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Topological minibands and interaction
driven quantum anomalous Hall state in
topological insulator based moiré
heterostructures

Kaijie Yang1, Zian Xu 2, Yanjie Feng2, Frank Schindler3, Yuanfeng Xu 4,5,
Zhen Bi 1, B. Andrei Bernevig 5,6,7, Peizhe Tang 2,8 & Chao-Xing Liu 1,5

The presence of topological flat minibands in moiré materials provides an
opportunity to explore the interplay between topology and correlation. In this
work, we study moiré minibands in topological insulator films with two
hybridized surface states under a moiré superlattice potential created by two-
dimensional insulating materials. We show the lowest conduction (highest
valence) Kramers’ pair of minibands can be Z2 non-trivial when the minima
(maxima) of moiré potential approximately form a hexagonal lattice with six-
fold rotation symmetry. Coulomb interaction can drive the non-trivial Kra-
mers’ minibands into the quantum anomalous Hall state when they are half-
filled, which is further stabilized by applying external gate voltages to break
inversion.We propose themonolayer Sb2 on top of Sb2Te3 films as a candidate
based on first principles calculations. Our work demonstrates the topological
insulator based moiré heterostructure as a potential platform for studying
interacting topological phases.

Recent research interests have focused on themoiré superlattice in 2D
Van der Waals heterostructures, including graphene1–8 and transition
metal dichalcogenide (TMD) multilayers9–17, due to the strong corre-
lation effect in the presence of flat bands. The flat bands formed by
low-energy gapless Dirac fermions in magic angle twisted bilayer gra-
phene typically have a bandwidth ~ 5meV,much smaller than the band
gap 25 ~ 35meV that separates flat bands from higher energy bands
and the Coulomb interaction of order 30meV2,3. In contrast, the flat
bands in TMD moiré heterostructures are formed by electrons with
parabolic dispersion and have a typical bandwidth ~ 10meV, separated
by a comparable gap from other energy bands, and a huge on-site
Coulomb interaction ~ 100meV10,11,18. Besides the above materials,
moiré superlattice has also been found in another family of van der

Waals heterostructures consisting of topological insulators (TIs)19–28.
These TI-based moiré heterostructures show different features. TIs
have the anomalous gapless surface bands that connect the bulk
conduction and valence bands due to non-trivial bulk topology. The
spin splitting of surface bands has a typical energy scale of hundreds
meV due to the strong spin-orbit coupling (SOC). Previous studies29–32

show that a single surface state remains gapless upon the moiré
superlattice potential, leading to satellite Dirac cones and van Hove
singularities, instead of isolated flat bands. Furthermore, the moiré
superlattice in magnetic TI materials, e.g. MnBi2Te4, was predicted to
host Chern insulator phase33.

In this work, we studied a model of the TI thin film (e.g. (Bi,Sb)2Te3
film) with the moiré superlattice potential (See Fig. 1). Different from a
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bulkTI, a stronghybridizationbetween two surface states is expected for
the TI thin film. The hybridization between two surface states can create
isolated minibands that possess non-trivial Z2 topological invariant,
denoted by ν below, in the low-energy moiré spectrum in a wide para-
meter space, particularly when the moiré potential approximately has
six-fold rotation symmetry. In the presence of inversion symmetry, an
emergent chiral symmetry in the lowenergy sectorof surface statesgives
rise to νCB1 + νV B1 = 1 for the lowest Kramers’ pair of conduction mini-
bands, denoted as CB1, and the highest Kramers’ pair of valence mini-
bands, denoted as VB1, in Fig. 1d. We find νCB1 = 1, νV B1 =0 (νCB1 =0, νV
B1 = 1) when the minima (maxima) of the moiré potential approximately
form a hexagonal lattice. In the case of non-trivial CB1 (νCB1 = 1, νV B1 =0),
the lowest two Kramers’ pairs of conduction minibands (CB1 and CB2 in
Fig. 1d) together can be adiabatically connected to the Kane-Mele
model34 when increasing quadratic terms, and thus CB2 is also topolo-
gically non-trivial, νCB2 = 1. An asymmetric potential between two surface
states can be generated by external gate voltages to break inversion but
preserve six-fold rotation and generally induce the gap closing between
different conduction minibands, leading to nodal phases. In the para-
meter regions where the conduction minibands are gapped from other
minibands (parameter regions I, II, III in Fig. 2c), the CB1 is always topo-
logically non-trivial, νCB1 = 1. We further study the influence of the Cou-
lomb interaction viaHartree-Fockmeanfield theorywhen theCB1 carries
νCB1 = 1 and ishalffilled, andfind that thequantumanomalousHall (QAH)
state competeswith a trivial insulator state in region I of Fig. 2c and it can
be robustly energetically favoredby theasymmetricpotential in region II.
Finally, we propose a possible experimental realization of the TI-based
moiré heterostructure consisting of a monolayer Sb2 layer on top of
Sb2Te3 thin films based on the first principles calculations.

Results
Model Hamiltonian
We show a schematic of a heterostructure consisting of TI thin films
and another 2D material (e.g. 2D Sb thin films) in Fig. 1a, b, and the
moiré potential induced by the 2Dmaterial can affect both the top and
bottom surface states with different strength. We assume the Fermi

energy is within the bulk gap of the TI thin film, and thus model this
system with the Hamiltonian

H0ðrÞ=HTI +HMðrÞ,
HTI = vτzð�i∂ysx + i∂xsyÞ+mτxs0,

HMðrÞ= 1 +α
2

ΔðrÞτ0s0 +
1� α
2

ΔðrÞτzs0 +V0τzs0:

ð1Þ

HTI denotes two surface states of a TI thin film with the inter-surface
hybridization m=m0 +m2ð�∂2

x � ∂2
yÞ, and ht=b

D ðrÞ= ± vð�i∂ysx + i∂xsyÞ
is the top/bottom surface Dirac Hamiltonian35. s0,x,y,z(τ0,x,y,z) are the
identity and Pauli matrices for spin (surfaces) and v is the Fermi
velocity. HM denotes the potential term, in which the V0 term is the
uniform asymmetric potential between two surfaces by gate voltages,
the Δ(r) term is the moiré potential, and the α parameter (0 ≤α ≤1)
represents the asymmetry between top and bottom surfaces. Δ(r) is
real, spin-independent29, and assumed to possess the C3v symmetry
coinciding with the atomic crystal symmetry of TI thin films. With
the basis of the Hamiltonian, the corresponding symmetry operators
are C3z = expð�iπτ0sz=3Þ for three-fold rotation, My = τ0sy for
y-directional mirror, and T = iτ0syK with K as complex conjugate
for time-reversal (TR). The moiré superlattice potential can be
expanded as

ΔðrÞ=
X
G

ΔGe
iG�r, ð2Þ

where G =n1b
M
1 +n2b

M
2 is the moiré reciprocal lattice vectors with

bM
1 = 4πffiffi

3
p

jaM1 j ð1=2,
ffiffiffi
3

p
=2Þ,bM

2 = 4πffiffi
3

p
jaM1 j ð�1=2,

ffiffiffi
3

p
=2Þ and n1,2 as integers. aM1,2

are the primitive vectors for moiré superlattice (see Fig. 1c). The uni-
form part ΔG=0 can be absorbed into the chemical potential μ and the
asymmetric potential V0. To the lowest order, we only keep the first

shell reciprocal lattice vectors ±bM
1 , ±b

M
2 , ± ðbM

1 � bM
2 Þ, as shown in

Fig. 1d. The values of ΔG for different Gs are connected by three-fold
rotation C3z and T , so there is only one independent complex
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Fig. 1 | TI-based moiré heterostructures and moiré minibands. a A schematic
figure for the twisted 2Dmaterials (black) on top of a topological insulator thinfilm
(cyan) with an angle θ.b Schematic illustration of themoiré potentials from twisted
2Dmaterials on the top and bottom surface of a TI thin film. The blue Dirac cones
represent the top andbottomsurface states coupledbym. Anout-of-plane external

electrical field Ee creates the potential V0. c The moiré potential Δ(r) with ϕ =0.
aM1 , a

M
2 are primitive vectors for a moiré unit cell. 1a, 1b, 1c are Wyckoff positions

under the point group C3v. d Schematic view of the spectrum. The orange (blue)
lines are top (bottom) surface Dirac cones at Γ. Inset is the moiré BZ with the first
shell moiré reciprocal lattice vectors.
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parameter, chosen to be ΔbM
1
=Δ1e

i2πϕ, where Δ1 is real and ϕ is the

phase that tunes the relative strengths of potentials at three Wyckoff
positions 1a, 1b, 1c in one moiré unit cell. Figure 1c shows the moiré
potential at ϕ =0 with an additional six-fold rotation symmetry
C6z = expð�iπτ0sz=6Þ, and the corresponding potential minima form
the multiplicity-2 Wyckoff positions of the hexagonal lattice. The
parameters used in our calculations below are jaM1 j=28 nm,

E0 = vjbM
1 j= 38:5meV36,m0 = 0.4E0,Δ1 = 0.24E0. Them2 term and other

quadratic terms are negligible for the low energyminibands in realistic
materials as the relevant energy scale is around 1meV with a typical
moiré momentum 10−2Å−1, much smaller than other terms in HTI. But
we still keep this term in low energy Hamiltonian as it plays an
important role for connecting this model to the Kane-Mele model
discussed below.

Z2 nontrivial moiré minibands
We first illustrate the crucial role of inter-surface hybridization in
inducing isolated moiré minibands in TI thin films through the sche-
matic view of the spectrum in Fig. 1d. For a single Dirac surface state, it
is known29,31,37 that moiré potential can fold the Dirac dispersion and
the band touchings at the TR-invariant momenta, e.g. Γ and M, in the
moiré Brillouin zone (BZ) remain gapless due to the Kramers’ theorem
of TR symmetry. This leads to satellite Dirac cones, but prevents the
formation of gaps and hence isolated moiré minibands. For TI thin
films, the inter-surface hybridizationm can directly produce a gap at Γ
while its combined effect with the moiré potential Δ(r) can lead to a
gap (proportional to mΔ1) at M (Fig. 1d). The gap openings at both Γ
and M lead to the isolated moiré minibands, as demonstrated in
Fig. 2d, e for themoiré spectrum of themodel Hamiltonian Eq. (1) with
different sets of parameters. The bandwidth of isolated bands can be
significantly reduced by increasing m, Δ1 and the length of moiré unit
cells. (See Supplementary Note 1A)

We are interested in the possibility of realizing Z2-nontrivial
moiré minibands, particularly the low-energy Kramers’ pairs of
conduction (valence) minibands, labelled by CB1, CB2 (VB1, VB2) in
Fig. 2d, e. For the parameters in Fig. 2d, CB1 and CB2 are topologically
non-trivial while VB1 and VB2 are trivial (νCB1 = νCB2 = 1, νVB1 = νVB2 = 0).
For the parameters in Fig. 2e, only CB1 is non-trivial while other mini-
bands are trivial (νCB1 = 1, νCB2 = νV B1 = νV B2 = 0). Figure 2a, b show the
Z2-invariant νCB1 for CB1 as a function of α and ϕ for a fixed V0/E0 = 0
and 1.2, respectively. The blue regions correspond to νCB1 = 1 while the
white regions to νCB1 = 0, and these two regions are separated by
metallic lines (orange color). For both V0 values, the νCB1 = 1 blue
regions appear around ϕ =0, 1/3, 2/3. At these ϕ values, there is an
additional C6z rotation symmetry, leading to a hexagonal lattice with
the C6v group. Moreover, ϕ and ϕ + 1/3 are equivalent up to a transla-
tion with the vector aM1 =3 + 2a

M
2 =3 (See Supplementary Note 1B). Thus,

we only show νCB1 as a function of α and V0 for ϕ =0 in Fig. 2c and find
three different parameter regions I, II, III with νCB1 = 1. These topolo-
gically non-trivial regions are separated by semi-metal phases that
have band touchings between CB1 and CB2. νCB1 for other ϕ is dis-
cussed in Supplementary Note 1B and normal insulator phases are
discussed in Supplementary Note 1D.

The region I can be adiabatically connected to the parameter set
α = 1,V0/E0 = 0 with the band dispersion shown in Fig. 2d, where the
inversion symmetry I = τxs0 and the horizontal mirror symmetry
Mz = � iτxsz are present (D6h group). The C6z symmetry leads to the
existence of the inversion symmetry by I = C36zMz . From the Fu-Kane
parity criterion38, theZ2-invariant ν canbe determined by ð�1Þν =QiλΓi
and λΓi is the parity of eigenstates at the TR invariant momenta Γi=1,...,4,
which correspond to one Γ point and three M points in 2D moiré BZ.
The values of parities λΓi canbe derived analytically in theweakΔ1 limit
anddependon the hybridizationm and themoirépotential strengthΔ1

(See Supplementary Note 1A). From the analytical solutions, we find
CB1 and VB1 have the same parity atM (λCB1M = λVB1M ) but opposite pari-
ties at Γ (λVB1Γ = � λCB1Γ ), resulting in νCB1 + νVB1 = 1 mod 2, implying that
one of them is Z2-nontrivial while the other is trivial. As discussed in
Supplementary Note 1A, the relation of Z2 invariant between the CB1
and VB1 minibands can be understood as the consequence of the
emergent chiral symmetry operator C = τzsz of HTI.

At ϕ = 0 and α = 1 in Fig. 2d, we notice that the CB2 minibands are
also topologically non-trivial (νCB2 = 1), so νCB1 + νCB2 = 0 mod 2.
According to the irreducible representations of CB1 and CB2 at high-
symmetry momenta (See Supplementary Note 1C), these two mini-
bands can together form an elementary band representation (EBR)
�E
2b
1 " G induced in the space group P6mm39,40, which corresponds to

the atomic limit with two s-wave atomic orbitals at the symmetry-
related Wyckoff positions 1b and 1c in Fig. 1(c). Once CB1 is isolated
from CB2, CB1 itself does not have an atomic limit preserving C6z
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Fig. 2 | Topological moiré minibands and phase diagram. a, b The topological
phase diagrams of the lowest conduction bands CB1 for different moiré potentials
with V0/E0 = 0 for (a) and V0/E0 = 1.2 for (b). The three phases for CB1 are topolo-
gical insulator (TI) phase with νCB1 = 1, normal insulator (NI) phase with νCB1 = 0 and
semi-metal (SM) phase with CB1 connected to higher energy bands. The 1a, 1b, 1c
are the Wyckoff positions of corresponding atomic orbitals for CB1 in NI phases.
c The phase diagram for different uniform asymmetrical potentials with ϕ =0.
Regions I, II and III are three parameter regimes with νCB1 = 1 for CB1. d, e Examples
of spectra with nontrivial CB1 in the regions I and II, respectively. The spectrum in
(d) has both TR and inversion, and is thus doubly degenerate. The inset of (e) is the
Wannier center flow for CB1.
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symmetry and is thus topological. If C6z symmetry is relaxed, CB1 and
CB2 instead correspond to the reducible band representation
1�E

2�E + �E1 " G0 with G0 to be P3m1, and correspondingly, they can be
gapped. Indeed, as demonstrated in SupplementaryNote 1C, when the
m2 term is tuned to dominate over other terms in H0, we can adiaba-
tically connect the CB1 and CB2 together in Fig. 2d to the effective
Kane-Mele model34. This provides an alternative explanation of non-
trivial Z2 numbers for both CB1 and CB2 in Fig. 2d.

For the nontrivial region II in Fig. 2c, we consider the parameter
set ϕ = 0, α = 0, V0/E0 = 1.2 with the energy dispersion shown in
Fig. 2e. The Fu-Kane criterion cannot be applied as inversion is bro-
ken, so we directly calculate the Wannier center flow41 for the CB1 in
the inset of Fig. 2e, which corresponds to νCB1 = 1. Different from the
case of Fig. 2d, CB2 is now topologically trivial νCB2 = 0. We also
examine the band evolution with respect tom2 in themodel, which is
quite different from the case with inversion symmetry, as discussed
in Supplementary Note 1C. When the m2 term dominates in H0, CB1
and CB2 can be mapped to the Kane-Mele model with a Rashba SOC
term from the inversion symmetry breaking, which leads to the gap
closing between CB1 and CB2 around K in moiré BZ. The overall Z2

number νCB1 + νCB2 mod 2 is 0 because CB1 and CB2 together also
form a EBR coming from s-wave atomic orbitals located at the two
potential minima of the C6z symmetric moiré potential. When redu-
cing m2, a Dirac type of gap closing between CB2 and higher-energy
conduction minibands occurs at certain critical value of m2 and
changes νCB1 + νCB2 mod 2 to 1, which is persisted to m2 = 0 (νCB1 = 1
and νCB2 = 0). The otherZ2 non-trivial minibands are found to appear
in a much higher energy whenm2 is small (See Supplementary Fig. 6
in Supplementary Note 1C). This is in sharp contrast to the inversion-
symmetric case in which CB1 and CB2 together have
νCB1 + νCB2 = 0 mod 2 when varying m2.

Interaction-driven QAH state
The Coulomb interaction of electrons in the moiré superlattice can be
estimated as U0 = e

2=4πε0εr jaM1 j≈ 5:11 meV ~ 0.13E0, in which e is the
electron charge, ε0 is vacuum permittivity, and dielectric constant εr is
about 10.42 The value of U0 is comparable to both the moiré miniband
width ~ 0.1E0 ≈ 3.85meV and miniband gaps ~ 0.1E0. We next study the
effects of the Coulomb interaction with the Hartree-Fock mean-field
theory42–47. We first project the moiré Hamiltonian and the Coulomb
interaction into the low-energy subspace spannedby either CB1 (a two-
bandmodel) or both CB1 and CB2 (a four-bandmodel). By treating the
density matrix ρn1n2

ðkÞ= hcyn1
ðkÞcn2

ðkÞi as the order parameter with
cynðkÞ for the creation operator of the nth eigenstate in the two-band or
four-band subspace, we can decompose the Coulomb interaction
Hamiltonian into two-fermion terms so that the order parameter ρ(k)
can be solved self-consistently (See Supplementary Note 2).

In the two-band model, we generally consider two types of order
parameters, (1) ρz(k)∝ fz(k)σz and (2) ρxy(k)∝ fx(k)σx + fy(k)σy, where
the σ matrix is for the Kramers’ pair of CB1 and fx,y,z(k) represents the
momentum-dependent part of the order parameter. The order para-
meter ρ0∝ σ0 is directly related to the band occupation and we always
consider half-filling for the Kramers’ pair bands of CB1. At
ϕ =0, α = 1, V0/E0 = 0, the horizontal mirror symmetry Mz is present
and the non-interacting Hamiltonian possesses D6h group symmetry,
so two spin states of CB1 can be labelled by themirror eigen-values ± i,
and the σ matrices of the order parameter ρ is written under the Mz

eigenstates. The two mirror-eigenstates carry nonzero mirror Chern
number ± 1 from the nontrivial Z2 topology. Thus, ρz(k) and ρxy(k)
correspond to the mirror-polarized and mirror-coherent ground
states.

The mirror polarized state (ρz(k)) spontaneously breaks C2zT
symmetry relating two mirror eigenstates, while the mirror coherent
state (ρxy(k)) breaks Mz by superposition of two mirror eigenstates
with a fixed relative U(1) phase between them (See Supplementary

Note 2C). The self-consistent calculations suggest that both ρz(k) and
ρxy(k) can be non-zero solutions when the Coulomb interaction
exceeds certain critical values Uc ~ 0.05E0 ≈ 1.92meV, as shown in
Fig. 3c, where the ground state energies of self-consistent ρz(k) and
ρxy(k) are shown as a function of interaction strength UðaM1 Þ, which is
treated as a tuning parameter and equal to U0 for the realistic moiré
superlattice. Our estimate of Coulomb interaction 0.13E0 in TI moiré
systems is larger than this critical value. From Fig. 3c, we also see that
the mirror-polarized state ρz(k) has a lower ground state energy than
the mirror-coherent state ρxy(k). The energy spectrum of the CB1
before (blue lines) and after (orange lines) taking into account the ρz(k)
order parameter is shown in Fig. 3a, in which the metallic state of CB1
(blue lines) is fully gapped out by ρz(k) at half-filling. With the order
parameter ρz(k) (orange lines in Fig. 3a), the ground state only fills the
lower energy band while the higher band is the excited spectrum
within the Hartree-Fock approximation. Due to non-zeromirror Chern
number of non-interacting CB1 states, the mirror-polarized state ρz(k)
carries Chern number + 1 of the lower band and thus gives rise to the
QAH state. As shown in Fig. 3b (also Supplementary Note 2C), the
mirror coherent state ρxy(k) opens gaps at TR invariantmomenta Γ and
M by spontaneously breaking T but has nodes at K due to the C2zT
symmetry. This explains why the mirror-polarized state has a lower
ground state energy than the mirror-coherent state. Besides all the
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Fig. 3 | Hartree-Fock ground energies and ground states. a The spectra (orange)
for the Hartree-Fockmean-field Hamiltonian with the order parameter ρz(k) at half
filling of CB1 for the case with ϕ =0,α = 1, V0/E0 = 0. C is the Chern number of each
band. b The Hartree-Fock spectra (black) for the order parameter ρxy(k) for the
same parameter as (a). In (a, b), the blue lines are single-particle spectra. c The
difference in energy per particle between the self-consistent Hartree-Fock states Ei
and the non-interacting state En as a function of Coulomb interaction strengths for
the order parameters ρz(k) (orange) and ρxy(k) (black). d The spectra (orange) for
the Hartree-Fock mean-field Hamiltonian with the order parameter ρz(k) at half
filling of CB1 for the case with ϕ =0,α =0,V0/E0 = 1.2. e The Hartree-Fock spectra
(black) for the order parameter ρxy(k) for the same parameter as (d). In (d, e), the
blue lines are single-particle spectra. f The energy difference Ei − En for the order
parameters ρz(k) (orange) and ρxy(k) (black).
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uniform order parameters, a nonuniform magnetic order parameter32

is also examined in Supplementary Note 2F, and is found to possess a
larger critical interaction strength compared to the QAH phase at the
half filling of CB1. Thus, the mirror-polarized QAH state can be driven
by Coulomb interaction in this system.

We also study the case of ϕ =0, α =0,V0/E0 = 1.2 within the two-
band model, in which the mirror Mz is broken at the single-particle
level and six-fold rotation remains, in Supplementary Note 2C and find
the ρz(k) is still energetically favored, as shown in Fig. 3f. The spectra
with the order parameter ρz(k), ρxy(k) are shown in Fig. 3d, e, respec-
tively. The ground state is a Chern insulator.

As the miniband gap is comparable to Coulomb interaction, one
may ask if the inter-minibandmixing due to Coulomb interaction can
change the topological nature of the ground state. Thus, we study the
Coulomb interaction effect in a four-band model including both CB1
and CB2, as discussed in Supplementary Note 2D. For the inversion-
symmetric case ϕ = 0, α = 1, V0/E0 = 0, the ground state of the four-
bandmodel is still themirror polarizedC = ± 1 state in regime B (blue)
of Fig. 4a, when UðaM1 Þ=0:08E0 is smaller than the miniband
gap ~ 0.1E0, with the spectra shown in Fig. 4c. When UðaM1 Þ=0:13E0 is
larger than theminiband gap (regimeC (brown) of Fig. 4a), the strong
Coulomb interaction can inducemixing between CB1 and CB2 within
one mirror parity sector and drive a topological phase transition to
the C = 0 state shown in Fig. 4d (More details in Supplementary
Note 2D). However, the situation for the inversion-asymmetric case
ϕ = 0, α = 0, V0/E0 = 1.2 is different as νCB1 = 1 and νCB2 = 0. For the
realistic estimated value UðaM1 Þ≈0:13E0 that is larger than miniband
gap, the interacting ground state of the four-band model carries
C = ± 1 and thus remains the same as that of the two-band model, as
shown by the regime B (blue) in Fig. 4b. The energy spectra in this
case is shown in Fig. 4e. By comparing the phase diagrams for the
inversion symmetric and asymmetric cases, we conclude that the
asymmetric potential V0 stabilizes the interaction-driven QAH state
in TI moiré heterostructures.

Sb2/Sb2Te3 moiré heterostructure
We propose a possible experimental realization of a TI based moiré
heterostructure with twisted Sb2monolayer on top of Sb2Te3 thin film.
Themoiré lattice structure is shown in Fig. 5a. Sb2Te3 is a prototype of
three dimensional TI with layered structures. Within one quintuple
layer (QL, see the red and blue dots in Fig. 5a), there is strong chemical
binding formedby the sequentialTe-Sb-Te-Sb-Te atomic layers and the
van der Waals coupling is between adjacent QLs48. Precise control of
layer thickness of the Sb2Te3 thin film has been achieved viamolecular
beam epitaxy (MBE) method experimentally49,50. On the top of Sb2Te3
thinfilm,Sb2monolayer couldbedeposited19,51,52, forming a Sb2/Sb2Te3
heterostructure. By using density functional theory (DFT) calculations,
we confirm that Sb2 monolayer with buckled honeycomb structure
marked as the gray in Fig. 5a is a semiconductor with a band gap larger
than that of Sb2Te3 thin films. Furthermore, we put Sb2 monolayer on
the top of 2QL Sb2Te3 thin films with different stackings, including the
AA, AB, and BA stackings (see Fig. 5a). The corresponding electronic
band structures are shown in Fig. 5c. The work function of monolayer
Sb2 and Sb2Te3 thin film matches with each other, forming the type I
semiconductor hetero-junction. Around the Fermi level, the conduc-
tion and valence bands are both mainly contributed by two strongly
hybridized surface states of the 2QL Sb2Te3 thin film. The role of Sb2
monolayer is to provide a potential along the out-of-plane direction,
leading to a Rashba type of spin-split bands. Thus, the twisted Sb2/
Sb2Te3 moiré heterostructure satisfies the requirements mentioned
above for the Z2 nontrivial moiré minibands.

To connect the theoretical moiré model Hamiltonian in Eq. (1) to
electronic band structure from DFT calculations, we first introduce a
uniform shifting vector dR between monolayer Sb2 and 2QL Sb2Te3
thin film, and AA, AB, and BA stackings correspond to
dR =0, ~a1=3+ 2~a2=3, and 2~a1=3+ ~a2=3, respectively (Fig. 5b). ~a1,2 are
atomic primitive lattice vectors for the Sb2Te3 lattice shown in Fig. 5b.
The spectrum from DFT calculations with different stackings is fitted
by the dispersion of two-surface-state atomic Hamiltonian

HDFTðk,dRÞ=HTIðkÞ

+
1 +α
2

~ΔðdRÞτ0s0 +
1� α
2

~ΔðdRÞτzs0,
ð3Þ

where s0(τ0,z) are the Pauli matrices for the spin (surfaces). ~ΔðdRÞ is a
uniform atomic potential induced by the Sb2 monolayer for a fixed dR

and different dR values correspond to different stacking configura-
tions, shown in Fig. 5b. For the dR values corresponding to the AA, AB,
BA and several other stackings in Supplementary Note 3, we fit the
energy dispersion of the model Hamiltonian HDFT(k,dR) to that from
the DFT calculations as shown in orange lines in Fig. 5c, which fits well
with the conduction bands of the surface states. From fitting, we can
extract ~ΔðdRÞ, which can be further interpolated as a continuous
function ofdR shown in Fig. 5d. ~ΔðdRÞ has the periodicity of the atomic
unit-cell defined by ~a1,2. All other parameters in HDFT(k,dR) are treated
as constants and can also obtained by fitting to the DFT bands. After
obtaining the parameters for HDFT(k,dR), the next step is to connect
them to those of the moiré Hamiltonian H0 in Eq. (1). For the moiré TI
with the twist angle θ, the local shift between two layers at the atomic
lattice vectorR of the Sb2Te3 layer isdR =RðθÞR � R, whereRðθÞ is the
rotation operator, so we can obtain the potential

ΔðRÞ≈ eΔðdRÞ ð4Þ

at the location R. The last step is to treat Δ(r) as a function of con-
tinuous r by interpolating the function Δ(R) (See Supplementary
Note 4), and Δ(r) serves as the morié superlattice potential for the
model Hamiltonian H0(r). Besides, all the other parameters in H0 are
chosen to be the same as those in HDFT. In Fig. 5d, the potential max-
imumof ~ΔðdRÞ appears at the AB stacking while two localminima exist
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single-particle spectra.
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at the BA and AA stackings and are close in energy. The parameters for
the moiré potential at θ =0. 5° is given by Δ1/E0 = 0.22, α =0.16, and
ϕ =0.68π, close to ϕ = 2π/3 for the C6z-rotation symmetric potential.
Figure 5e shows the energy dispersion of moiré minibands for V0/
E0 = 1.2, in which the lowest conduction bands (cyan) indeed are iso-
lated minibands with nontrivial νCB1=1.

Discussion
In summary, wedemonstrate that the superlattice potential in a TI thin
film can give rise to Z2 non-trivial isolated moiré minibands and
Coulomb interaction can drive the system into the QAH state when
the Kramer’s pair of non-trivial minibands are half filled. Besides the
twisted Sb2 monolayer on top of the Sb2Te3 thin film, our model can
be generally applied to other TI heterostructures with the in-plane
superlattice potential, which can come from either the moiré pattern
of another 2D insulating material or gating a periodic patterned
dielectric substrate53–57. The 2D TI thin films can be in a quantum spin
Hall state or trivial insulator state, depending on the relative sign
between m0 and m2 in the model Hamiltonian (see Eq. (1))58. Our cal-
culations suggest that the moiré potential can lead to Z2 non-trivial
minibands no matter the sign of m2, once this term is negligible
compared to the linear term in the moiré scale. Such a result implies
thepossibility of realizing isolatedZ2 non-trivialminibands in other 2D
topologically trivial systems with strong Rashba SOC. In our calcula-
tion, a large moiré superlattice constant (jaM1 j∼ 28 nm) leads to small
energy scales, around a few meV, for miniband widths, miniband gaps
and Coulomb interactions, which may be disturbed by disorders. The
miniband topological property is robust against disorder when the
disorder strength is smaller than the miniband width ( ~ 2.2meV). In
Supplementary Note 2E, we reduce jaM1 j to ~ 14 nm, which yields larger
energy scales (around 10meV) ofminibands andCoulomb interaction,
and our Hartree-Fock calculations suggest the estimated Coulomb

interaction is still strong enough to drive the system into the QAH
state. For a smaller moiré lattice constant jaM1 j, it is desirable to reduce
the bandwidth ofmoiréminibandswhile keeping theCoulomb energy,
and this can be achieved by twisting two identical TIs or with in-plane
magnetization, as proposed recently30,59. Moreover, at larger moiré
superlattice constant, the lattice reconstruction may occur in the
moiré superlattice (See Supplementary Note 3).

Data availability
The data for the non-interaction spectra, Hartree-Fock mean-field
spectra, interactingphasediagram is available in Zenodo at https://doi.
org/10.5281/zenodo.10651900. Other Supplementary information that
support this work are available upon request to the corresponding
author.

Code availability
The Mathematica code used to calculate the non-interaction spectra,
Wannier center flow, andHatree-Fockmean-field spectra is available in
Zenodo at https://doi.org/10.5281/zenodo.10651900.
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