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The electric field of an intense laser pulse can directly modify the electronic properties of materials via
electromodulation up to the petahertz regime. In this regime, the energy of the quiver motion of the electron-hole
pair is comparable with the photon energy, which results in complex nonadiabatic dynamics. This regime opens
opportunities to probe the electronic structure of materials on the attosecond timescale. Here, we show how
the quasistatic electromodulation spectroscopy based on the Franz-Keldysh effect (FKE) connects with its
nonadiabatic limit, which we find to be determined by resonant transitions between Floquet-Bloch states. This
insight can be applied to measure the effective mass, ponderomotive and binding energies of the electron-hole
pair on a few-femtosecond timescale. We demonstrate this by experimentally investigating laser-field-driven
fused silica, a prototypical material for light-wave electronics, with extreme-ultraviolet attosecond pulse trains.
We reproduce the experimental transient absorption spectra with an effective band structure and a dynamical
Franz-Keldysh model, offering a simple parametrization for a theoretically challenging but technologically
abundant material. Ab initio calculations in α-quartz highlight the contributions of specific bands, symmetry,
and crystal orientation that are hidden in the experimental data due to randomized crystallographic orientation
and finite temporal and spatial coherence. We show that the dynamical FKE can be explained as a third-order
nonlinear process in the weak-field regime. The delay-dependent position of the absorption maxima and minima
has a minimum tilt angle, determined by transitions between the underlying Floquet-Bloch states. In our analysis,
we discuss the main experimental observables and show their connection to the parameters of the solid, providing
the basis for nonadiabatic electromodulation spectroscopy.

DOI: 10.1103/PhysRevB.107.184304

I. INTRODUCTION

Electromodulation spectroscopy utilizes various electro-
optic effects to gain information about the intrinsic properties
of solids, such as the effective mass or carrier concentra-
tion [1,2]. The direct influence of the electric field on the
band structure of semiconductors via the Franz-Keldysh effect
(FKE) [3,4] is at the basis of electroabsorption and electrore-
flectance spectroscopy [2]. In the FKE, the electric field, either
external or built-in, transforms the wave function of Bloch
electrons into an Airy shape [1]. The tail of the Airy function
extends into the band gap region, enabling absorption of pho-
tons with energies smaller than the band gap. Above the band
gap, the Airy solution results in quasiperiodic oscillations
of absorption with the photon energy. By rapidly modulat-
ing the electric field and applying lock-in detection, a small
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change in absorption can be measured with high precision,
allowing a fine characterization of semiconductor electronic
structure [2]. The development of the theoretical understand-
ing of the FKE [1,2,5,6] allowed one to determine from the
Franz-Keldysh (FK) oscillations the electron effective mass
[1], exciton binding energy [7], band structure anisotropy, and
valence band splitting [8]. Moreover, analysis of FK oscilla-
tions enabled measurements of carrier concentration and the
built-in field [9], spatial electron coherence [10] and confine-
ment [11], and observation of coherent phonons [12].

At a high modulation frequency, however, the material
response becomes noninstantaneous, allowing us to study
nonequilibrium electron dynamics in real time. The high-
frequency (dynamical) FKE has been theoretically described
in Refs. [13,14] and subsequently observed in the terahertz
domain in quantum wells [15,16] and later in semiconductors
[17,18]. For these cases, the electric field of an electromag-
netic wave was used to modulate the material absorption,
opening the possibility of further increasing the modulation
frequency into the optical domain. The attosecond dynamical
FKE (DFKE) was later observed in polycrystalline diamond
[19,20]. It was found that intraband motion dominates the
material response, and the observations were in agreement
with the DFKE in a parabolic band approximation. Previously,
ab initio calculations allowed us to reproduce the experi-
ments in dielectrics, semiconductors, and metals [20–23], and
SiO2 was investigated with time-dependent density functional
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FIG. 1. The principle of petahertz electroabsoprtion and the electronic structure of SiO2. (a) Voltage modulation in electroabsorption
spectroscopy. An optical probe (magenta arrow) measures the absorption change in the sample (blue) induced by the electric field bias.
The modulated probe is then collected with a homodyne detector. (b) Nonadiabatic electroabsorption, where the sample is modulated at a
near-petahertz frequency by the oscillating electric field of light and probed with a delayed and phase-locked attosecond pulse train (APT) with
the same periodicity (magenta). (c) Typical differential electroabsorption spectrum, with characteristic Franz-Keldysh (FK) oscillations above
the band edge. (d) Optical density of a SiO2 nanofilm: experimental value (nominal sample thickness 40 nm) compared with time-dependent
density functional theory (TDDFT) calculations for a 45-nm film. The independent-particle (IP) model shows qualitative agreement with the
full TDDFT calculation. The discrepancy between the two calculations is attributed to the local field effect. (e) Calculated band structure of
α-quartz in the �-A and �-X directions. The dominant contributions from different atomic orbitals are marked according to the literature [38].
The black arrows indicate the possible extreme ultraviolet (XUV) transitions in our probe photon energy range.

theory (TDDFT) in great detail [24–26]. Moreover, recent
ab initio calculations succeeded in describing attosecond
dynamics beyond the FKE [21,22,27,28]. However, a clear
connection between the experimental observables and the
electronic structure is missing. Here, we provide this connec-
tion with a detailed explanation of the so-called fishbone shape
of the attosecond transient absorption spectra and its relation
to the ponderomotive and binding energies of the electron-
hole pair. Furthermore, we connect the fishbone structure to
the spectra measured in conventional quasistatic electroab-
sorption spectroscopy. With this, we provide a consistent
extension of modulation spectroscopy into the nonadiabatic
regime, advancing it toward a true analytical technique ca-
pable of tracking the electronic structure of solids on a
few-femtosecond timescale.

To this end, we apply attosecond transient absorption spec-
troscopy to study SiO2, a pivotal material for telecom and
integrated circuits, which is also prototypical in light-wave
electronics and petahertz field metrology [29,30]. Previous
attosecond transient absorption studies of SiO2 have focused
on absorption dynamics at the Si L2,3 edge [31], which is dom-
inated by core-hole exciton effects [32]. Other experimental
efforts have utilized high- and low-order harmonic generation,
providing insight into the quartz anisotropy and conduction
band structure [33–35] and enabled the direct measurement
of optical polarization [36]. In contrast, we investigate the
valence-to-conduction band transitions in the photon energy

range of 25–50 eV, where the DFKE is expected to pro-
vide detailed spectroscopic information about the valence
and conduction band structure [20]. We support our experi-
mental investigations with ab initio calculations in α-quartz
and a parabolic-band model of the DFKE [19]. We find that
SiO2 exhibits a rich spectral response with pronounced non-
instantaneous subcycle dynamics. The experimental spectra,
however, have fewer features than the ab initio calculations
due to electron scattering and limited coherence length in the
amorphous specimen. The experiment can be reproduced in
a DFKE model with an effective band structure. With this
model, we find that the attosecond absorption delays within
the electric field cycle have an upper quantum limit. In ad-
dition, we show that the FK oscillations manifest already in
the cycle-averaged absorption spectra as quasiperiodic oscil-
lations with the photon energy and provide a measurement of
the reduced electron-hole mass, without the need for subcycle
time resolution.

II. EXPERIMENT

A. Petahertz electroabsorption

In low-frequency electroabsorption, a modulation voltage
of 10–100 kV/cm allows one to measure small varia-
tions from equilibrium absorption in a lock-in acquisition
[Fig. 1(a)]. The observed FK oscillations [Fig. 1(c)] are fit-
ted with analytical formulas, with the fit parameters being
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FIG. 2. Experimental transient absorption vs calculation. Transient absorption of polycrystalline SiO2 with attosecond pulse trains (APTs)
generated in (a) argon and (b) xenon. (c) Dynamical Franz-Keldysh effect (DFKE) calculation, with the band parameters specified in Table I.
Dashed lines indicate the modeled band edges. (d) Ab initio calculation of the orientation-averaged response of α-quartz. Note that the energy
axis in (d) is shifted by 2 eV with respect to the other panels.

the band edge, reduced mass, and the electric field strength.
For example, higher field strength or lower reduced electron-
hole mass result in lower periodicity of the FK oscillations
[2]. Petahertz electroabsorption [Fig. 1(b)] uses electric fields
three orders of magnitude higher than its low-frequency coun-
terpart and a probe pulse of subcycle duration or a train of
attosecond pulses phase-locked to the pump electric field.
Such a field strength surpasses the dielectric breakdown of the
material. However, the high modulation frequency (0.8 PHz)
allows one to apply a field strength of ∼1 V/Å briefly without
damaging the material, thereby opening a strong-field regime
of light-matter interaction to spectroscopic investigation. This
approach allows one to measure the electron-hole structure
on a few-femtosecond timescale in a wide energy range, in-
cluding unoccupied states high in the conduction band, and
thereby to track the electronic structure dynamics during ul-
trafast phase transitions.

B. Equilibrium absorption spectrum

The transient absorption experiments were carried out on
the attosecond beamline described extensively in previous
works [20,37]. The near-infrared (NIR) pump pulse with a
center photon energy h̄� of 1.55 eV is in the few-cycle
regime with a stabilized carrier-envelope offset phase. The
pulse is focused onto a freestanding SiO2 nanofilm (SiMPore,
TEMwindows, nominal thickness 40 nm), with a maximum
pulse energy of 10 μJ and corresponding peak intensity of
7 ± 2 TW/cm2. We probe the sample response via changes in
the transmission spectrum of attosecond pulse trains (APTs)
with a photon energy h̄ω of 25–50 eV that are generated in
xenon or argon.

The equilibrium optical density (OD) of a SiO2 film
[Fig. 1(d)] shows a reasonable agreement with the first-
principles calculations based on TDDFT (see Appendix B)
if the nominal thickness of 40 nm is adjusted to 45 nm in
the calculations. The discrepancy is not unexpected since the

nominal film thickness is not measured directly but estimated
from mass measurements during deposition. High absorp-
tion of SiO2 in the extreme ultraviolet (XUV) range requires
high XUV photon flux and the use of large-area (>50μm)
nanofilms that are difficult to obtain in a crystalline form.

In the TDDFT calculation, we compare the full model
[Fig. 1(d), blue] with an independent particle (IP) prediction
[Fig. 1(d), light blue]. A small deviation in the lower-energy
part of the spectrum is expected to be due to local field effects.
Figure 1(e) shows the calculated band structure of α-quartz,
where XUV photons (black arrows) can induce transitions
from the oxygen 2s states to the bottom of the conduction
band, as well as transitions from the oxygen 2p states high into
the conduction band. Extensive literature established that the
primary difference between different allotropic modifications
of SiO2 is the angle of the Si-O-Si bond [39]. Moreover, the
band structure of crystalline and amorphous SiO2 is similar
[39] because it is not sensitive to the long-range order [38].
The highest valence band is composed of oxygen lone-pair
(nonbonding) orbitals, dominated by oxygen p states, oriented
along the Si-O-Si axis. The middle of the valence band is
composed of bonding Si-O orbitals, separated by the ionic gap
from the lowest band that is composed mostly of O 2s-orbitals.

C. Nonequilibrium absorption spectra

Figures 2(a) and 2(b) show experimental transient absorp-
tion spectra obtained at a pump intensity of 7 TW/cm2.
The color plot shows changes in material OD, calculated
as a logarithm of the ratio of the transmitted spectra with
and without the pump, yielding a differential signal, as in
conventional electroabsorption spectroscopy. The signal is ro-
bust with respect to the specific shape and duration of probe
APTs. To obtain a complete spectral coverage at identical
pumping conditions, we use XUV pulses generated in argon
[Fig. 2(a)] and xenon [Fig. 2(b)]. Overlayed black lines show
the transmitted probe spectra; noisy areas with low XUV
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FIG. 3. Additional transient absorption data. (a) Measurement
taken with continuous extreme ultraviolet (XUV) pulse spectrum
generated in xenon. (b) Measurement in a different 100-nm sample
from a different supplier. (c) Measurement taken with single at-
tosecond pulse (SAP), note the different energy axis. (d) SAP signal
integrated between 40.5 and 44 eV [dashed lines in (c)].

counts are blanked out. Together, Figs. 2(a) and 2(b) pro-
vide a complementary spectral mapping of a wide photon
energy region. The data furthermore agree with additional
measurements taken in a 100-nm-thick sample from a differ-
ent supplier [Fig. 3(b)] and a measurement with a continuous
XUV spectrum [Fig. 3(a)]. Using APTs generated under dif-
ferent conditions helps to complete the spectral mapping.
We characterize the attosecond pulses via reconstruction of
attosecond beating by interference of two-photon transition
[40] measurement in neon and find that the APT consists of
six 270-as bursts on average. The strongest transient signal
is observed at 25–35 eV, where the XUV absorption is very
high, impeding a reliable measurement with single attosecond
pulses with our experimental parameters [Fig. 3(c)]. Thus,
our choice of APTs as a probe provides a broader spectral
coverage but does not provide the absolute delays with respect
to the pump electric field. This is in contrast to the previous
measurements in diamond and GaAs [20,21] for which we
used a single attosecond pulse with which we could measure
the time-dependent electric field with attosecond streaking

TABLE I. Effective band parameters for the empirical DFKE
model. μeh is the reduced effective electron-hole mass in units of
the free electron mass me, given by μeh

−1 = m∗−1
e + m∗−1

h , and m∗
e

and m∗
h are the effective masses of the electron and hole.

Energy (eV) μeh (me)

23 0.41
29.5 0.56
36.5 0.22
39 0.22
41 0.22
43 0.22

[20,21]. However, as we will show in the discussion that
knowledge of the absolute delays is not required to charac-
terize the electronic structure of the material. The APTs are
locked to the electric field oscillations; however, every train
probes a different part of pump pulse envelope, resulting in an
effective average over a range of E-field amplitudes.

The transient absorption exhibits a 2� modulation di-
rectly corresponding to the 0.8 PHz frequency of the electric
field of the pump laser. The transient absorption exhibits a
pronounced dispersion, i.e., delay-dependent position of the
absorption maxima and minima which show up with tilted red
or blue features. These features are indicative of a noninstan-
taneous response that does not depend on the probe spectra
and is therefore an intrinsic characteristic of the material.

D. Dynamical FK model

Figure 2(c) shows simulated transient absorption with a
peak field strength of 0.9 V/Å, based on the DFKE model
[19,20] with additional 1-eV broadening to account for finite
lifetime. Our calculations accurately reproduce the results of
the original model [19] as well as subsequent two-band cal-
culations in diamond [20,41]. Here, the main features of the
SiO2 spectra, namely, the amplitude, energy position, width,
and tilt of the 2� periodic oscillations are reproduced assum-
ing an effective band structure consisting of six band pairs
(Table I). The photon energy range corresponds to transitions
from oxygen 2s and 2p levels to the conduction band, with
electron effective mass ranging between 0.5 and 1 me and hole
effective mass between 0.4 and 7 me according to the literature
[38], which correspond to a reduced electron-hole mass μeh

in the range of 0.22–0.87 me. The DFKE model therefore
allows us to model an octave-spanning response of SiO2 in
the XUV with simple parametrization. We note, however, that
since the DFKE spectral shape is derived from Airy functions
that form a complete basis set, including more bands can yield
even better quantitative agreement with the experiment, at the
expense of model simplicity.

E. Ab initio calculations

Figure 2(d) shows the results of ab initio simulations of
the pump-probe experiment in α-quartz, see Appendix B. To
emulate fused silica, we perform orientation averaging that
restores the inversion symmetry that is broken in α-quartz.
The broken symmetry manifests as �-periodic oscillations of
the absorption along the crystal c axis (Fig. 4). We identify
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FIG. 4. Ab initio calculations of transient absorption in α-quartz. Electric field along the (a) a axis and (b) c axis. (a) shows �-periodic
oscillation due to broken inversion symmetry. Transitions only from the O 2s level for the (c) a axis and (d) c axis.

similar absorption and transparency regions [red and blue,
Fig. 2(d)] as in the experiment if the calculated spectrum is
shifted down by 2 eV. Since accurate determination of the
energy position is problematic in TDDFT with approximated
functionals, the required energy shift is not unexpected. How-
ever, the experimental data are overall simpler, exhibiting
fewer spectral features. We attribute the less detailed features
to scattering and limited coherence length in the polycrys-
talline sample. Similarly, in electromodulation, the crystalline
quality of the samples determines the number of the observed
FK oscillations [10], and scattering results in plain spectra.

To understand the influence of individual valence bands,
we further perform decomposition of the theoretical spectra
[42], isolating the contribution of the semicore O 2s level.

We find that, although O 2s levels contribute significantly, the
O 2p-CB transitions cannot be discarded from the analysis
(Fig. 4). To connect the TDDFT results and the empirical
model, we extract the electron and hole effective masses
from the theoretical band structure in the �-A direction, cor-
responding to the c axis of α-quartz. Here, 60 band pairs
contribute to the signal in the experimentally accessible range
of 25–45 eV. We calculate the DFKE parabolic-band model
for a simplified band structure, obtained by k-means clus-
tering (Appendix C). We find that a noninteracting parabolic
band DFKE model reproduces most TDDFT features (Fig. 5),
in agreement with the hypothesis of dominant intraband con-
tribution [20]. However, in contrast to the results reported
in diamond [20], we find that it is not possible to define a

FIG. 5. Parabolic band approximation and simplified band structure. (a) Time-dependent density functional theory (TDDFT) calculation
along the quartz c axis (�-A direction). (b) Dynamical Franz-Keldysh effect (DFKE) in parabolic approximation with the TDDFT bands
fitted to obtain band effective mass and band edges. 60 band pairs [(d), blue crosses] are reduced to 22 pairs [(d), violet circles] via k-means
clustering. (c) DFKE in parabolic approximation with 5 bands only [(d), magenta squares]. (d) The band pairs from TDDFT, obtained via
parabolic fits (blue crosses) and the k-means clustering results for 22 bands (violet circles), and 5 bands (magenta squares). The bands pairs
<22 eV not shown, but their impact on transient absorption >22 eV is included.
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FIG. 6. Dynamical Franz-Keldysh effect (DFKE) decomposition and its quantum limit. (a) Experimental transient absorption spectra.
Black curve shows the oscillation phase obtained by Fourier filtering the spectrogram at the frequency of 2�. (b) DFKE calculated with
E = 0.9 V/Å, μeh = 0.4 me, EBG = 29.5 eV. (c) DC and (d) AC parts of the DFKE signal. Arrows indicate the extreme ultraviolet (XUV;
violet) and pump (red) transitions. (e) −2h̄� component of the AC part, calculated at half the pump frequency and quarter intensity, thus
matching the Up value in (d) and the apex position of the fishbone structure. (f) Same signal as in (e) at half the pump intensity. (g) Sine
component of the upper AC branch signal, oscillating in phase with the pump electric field. Black curve shows the amplitude of the S−1

coefficient in arbitrary units. Black dashed lines indicate the band gap (29.5 eV), the fishbone apex (31.09 eV), and its upper edge (34.27 eV). (h)
Corresponding cosine (out-of-phase) component of the upper AC branch and its amplitude C−1 (black curve). (i) Floquet-Bloch decomposition
of the C−1 amplitude (black). Colored curves show the contributions of Floquet states with an index l . (j) Amplitudes of three-photon transitions,
shown in (d) and (k) as arrows, with the final Floquet-Bloch state l of the electron-hole pair. (k) Joint density of states of the Floquet-Bloch
states l . (l) Tilt angle of the fishbone structure plotted against photon energy per optical cycle [see Eq. (3)]. The line at 0.7 TW/cm2 coincides
with the theoretical limit given by 4h̄�/T . Red point shows the experimental tilt value from the upper fishbone branch in (a).

single dominant transition. Therefore, we conclude that the
empirical parameters found in the DFKE model represent an
effective response of fused silica, including randomized ori-
entation and scattering. The extracted parameters thus do not
necessarily correspond to specific electronic bands. Such an
effect is intrinsic to photoabsorption measurements, where a
selected photon energy may involve several electronic transi-
tions, while in photoelectron spectroscopy, on the other hand,
different photons can produce electrons with the same final
energy.

III. DISCUSSION

The dynamical FKE has previously been observed at op-
tical frequencies in diamond [20], revealing the characteristic
time-energy dependence of the transient spectra, dubbed the
fishbone structure [43]. Similar dispersion of the modulations
was also observed in an exciton system [28], in quantum
wells under terahertz radiation [44], and in several theoretical
works on attosecond transient absorption of solids [43,45–47].
We find that the response of SiO2 is more complex than in
diamond since we employ ∼3 times higher pump intensity,
while the reduced e-h mass is ∼3 times lower, resulting in
a much higher ponderomotive potential and nonperturbative
behavior with γ = Up/h̄� ∼1. To gain a better understanding
of the spectral features, we focus on the photon energy range
between 26 and 36 eV, which we probe with a dedicated con-
tinuous XUV spectrum (Appendix A), where our empirical

DFKE model within the effective band structure derived in
the previous section has only one band edge at 29.5 eV with a
reduced mass of 0.4 me.

We find good agreement between the experiment
[Fig. 6(a)] and a simplified, two-band DFKE calculation
[Fig. 6(b)] exhibiting the fishbone structure [20]. To gain
better insight into the origin of these spectra, we revisit the
DFKE model [19], where the transient absorption signal is
given by the real part of conductivity σ :

Reσ2m(ω, t ) = a

ω + 2m�
[C2m� cos (2m�t )

+ S2m� sin (2m�t )]. (1)

Here, a is a frequency-independent factor, � and ω are pump
and probe frequencies, 2m is the number of an even harmonic
of the pump, with |m| = 0, 1, 2, …. In the present experiment,
as well as in the previous studies [20,21], only the 2� compo-
nent of transient absorption is observed; therefore, we neglect
terms |m| > 1 in the following analysis. Spectral amplitudes
C0;±2� and S0;±2� are calculated as orientation-averaged tran-
sition amplitudes that contain resonant terms in the form:

h̄ω = Egap + k2

2μeh
+ Up + l h̄� + 2mh̄�. (2)

Here, Egap is the band gap, k is the quasimomentum, and
Up is the ponderomotive energy. The equation represents
energy conservation in a three-photon transition (one XUV h̄ω

and two pump photons 2h̄�) between Floquet-Bloch states
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(Egap + k2

2μeh
+ l h̄�) with an index l . The Up term is due to

the extra quiver energy of the electron-hole pair that is not
present in the bound state, see, e.g., Ref. [48]. The real part of
the conductivity, corresponding to absorption, can therefore
be presented as a summation of time-independent DC [m=0,
Fig. 6(c)] and time-dependent AC components [m = ±1,
Fig. 6(d)]. The AC component is composed of two terms
representing emission of two pump photons [m = −1, upper
branch of the fishbone, photon energy >31 eV in Fig. 6(d)]
and absorption of two pump photons (m = 1, lower branch,
photon energy <31 eV).

The apex of the fishbone structure emerges at Up above
the band gap, and the signal with a 2� periodicity stretches
to 2h̄� above (below) it [Fig. 6(d), black dashed lines]. In
Fig. 6(e), we repeat the calculation at half the pump photon
energy, and quarter intensity, to match the ponderomotive
potential in panel (d). We see that lower pump frequency
results in a lower tilt angle θ , in agreement with previous
findings in diamond [20]. Specifically, we find that reducing
the pump frequency by half results in a 4 times smaller tilt.
At the same time, the apex of the fishbone coincides in both
panels (d) and (e), confirming that the apex position is defined
by the ponderomotive upshift from the band edge. In contrast,
calculation at the same frequency as in panel (d) but with half
the intensity results in a downshift of the fishbone apex by a
half with respect to the band edge.

To understand the origin of the fishbone branches, we
decompose the absorption signal into its sine and cosine com-
ponents according to Eq. (1). Figures 6(g) and 6(h) show
the corresponding components oscillating in phase [sine,
Fig. 6(g)] and out of phase [cos, Fig. 6(h)] with the pump
electric field. We see that, in addition to the time-periodicity
of 2�, the signal is also 2h̄� periodic in photon energy.
Moreover, the amplitudes of the sine and cosine components
S−1 and C−1 (here, the index −1 means emission of two
pump photons) oscillate out of phase in photon energy, as
evident in Fig. 6(g) in the red and blue color spacing at a
fixed delay and the amplitudes S−1 and C−1 plotted as black
curves atop. We note that, from the derivation of the Sm and
Cm coefficients [19], it follows that they are Hilbert trans-
form pairs and, for a fixed time delay, correspond to real
and imaginary parts of the complex conductivity, which are
connected via Kramers-Kronig relations. The combination of
time- and photon-energy-periodic signals that oscillate out of
phase therefore results in the tilted fishbone structure, with a
tilt angle given by

tan (θ )q = 2h̄�

0.5T
= 2

π
h̄�2. (3)

The 2� time periodicity is trivially explained as a di-
rect driving of the system with the electric field cycles
in an inversion-symmetric system, as implicitly assumed
by orientation-averaged transition amplitudes in the DFKE
model [19]. To understand the photon-energy periodicity,
we further decompose the C−1 component into contributions
from specific Floquet-Bloch states with the Floquet numbers
l . Figure 6(i) shows the C−1 amplitude as a black curve,
resulting from summation over all Floquet numbers. From
Fig. 6(i), we see that only a few Floquet states with indices
l = −3 to l = 0 contribute to the C−1 amplitude, depicted

as blue, violet, and magenta curves. The contributions from
individual Floquet-Bloch states are a product of their joint
density of states (JDOS) and the transition amplitudes: C−1 =∑

l Al,−1JDOSl,−1 in the aforementioned three-photon pro-
cess, involving absorption of one XUV photon and emission
(for the upper fishbone branch) or absorption (for the lower
fishbone branch) of two pump photons, see the violet and red
arrows in Fig. 6(k). In this process, l is the index of the final
Floquet-Bloch state. For example, the absorption signal at
32.5 eV, that is h̄� + Up above the band gap, results from tran-
sition to the Floquet-Bloch state with l = −1. We therefore
conclude that the 2h̄� periodicity of the Fourier amplitudes
in photon energy, and thereby the fishbone tilt, originate from
the h̄� spacing of the underlying Floquet states.

To quantify the dependence of the tilt angle θ on the
pump parameters, we calculate the spectral phase of the upper
(−2h̄�) branch for a range of pump frequencies and intensi-
ties and compare it with the experimental data. Figure 6(l)
shows the extracted tilt angles for pump intensities of I =
0.7, 7, and 14 TW/cm2, as a function of photon energy per
oscillation period. We find that the tilt angle θ is primarily
determined by the pump frequency. The extracted tilts at the
pump intensity of I = 0.7 TW/cm2 (or lower) exactly coin-
cide with Eq. (3) for all calculated photon energies. However,
increasing the pump intensity for a given pump frequency
results in larger angles. To explain this tendency, we note that
high intensities result in larger values of the nonperturbative
intensity parameter γ = Up/h̄� [49], corresponding to a more
classical (adiabatic) regime. We can approximate the tilt angle
in the classical limit as the maximum kinetic energy gain
of the electron-hole pair that happens over a quarter of the
field cycle since the kinetic energy peaks at twice the driving
frequency:

tan (θ )c = 4Up

π
�. (4)

These quantum and classical expressions are connected via
the nonperturbative intensity parameter γ [49], which is on the
order of 1 in our experiments:

tan(θ )c

tan(θ )q
= 2γ . (5)

Here, tan(θ )c,q have the effective units of power, with the
values of 4.9 and 2.44 eV/fs, respectively. Increasing the
ponderomotive potential, either with intensity or by lowering
the pump frequency, results in larger tilt angles [Fig. 6(l), blue
and magenta curves]. To further confirm our understanding of
the minimum tilt angle, we compute higher-order components
of the signal oscillating at 4� that are not observed in the ex-
periment due to their low amplitude relatively to the dominant
2� signal, see Appendix D. We find that 4� oscillations also
exhibit a fishbone structure [Figs. 7(e) and 7(g)], with a tilt
given by 4h̄�2/π that is twice as high as for the 2� oscillation
but not four times as high since the photon-energy periodicity
given by the Floquet-Bloch spacing is not changed.

The experimental tilt angle is obtained from the spectro-
gram in Fig. 6(a) by calculating the spectral phase at the 2�

frequency [Fig. 6(a), black curve] in the photon energy range
between 31 and 34 eV, where the influence of lower bands is
minimal. We find that the experimental value [Fig. 6(h), red
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FIG. 7. AC part of the dynamical Franz-Keldysh effect (DFKE) signal calculated for 7 TW/cm2 (upper row) and 0.07 TW/cm2 (lower
row). (a) 2� component, dashed line is drawn at Up (1.59 eV) above the band edge (29.5 eV). (b) Sine (blue) and cosine (red) spectral
amplitudes of the 2� component. (c) and (d) Same for the 4� component. (e)–(h) Same as (a)–(d), at ×100 lower pump intensity. The sine
and cosine amplitudes oscillate out of phase in photon energy. The periodicity of these oscillations is equal to 2h̄� in all cases.

circle] is in a good agreement with the presented theory, given
the uncertainty of pump intensity measurement in the sample.
Therefore, the attosecond delays observed in the transient
absorption measurements are primarily determined by the
ponderomotive potential that offsets the fishbone shape from
the band edge and the tilt angle. Under perturbative conditions
(γ < 1), the DFKE spectra are expected to have a universal
shape, with the tilt determined by the pump frequency alone.
In the nonperturbative (adiabatic) regime (γ > 1), the tilt
can be additionally increased, reducing the observed delays
toward more instantaneous response.

In summary, our analysis of the DFKE model shows that
transient absorption data exhibit three main observables, with
a clear physical interpretation, namely: (i) the apex of the
fishbone spectral shape, (ii) the fishbone tilt, and (iii) the time-
integrated absorption profile. These observables are robust
against variation of the probe spectra, APT burst duration, or
the absolute value of the pump-probe delay. We have shown
that the apex position with respect to the band edge is equal
to the ponderomotive energy of the electron-hole pair. The
deviation of the tilt angle from its perturbative lower limit is a
measure of the adiabaticity of the interaction.

IV. PERTURBATIVE APPROXIMATION TO THE DFKE

We have shown that the fishbone shape of the DFKE as
a function of delay and energy converged in the perturbative
limit γ < 1 to a basic shape with 2� delay and 2h̄� energy
periodicity and a total energy width of 4h̄�. In this section, we
explain this shape in terms of a third-order nonlinear process.

We derive algebraic expressions for the DFKE in terms of
third-order susceptibility χ (3) in the low-field regime (see
Appendix E). Transient absorption calculated with the derived
χ (3) reproduces the fishbone shape, with an approximation
error of <4% for γ = 0.01 (Fig. 8). The effective change of
linear susceptibility is

�χ (1)(ω, T ) = χ (3)(ω,�,−�)E0
2 + χ (3)(ω,�,�)E0

2ei2�T

+ χ (3)(ω,−�,−�)E0
2e−i2�T , (6)

where � and ω are pump and probe frequencies, T is the
pump-probe delay, and E0 is the pump electric field amplitude.
The first term in Eq. (6) corresponds to the pump-induced Kerr
contribution to linear probe absorption [50] that has been ob-
served in conventional transient absorption spectroscopy [51].
However, the rapidly oscillating terms are usually ignored
[52], and their detection requires subcycle time resolution.
The transient absorption signal is proportional to the imagi-
nary part of the susceptibility:

Im�χ (1)(ω, T )

= E0
2Imχ (3)(ω,�,−�)

+ E0
2Im[χ (3)(ω,�,�) + χ (3)(ω,−�,−�)] cos (2�T )

+ E0
2Re[χ (3)(ω,�,�) − χ (3)(ω,−�,−�)] sin (2�T ).

(7)
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FIG. 8. Perturbative approximation to the dynamical Franz-Keldysh effect (DFKE) as a χ (3) process. (a) Full DFKE calculation, γ = 0.01.
(b) Perturbative approximation via Eqs. (E18)–(E21). (c) The DC component from the full DFKE calculation (blue line) and the difference
from χ (3) approximation (black line). (d) Same as (c), for the AC (−2h̄�) component.

We thus retrieve the functional form of Eq. (1) and
Figs. 6(g) and 6(h) and conclude that the fishbone shape
originates from mixing of the real and imaginary terms of the
third-order susceptibility. Due to Kramers-Kronig relations,
peaks of Imχ (3) coincide with zeros in Reχ (3) and vice versa,
thus giving rise to the checkerboard pattern in Figs. 6(g) and
6(h). We note that the electronic response to the pump field
alone is instantaneous since its photon energy is far from res-
onance. In contrast, the electronic response to the XUV field
is noninstantaneous at the interband resonance. The mixed
electronic response to XUV and NIR fields inherits the nonin-
stantaneous nature of resonant XUV absorption. We therefore
conclude that the pump field realizes coherent control of linear
XUV absorption via additional three-photon interactions me-
diated by interband resonances at ω,ω ± �,ω ± 2�. These
resonances can be seen in the Floquet-Bloch energy levels
[Figs. 6(i)–6(k)] and are also explicit in the functional form
of χ (3), see Appendix E.

V. NONADIABATIC QUENCHING OF FK OSCILLATIONS

In this section, we show how the main electromodula-
tion observable, namely, the FK oscillations, manifests in
the dynamical regime. Here, we also focus on the electronic
band located at 29.5 eV. Figure 9(a) shows how the DFKE
spectra change from the nonadiabatic regime at � = 3.1 eV
[Fig. 9(a), γ = 0.13] to the adiabatic regime at � = 0.75 eV
[Fig. 9(b), γ = 8]. We find that the latter can be closely

approximated by a fully adiabatic calculation based on the
standard FK model used in electroabsorption spectroscopy
[2], assuming an instantaneous reaction to the sinusoidal elec-
tric field [Fig. 9(c)]. While the cycle-averaged DFKE profile
coincides with the adiabatic profile at γ = 0.13 (Fig. 9(d), ma-
genta and black-dashed curves), we observe a strong deviation
from adiabatic regime at γ = 8 (Fig. 9(d), blue curve).

Specifically, the nonadiabatic calculation (Fig. 9(d), blue
curve) shows only one FK oscillation with a strongly squeezed
period. We argue that such squeezing of the FK oscillations at
high pump frequency reflects smaller ponderomotive energy.
In the adiabatic limit, the number of FK oscillations is de-
termined by the maximum energy that the electron-hole pair
gains before scattering. Counting the number of FK oscilla-
tions n allows one to measure the spatial coherence length
via the simple relation lcoh = n�FK/eF , where �FK is the
oscillation period, F is the electric field strength, and e is the
electron charge [10]. The FK oscillation period �FK can be
derived using asymptotic approximations of the Airy function
nodes [1], and for the first oscillation, it is given by

�FK =
[

(3πeF h̄/8)2

2μeh

]1/3

. (8)

This relation is perfectly fulfilled in high-crystallinity sam-
ples under a homogenous low-frequency field [33]. In the
dynamical regime, maximum gained energy is additionally

FIG. 9. Nonadiabatic and adiabatic calculations of the dynamical Franz-Keldysh effect (DFKE). (a) DFKE calculation in the nonadiabatic
regime, � = 3.1 eV, γ = 0.13. The dotted line shows the phase of the assumed electric field. (b) Adiabatic regime of DFKE, � = 0.75 eV,
γ = 8. (c) Fully adiabatic calculation with the standard electroabsorption equations, assuming instantaneous response to the E-field.
(d) Cycle-averaged spectral profiles of the corresponding calculations.
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FIG. 10. Franz-Keldysh (FK) oscillations in the cycle-averaged
spectra. (a) Cycle-averaged dynamical FK effect (DFKE) spectra
computed for the reduced e-h mass of 0.9, 0.4, and 0.2 me. The
band gap is 29.5 eV, the pump photon energy is 1.55 eV, and the
field strength is 0.9 V/Å. Dashed lines show the oscillation period.
(b) Same calculation with the fully adiabatic FK equations. Black
diamonds, magenta circles, and blue squares show the prediction
calculated with eq. (11) of Ref. [1]. (c) Dependence of the first node
width (half oscillation period) on the reduced mass. The magenta
square shows the experimental value. The continuous line is given
by Eq. (8), and the dashed line shows the results of a cycle-averaged
fully adiabatic calculation.

limited by the quiver period that amounts to 2Up. The require-
ment to observe at least one FK oscillation in the dynamical
regime is therefore 2Up > �FK or equivalently γ > 0.6. This
result implies that quenching of the FK oscillations happens
in the nonadiabatic regime, as demonstrated in Fig. 9(d).

Under this condition, we assess the sensitivity of the FK
oscillation period in the cycle-average spectra to the e-h re-
duced mass. To this end, we compute the DFKE model for
different reduced masses, with other parameters being fixed.
Figures 10(a) and 10(b) compare the DFKE calculations with
the adiabatic FK approximation, showing the influence of
the reduced mass on FK oscillations. Figure 10(e) compares

the DFKE transparency width (black circles) as a function
of reduced mass to Eq. (8) (black solid line) as well as the
experimental value (magenta square). The discontinuity of
the DFKE curve at the effective mass of 0.2 me is due to
the ponderomotive potential impacting the oscillation width,
which is also evident in Fig. 10(a). These results confirm that
the standard electroabsorption analysis can also be applied in
the dynamical FK regime, with the DFKE model [19].

We also note that the cycle-averaged (DC) part can be
observed even with probe pulses that do not have subcycle
resolution realized, i.e., with probe pulses of femtosecond
duration.

VI. CONCLUSIONS AND OUTLOOK

We have presented the spectroscopic analysis of attosec-
ond transient absorption measurements in fused silica. A
dynamical FK model provides a simple parameterization of
the nonequilibrium dielectric constant, while the ab initio
calculation of the α-quartz response exhibits fine features
due to multiple overlapping transitions that are absent in the
experimental data because of finite temporal and spatial co-
herence and randomized orientation. Further, employing the
DFKE model, we have clarified the origin of the characteristic
fishbone time-energy absorption dependence and suggested its
quantum limit. We have derived algebraic expressions for the
DFKE as a χ (3) process in a perturbative limit. By analyz-
ing the time-dependent as well as cycle-averaged spectra, the
band edges, electron-hole reduced mass, and the field strength
are obtained in agreement with the literature values. There-
fore, attosecond transient absorption spectroscopy is expected
to provide direct experimental access to fast changes to the
effective mass and the electron-hole binding energy during
phase transitions and other ultrafast material distortions, such
as exciton self-trapping in more complex materials. By anal-
ogy with the development of quasistatic electroabsorption, we
expect finer features of the electronic structure, such as band
anisotropy or electron-hole coherence, to become directly
accessible in well-oriented crystals or quantum wells. For
materials that are difficult to evaluate with ab initio methods,
such as amorphous or strongly correlated solids, our analysis
could provide useful model parameters for predicting their
petahertz optical response, e.g., in optoelectronic applications.

The GUI application and the open-source MATLAB
(MathWorks, Inc.) code for the DFKE calculation is available
under GNU General Public License v3.0 [53].
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APPENDIX A: ADDITIONAL EXPERIMENTAL DATA

We have also performed measurements in thicker 100-nm
SiO2 membranes [Fig. 3(b)] from a different supplier (G-Flat
SiO2, TEM windows). Low transmission affects the signal-
to-noise ratio adversely; however, the transient absorption
spectrogram shows the same features as the 40-nm foils dis-
cussed in the main text [Fig. 3(a)].

Measurement with a single attosecond pulse also confirms
the main observation found with pulse trains, albeit with a
lower signal-to-noise [Figs. 3(c) and 3(d)].

APPENDIX B: FIRST-PRINCIPLES ELECTRON
DYNAMICS CALCULATIONS FOR TRANSIENT
ABSORPTION SPECTROSCOPY OF α-QUARTZ

The transient absorption spectra of α-quartz are analyzed
with the first-principles electron dynamics calculation based
on TDDFT [54]. Here, we briefly describe the method used in
this paper, while the details are described elsewhere [42].

To describe light-induced electron dynamics in solids, we
employ the following time-dependent Kohn-Sham equations:

i
∂

∂t
ubk(r, t ) =

{
1

2
[p + k + A(t )]2 + v̂ion

+ vH (r, t ) + vxc(r, t )

}
ubk(r, t ), (B1)

where ubk(r, t ) are time-dependent Bloch orbitals with the
band index b and the Bloch wave vector k. The Hamiltonian
involves the time-dependent vector potential A(t ), which is
related to the external electric field as E(t ) = −dA(t )/dt .
To describe the electron-ion interaction v̂ion, we employ
the norm-conserving pseudopotential method [55,56]. Here,
vH (r, t ) denotes the time-dependent Hartree potential, and
vxc(r, t ) denotes the exchange-correlation potential. In this pa-
per, we employ the meta-generalized gradient approximation
exchange-correlation potential [57] as vxc(r, t ) in the real-time
TDDFT calculation [58].

For practical electron dynamics calculations in α-
quartz, we employ a cuboid unit cell of dimensions
9.28×16.05×10.21 a.u.3. The cuboid cell is discretized into
31×54×34 grid points. The first Brillouin zone is discretized
into 8×4×8 k-points. All the ab initio simulations in this
paper are performed with the SALMON code [59].

To evaluate the static absorption spectrum of α-quartz, we
compute the electron dynamics under an impulsive distortion
E(t ) = E0e jδ(t ), where E0 is the amplitude of the distor-
tion, and e j is the unit-vector along j axis. As a result of
the electron dynamics calculation, the electric current J(t ) is
obtained. In the weak field regime (E0 → 0), the current and

field are connected with the following relation:

Ji(ω) =
∑

j

σi j (ω)Ej (ω), (B2)

where Ei(ω) and Ji(ω) are ith component of the Fourier trans-
form of E(t ) and J(t ), respectively. The optical conductivity
σi j (ω) is related to the dielectric tensor as

∈i j (ω) = δi j + 4π i
σ (ω)

ω
. (B3)

We further evaluate the orientation averaged dielectric
function as ∈ (ω) = 1

3 [∈xx(ω) + ∈yy(ω) + ∈zz(ω)] and cal-
culate the optical absorption spectrum based on ∈ (ω). The
computed absorption spectrum of α-quartz is shown in
Fig. 1(d) in the main text. To analyze the many-body effect,
we computed the absorption spectrum of α-quartz with the
IP approximation, where the time-dependence of vH (r, t ) and
vxc(r, t ) are ignored, and these potentials are frozen at t = 0.
The result of the IP approximation is also shown in Fig. 1(d)
in the main text.

To evaluate the transient absorption spectra of α-quartz
under the presence of the pump fields, we employ the ab initio
numerical pump-probe scheme [60], with the two laser pulses:
One is the pump pulse, while the other is the probe pulse.
In this paper, we employ the following form for the vector
potential of the pump pulse:

Apump(t ) = −Epump

�
e jcos2

[
πt

Tpump

]
sin [�t] (B4)

in the domain, where −Tpump/2 < t < Tpump/2, and zero out-
side. Here, we set the pump field strength Epump to 8.68×109

V/m, the mean photon energy h̄� to 1.55 eV, and the pulse
duration Tpump to 20 fs. Likewise, we employ the following
form for the vector potential of the probe pulse:

Aprobe(t ) = −Eprobe

ω
e jcos4

[
π

Tprobe
(t − Tdelay)

]
sin [ωt]

(B5)
in the domain, where −Tprobe/2 < t < Tprobe/2, and zero out-
side. Here, we set the probe field strength Eprobe to 2.75 ×108

V/m, the mean photon energy h̄ω to 30 eV, and the pulse dura-
tion Tprobe to 1 fs. To compute the transient absorption spectra,
we repeat the electron dynamics simulation with Apump(t )
and Aprobe(t ) by changing the time delay Tdelay and evaluate
the transient dielectric function for each delay according to
the previous work [60]. The computed transient absorption
spectra are shown in Fig. 2(d) in the main text.

APPENDIX C: ORIENTATION DEPENDENCE
AND BAND DECOMPOSITION

To identify different contributions to the ab initio transient
absorption, we present calculations performed along the α-
quartz a axis [Fig. 4(a)] and c axis [Fig. 4(b)] separately.
Most strikingly, we observe a modulation of the absorption
with a periodicity of the infrared pump frequency � in the
a-axis calculations. This reflects the broken inversion sym-
metry of α-quartz. A system with inversion symmetry would
modulate at twice the infrared frequency. Further, we isolate
the contribution of the transitions originating at the O 2s
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level for the two corresponding crystal orientations, shown in
Figs. 4(c) and 4(d). We find that the breaking of the inversion
symmetry remains in the a-axis orientation; however, the O
2s contribution is overall different from the full calculation.
Therefore, other transitions from the O 2p levels to high-lying
states in the conduction band must be involved.

We compare the ab initio calculations with the DFKE
model, using parabolic fits of the theoretical band structure
in the latter. Parabolic fits of the ab initio band structure
of α-quartz in the �-A direction yield >60 conduction and
valence band pairs with a wide range of reduced masses, see
Fig. 5(d), blue crosses. To simplify the analysis, we perform k-
means clustering of the energy-mass data. With 22 band pairs
[k = 22, Fig. 5(d), violet circles], the DFKE model [Fig. 5(b)]
is in reasonable agreement with the ab initio calculation

[Fig. 5(a)]. Less accurate clustering [k = 5, Fig. 5(d), ma-
genta squares], however, does not provide such agreement
[Fig. 5(c)].

APPENDIX D: HIGHER-ORDER
COMPONENTS OF THE DFKE

Figure 7 compares the AC parts of the DFKE in the
nonperturbative (I = 7 TW/cm2) and perturbative regimes
(I = 0.07 TW/cm2). The tilt of the spectral structure is higher
for the 4� component by a factor of 2 compared with the
2� component. The spectral amplitudes of the in-phase and
out-of-phase components (red and blue curves) oscillate with
2h̄� periodicity in all cases, due to the h̄� spacing of the
underlying Floquet-Bloch states.

APPENDIX E: PERTURBATIVE DERIVATION OF THE DFKE

Here, we show that the fishbone structure can be expressed in terms of third-order susceptibility. First, we briefly repeat the
conclusive equations describing the DFKE [19]. The general expression for the real part of transient conductivity is derived in
Ref. [19] and given by

Reσ2m(ω, t ) = 1

4πε0

e2|p|2√
2π2m2

e

(
μ

h̄2

)3/2 1

ω + 2m�
[C2m� cos (2m�t ) + S2m� sin (2m�t )]. (E1)

Here, e is the elementary charge, μ is the reduced electron-hole mass, |p|2 is the matrix element for the valence-to-conduction
band transition, me is electron mass, h̄ω and h̄� are probe and pump photon energies, m = 0,±1,±2, . . ., and

Cm(ω) =
∑

l

π [
√

∈+
k ξl,2m(k+) −

√
∈−

k ξl,−2m(k−)], (E2)

k =
√

2μ∈k, (E3)

∈±
k = ±(ω + 2mh̄�) − (∈g + Up + l h̄�). (E4)

Coefficients Sm(ω) are obtained by principal value integration over resonant terms, which result from contour integration.
The integrals can be calculated numerically via antithetic integration but are easier obtained via a Hilbert transform [13] that
connects real and imaginary parts of conductivity via Kramers-Kronig relations.

In the following, while calculating Cm(ω) coefficients, we neglect the
√

∈−
k ξl,−2m(k−) terms that correspond to XUV emission:

Cm(ω) = π
∑

l

√
�∈ +2mh̄� − l h̄�ξl,2m(

√
2μ

√
�ε + 2mh̄� − l h̄�), (E5)

where �∈= h̄ω − ∈g − Up. We see that the transition amplitude Cm(ω) is a product of the square-root JDOS and the overlap
integrals ξl,2m:

ξl,2m =
∫ 1

−1
d (cosθkA)Jl (θ1, θ2)Jl−2m(θ1, θ2). (E6)

Here, Jl (θ1, θ2) are generalized Bessel functions θ1 = e�k−→
A0

μc� and θ2 = e2A2
0

8μc2�
= 1

2γ .

The integral performs orientation averaging over the angles θkA between the quasimomentum �k and the vector potential �A.
After orientation averaging, the overlap integrals can be expressed as functions of energy:

ξl,2m(ω) = ξl,2m

(
eA0

μc�

√
2μ∈k, θ2

)
. (E7)

We use the approximation for the generalized Bessel functions, see Ref. [61], appendix J. This approximation is valid for a
small second argument θ2 = 0.5γ � 1:

Jl (θ1, θ2) ≈ Jl (θ1) + 0.5θ2[Jl−2(θ1) − Jl+2(θ1)]. (E8)
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TABLE II. Taylor expansion coefficients of Bessel products in Eq. (E11).

C|l|+|l∓2| 2
|l|+|l∓2|+1 sign(l )|l|sign(l ∓ 2)|l∓2| 1

|l|!
1

|l∓2|! ( 1
2 )|l|+|l∓2|

C|l|+|l∓2−2| 0.5 2
|l|+|l∓2−2|+1 sign(l )|l|sign(l ∓ 2−2)|l∓2−2| 1

|l|!
1

|l∓2−2|! ( 1
2 )|l|+|l∓2−2|

C|l∓2|+|l−2| 0.5 2
|l∓2|+|l−2|+1 sign(l ∓ 2)|l∓2|sign(l−2)|l−2| 1

|l∓2|!
1

|l−2|! ( 1
2 )|l∓2|+|l−2|

C|l|+|l∓2,0+2| −0.5 2
|l|+|l∓2+2|+1 sign(l )|l|sign(l ∓ 2 + 2)|l∓2+2| 1

|l|!
1

|l∓2+2|! ( 1
2 )|l|+|l∓2+2|

C|l∓2,0|+|l+2| −0.5 2
|l∓2|+|l+2|+1 sign(l ∓ 2)|l∓2|sign(l + 2)|l+2| 1

|l∓2|!
1

|l+2|! ( 1
2 )|l∓2|+|l+2|

Since 2� oscillations are dominant, we only consider m = 0,±1. Further, neglecting the terms proportional to θ2
2, the

products of the generalized Bessel function then take the form:

Jl (θ1, θ2)Jl−2m(θ1, θ2)

= Jl (θ1)Jl∓2(θ1) + 0.5θ2[Jl (θ1)Jl∓2−2(θ1) + Jl∓2(θ1)Jl−2(θ1) − Jl (θ1)Jl∓2+2(θ1) − Jl∓2(θ1)Jl+2(θ1)]. (E9)

Spatial integrals can now, in principle, be calculated with generalized hypergeometric functions [62]. To obtain simple
expressions in the low-field regime, the Bessel functions can be further Taylor-expanded using the formula:

Jl (θ1) ≈ sign(l )l 1

|l|!
(

θ1

2

)|l|
− sign(l )|l|

(
θ1

2

)|l| 1

(|l| + 1)!

(
θ1

2

)2

. (E10)

After Taylor expansion, the orientation averaging can be calculated analytically noting that 2 ∫1
0 xndx = 2

n+1 . With these
approximations, we obtain

ξl,±2 = C|l|+|l∓2|θ1
|l|+|l∓2,0|

+θ2

[
C|l|+|l∓2−2|θ1

|l|+|l∓2,0−2| + C|l∓2|+|l−2|θ1
|l∓2,0|+|l−2|

+C|l|+|l∓2,0+2|θ1
|l|+|l∓2,0+2| + C|l∓2,0|+|l+2|θ1

|l∓2,0|+|l+2|

]
. (E11)

The coefficients C are given in Table II.
Noting that θ1 is linear with the field amplitude and θ2 is quadratic, we regroup the terms proportional to the square of the

electric field (Table III).
Therefore, in calculating ξl,2m(

√
2μ

√
�∈ +2mh̄� − l h̄�), for given indexes m, l:

θ2
1 = 2μ

(
eA0

μch̄�

)2

(�∈ + 2mh̄� − l h̄�) = 8γ

h̄�
(�∈ + 2mh̄� − l h̄�). (E12)

We thus obtain the cosine-oscillating amplitudes:

C+1 = γπ

2

(
4

3h̄�
{(�∈ + 2h̄�)3/2 − 2(�∈ + h̄�)3/2 + (�∈)3/2} + (�∈)1/2 − (�∈ + 2h̄�)1/2

)
, (E13)

C−1 = γπ

2

(
4

3h̄�
{(�∈ − 2h̄�)3/2 − 2(�∈ − h̄�)3/2 + (�∈)3/2} − (�∈)1/2 + (�∈ − 2h̄�)1/2

)
, (E14)

C0 = γ
4π

3h̄�
{(�∈ − h̄�)3/2 + (�∈ + h̄�)3/2 − 2(�∈)3/2} + 2π (�∈)1/2. (E15)

Here, we find terms that are proportional to the first or third power of the JDOS, e.g., (�∈)1/2 and (�∈)3/2. These terms
correspond to single- or three-photon transitions. The three-photon transitions occur via intermediate resonances: single-photon
(probe), two-photon (probe ± pump), and three-photon (probe ± 2 pump), that correspond to the terms (�∈)3/2, (�∈ ± h̄�)3/2,
and (�∈ ± 2h̄�)3/2. The expressions for DC amplitude C0 reproduce the previously obtained expressions for the third-order

TABLE III. Taylor expansion coefficients of Bessel products in ξl,2m(ω) that are quadratic in the pump field amplitude.

l = −2 l = −1 l = 0 l = 1 l = 2

m = +1 θ2
1 /12 − θ2 −θ 2

1 /6 θ2
1 /12 − θ2

m = −1 θ2
1 /12 − θ2 −θ 2

1 /6 θ2
1 /12 + θ2

m = 0 θ2
1 /6 2−θ2

1 /4 θ2
1 /6
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nonlinearity at resonant interband transitions in the presence of nonresonant pump [50]. In this context, the terms are sometimes
classified at electronic Raman (�∈ − h̄�)3/2, two-photon absorption (�∈ + h̄�)3/2, and Stark (�∈)3/2. We further note that the
last DC term (�∈)1/2 describes the ponderomotive shift of the band gap: �∈= h̄ω − ∈g − Up and involves only a single-photon
(probe) transition.

The interpretation of the (�∈)1/2, (�∈ ± 2h̄�)1/2 terms in the amplitudes of 2�-oscillating components C±1 is less
transparent. Unlike the (�∈)1/2 term in the C0 coefficient described above, their contribution depends on the square of the
electric field via the γ parameter:

C+1 ∝ γ (�∈)1/2 − γ (�∈ + 2h̄�)1/2 ∝ E2
0 [(�∈)1/2 − (�∈ + 2h̄�)1/2], (E16)

and originates from the diamagnetic (ponderomotive) term of the Hamiltonian. However, the JDOS only appears in the first
power (square root); thus, only a single-photon (probe) transition is involved. By analogy with the (�∈)1/2 term in the C0

coefficient, we can expect that these terms describe ponderomotive effects on the subcycle time scale. The maximum kinetic
energy that the probe-created electron-hole pair can gain in the pump field is determined by the instant of its creation, set by
the pump-probe delay. Therefore, the energy from the pump field can be transferred to the quasifree electron classically via
intraband motion.

Noting that

C2m cos (2m�t ) + S2m sin (2m�t ) = Im{(S2m + iC2m)ei2m�t }, (E17)

we obtain the third-order susceptibility of the dynamical FKE:

χ (3)(ω,±�,±�) = 1

4πε0

e4|p|2√μ/2

8π h̄3m2
0

1

ω2�2
(R±1;0 + iI±1;0), (E18)

where

I0 = 8

3h̄�
{(�∈ − h̄�)3/2 + (�∈ + h̄�)3/2 − 2(�∈)3/2}, (E19)

I+1 = 4

3h̄�
{(�∈ + 2h̄�)3/2 − 2(�∈ + h̄�)3/2 + (�∈)3/2} + (�∈)1/2 − (�∈ + 2h̄�)

1
2 , (E20)

I−1 = −I+1(−�). (E21)

Figure 8 compares the full DFKE calculation with the third-order approximation given by Eq. (E18), for γ = 0.01. We see
a full reproduction of the fundamental fishbone shape and the relative approximation error of <4% [Figs. 8(c) and 8(d)].
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