenological models (see e.g. [22–28]) and the surrogate models [29–31].
Some corrections have also been calculated in modified gravity theories [32, 33]. In
this paper we restrict our attention to the binary neutron star merger GW170817 event
[34]. For this event, the contribution of the merger to the signal-to-noise-ratio is not
significant, whence the inspiral regime and standard PN methods dominate [35–39].

It has now become routine to use the observed gravitational wave observations to
constrain relativistic corrections to binary motion [5, 40–45]. The TIGER framework
[46] looks for a deviation from the calculated GR value by introducing a number of
phenomenological deviation parameters that take the value zero inGR. In this approach
the deviation parameters are assumed to be independent of the physical parameters of
the binary, such as mass and spin.

These phenomenological non-GR parameters implicitly represent a certain class
of GR alternatives. In different GR alternatives, these parameters may have different
physical meanings. For instance, in phenomenological modifications of GR based on
the massive graviton assumption, such that the effective Newtonian potential is of
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Yukawa type with a non-standard graviton dispersion relation, the non-GR parameter
of 1PN order is proportional to the graviton’s mass squared [47]. In other alternative
theories of gravity, radiative multipole moments differ from those of GR and their
deviation fromGRvalues contributes to every PNorder phase term [48, 49]. In general,
alternatives toGRmaynaturally depend on an additional set of parameters such that the
non-GR parameters are in general functionally related. This motivates testing GR via
the simultaneous variation of such non-GR parameters introduced as additional terms
in the GW phase. In GR tests two types of variations were considered: each of these
parameters was varied individually whilst keeping the others fixed, e.g. [5, 44, 45],
or all the parameters were varied simultaneously [43, 50]. The results showed that
simultaneous variation produced wide and non-informative posteriors on the value
of each individual deviation parameter, closely consistent with the prior. Reported
bounds on non-GR parameters obtained from the double pulsar J0737-3039 [51] were
computed individually, one at a time [43]. This is because in binary pulsars the orbital
period changes at essentially a constant rate and when the PN order is increased, the
corresponding bounds quickly become rather loose and significantly less informative
than those from GW’s binaries coalescence.

Whilst varying each one individually captures a generic deviation from GR if it is
strong enough, a generic modified gravity theory is expected to differ from GR for
several of the non-GR parameters at different PN orders. This also means that one
cannot directly compare the results obtained on each parameter individually with a
theoretical calculation in an alternate theory of gravity (note, however, that in some
specific cases of alternative theories of gravity, one can make such a comparison by
using perturbative approach, see, e.g., [52–55]). This aspectwas also emphasised in the
work [50], where the authors used the Fisher informationmatrix to estimate constraints
on non-GR parameters and found that in the best case of multiband observations the
deviations at orders below 3PN are less than 1%. They reported the deviations of
∼ 100% and higher for simultaneous measurement of four and more deformation
parameters in the case of ground-based observatories or LISA observations alone. In
addition, the non-GR parameters are correlated with the PN coefficients and between
themselves, which can be seen for example in Figure 7 of [43]. To remedy these
limitations, the method of principal component analysis was proposed in [56]. A
similar method, known as the singular value decomposition approach, was proposed
in [57]. Thesemethods are applied to theFisher informationmatrix that estimates errors
in the parameter values. However, Fisher-matrix-based estimates are not reliable at low
SNRs (see, e.g. [12] and also [58]). This limits the measurability of the higher-order
PN terms, as well as their non-GR contributions.

In this work, we allow the waveform phase to vary in additive non-GR parameters
sector. Using our numerical results, we construct covariance matrix of these parame-
ters whose diagonal elements represent their variance and off-diagonal terms represent
their covariance that defines their pairwise correlation. Taking only the diagonal ele-
ments and ignoring the off-diagonal ones, as it was done in many works, results in
ignoring the information about the parameters correlation. In a simple example of
a two-dimensional Gaussian distribution, the principal directions of the concentra-
tion ellipse define new orthogonal variables whose variances are described optimally.
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Accordingly, such a transformation provides more accurate measurement of the lead-
ing order (uncorrelated) non-GR parameters (see Eqs. (7) and (8) below). A similar
approach based on diagonalization of the non-GR parameters covariance matrix is
given in the work [59], which appeared in the arXiv after submission of our paper.

2 Posterior distributions of the non-GR parameters

When the rate of change of frequency is small relative to the squared frequency,
the expansion of a GW signal h(t) in the Fourier domain can be obtained from an
expansion in the time domain using the Stationary Phase Approximation [12]. For the
dominant frequency, the Fourier domain waveform can be written as

h̃( f ) = A( f )ei�( f ) (1)

where h̃( f ) is the Fourier transform of h(t) and

�( f ) =
8∑

n=0

(
f

fre f

)(n−5)/3 [
�n + � ln

n ln

(
f

fre f

)]
. (2)

Here�1 ≡ 0 and the only non-zero logarithmic terms are� ln
5 and� ln

6 . The expansion
order n corresponds to (n/2)PN term. In this expansion the 2.5PN term becomes indis-
tinguishable from the binary coalescence phase term (−φc−π/4) and the 4PN term is
indistinguishable from thebinary coalescence time term2π f tc. Thegravitationalwave
amplitude A can also be expanded as a post-Newtonian series, but here we will keep
only the terms at Newtonian order and hence A( f ) ∼ f −7/6. Factors of a reference
frequency fre f are included as in [56] to render the expansion coefficients explic-
itly dimensionless. In what follows, we shall take the “natural”reference frequency
fre f = 1/(πM). This choice matches the expansion (2) of the TaylorF2 approximant
form (see, e.g., [60]), which is also implemented in the LALSuite software package
[61].1

The physical parameters that enter our waveform are the binary massesm1 andm2,
the orbit-aligned dimensionless spin components of the stars χz1 and χz2 (we consider
high-spin priors), the dimensionless tidal deformability parameters �1 and�2, which
already appear in the 5PN term (here we present the posterior of the dimensionless
combined tidal deformability �̃), and the following set of non-GR parameters2:

δ�0, δ�1, δ�2, δ�3, δ�4 , (3)

1 We have tested our method for different fre f values and found that our results do not change within the
statistical uncertainty.
2 Here we restricted the non-GR parameters up to the 2PN order. Measurements of the higher orders are
less accurate and their posteriors do not converge well. We include point-particle PN terms from GR up to
4PN and tidal deformation terms up to 6PN.
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that represent the absolute deviations in their corresponding PN coefficients,

�n −→ �n + δ�n . (4)

The work [62] criticises parametric tests of GR, which are not based on explicit non-
GR waveform models, appealing to the fact that the fractional precision of non-GR
parameters determination is not parametrisation-invariant. For a particular non-GR
theory in mind, these parameters are functions of the theory parameters, whose values,
given the corresponding waveform model, can be estimated. Although the physical
interpretation of our parameters is not in direct one-to-one relationship with the PN
expansion coefficients of TaylorF2, our parameters still set observational constraints,
even on theories in which more than one PN coefficient differs from its GR value. This
is the case in most modified theories of GR.

Our goal is to measure values of such deviations regardless of any specific non-
GR theory and these values are “absolute”in the sense that the functions values do
not depend on their variables choice. To obtain the posterior density distributions of
these parameters we exploit the PyCBC inference package [63] where we had fixed the
reported value [34] of the luminosity distance 40+8

−14 Mpc. In our runs, we used uniform
prior distributions and varied all the parameters simultaneously. The supplementary
file [64] contains posteriors of the binary physical parameters, assuming that GR
is correct, i.e. the values of (3) are set to zero, Fig. 1 , one- and two-dimensional
posteriors of all the parameters, Fig. 2, and posteriors of the non-GRparameters, Fig. 3.
Our results show that the dimensionless combined tidal deformability �̃ is correlated
with other parameters, and in particular with δ�4 non-GR parameter. The non-GR
parameters are strongly correlated, in particular δ�n and δ�n+1, for n = 1, 2, 3.
The off-diagonal (correlation) terms corresponding to these parameters in the (5× 5)
covariance matrix �nm (see the supplementary file [64]) make these parameters less
accurately measured.3 Moreover, because of the correlation, we cannot infer directly
the accuracy of these parameters from their 1D posteriors. Thus, we are to define a
related set of uncorrelated non-GRparameters.4 In order to statistically isolate non-GR
parameters from each other, we diagonalise their covariance matrix derived from the
sample data arrays from the PyCBC inference package [63]. This approach does not
rely on thehighSNRvalues that are required for theFisher informationmatrix estimate.
We solve the eigenvalue-eigenvectors problem and derive the transformation matrix
Tnm , which diagonalises the covariance matrix (see the supplementary file [64]). Its
transposed form Tmn relates the correlated and new uncorrelated non-GR parameters
δ�̂n :

δ�̂m = Tmnδ�n . (5)

3 We constructed the covariance matrix from the posterior sample data arrays of our PyCBC run by means
of the NumPy method “cov”.
4 Ideally, we could construct a complete set of all 10 uncorrelated parameters. However, such parameters
would represent a mixture of the physical binary parameters and the non-GR parameters and this would alter
their original physical meaning. Thus, to avoid this situation, we keep the non-GR sector in the parameter
space analytically (but not statistically) isolated from the GR sector.
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Fig. 1 Posterior density distributions of the uncorrelated non-GR parameters. The central plots are 2D
marginal posteriors, where the black contours show the 50% and 90% credible regions. The upper and the
right plots are the 1D marginal posteriors, where the median and 90% credible intervals are indicated by
the dashed lines. Red contours are defined by vanishing non-GR parameters indicated by intersection of
the green dashed lines. They define confidence regions of the 2D joint distributions. For the δ�̂1 and δ�̂2
joint distribution, the GR confidence region is degenerated to the single point (0, 0)

These matrix elements Tmn will obviously depend on the detector noise spectrum and
on the source parameters as well. The transformation matrix Tmn reads

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0.303 −0.947 −0.107 −0.400 × 10−2 0.469 × 10−3

0.953 0.302 0.298 × 10−1 0.557 × 10−3 −0.304 × 10−3

0.424 × 10−2 −0.111 0.980 0.163 0.117 × 10−1

−0.121 × 10−4 −0.143 × 10−1 0.161 −0.968 −0.190

0.973 × 10−4 −0.911 × 10−3 0.197 × 10−1 −0.190 0.982

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(6)
The matrix acts on the column vector [δ�0 δ�1 δ�2 δ�3 δ�4]T and produces the
column vector [δ�̂0 δ�̂1 δ�̂2 δ�̂3 δ�̂4]T , where the superscript “T ”stands for the
transpose. The eigenvalue-eigenvectors problem computations were performed using
the Householder reduction followed by the QL algorithm. Details of these methods
can be found in the book [65].

123



Testing the post... Page 7 of 14 55

To illustrate the result of this transformation we present one- and two-dimensional
posteriors of the non-GR parameters in Fig. 1. Posteriors of the binary parameters
together with the uncorrelated non-GR parameters are presented in Fig. 4 in the
supplementary file [64].

One can see that the new non-GR parameters are indeed almost uncorrelated.More-
over, themeasured values of the new non-GR parameters are overall more constrained,
as compared to the correlated ones. We can present our results in terms of the rela-
tive δψn = δ�n/�n values of the non-GR parameters considered in other works,
e.g. [44, 59]. Accordingly, we compute the values of the relative correlated δψn and
uncorrelated δψ̂n non-GR parameters (except for 0.5PN ones, which are taken to be
identical to the absolute ones, for in GR 0.5PN term vanishes) as follows. First, we
compute the relative correlated non-GR parameters by taking the values of the masses
and spins (see Fig. 2 in [64]) and computing the first four PN terms (see, e.g. [60, 61])
and dividing by them the corresponding non-GR correlated parameters (see Fig. 2 in
[64]),

|δψ0| = 1.05%, |δψ1| = 2.40%, |δψ2| = 57.4%,

|δψ3| = 40.4%, |δψ4| = 91.5%. (7)

Second, we compute the relative uncorrelated non-GR parameters by taking the
sample data arrays of the masses, spins, and non-GR parameters from our PyCBC
inference and constructing from them the arrays of the relative non-GR parameters.
Then we proceed along the same steps as above and construct their covariance matrix,
diagonalise it by means of the transformation matrix, and apply its transpose to the
computed relative uncorrelated non-GR parameters. As a result, we derive

|δψ̂0| = 0.605%, |δψ̂1| = 1.92%, |δψ̂2| = 5.78%,

|δψ̂3| = 48.6%, |δψ̂4| = 104%. (8)

These results show that despite of simultaneous variations, our constraints are more
stringent for the leading order non-GR parameters.

We note that the presence of the non-GR parameters in the waveform model does
affect the values of the physical parameters corresponding to GRwaveformmodel (for
comparison see Fig. 1 in the supplementary file.) However, the 90% credible intervals
of the “new”values of physical parameters and the “old”ones largely overlap.

3 Analysis of the results: Measures of deviations fromGR

From the posteriors of the non-GR parameters one can immediately infer that the GR
prediction, i.e. δ�n = 0, n = 0, ..., 4 falls well within their 90% credible intervals.
However, one may prefer to have additional quantitative estimates of GR validity. In
this section, we measure deviations from GR based on our derived results.
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3.1 Integral non-GR phase

According to our approach (2), (4), the waveform phase is an additive combination of
the GR and non-GR components,

�( f ) = �GR( f ) + �non−GR( f ) , (9)

where

�non−GR( f ) =
4∑

n=0

(
f

fre f

)(n−5)/3

δ�n (10)

is the non-GR part of the waveform phase. It indicates the phase difference due to
potential non-GR contribution and thus represents another, “effective”non-GR term.
To measure this term it is reasonable to introduce is cumulative value given by the
integral non-GR phase

�int−non−GR =
∫ fmax/ fre f

fmin/ fre f
�non−GR( f )d

(
f / fre f

)
. (11)

The integral non-GR phase can be computed by using the estimated values of the
non-GR parameters and the expression (10) above. Note that the non-GR part of the
waveform phase is a vector in the non-GR parameter subspace spanned by the basis
{δ�n, n = 0, ..., 4}which is invariant under the transformation (5) of the uncorrelated
non-GR parameters. To see that one should also diagonalise the corresponding fre-
quency components {( f / fre f )(n−5)/3, n = 0, ..., 4} by the transposed of the matrix
(6). Accordingly, the quantity �int−non−GR is invariant as well.

We may also estimate uncertainty σ of the non-GR phase by using the propagation
of errors approach. The variance of the function (10) is

σ 2( f ) =
4∑

n,m=0

(
f

fre f

)(m−5)/3

�nm

(
f

fre f

)(n−5)/3

. (12)

Integrating this expression in the frequency range,wederive the varianceof the non-GR
phase

σ 2
int =

∫ fmax/ fre f

fmin/ fre f
σ 2( f )d

(
f / fre f

)
. (13)

For our data we find
�int−non−GR = 0.0447 ± 25.3000 . (14)

Thus, the GR prediction �int−non−GR = 0 falls well within (14).

3.2 Confidence regions and deviation from GR percentile

Here we present another ways to measure GR validity. First, we construct confi-
dence regions whose boundary corresponds to the predicted by GR zero values of the
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non-GR parameters. This approach is based on the kernel density estimation (kde).
For a 2D kde of each pair of the non-GR parameters we used the Python function
scipy.stats.gaussian_kde from the SciPy library, that is implemented by PyCBC by
the default. The confidence regions are shown in Fig. 1 and also in Fig. 3 in the
supplementary file.

Second, we calculate the deviation from GR percentile pDev−GR
n in the following

way. The PyCBC inference hdf file contains the posterior for original non-GR PN
parameters. We extract the effective samples from the inference hdf file by using
pycbc_inference_extract_samples command to get a new hdf file. From this new hdf
file, we read the posterior for each original non-GR PN parameters δ�n’s as an array
using the standard reading hdf file command. In order to get array for each newnon-GR
parameter δ�̂n , we use the expression (5). This gives us array for each new non-GR
parameter δ�̂n . To get the probability density p(δ�̂n) we use the Python function
scipy.stats.gaussian_kde.

The original non-GR PN parameters are correlated, but the new non-GR parameters
are almost uncorrelated. Exploiting this fact, we construct the probability density P in
5 dimensions for the new non-GR parameters bymultiplying the individual probability
densities p(δ�̂n)’s of the new non-GR parameters,

P(δ�̂n; n = 0, ..., 4) =
4∏

n=0

p(δ�̂n) . (15)

Next, we define the level hypersurface� : P = const corresponding toGRprediction,
i.e. to zero values of the new non-GR parameters,

� : P(δ�̂n; n = 0, ..., 4) = P(δ�̂n = 0; n = 0, ..., 4) . (16)

Finally, to get the deviation fromGR percentile, we integrate P over the domain D(�)

enclosed by this hypersurface,

pDev-GRn =
∫

D(�)

P d5(δ�̂n) . (17)

To get the value
pDev−GR
n = 25.85% (18)

of the deviation from GR percentile, we performed the integration numerically by
using the Vegas package, which exploits the adaptive multidimensional Monte Carlo
integration.

4 Conclusion

We have analysed deviations from GRwith the example of the binary neutron star sig-
nal GW170817. A set of 5 non-GR parameters up to and including the 2PN order was
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introduced into the GW waveform in the TaylorF2 phase approximant. These param-
eters represent absolute deviations of the post-Newtonian coefficients from their GR
values. By using the PyCBC package we computed their posterior density distribu-
tions for the simultaneous variation of all these non-GR parameters using uniform
prior distributions. Next, diagonalizing their (5 × 5) covariance matrix, we derived
linear combinations of these parameters that represent a set of uncorrelated non-GR
parameters. This approach allows the first study of each of the new non-GR parame-
ters independently. Each of these uncorrelated parameters corresponds to a covariance
matrix principal direction in the 5D subspace of the parameter space.

Our results provide more stringent constraints on GR than those presented in [5,
44, 45]. In comparison to the principal component analysis [56] or the singular value
decomposition approach [57] applied to the Fisher matrix, our computations provide a
more efficient technique that achievesmore stringent constraints on parameters estima-
tion. The reason is that diagonalization of the Fishermatrix followed by the parameters
estimation run gives less stringent posteriors as compared to diagonalization of the
covariance matrix constructed from the computed data. This is due to requirement of
the high SNR value for a good Fisher information matrix estimate. A detailed analysis
and comparison of both methods on other GW events may be more informative and
requires additional investigation, which is beyond the scope of our paper.

Although the approach presented here, based on orthogonalisation of the covariance
matrix, looks quite promising, one can also analyse a “hybrid method”, that combines
both the principal component analysis of the Fisher matrix and the orthogonalisation
of the covariance matrix constructed from the computed data. A more detailed study
of this possibility is left for future work.
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