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Abstract: Electronic structure theory describes the properties of solids using Bloch states that cor-
respond to highly symmetrical nuclear configurations. However, nuclear thermal motion destroys
translation symmetry. Here, we describe two approaches relevant to the time evolution of elec-
tronic states in the presence of thermal fluctuations. On the one hand, the direct solution of the
time-dependent Schrodinger equation for a tight-binding model reveals the diabatic nature of time
evolution. On the other hand, because of random nuclear configurations, the electronic Hamiltonian
falls into the class of random matrices, which have universal features in their energy spectra. In
the end, we discuss combining two approaches to obtain new insights into the influence of thermal
fluctuations on electronic states.

Keywords: time evolution of quantum systems; structure of eigenstates and energy spectra; random
matrix theory; semiclassical methods and results; atomic, molecular and solid-state systems

1. Introduction

Bloch’s theorem and translational symmetry are two of the main bricks in the foun-
dation of solid state physics. Their use in crystal lattices makes an implicit assumption,
not emphasized in the texts we are aware of. Bloch’s theorem is mathematically correct of
course for a fixed, periodic potential, but real nuclei move under the influence of thermal
fluctuations, so that they have random configuration without translational symmetry at any
moment in time. This is clearest in the coherent state representation of the lattice, which
assigns a mean position and momentum to each atom [1].

The success of solid state theory suggests there should be a physical justification for
using electronic states corresponding to fixed highly symmetrical positions. Recently, it has
been found that for graphene π-bands, thermal fluctuations turn out to be too fast for the
adiabatic Born–Oppenheimer approximation (ABO) to be valid, so that the other limit—the
diabatic limit (DBO)—holds [2].

If we define the Born–Oppenheimer approximation as supposing that the electron
wavefunction returns to its starting form if the nuclei return to their starting positions
after an arbitrary journey, this leaves the possibility of adiabatic and diabatic motion of
the electron along the journey. We allow the caveat of possible Berry phases within the
Born–Oppenheimer realm.

During thermal fluctuations, atomic positions have a random component for any
arbitrary moment in time. The electronic Hamiltonian, which is a function of atomic
positions, acquires this random character. Properties of simple prototype random matrix
models are well studied in random matrix theory; some of them are universal and can
be extended to more general cases. Here, we are interested in ensembles of parameter-
dependent random matrices. In addition to level statistics, statistics of singularities in their
spectrum including degeneracies and avoided crossings is known. We believe these results
can be used to characterize electronic time evolution in the presence of phonons.
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Indeed, the ABO breaks down when degeneracies occur; for the case of avoided
crossings, Landau and Zener found that the probability of adiabatic dynamics depends
on level spacing and sensitivity to perturbations. Random matrix theory combined with
Landau–Zener theory makes it possible to characterize the effects of thermal fluctuations
on electronic states.

The paper is organized as follows. In Section 2.1, we describe parameter-dependent
random matrices; in Sections 2.2 and 2.3, we discuss statistical properties of singularities
in their spectrum, namely, conical intersections and avoided crossings. In Section 3, we
describe results on graphene thermal fluctuations that suggest diabatic representation.
In Section 4, we sketch future directions for describing electronic dynamics in the presence
of phonons using random matrix theory.

2. Singularities in the Spectra of Random Matrices
2.1. Parameter-Dependent Random Matrices

Random matrices provide a pathway to universal behavior for complex quantum
systems [3]. One example of such a system is the chaotic dynamics of a kicked top [4,5].
In this paper, we consider only Gaussian ensembles, which are denoted by the Dyson index
β [3], where β = 1 for GOE, β = 2 for GUE, and β = 4 for GSE. Corresponding matrices
Hβ can be represented as a combination of symmetrical S and antisymmetrical A matrices,
whose elements are independent Gaussian distributed random variables with mean zero
and variance (1± δij)/β:

H1 = S, H2 = S + iA, H4 = Se0 + A1e1 + A2e2 + A3e3 (1)

where ei are 2 × 2 matrix representations of quaternion algebra bases:

e0 =

(
1 0
0 1

)
, e1 =

(
0 i
i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
i 0
0 −i

)
(2)

and the direct product is assumed for Anen.
We study the cases when a Hamiltonian Ĥ depends on a set of parameters, which,

in turn, depend on time. The idea of parameter-dependent random matrices first appears
in [6] to quantify the dissipation rate of a driven complex quantum system. We use the
following parametrization H(x1, x2, . . . , xn) suggested by Wilkinson and Austin [7]

H(x1, x2, . . . ) = cos x1H1 + sin x1H2 + cos x2H3 + sin x2H4 + . . . . (3)

where matrices H1, H2, . . . belong to the same ensemble and x = (x1, x2, . . . , xn). These
matrices may also belong to different ensembles to study symmetry-breaking perturbations
as Fritz Haake suggested [8–10].

This parametrization has a number of advantages. Distribution of matrix elements is
the same for all x, and matrices H and ∂H/∂xj are independent, therefore leading to rather
simple analytical averaging within the degenerate perturbation theory; the extension to the
cases when ∂H/∂X1 and ∂H/∂X2 have non-zero correlation was made by Wilkinson [11,12].
Equation (3) provides an ergodic property [13]—averaging over energy levels leads to the
same level spacing distribution as averaging over parameter space for a given pair of
levels—enabling, for example, geometrical considerations to determine scaling laws for the
density of avoided crossings [11].

An alternative to Equation (3) is the linear parametrization

H(x1, x2, . . . ) = H + H1x1 + H2x2 + . . . . (4)

However, now singularities in the spectrum happen only in the vicinity of x = 0, and the
distribution of eigenvalue curvatures ∂2εi/∂x2

j tends to zero for xj → ∞.
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2.2. Geometrical Properties of Conical Intersections

For a Hamiltonian Ĥ to have a doubly degenerate energy level, it is necessary to satisfy
two independent conditions. We reproduce here the argument of Teller [14]. Let us assume
that all but two of the Ĥ eigenstates have been found. Expressing Ĥ in the basis formed
by these eigenstates and two arbitrary states i and j, forming altogether a complete set of
functions, the condition for the degeneracy is

Hij = 0, Hii = Hjj. (5)

For ensemble β, it leads to a system of β+ 1 linear equations. In two-dimensional parameter
space, the levels are degenerate in isolated points called conical intersections.

The geometrical properties of conical intersections have been established in a number
of papers. Longuett-Higgins found that if a wavefunction changes sign when transported
adiabatically round a given loop in parameter space, then the state must become degenerate
with another one at some point within the loop [15]. This topological property is one
consequence of the Berry phase [16].

The distribution of conical intersections in the parameter space is characterized by
density D(ci)

n , which is the number of points, in which energy levels n and n + 1 are
degenerate, per unit area. Wilkinson and Austin proposed the idea for its analytical
derivation [11]. For a small element dA of the parameter space, the probability dp to find a
conical intersection is D(ci)

n dA. At the same time, dp is determined by the distribution P[R]
of the distances R from a random point to the nearest conical intersection

dp = P[R]dR = D(ci)
n dA. (6)

Hence, the problem is reduced to analytical calculation of P[R]. It is possible to express R
by using the degenerate perturbation theory. Averaging over the corresponding ensemble
leads to well-known integrals [17–19]. D(ci)

n depends on the density of states ρn = ρ(En)
and the variance of the off-diagonal matrix elements σ2 and has the general form Cβ(ρσ)β+1:

D(ci)
n =

π

3
ρ2

nσ2, D(ci)
n =

2
√

π

3
ρ3

nσ3, D(ci)
n =

16
√

2π3/2

45
ρ5

nσ5 (7)

for GOE [11], GUE, and GSE [20], respectively. We note that prefactors Cβ were found only
after corresponding scaling had been revealed in numerical calculations [21,22]. Such an
order of discoveries is typical in this field, for example, the exact distribution for energy
level curvatures for GUE was found only after numerical experiments [23–26].

By putting the Wigner semicircle distribution [3] in Equation (7) and integrating the
resulting expression over energy E, one gets the density of degeneracies summed over all
pairs of levels. Multiplied by the volume of the parameter space, this gives the total number
of degeneracies N . For M×M GOE matrices parametrized as Equation (3), Wilkinson and
Austin found [11]

N =
π

2
M2. (8)

For GOE-parametrized matrices, the potential energy surfaces En(x1, x2) and En+1(x1, x2)
form a cone near conical intersections. The corresponding energy level lines are ellipses.
Wilkinson and Austin [11] calculated the distribution of eccentricities and cone slopes.
We illustrate them in Figure 1, which is taken from their paper. We note that ellipses are
randomly oriented and mostly elongated in accordance with the distribution

P[e] =
( 2e

2− e2

)3
(9)

coming from the joint probability distribution of slopes of the cone s and eccentricity e:

P[t, d] =
d

256σ6 e−t/8σ2
, (10)
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where d and t unambiguously determine e and s [11].

Figure 1. Energy level lines near the corresponding conical intersections between (a) the 1st and
2nd and (b) the 9th and the 10th energy levels for a 20× 20 GOE-parametrized matrix. We note that
ellipses of nearby conical intersections are correlated but still degeneracies do not exhibit repulsion.
According to Equation (8), the total anticipated number of degeneracies is π

2 M2 = 628; in real
calculations [11], it is 564. (Adapted with permission from ref. [11]. Copyright 1993 American
Institute of Physics.)

One might expect that, similar to the spacings between adjacent energy levels, conical
intersections between the same pair of levels would tend to avoid each other. It turns out
that this is not the case for the GOE-parametrized model, Equation (3); there, degeneracies
can be considered as randomly distributed points [11]. However, as one can see on Figure 1,
their eccentricities and orientations are correlated.

2.3. Geometrical Properties of Avoided Crossings

Consider the case when the Hamiltonian depends on only one parameter x. This
is one of a wide range of systems with an arbitrary large number of time-dependent
parameters. The noncrossing rule follows from Equation (5) [27]; when x is varied, two
energy levels never cross. Still, they can approach each other with an arbitrary small
spacing. A local minimum in the distance between adjacent energy levels is called an
avoided crossing. We refer to the difference between energy levels at the minimum as a
gap. The distribution of crossing gaps is known for the GOE [28–30], GUE, and GSE [29,30].
Surprisingly, the ratio of mean crossing to mean spacing is not universal and varies from
0.42 to 0.52 for different realizations of the same ensemble β [30]. Furthermore, known as
level repulsion, the noncrossing rule has been generalized to non-hermitian Hamiltonians
that describe dissipative systems [31].

Energy profiles near an avoided crossing have the hyperbolic form

En,n+1 = B(x− x0)±
1
2

√
ε2 + A2(x− x0)2 (11)

which is a solution for the Hamiltonian

H(x) =
(
(B + A/2)(x− x0) ε/2

ε/2 (B− A/2)(x− x0)

)
. (12)

When the Hamiltonian depends on a set of time-dependent parameters, such avoided
crossings appear in the vicinity of degeneracies (the conical intersection geometry). Using
this property together with ergodicity, Wilkinson and Austin have shown in a simple
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manner that the number of avoided crossings with gaps less than ∆ is proportional to ∆ in
the limit ∆→ 0 [11].

The density of avoided crossings D(ac)
n is the number of avoided crossings between

n and n + 1 energy levels per unit length as we traverse a line by varying x. The density
D(ac)

β (A, B, ε) of avoided crossings with gap ε and parameters A and B of the hyperbola
Equation (11) was found for β-parameterized models [6,20]

D(ac)
β (A, B, ε) = C(ac)

β

ρβ+1

σβ+1 Aβ+1εβ−1 exp
(
− βA2

8σ2

)
exp

(
− βB2

2σ2

) √
β√

2πσ
dAdBdε (13)

with the prefactors [20]

C(ac)
1 =

π

24
, C(ac)

2 =
π3/2

12
, C(ac)

4 =
8π7/2

135
√

2
. (14)

3. Thermal Fluctuations in Solids
3.1. Born–Oppenheimer Approximation

All information about the properties of a system containing Nn nuclei and Ne electrons
is contained in the eigenstates of the many-body Hamiltonian

Ĥ =
Nn

∑
I=1

P2
I

2MI
+

Ne

∑
i=1

p2
i

2m
+

Nn

∑
1≤I<J

ZI ZJe2

|RI − RJ |
+

Ne

∑
1≤i<j

e2

|ri − rj|
−

Nn

∑
I=1

Ne

∑
i=1

ZIe2

|ri − RI |
, (15)

where m is the mass of an electron, e is the charge of an electron, ri and pi are the position
and the momentum of the i-th electron, respectively, MI is the mass of I-th nucleus, ZI
is the charge of I-th nucleus, and RI and PI are the position and the momentum of I-th
nucleus, respectively. The Hamiltonian describes kinetic energy of electrons and nuclei,
Coulomb interaction between nuclei, Coulomb interaction between electrons, and finally
Coulomb interaction between electrons and nuclei.

Eigenstates of Equation (15) can be found analytically only for the hydrogen atom.
Numerical solutions are possible for systems containing several atoms and electrons.
If there are M points in grids representing the positions of electrons and nuclei, M3(Nn+Ne)

real numbers would be required to store one state of the system. The exponential complexity
quickly hits the memory limits of modern machines, so approximations are necessary.

The Born–Oppenheimer approximation [32,33] is the first simplification of the problem.
It separates nuclear and electronic degrees of freedom. The separation is justified by
the fact that nuclei are much heavier than electrons, and as a result electrons adjust to
nuclear motion.

Within the Born–Oppenheimer approximation, atomic positions RI are fixed to give
the electronic Hamiltonian

Ĥe(R1, . . . , RNn) =
Ne

∑
i=1

p2
i

2m
+

Nn

∑
1≤I<J

ZI ZJe2

|RI − RJ |
+

Ne

∑
1≤i<j

e2

|ri − rj|
−

Nn

∑
I=1

Ne

∑
i=1

ZIe2

|ri − RI |
. (16)

The electronic Hamiltonian is then diagonalized to obtain eigenvalues

Ĥel(R1, . . . , RNn) |ψn〉 = En(R1, . . . , RNn) |ψn〉 , (17)

which are functions of nuclear positions. These functions are then regarded as potentials in
which nuclei move

Hn =
Nn

∑
I=1

P2
I

2MI
+ En(R1, . . . , RNn). (18)
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This Hamiltonian includes only nuclear degrees of freedom. It can be used to obtain
both quantum and classical solutions. In the classical treatment, the motion of a nuclei is
approximated as

MIR̈I = −
∂En(R1, . . . , RNn)

RI
. (19)

In many cases, the collection of nuclei can be represented as classical harmonic oscilla-
tors, which is justified by the Schrodinger correspondence principle [34,35].

A more restrictive simplification is the clamped nuclei approximation [36], which as-
sumes that nuclei have fixed positions corresponding to the equilibrium structure. The orig-
inal problem is then reduced to finding the ground state of the electronic Hamiltonian
for a fixed set of parameters, Equation (16). This problem still has exponential complex-
ity, since M3Ne real numbers are required to store an electronic state. This complexity is
overcome by a single particle picture, in which an electron moves independently of all
other electrons. In this picture, the interaction of a single electron with other electrons is
represented as the interaction of an electron with some average external potential due to
the remaining electrons. Density functional theory provides the most accurate description
of electron–electron interactions in this way [37]. Another method commonly used to solve
the electronic Hamiltonian is the tight-binding method [38,39].

3.2. Supercell Technique

Within the Born–Oppenheimer approximation, clamped nuclei approximation, and
single-particle picture, the microscopic properties of a solid can be found by solving the
Schrodinger equation Ĥ |ψn〉 = En |ψn〉 for a single electron in the external potential set by
equilibrium atomic positions {RI}. The problem is still too complex, since solids consist of
an infinite number of atoms and electrons, making the electronic Hamiltonian a function
of an infinite number of parameters. The use of translational symmetry together with
periodic boundary conditions reduces the problem to a limited number of electrons inside a
primitive cell, and the Hamiltonian is hence a function of a finite set of parameters—vectors
that define the primitive unit cell and atomic coordinates inside the cell. Furthermore,
Bloch’s theorem gives eigenstates of the resulting Hamiltonian. Since atomic positions
are fixed in this description, this solution provides only the static properties of a solid.
A central property is the total energy of the system as a function of its structure. Minimizing
it, one can calculate equilibrium lattice constants, the bulk modulus, and the equation of
state E(V) or P(V), which is now a standard methodology in computational materials
science [37].

In real crystals, of course, atoms are constantly fluctuating around equilibrium po-
sitions. At an arbitrary moment of time, atomic positions are random and there is no
translational symmetry. Bloch’s theorem is no longer applicable. The problem becomes
intractable since the Hamiltonian is again a function of an infinite number of parameters.
In some cases, the complexity can still be harnessed by using the supercell technique [40,41].
In this technique, a supercell is constructed of N repeating primitive cells and the atoms
inside it are allowed to move freely. Periodic boundary conditions are then imposed on
this structure. It therefore becomes an infinite solid, where the supercell plays the role of a
primitive cell. Translational symmetry is restored and Bloch’s theorem can be applied. The
atomic motion inside the supercell allows access to dynamical properties such as phonons
or relaxation times. Strictly speaking, the thus calculated dynamical properties would
be different from those of the real solid; they would rather represent the properties of a
large “molecule” consisting of N primitive cells whose motion is repeated throughout
the space. However, upon an increase in N, the calculated properties would more closely
resemble those of the real solid; in other words, by increasing N, it is possible to achieve
numerical convergence.

Surprisingly, in many cases, the size of the supercell N necessary for numerical con-
vergence is not exceedingly high in terms of numerical calculations. Physically, this means
that in such cases interactions inside a solid quickly decay over distance. For example,
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for α-quartz, phononic dispersion can be accurately calculated by displacing atoms in a
supercell consisting of only 27 unit cells. The reason is that force constants between atoms
in the unit cells separated by more than three lattice spacings are weak [42]. In general,
of course, the value of N necessary for convergence depends both on the properties and the
solid, and it is possible that numerical convergence may not be achieved due to the limited
computational resources of modern computers.

The dynamical properties of solids calculated using the supercell technique also rely
on the assumption that electronic dynamics has a Born–Oppenheimer adiabatic character.
The electronic Hamiltonian for the supercell is set by positions of the atoms inside it.
Supposing the atoms are moving classically, the Hamiltonian becomes time dependent.
Therefore, to describe electronic dynamics |ψ(t)〉, it is necessary to solve the time-dependent
Schrodinger equation starting from the n-th eigenstate

ih̄
∂ |ψ(t)〉

∂t
= Ĥ(t) |φ(t)〉 , (20)

|ψ(0)〉 = |ψn(0)〉 . (21)

The time-dependent wavefunction |ψ(t)〉 often used in supercell calculations corre-
sponds to the n-th eigenstate of the Hamiltonian Ĥ(t) at time t

Ĥ(t) |ψn(t)〉 = En(t) |ψn(t)〉 , (22)

|ψ(t)〉 = |ψn(t)〉 . (23)

It is different from the wavefunction that one obtains by solving the time-dependent
Schrödinger equation, but according to the adiabatic theorem, they coincide if the Hamilto-
nian changes slowly enough (the adiabatic Born–Oppenheimer approximation (ABO)).

The adiabatic assumption can be checked by comparing the time-dependent solution
with the adiabatic one. Alternatively, the adiabatic assumption can be indirectly vali-
dated by the fact that calculated dynamical observables coincide with experimental values.
In most applications, there is no need for direct validation, since, for solids, theoretical
predictions turn out to correctly describe the experimental behavior.

The case of graphene is unique in this regard. Graphene is a two-dimensional honey-
comb structure of carbon atoms. Each carbon atom has four valence orbitals, three of which
hybridize to form strong in-plane σ-bonds between adjacent atoms. The fourth electron is
in a pz orbital perpendicular graphene’s plane. Out-of-plane pz electrons form π-bonds that
are significantly weaker than σ-bonds, and therefore their impact on atomic motion is weak.
Although atomic motion is primarily determined by σ-bonds, electrons in σ-bonds do not
contribute to electronic transport. Therefore, the fact that numerical calculations reproduce
experimental values for atomic vibrations confirms the validity of the adiabatic assumption
for σ-bonds only. One can check the validity of the adiabatic theorem for π-electrons by
directly comparing time-dependent electronic wavefunctions to the adiabatic ones. This
comparison was performed by Mohanty and Heller [2], which we describe below.

3.3. Simulating Graphene Thermal Fluctuations

To model the thermal fluctuations of graphene, the authors constructed a 4 × 4
supercell with 32 carbon atoms. To check that qualitative conclusions hold for larger sizes,
they repeated calculations for a 5 × 10 supercell. Within a supercell, atoms were allowed
to move freely under the harmonic σ-bonded force field, with atomic motion taken as a
superposition of graphene phonons that satisfied the periodic boundary conditions of a
given supercell. In turn, graphene phononic frequencies were computed by considering
only force constants between adjacent atoms, and the corresponding value was taken
from infrared spectroscopy of the C=C aromatic bond. The amplitude of each phonon
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corresponded to a temperature T = 300 K. Eventually, atomic positions were predetermined
for each moment of time according to

r(t) = ∑
n

√
2kBT
Mω2

n
qn cos ωnt, (24)

where qn is the normal mode for the n-th phonon with frequency ωn. π-electrons do not
directly influence this motion. This is a simplification, but it is expected that the qualitative
conclusions hold since the stiff σ-bonds contribute most to the force.

At each moment of time, atomic positions determine the nearest-neighbor tight-
binding Hamiltonian for π-electrons. The hopping integral between adjacent atomic
sites depends on the distance rij(t) between the atoms

H(t) = −∑
〈ij〉

β exp[−αrij(t)](ĉ+i ĉj + H.c.), (25)

where 〈ij〉 stand for the indices of adjacent atoms.
The time-dependent Hamiltonian Ĥ(t) is used to obtain two types of wavefunction.

The first corresponds to the adiabatic solution |ψn(t)〉, Equation (22). Adiabatic diago-
nalization based on the instantaneous atomic positions provides the eigenenergies En(t).
The second type of wavefunction is the actual electronic wavefunction that is given by
Equation (20).

To study the validity of the ABO, the true wavefunction |ψ(t)〉 is compared with the
adiabatic solution |ψn(t)〉 by calculating the overlap between them

an(t) = | 〈ψn(t)|ψ(t)〉 |2, (26)

which is called the adiabatic correlation.
The adiabatic correlation reveals whether the adiabatic theorem, and consequently

the ABO, is valid for this process. However, it does not say how strong the changes in
the wavefunctions |ψn(t)〉 and |ψ(t)〉 are. For this, the overlap of the actual wavefunction
with the initial wavefunction was calculated. The corresponding quantity is called the
diabatic autocorrelation

d(t) = | 〈ψ(0)|ψ(t)〉 |2. (27)

3.4. Breakdown of the ABO for Thermally Fluctuating Graphene

Eigenenergies of the time-dependent Hamiltonian En(t) for a 4 × 4 supercell,
Equation (22), are shown in Figure 2a. Time is given in the units of the shortest vibrational
period, which is 191 h̄/Ry for the case of the 4 × 4 supercell. There are 32 eigenenergies
because the supercell accommodates 32 atoms; for any moment of time, eigenvalues are
not degenerate because atomic positions do not correspond to a highly symmetrical con-
figuration including the initial moment of time t = 0, Equation (24). Eigenenergies form
clusters that are separated from each other by gaps of several eV.

The time evolution of the eigenenergies of one of the clusters is seen to fluctuate
around the average values in Figure 2b. Adjacent levels constantly approach each other;
however, spacings between them never go to zero. If the dynamics were adiabatic, En(t)
would describe how the expected values of the time-dependent states evolve. To reveal
the character of the dynamics, adiabatic correlations and diabatic autocorrelations are
calculated for the states starting from the ground state and from the n = 18 state at t = 0.
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Figure 2. (a) Time-dependent energy spectrum at the Γ point. (b) Time evolution of the n = 18th to
the n = 25th bands. (Reprinted from ref. [2].)

For the ground state, the adiabatic correlation remains one a1(t) = 1 during the
simulation time equal to tens of the shortest vibrational period. The diabatic autocorrelation
remains one d(t) = 1 as well. Preservation of adiabatic correlation means that the solution
of Equation (20) |ψ(t)〉 and the solution of Equation (22) |ψ1(t)〉 coincide up to an arbitrary
phase, |ψ(t)〉 = |ψ1(t)〉; therefore, the adiabatic theorem and consequently the ABO hold
for time evolution of this particular state. Since the diabatic autocorrelation remains one
as well, we conclude that the thermal motion of atoms has no effect on the ground state,
and neither the adiabatic nor the true wavefunctions change.

The behavior of higher states that form the clusters is different. Figure 3a shows
adiabatic correlations for the state |ψ(t)〉, starting from the n = 18 eigenstate at t = 0.
In contrast to the ground state, the overlap probability with the corresponding adiabatic
state sharply decays to zero during the first vibrational period. For the first four vibrational
periods, it remains zero most of the time, occasionally sharply rising to a18 ≈ 0.5 and then
sharply decaying to zero again three times during the aforementioned time. In addition to
this, we can also observe the overlap probability with other adiabatic states in the Figure.
These states form a cluster of eigenenergies, Figure 2b. The overlap with each of these
states is constantly changing, rising from zero to a maximum value and then decaying back
to zero. The maximum value varies among states of the cluster and lies within the range
from a25 ≈ 0.25 for the n = 25 adiabatic eigenstate to a21 = 0.8 for the n = 21 adiabatic
eigenstate. For certain states, for example, n = 21, peaks in the adiabatic correlation merge,
while for the others, peaks in the adiabatic correlation stand separately.

The diabatic autocorrelation for the n = 18 state also has a different behavior to
the one of the ground state, Figure 3b. In contrast to the ground state case, it does not
remain one throughout the simulation. It gradually decays to zero within 60 periods of the
shortest vibration. The decay time of the diabatic correlation is several orders of magnitude
larger than the decay time of the adiabatic correlation. After dropping to zero, the diabatic
correlation function grows.

From the quick decay of the adiabatic correlations, it is clear that in the presence of
thermal fluctuations, the adiabatic theorem and the ABO do not hold for states that form
clusters. The adiabatic theorem and the ABO are still valid for the ground state that is
separated from all the others by gaps of the order of several eV. Such a sharp decay of
the adiabatic correlation can be attributed to the near degeneracy of the states, suffering
frequent avoided crossings. As we discuss in the next section, these avoided crossings
indeed have parameters that lead to the breakdown of the adiabatic theorem.
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Figure 3. (a) Adiabatic autocorrelation function for the band n = 18 and overlap probability between
the time-dependent solution starting from the n = 18th state at t = 0 and other adiabatic eigenstates.
(b) Diabatic autocorrelation function for the band n = 18. (Reprinted from ref. [2].)

Secondly, the fact that the diabatic autocorrelation decays on a timescale several orders
larger than adiabatic correlations means that during the very first oscillations, electronic
wavefunctions stay intact in the sense that the atomic orbital coefficients remain nearly
unchanged as they are carried around by their respective nuclei. Since adiabatic correlations
drop sharply to zero in the meantime, one can conclude that even the smallest changes
in atomic positions lead to enormous changes in the adiabatic wavefunctions |ψn(t)〉 that
form a cluster and that are solutions of Equation (22). This is in sharp contrast to the
ground state, where both adiabatic and diabatic wavefunctions did not change during the
whole simulation time. From the perspective of the zero-th order degenerate perturbation
theory, almost degenerate states form a complete basis set to describe changes in adiabatic
electronic wavefunctions induced by thermal motion of atoms. Quick decay of adiabatic
correlations and preservation of the initial wavefunction means that even slight atomic
displacements lead to strong mixing between initial adiabatic states. This is a characteristic
feature of states that form clusters.

Finally, the decay of the diabatic autocorrelation at much larger times than adiabatic
correlations means that electrons cannot adjust to nuclear motion. The ABO ansatz is based
on this assumption. Therefore, it is not optimal for description of such dynamical processes.
Qualitatively, one may rather say that electronic states are preserved during dynamics.
Since time evolution has diabatic character, then another ansatz, which the authors called
the diabatic Born–Oppenheimer approximation, would be more suitable than the ABO for
a description of such processes.

Qualitatively, the diabatic character is in accordance with experiments. Indeed, elec-
tronic structure theory and Bloch functions are built assuming atoms form perfect symmet-
rical structures. The success of electronic structure theory indicates that during thermal
fluctuations, electronic wavefunctions are preserved by obeying a diabatic solution near
avoided crossings. Therefore, there is an implicit diabatic assumption in electronic structure
theory, otherwise it would be impossible to exploit translational symmetry. The diabatic
representation is that the ABO solution for the highest symmetry is used no matter what
the actual positions of the nuclei are.

4. Discussion and Further Work

In this section, we suggest future directions in the study of time-dependent dynamics
of electrons in the presence of phonons. Mohanty and Heller [2] have established its
diabatic character by running time-dependent simulations. It is interesting, however, that
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the lowest frequency phonons have not been studied, owing to the the finite size of the
supercell. They are slow; thus, they may be again in the adiabatic realm. It would be very
constructive to determine this.

We now suggest a new perspective based on avoided crossings. We outline how one
can potentially come to the same conclusions by using Landau–Zener theory in tandem
with random matrix theory without running time-dependent calculations.

The idea of using Landau–Zener theory in tandem with random matrix theory belongs
to Wilkinson [6]. They considered a driven finite-sized system and calculated the rate of
increase in energy of the system using a distribution of gap sizes and the slopes of avoided
crossings, similar to Equation (13). It was noted in reference [6] that this idea could be
applied in the context of the Born–Oppenheimer approximation to characterize vibronic
coupling in complex molecules.

Diabatic preservation of electronic character suggests a breakdown of the adiabatic
approximation. Adiabaticity breaks down when the Hamiltonian changes too rapidly. One
can estimate a timescale of adiabatic motion by using Heisenberg’s uncertainty principle;
for a process with the minimal spacing between energy levels ∆E, adiabatic evolution can
take place only for time τ

τ ≥ h̄/∆E. (28)

From Equation (28), it follows that avoided crossings or local minima in the distance
between adjacent levels determine the timescale for adiabatic motion. We have considered
their statistical properties in Section 2.3.

Figure 2b shows how energy levels vary over time for graphene thermal fluctuations.
Each state experiences several avoided crossings during one cycle of the shortest vibra-
tional mode. We conclude that the presence of multiple avoided crossings is an inherent
feature of this motion, and therefore should be explicitly incorporated into theoretical
treatment. Specifically, avoided crossings determine a characteristic energy gap, which
in turn determines a timescale for adiabatic evolution. This timescale is to be compared
with the vibrational period, which is primarily set by σ-bonds and only weakly depends
on pz-orbitals.

For the case [2], the shortest vibrational period is τ ≈ 191h̄/Ry, so the energy gap
should be at least ∆E = 1/191 ≈ 0.005 Ry. As one can see in Figure 2b, avoided crossings
have a much smaller gap, leaving no hope for adiabatic motion. Indeed, in Figure 3a, the
adiabatic autocorrelation of the 18th state drops to zero at t = 0.25, which is exactly the
first avoided crossing one can observe in Figure 2b.

Landau and Zener gave a more accurate estimation for adiabatic timescales [43]. They
considered a two-level system with the Hamiltonian in the form of Equation (12) for the
case B = 0, x0 = 0, and x ≡ t. The probability of adiabatic time evolution by the end of
the motion is

p = 1− exp
(
− πε2

2Ah̄

)
. (29)

The estimation of adiabatic Aadia based on the exact solution Aadia = π
2 ε2/h̄ is close

to the one based on Heisenberg’s uncertainty principle, A = ε2/h̄. In the case of graphene
thermal fluctuations, the electronic structure of the pz orbitals determines ε, while the
temperature and σ-bonds determine A.

Thus, instead of explicitly calculating the time-dependent wavefunction, one can more
simply and more insightfully study the evolution of electronic character by finding avoided
crossings in the time-dependent electronic spectrum, extracting A and ε from the fit to
Equation (11) and putting these parameters into Equation (29).

The procedure we have just outlined still requires performing numerical calculations
to obtain a time-dependent electronic spectrum. Further analytical insights at much less
effort might have been obtained using the theoretical results from Section 2.3. As a result of
the randomness of thermal fluctuations, one can model the electronic Hamiltonian by a
random matrix. This theory allows determining the distribution of ε, A, and B for avoided
crossings, Equation (13). In tandem with Landau–Zener theory, it is possible to understand
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the diabatic character of time evolution even without running simulations. In order to
make random matrix theory applicable, it is necessary to adjust the density of states and the
sensitivity to perturbations by rescaling energy and time; this procedure has been described
by Wilkinson [22].

There is one caveat: Landau–Zener theory considers only two coupled states, whereas
all states that form a cluster turn out to be coupled. There is a close and suggestive analogy
with the Wigner surmise for the nearest neighbor level spacing distribution; a very accurate
result was obtained by Wigner using only an ensemble of 2 × 2 random matrices instead of
the full N × N case.

One can see a manifestation of the full N-state cluster coupling in Figure 3a for the
first avoided crossing of the 18th state; the state makes a transition to the 21st but not to the
adjacent 19th or 17th state. A general solution to the multi-level Landau–Zener problem is
necessary here, which has not been obtained yet [44–46].

We have suggested a new way to analyze electronic dynamics in the presence of phonons,
which enables to use random matrix theory and may shed new light on this problem.

5. Summary

The main purpose of this paper is to show that two seemingly distinct subjects,
random matrix theory and electronic dynamics in the presence of thermal fluctuations, can
be brought together through considering statistically known properties of the electronic
structure spectrum. This perspective can potentially give more information than just
the preservation of diabatic electronic character recently found in the time-dependent
simulations of graphene thermal fluctuations.

We first introduced parameter-dependent random matrices and the reasons for select-
ing a particular parametrization. Then, we considered singularities in their spectra, i.e.,
conical intersections and avoided crossings. We have described the geometrical proper-
ties of conical intersections, along with a typical workflow for calculating their statistical
distributions analytically. Qualitatively, analytical predictions were in agreement with the
illustrated numerical results. Then, we quoted the statistical distribution of fitting param-
eters for energy levels near an avoided crossing, which is important for the perspective
we suggest.

We next examined the time evolution of graphene π-band electronic states in the
presence of phonons. A direct solution of time-dependent Schrodinger equation shows
that a projection of the time-dependent state on an instantaneous adiabatic state drops
to zero during the very first vibrational cycle, whereas overlap with the initial electronic
state decays at a much longer timescale. Moreover, it tends to recover at an even larger
timescale. That indicates preservation of the electronic character and the diabatic nature of
time evolution.

Finally, we sketched a possible way to treat the dynamics of electrons in the presence
of phonons based on random matrix theory and avoided crossings. We started with the
observation that numerous avoided crossings arise in the supercell electronic bandstructure
because of nuclear motion. Overlap of the time-dependent wavefunction with the instanta-
neous adiabatic states suggests avoided crossings are responsible for the rapid decay of
the adiabatic states. A simple estimation based on the uncertainty principle confirms that
avoided crossings have gaps that are too small for the adiabatic theorem to be valid. We
then outlined a more sophisticated analytical treatment based on Landau–Zener theory. All
in all, the suggested perspective may enable the use of random matrix theory to characterize
the time evolution of electrons in the presence of phonons. This could be a powerful new
perspective in this important problem.
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