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Abstract 

 Chiral materials have garnered significant attention in the field of condensed matter 

physics. Nevertheless, the magnetic moment induced by the chiral spatial motion of electrons 

in helical materials, such as elemental Te and Se, remains inadequately understood. In this work, 

we investigate the development of quantum angular momentum enforced by chirality using 

static and time-dependent density functional theory calculations for an elemental Se chain. Our 

findings reveal the emergence of an unconventional orbital texture driven by the chiral 

geometry, giving rise to a non-vanishing current-induced orbital moment. By incorporating 

spin-orbit coupling, we demonstrate that a current-induced spin accumulation arises in the 

chiral chain, which fundamentally differs from the conventional Edelstein effect. Furthermore, 

we demonstrate the optoelectronic detection of the orbital angular momentum in the chiral Se 

chain, providing a conceptually novel alternative to the interband Berry curvature, which is ill-

defined in low dimensions. 

 



Introduction 

 The concept of chirality has emerged as an essential factor in condensed matter physics, 

playing a crucial role in determining nontrivial band topology and exotic spin texture1-4. The 

intimate relation between momentum and spin, which is enforced by chirality, has been studied 

in a variety of systems, including the chiral anomaly of Weyl semimetals5-8, high-fold chiral 

fermions2,9-12, chiral domain walls13, and magnetic skyrmions14. Moreover, the chiral spatial 

motion dictated by helical geometry is closely related to the dynamics of spin angular 

momentum (SAM) as demonstrated by the chirality-induced spin selectivity3,15-17 and the chiral 

magnetic effect18. Intriguingly, the observed spin magnetic moment induced by the chiral 

motion in helical materials is significantly greater, by one to three orders of magnitude, than 

that predicted by the classical solenoid model19. This large discrepancy indicates the existence 

of a strong quantum-mechanical interplay between the motion of electron and its SAM in chiral 

systems.  

Elemental Te and Se represent a promising platform for exploring the intricacies of the 

interwoven orbital motion and magnetism due to its helical atomic structure and strong spin-

orbit coupling (SOC)20,21. The trigonal-stacked crystal structure of Te and Se consists of one-

dimensional chains with three-fold screw rotation symmetry22,23, thereby enabling facile 

control over size and thickness in low dimensions24-26. In Te nanowires, a large chirality-

dependent magnetoresistance is observed along the helical chain, and its induced magnetism is 

several orders of magnitude larger than in non-chiral systems27-29. The sizable magnetic 

moment is expected to be the result of the Edelstein effect, which refers to the spin 

accumulation induced by a flowing charge current30,31. As evidenced by the Rashba-Edelstein 

effect, spin-momentum locking is required for the current-induced spin accumulation32. In the 

case of Te chains, the radial spin texture in momentum space (see Fig. 1b for example), a unique 



spin-momentum locking of chiral chains, is a key ingredient responsible for the large current-

induced magnetism21,33,34.  

Nevertheless, as implied by the discrepancy of the spin magnetic moment between 

theory and experiment in chiral materials, the fundamental physics underlying the distinctive 

spin-momentum locking and the microscopic mechanism governing the large current-induced 

magnetism in the chiral chain systems have not been sufficiently investigated. Although 

previous helical model studies presented a close correlation between the radial spin texture and 

the inherent geometry of helical chains19,23,35-37, the quantum mechanical origin underpinning 

this association remains elusive. Given that orbital angular momentum (OAM) can also be 

created by an external electric field in helical chains, it is imperative to clarify its contribution 

to the induced magnetic moment and its interaction with SAM through strong SOC.   

In this study, we examined the spontaneous development of coupled OAM and SAM 

induced by the helical geometry in chiral Se chains. We also investigated the quantum 

mechanical behaviour of excited carriers in non-equilibrium states under the influence of 

diverse external fields using real-time time-dependent density functional theory (TDDFT). It 

is found that the chiral hopping between the p-orbitals of an individual Se chain produces a 

notable orbital polarisation in the vicinity of the Fermi level. This chiral OAM gives rise to a 

distinct spin polarisation via strong SOC, which corresponds to the radial spin texture observed 

in bulk. Our simulation demonstrates that the current-induced magnetism in chiral chains is 

primarily driven by quantum superposition of the orbital states, which is clearly distinct from 

the conventional Edelstein effect that arises from the slight shift of the Fermi surface. We also 

present a novel method for detecting the intriguing OAM embedded in the chiral Se chain using 

the one-to-one correspondence between OAM and photocurrent. We unveil how the spin and 

orbital degrees of freedom are entangled in a helical chain, the quantum mechanical counterpart 



of a classical solenoid, and provide a powerful but convenient method to realise the hidden 

chirality-induced OAM. 

 

Fig. 1 | Orbital/Spin angular momentum of a helical Se chain. a Top and side views of a single chain of 

elemental Se with three different atomic sites (A, B, and C). b Orbital and spin angular momentum profiles of the 

conduction band minimum at the H point in bulk Se. Black contour lines denote energy levels of 0.05 and 0.2 eV, 

respectively, and gray lines represent the one-dimensional Brillouin zone of an individual Se chain. c-e Calculated 

band structure of the Se chain with (c) orbital-angular-momentum resolution (Lz), (d) spin-angular-momentum 

resolution (Sz), and (e) atomic-orbital resolution using radial (pr), tangential (pt), and axial (pz) p-orbitals as the 

orbital bases. f Schematic drawing of the pr, pt, and pz orbitals. g Graphical illustration of asymmetric orbital 

hopping between pr and pz in a single Se chain. 

 

Results 

Orbital and spin angular momentum texture in a chiral Se chain 

 We elucidate the correlation between the helical geometry of a chiral Se chain and its 

unique OAM and SAM texture through electronic structure calculations. The Se chain exhibits 



threefold screw-axis symmetry, as depicted in Fig. 1a, and stack to form a trigonal elemental 

Se crystal, as shown in Supplementary Fig. 1. Bulk Se has a radial orbital and spin texture 

resembling hedgehogs near the Fermi level at the H point21,27, as illustrated in Fig. 1b, 

indicating the orbital-momentum and spin-momentum locking. Interestingly, this radial OAM 

is preserved even without the inclusion of SOC, as shown in Supplementary Fig. 2, while the 

characteristic spin structure is disrupted. 

We investigate whether the distinct OAM and SAM texture of the chiral Se arises from 

its helical geometry of the single chain or from the staking of multiple chains. To this end, we 

compare the orbital and spin structure of the axial line of bulk Se (gray lines of Fig. 1b) with 

those of the single chiral chain (Fig. 1c-e). The radial angular momentum of the stack of the 

chains successfully corresponds to the orbital/spin polarisation parallel to the chain direction 

(kz) in the one-dimensional Brillouin zone, implying that the intriguing electronic structure is 

primarily influenced by the intrachain effect of the single Se chain. The absence of mirror 

symmetry allows for the non-vanishing out-of-plane orbital/spin component in the Se chain, 

and time-reversal symmetry enforces the zero net moment, consequently satisfying the 

relations such that 〈𝐿𝐿�𝑧𝑧〉𝑛𝑛,𝑘𝑘𝑧𝑧 = −〈𝐿𝐿�𝑧𝑧〉𝑛𝑛,−𝑘𝑘𝑧𝑧 , and 〈𝑆̂𝑆𝑧𝑧〉𝑛𝑛,𝑘𝑘𝑧𝑧 = −〈𝑆̂𝑆𝑧𝑧〉𝑛𝑛,−𝑘𝑘𝑧𝑧 . The polarised states 

near the Fermi level primarily originate from p-orbitals. To account for the helical nature of the 

chain, we adopt a cylindrical p-orbital basis. Specifically, while the valence bands consist 

mainly of the tangential (pt) and axial (pz) orbitals, the conduction bands are derived from the 

radial (pr) orbitals (Fig. 1e, f). As in the bulk, the one-dimensional orbital texture persists even 

in the absence of SOC as demonstrated in Supplementary Fig. 3.   

To understand the underlying physics behind the unconventional OAM and SAM 

texture originating from the unique geometry of the chiral Se chain, we develop an analytic 

model Hamiltonian based on the tight-binding approximation38-41. By considering the nearest 



hoppings between three p-orbital states for each of the three atoms in the Se chain (Fig. 1a), 

we obtain a 9 × 9 Hamiltonian matrix as follows, 

𝐻𝐻 =

⎝

⎛
ℎon ℎhop ℎhop

†

ℎhop
† ℎon ℎhop
ℎhop ℎhop

† ℎon ⎠

⎞, (1) 

where the on-site Hamiltonian ℎon and the hopping Hamiltonian ℎhop are 3 × 3 matrices in 

the p-orbital space. The on-site Hamiltonian is modeled as ℎon = 𝜖𝜖𝑟𝑟|𝑝𝑝𝑟𝑟⟩⟨𝑝𝑝𝑟𝑟| + 𝜖𝜖𝑡𝑡|𝑝𝑝𝑡𝑡⟩⟨𝑝𝑝𝑡𝑡| +

𝜖𝜖𝑧𝑧|𝑝𝑝𝑧𝑧⟩⟨𝑝𝑝𝑧𝑧|, where 𝜖𝜖𝛼𝛼 denotes the on-site energy for the 𝑝𝑝𝛼𝛼 orbital. The use of the cylindrical 

basis (Fig. 1f) allows us to express the off-diagonal part in terms of a single matrix ℎhop, 

referred to as the ‘hopping-down’ Hamiltonian, which describes the nearest hopping in the 

direction of C → B → A → C. In contrast, the hopping in the opposite direction is given by 

ℎhop
† , the ‘hopping-up’ Hamiltonian. By carefully examining the signs of the hopping integrals 

for all hopping procedures (see Fig. 1g for examples), we model ℎhop as 

ℎhop = 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑎𝑎 �
𝑡𝑡𝑟𝑟𝑟𝑟 −𝑡𝑡𝑡𝑡𝑡𝑡 −𝑡𝑡𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑧𝑧𝑧𝑧
𝑡𝑡𝑧𝑧𝑧𝑧 𝑡𝑡𝑧𝑧𝑧𝑧 𝑡𝑡𝑧𝑧𝑧𝑧

�, (2) 

in the (𝑝𝑝𝑟𝑟 ,𝑝𝑝𝑡𝑡,𝑝𝑝𝑧𝑧) basis. Here 𝑡𝑡𝛽𝛽𝛽𝛽 denotes the hopping integral for 𝛼𝛼 → 𝛽𝛽 hopping and a 

represents the one-third of the length of the unit cell, which corresponds to the distance between 

the nearest sites along the z-axis, giving rise to the Bloch-like factor 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑎𝑎. The anti-symmetric 

nature of 𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑧𝑧𝑧𝑧 for the hopping-up and hopping-down, as exemplified in Fig. 1g, is 

rooted in the unique geometry of the helical Se chain and turns out to be a crucial factor in the 

emergence of the OAM texture shown in Fig. 1c. We demonstrate this below through equations 

(3)-(4). 

 To reproduce the OAM texture with reduced reliance on SOC (Supplementary Figs. 2, 

3), we focus on the orbital degree of freedom by diagonalizing the Hamiltonian [equation (1)] 



while disregarding the spin degree of freedom. The hopping integrals are treated perturbatively 

to avoid the technical complexity of exact diagonalisation, resulting in the nine eigenstates 

|𝑝𝑝𝛼𝛼, 𝜇𝜇⟩�  presented in Supplementary Note 1. In this notation, 𝛼𝛼 = 𝑟𝑟, 𝑡𝑡, 𝑧𝑧 refers to the orbital 

states, 𝜇𝜇 = −1,0,1 denotes the atomic degree of freedom. The tilde on the states indicates that 

they are perturbed by electron hopping, and they are expressed as a superposition of the 

unperturbed states �𝑝𝑝𝛽𝛽 , 𝜇𝜇�. In Supplementary Note 2, we explicate the consistency between the 

eigenstates from the model Hamiltonian and the band structure from our first-principles 

calculations (Fig. 1c-e). One can calculate the OAM expectation values from the eigenstates 

using 𝐿𝐿𝑧𝑧 = (𝑖𝑖ℏ 2⁄ )(|𝑝𝑝𝑡𝑡⟩⟨𝑝𝑝𝑟𝑟| − |𝑝𝑝𝑟𝑟⟩⟨𝑝𝑝𝑡𝑡|) and obtain 

⟨𝑝𝑝𝑧𝑧 ,𝜇𝜇|� 𝐿𝐿𝑧𝑧|𝑝𝑝𝑧𝑧, 𝜇𝜇⟩� =
4ℏ𝑡𝑡𝑧𝑧𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧 cos �𝑘𝑘𝑧𝑧𝑎𝑎 + 2𝜋𝜋𝜋𝜋

3 � sin �𝑘𝑘𝑧𝑧𝑎𝑎 + 2𝜋𝜋𝜋𝜋
3 �

(𝜖𝜖𝑧𝑧 − 𝜖𝜖𝑟𝑟)(𝜖𝜖𝑧𝑧 − 𝜖𝜖𝑡𝑡)
, (3) 

⟨𝑝𝑝𝑡𝑡, 𝜇𝜇|� 𝐿𝐿𝑧𝑧|𝑝𝑝𝑡𝑡,𝜇𝜇⟩� = −⟨𝑝𝑝𝑟𝑟 ,𝜇𝜇|� 𝐿𝐿𝑧𝑧|𝑝𝑝𝑟𝑟 ,𝜇𝜇⟩� =
2ℏ𝑡𝑡𝑡𝑡𝑡𝑡 sin �𝑘𝑘𝑧𝑧𝑎𝑎 + 2𝜋𝜋𝜋𝜋

3 �
𝜖𝜖𝑡𝑡 − 𝜖𝜖𝑟𝑟

. (4) 

This simplified model effectively captures the essential characteristics of the numerical results, 

such as the band splitting and the sign change of OAM at the zone center, as exhibited in 

Supplementary Fig. 3. The anti-symmetric hopping enables the quantum mechanical 

superpositions of atomic orbitals that are energetically separated, leading to the non-vanishing 

orbital distribution in momentum space. In this aspect, our approach is distinct from previous 

models dealing with a helical geometry without incorporating the orbital degree of freedom30,31 

which derive a non-zero OAM distribution from inter-atomic hoppings. In Supplementary Fig. 

4, we demonstrate that the inter-atomic contribution is negligible near the Fermi level in the Se 

chain, and thus the consideration of the orbital degree of freedom is essential to describe the 

intriguing orbital structure of the helical chain. 

 We incorporate the spin degree of freedom into our model Hamiltonian to investigate 



how spin and orbital degrees of freedom are intertwined by the presence of SOC in the Se chain. 

In the absence of SOC, the SAM lacks any directional preference and consequently a particular 

spin texture does not occur. In the presence of SOC (𝜂𝜂SO𝐋𝐋 ⋅ 𝐒𝐒), the spin degeneracy is lifted in 

accordance with the relative orientation of SAM and OAM [equations (3) and (4)], thereby 

creating a spin polarisation ⟨𝑆𝑆𝑧𝑧⟩ = (𝜈𝜈ℏ/2) sgn(⟨𝐿𝐿𝑧𝑧⟩) that is either parallel or antiparallel to 

the OAM, where 𝜈𝜈 = ±1 is the spin quantum number. Therefore, we can conclude that the 

OAM is a more fundamental degree of freedom that gives rise to the SAM texture in the Se 

chain42. In this regard, our model offers a concrete instance of a recent theoretical proposition43, 

which posits the essential significance of the orbital degree of freedom in the long-range spin 

transport in DNA-like materials3,44-46. 

 

Fig. 2 | Current-induced magnetism in a helical Se chain. a Calculated band structure of a Se chain with orbital-

angular-momentum resolution (Lz) under hole doping (0.1 e/unit) in the presence or absence of SOC. b-d 

Calculated (b) induced current (I), (c) total orbital angular momentum (Lz), and (d) total spin angular momentum 

(Sz) induced by a dc field (10-3 V/Å) along the Se chain, as illustrated in the inset of (d). The quantitative definitions 

of I, Lz, and Sz are described in the Methods section. e Time evolution of the density of states projected onto the 

unperturbed electron/hole states in the Se chain. f Time evolution of the electron/hole weights projected onto the 

ground-state band structure of the Se chain. g Time evolution of the decomposed spin angular momentum of the 

Se chain for three energy ranges (E1, E2, and E3) as shown in the gray regions of (e). h Schematic illustration of 

the conventional Edelstein effect, in which a net spin magnetic moment is generated by the Fermi surface shift 

triggered by an external field. i Calculated momentum-resolved spin angular momentum for the major E2 

contribution in the Se chain at 191.1 fs. The spin distribution of the chiral chain is distinguished from that of the 

conventional Edelstein effect shown in (h). 



Nonequilibrium generation of orbital and spin magnetism 

 Drawing on a fundamental understanding of the interplay between the OAM and the 

SAM in the Se chain, we investigate the time-dependent dynamics of these quantities in non-

equilibrium under the influence of an external field. By utilizing TDDFT calculations, we 

reproduce the excited states in a single Se chain and identify the emergent magnetism and its 

dominant mechanism. To simulate metallic nanowires used in the experiment, we employed a 

hole-doped (0.1 e/unit) Se chain, in which the Fermi level touches the valence bands, as shown 

in Fig. 2a, while preserving its original OAM distribution. We also considered an external dc 

field (10-3 V/Å) to mimic the current-induced magnetism observed in the experiment27. A 

detailed description of the methodology used to estimate the time-evolving electric current, 

OAM, and SAM is provided in the Methods section. Unlike the immediate response of electric 

current and orbital magnetism, which begin to arise at 10 fs and increase monotonically (Fig. 

2b, c), the development of non-zero spin magnetism in the Se chain requires a substantial time 

delay (100 fs) and is dependent on SOC, as depicted in Fig. 2d. This suggests that the orbital 

magnetism drives the spin part through SOC. Furthermore, the dominance of orbital magnetism 

at the early stage under an external field is also observed in a helical Te chain (Supplementary 

Fig. 5). 

 We conduct an in-depth analysis to understand the formation of finite orbital and spin 

magnetism in the Se chain by tracking the real-time nonequilibrium states projected onto the 

ground states. The density of states of the excited states extends over a wide range from -4 to 

4 eV (Fig. 2e), and we found that the overall shape is independent of the external field strength 

(Supplementary Fig. 6). Such a widespread excitation originates from the strong mixing of the 

orthogonal orbitals via the helical structure of the Se chain. As shown in Fig. 1a, f, the shapes 

of the tangential orbital of the A site and the radial orbital of the B site are similar to each other, 



leading to considerable overlap of the orbitals under the external field along the z direction. As 

a result, the strong mixing gives a widespread distribution in Fig. 2e when projected to the 

unperturbed eigenstates.  

The widespread density of state is observed not only in energy, but also in momentum 

space as shown in Fig. 2f. The projection of the excited states onto the ground electronic 

structure exhibits an asymmetric k-distribution of nonequilibrium weights within the lowest 

conduction band near the zone boundary at 101.6 fs, while maintaining a symmetric 

distribution in the highest valence band. This finding indicates that the induced orbital 

magnetisation of the early time (< 100 fs) is facilitated by the imbalanced transition to the 

conduction bands with different orbital polarisation (Fig. 1c). However, the equal weights of 

the conduction bands with different spin polarisation inhibit the occurrence of a spin 

magnetisation (Fig. 1d). Thus, the emergent total OAM remains unaffected by the absence of 

SOC, as demonstrated in Supplementary Fig. 7. At 191.1 fs, the excited state displays the 

imbalanced momentum distribution within the valence bands, which coincides with the onset 

of the spin magnetisation (Fig. 2f, g). The formation of spin magnetism in the chiral Se chain 

is primarily attributed to the partial occupancy of the highest spin-split valence bands in the E2 

region, as shown in Fig. 2g. It is important to note that this mechanism differs from the 

conventional Edelstein effect, in which a shift of the Fermi surface induced by an electrostatic 

field give rise to a net spin polarisation due to opposite spin-momentum locking at +k and -k 

points47, as illustrated in Fig. 2h. In the Se chiral chain, however, the net magnetisation does 

not originate from the spin difference between +k and -k points, but between the highest valence 

bands with opposite spin polarisations at the same point as shown in Fig. 2i.  

Our findings signify a quantum-mechanical development of orbital magnetisation 

under an axial electric field by the imbalanced distribution of excited states, giving rise to an 



accompanied spin magnetisation induced by the unique interconnection of orbital and spin 

triggered by the helical geometry. It should be noted that this study does not take into account 

various scattering sources, such as phonons and defects. Therefore, to avoid misinterpretation, 

we focus solely on the early stages of the time dynamics of the excited state. 

 

Fig. 3 | Circular photogalvanic effect in a helical Se chain. a Calculated circular photogalvanic current 

(injection current) spectrum of a Se chain as a function of the frequency of a left or right circularly polarised light 

(LCP or RCP). b-d Calculated (b) induced current (I), (c) total orbital angular momentum (Lz), and (d) total spin 

angular momentum (Sz) induced by circularly polarised lights with intensity of 0.051 V/Å and frequency of 

ħω=2.02 eV as a function of time. e Time evolution of the electron/hole-carrier density of states in the Se chain 

under a circularly polarised light. The inset represents a real-space representation of the generated electron/hole 

carriers. Yellow and cyan iso-surfaces denotes the excited hole and electron density, respectively. f Electron/hole 

carrier occupancies projected onto the ground-state band structure of the Se chain under LCP or RCP at t=193.4 

fs. g Momentum-resolved photogalvanic current density under LCP or RCP in the Se chain at t=193.4 fs. 

 



Optoelectronic detection of orbital angular momentum 

In order to appreciate the physical significance of the OAM generated in the chiral 

structure, we shall proceed to examine a comprehensive operator expression of the OAM. The 

lateral confinement of electron motion to a finite region in a one-dimensional system enables 

an expression of the 𝐿𝐿𝑧𝑧  operator in terms of position operators : 𝐿𝐿𝑧𝑧 =

(𝑚𝑚𝑒𝑒 2𝑖𝑖ℏ⁄ )({𝑥𝑥, [𝑦𝑦,𝐻𝐻]} − {𝑦𝑦, [𝑥𝑥,𝐻𝐻]}), where 𝑚𝑚𝑒𝑒 is the electron mass and H is the Hamiltonian. 

The OAM expectation value for an eigenstate |𝑛𝑛⟩  of H is then ⟨𝑛𝑛|𝐿𝐿𝑧𝑧|𝑛𝑛⟩ =

(2𝑚𝑚𝑒𝑒 ℏ⁄ )Im∑ (𝜖𝜖𝑛𝑛 − 𝜖𝜖𝑛𝑛′)⟨𝑛𝑛|𝑥𝑥|𝑛𝑛′⟩⟨𝑛𝑛′|𝑦𝑦|𝑛𝑛⟩𝑛𝑛′  , where 𝜖𝜖𝑛𝑛  is the energy eigenvalue of |𝑛𝑛⟩ . 

Provided that the dominant contribution of the OAM comes from the pair of the highest valence 

band (v) and the lowest conduction band (c), the OAM is simply given by 

⟨𝑐𝑐|𝐿𝐿𝑧𝑧|𝑐𝑐⟩ ≈ ⟨𝑣𝑣|𝐿𝐿𝑧𝑧|𝑣𝑣⟩ ≈
2𝑚𝑚𝑒𝑒

ℏ
Im[(𝜖𝜖𝑐𝑐 − 𝜖𝜖𝑣𝑣)⟨𝑐𝑐|𝑥𝑥|𝑣𝑣⟩⟨𝑣𝑣|𝑦𝑦|𝑐𝑐⟩]. (5) 

The right-hand side is referred as to the two-band OAM, denoted as ⟨𝐿𝐿𝑧𝑧⟩𝑐𝑐𝑐𝑐. In Supplementary 

Fig. 8, we offer numerical validation of the two-band approximation in our system by 

demonstrating the resemblance between the total OAM and the two-band OAM. The 

significance of the two-band OAM in the reduced dimension lies in its feasibility to be 

measured by the circular photogalvanic effect (CPGE) beyond mere theoretical speculation. 

By modifying the well-established CPGE formalism48 with our two-band OAM, we obtain the 

circular photogalvanic current J (i.e., injection current) in the low-dimension. Specifically, the 

injection current is given by 

𝐽𝐽 = −
2𝜋𝜋𝜋𝜋

𝑚𝑚𝑒𝑒ℏ2𝜔𝜔
𝑒𝑒3𝐸𝐸2⟨𝐿𝐿𝑧𝑧⟩𝑐𝑐𝑐𝑐, (6) 

where 𝜔𝜔 and E is the frequency and the electric field of the incident light, respectively, and 𝜏𝜏 

is the relaxation time. The derivation of equation (6) is explicated in Supplementary Note 3. In 

two or three dimensions with periodic boundary conditions, the CPGE is explained in terms of 



two-band Berry curvature48. However, in a one-dimensional system, the Berry curvature is ill-

defined and requires a generalisation through the adoption of position operators49. Conversely, 

the OAM is inherently defined in a confined space, making it a more suitable physical quantity 

to quantify the optical response of a low-dimensional system. 

  To explicitly demonstrate the intimate relationship between the OAM and the CPGE, 

we utilise second-order perturbation theory to evaluate the response function of the injection 

current. As predicted in equation (6), the injection current is created under a circularly polarised 

light with above-band-gap frequency in the helical Se chain (Fig. 3a). The injection current can 

be switched by the chirality of the chain as well as the helicity of light (Supplementary Fig. 9), 

indicating the generated photocurrent serves as a reference for determining the chain’s chirality.  

We also confirm the photocurrent generation in the Se chain by applying a circularly 

polarised light (ħω=2.02 eV) through TDDFT calculations as presented in Fig. 3b. As a 

secondary effect owing to the selective excitation of orbital/spin-polarised electrons, the 

generated current carries induced orbital and spin magnetism in the chain (Fig. 3c, d), which 

can be controlled by the helicity of applied light even in a very strong field limit 

(Supplementary Fig. 10). The monotonic increasing number of electron and hole carriers near 

the Fermi level with time (Fig. 3e) clearly implies that the CPGE of the Se chain is governed 

by the band edge transition corresponding to the frequency of the applied light. As expected 

from Fig. 1e, the hole (electron) carriers are predominantly composed of the pt (pr) orbitals in 

the CPGE of the Se chain (the inset of Fig. 3e). The projection of the excited state onto the 

ground band structure exhibits uneven excitation caused by circularly polarised light (Fig. 

3f)50,51, leading to a non-zero photocurrent that strongly localises near the zone boundary and 

depends on the helicity of external light (Fig. 3g). Hence, the intriguing OAM texture 



embedded in the chiral structure can be readily realised by detecting the generated photocurrent 

in response to circularly polarised light.  

 

Fig. 4 | Detection of boundary states using the circular photogalvanic effect. a Schematic drawing of 

hypothetical two-dimensional helical Se layers constating of alternating left-handed (L) and right-handed (R) 

configurations. The alternating chains are invariant under consecutive zx mirror (Mzx) and translation (T) 

operations. b Mzx mirror operation on each component of the orbital angular momentum in the alternating chains, 

which enforces the vanishing x-and z-components of orbital angular momentum along the one-dimensional chain 

direction. c Calculated circular photogalvanic current (injection current) spectrum of the alternating chains as a 

function of the frequency of applied circularly polarised lights. The zx-plane polarisation (blue) induces a non-

zero photocurrent, while xy-plane (black) or yz-plane (yellow) polarisation result in a zero current. d Calculated 

band structure of the alternating chains with orbital-angular-momentum resolution. e Schematic drawing of a 

boundary between left-handed (LH) and right-handed (RH) chains. f Variation in the injection current spectrum 

per unit length of the domain structure upon the domain length (d). g The average charge density profiles of the 

initial and final states of an excitation triggered by an external light with ℏω = 1.76 eV, corresponding to the red 

dotted line in (f). 

 

We extend the concept of optoelectronic detection of the concealed orbital polarisation 

to a more intricate and realistic system, wherein extrinsic OAM that is otherwise prohibited in 

bulk is enforced by spatial symmetry. As a simplified case study to elucidate the relationship 



between the presence of photocurrent and OAM determined by geometric symmetry, we 

consider a two-dimensional Se structure with alternating chirality along the x direction as 

illustrated in Fig. 4a. Our hypothetical structure possesses a combined symmetry of zx-plane 

mirror (Mzx) and translation (T), which nullifies the x and z components of OAM as shown in 

Fig. 4b (see Supplementary Note 4 for a more comprehensive elucidation). One can easily 

generalise the photogalvanic current of equation (6) for different light proportion directions, 

and the survival of the Ly component can be interpreted as the activation of photocurrent under 

circularly polarised light with a zx rotating plane. In line with our symmetry analysis, the 

alternating two-dimensional system allow for the presence of the y component of OAM (Fig. 

4d), which is absent in a single Se chain (Supplementary Fig. 11), leading to a non-zero 

photocurrent in a wide energy range under zx-circularly polarised light (Fig. 4c).   

The essential physics underlying the artificial alternating chains can be applied to a 

more pragmatic system featuring opposite chiralities, namely the domain boundary between 

left-handed (LH) and right-handed (RH) domains as presented in Fig. 4e. The circular 

photogalvanic current along the chain under the zx-circular polarisation, normalised by the 

domain size (d), decreases as the domain size increases (Fig. 4f), implying its interface-

localised nature resulting from the switching of the chirality. We check that excited carriers 

generated by an external light with ℏω = 1.76 eV (red vertical line in Fig. 4f) are distributed 

across the domain boundary by computing the charge density distribution of the initial and final 

states. Importantly, this interface photocurrent is not observed in the bulk without a boundary 

(Supplementary Fig. 12). The strong correlation between OAM and photocurrent is further 

evidenced by the non-negligible Ly value observed across the entire kz line (Supplementary Fig. 

13). Such a photocurrent is also produced at the edge between Se chains and vacuum as shown 

in Supplementary Fig. 14, signaling the viability and applicability of OAM engineering and its 

optoelectronic detection.   



Discussion 

In summary, we revealed the quantum mechanical origin of the chirality-driven OAM 

and its manifestation by means of electrical/optical drives in a helical Se chain. Our model for 

the helical chain showed the anti-symmetric chiral hopping produces a unique orbital texture 

parallel to its momentum, generating a radial spin profile with the aid of strong SOC. The 

intermixing of orthogonal p orbital states and asymmetric nonequilibrium distribution gives 

rise to a net orbital magnetism under an external electric field, accompanied by a net spin 

magnetism due to the partial occupancy of spin-split states in the presence of SOC. This 

induced magnetism is quantum mechanically distinguished from the conventional Edelstein 

effect in Rashba SOC systems. We also demonstrated the generation of photocurrent can be 

expressed in terms of OAM in low dimensions, which provides an alternative to the poorly 

defined Berry curvature in a non-periodic system. The close connection between OAM and 

photocurrent enables the optoelectronic manifestation of the intriguing orbital polarisation 

inherent in the chiral chain. Furthermore, we showed that, by tuning the geometric symmetry 

at an interface or edge, a previously forbidden component of OAM can be allowed, leading to 

the generation of edge-localised photocurrent. Our results provide a fundamental 

understanding of the interplay between spin and orbital degrees of freedom in chiral geometries, 

which paves the way for design of novel orbitronic/spintronic devices utilizing chiral materials. 

  



Methods 

Electronic structure calculation. We carried out density functional theory (DFT) calculations 

using the projector-augmented plane-wave method52, as implemented in the Vienna Ab initio 

Simulation Package (VASP)53. The Perdew–Burke–Ernzerhof (PBE) functional of the 

generalised gradient approximation was employed to describe the exchange–correlation 

interactions among electrons54. The bulk Se chains were optimised with the van der Waals 

interaction until the maximum forces were less than 0.001 eV Å−1, and the vacuum layer was 

set to be greater than 10 Å to simulate the one-dimensional Se chain. The energy cutoff for the 

plane-wave-basis expansion was set at 400 eV. We used a 10×10×8 k-point grid for the bulk Se 

chains and a 1×1×15 k-point grid for the one-dimensional Se chain. 

 

Circular photogalvanic response using perturbation theory. The injection-current spectra 

were evaluated from the tight-binding Hamiltonian based on maximally localised Wannier 

functions55 using the second-order optical response formalism56. 

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎(𝜔𝜔) =
𝑒𝑒3𝜋𝜋
2ℏ2

�
𝑑𝑑𝐤𝐤

8𝜋𝜋3
�∆𝑚𝑚𝑚𝑚𝑎𝑎 𝑓𝑓𝑛𝑛𝑛𝑛(𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐 𝑟𝑟𝑛𝑛𝑛𝑛𝑏𝑏 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑏𝑏 𝑟𝑟𝑛𝑛𝑛𝑛𝑐𝑐 )𝛿𝛿(𝜔𝜔𝑚𝑚𝑚𝑚 − 𝜔𝜔)
𝑛𝑛𝑛𝑛

 

where a, b, c are Cartesian indices and 𝑟𝑟𝑛𝑛𝑛𝑛𝑎𝑎 = 𝑖𝑖�𝑛𝑛�𝜕𝜕𝑘𝑘𝑎𝑎�𝑚𝑚� is interband Berry connection. 𝑓𝑓𝑛𝑛𝑛𝑛 

is occupation difference between band n and m, and ℏ∆𝑚𝑚𝑚𝑚𝑎𝑎 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑎𝑎 − 𝑣𝑣𝑛𝑛𝑛𝑛𝑎𝑎  is the group velocity 

difference between band n and m. For the injection-current estimation, a 3×3×100 k-point grid 

was adopted for calculating the one-dimensional Se chains. This is a sufficiently dense mesh 

of grids to show convergence of the injection-current spectra. 

 



Real-time calculation of the electric current, OAM, and SAM. To examine the electric 

current, OAM, and SAM, we performed real-time TDDFT calculations using the plane-wave-

based real-time evolution57,58. In our calculations, the Kohn–Sham wavefunction, the density, 

and the Hamiltonian were self-consistently evolved through the time-dependent equation: 

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝑛𝑛,𝐤𝐤(𝐫𝐫, 𝑡𝑡) = �

1
2𝑚𝑚𝑒𝑒

�
ℏ
𝑖𝑖
𝛁𝛁 +

𝑒𝑒
𝑐𝑐
𝐀𝐀ext(𝑡𝑡)�

2

+ �𝑣𝑣atom�𝐑𝐑𝜆𝜆(𝑡𝑡)�
𝜆𝜆

+ 𝑉𝑉DFT[𝜌𝜌(𝐫𝐫, 𝑡𝑡)]�𝜓𝜓𝑛𝑛,𝐤𝐤(𝐫𝐫, 𝑡𝑡) 

where n and k denote the band index and the Bloch momentum vector, respectively. 𝐀𝐀ext and 

𝑉𝑉DFT  indicate the time-dependent vector potential and DFT potential, respectively. The 

discretised time step for the time integration (∆𝑡𝑡) was set to 2.415 as. In our calculations, the 

electric field was expressed using the velocity gauge of the vector potential via the relation 

𝐄𝐄(𝑡𝑡) = −1
𝑐𝑐
𝜕𝜕𝐀𝐀ext 𝜕𝜕𝜕𝜕⁄ . We considered two different electric fields in our calculation: DC-field 

𝐄𝐄DC(𝑡𝑡) = 𝐸𝐸DC𝑧̂𝑧 and AC-field 𝐄𝐄AC(𝑡𝑡) = 𝐸𝐸AC sin(𝜔𝜔𝜔𝜔) 𝑧̂𝑧. The initial wavefunctions [𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡 =

0)]  were obtained from the static-ground-state DFT calculations using the QUANTUM 

ESPRESSO package with the PBE exchange–correlation functional. Using the time-evolving 

Bloch wavefunctions, we evaluated the time profile of the electric current, OAM, and SAM as 

follows59,60:  

𝐼𝐼(𝑡𝑡) = −
𝑒𝑒
𝑚𝑚𝑒𝑒

��𝑓𝑓𝑛𝑛,𝐤𝐤�𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡)�𝛑𝛑��𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡)�
𝐤𝐤𝑛𝑛

 

𝐿𝐿𝑧𝑧(𝑡𝑡) = ��𝑓𝑓𝑛𝑛,𝐤𝐤�𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡)�𝑥𝑥�𝜋𝜋�𝑦𝑦 − 𝑦𝑦�𝜋𝜋�𝑥𝑥�𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡)�
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𝑆𝑆𝑧𝑧(𝑡𝑡) = ��𝑓𝑓𝑛𝑛,𝐤𝐤�𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡)�𝑆̂𝑆𝑧𝑧�𝜓𝜓𝑛𝑛,𝐤𝐤(𝑡𝑡)�
𝐤𝐤𝑛𝑛

 



where n is the band index, 𝑓𝑓𝑛𝑛,𝐤𝐤 is the initial occupation of the Bloch state, me is the mass of 

an electron. The gauge-invariant mechanical momentum is defined as 𝛑𝛑� = 𝑚𝑚𝑒𝑒
𝑖𝑖ℏ
�𝐫𝐫�,𝐻𝐻�� = 𝐩𝐩� +

𝑒𝑒
𝑐𝑐
𝐀𝐀ext(𝑡𝑡) + 𝑖𝑖 𝑚𝑚𝑒𝑒

ℏ
[𝑉𝑉NL, 𝐫𝐫�] . Here 𝑥𝑥�,𝑦𝑦�  are the position operator along the x- and y-axis, 

respectively, and 𝑆̂𝑆𝑧𝑧 is the SAM operator along the z-axis. 
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Supplementary Note 1 | Diagonalisation of the model Hamiltonian for a one-dimensional 

chiral Se chain. 

 Here we diagonalise the 9 × 9 matrix 

𝐻𝐻 =

⎝

⎛
ℎon ℎhop ℎhop

†

ℎhop
† ℎon ℎhop
ℎhop ℎhop

† ℎon ⎠

⎞, (S1) 

in the |𝐴𝐴⟩, |𝐵𝐵⟩, |𝐶𝐶⟩  atomic basis. Here ℎon  and ℎhop  are given by the following 3 × 3 

matrices, respectively. 

ℎon = �
𝜖𝜖𝑟𝑟 0 0
0 𝜖𝜖𝑡𝑡 0
0 0 𝜖𝜖𝑧𝑧

� ,ℎhop = 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑎𝑎 �
𝑡𝑡𝑟𝑟𝑟𝑟 −𝑡𝑡𝑡𝑡𝑡𝑡 −𝑡𝑡𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑧𝑧𝑧𝑧
𝑡𝑡𝑧𝑧𝑧𝑧 𝑡𝑡𝑧𝑧𝑧𝑧 𝑡𝑡𝑧𝑧𝑧𝑧

�, (S2) 

in the |𝑝𝑝𝑟𝑟⟩, |𝑝𝑝𝑡𝑡⟩, |𝑝𝑝𝑧𝑧⟩ orbital basis. We first diagonalise the atomic degree of freedom. One can 

show that equation (S1) is diagonalised by the following eigenstates. 

|𝜇𝜇⟩ =
1
√3

�𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋/3|𝐴𝐴⟩ + |𝐵𝐵⟩ + 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋/3|𝐶𝐶⟩�, (S3) 

where 𝜇𝜇 = −1,0,1. The corresponding eigen-Hamiltonians are given by 

ℎon + 2Re�𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋/3ℎhop� (S4) 

which is 3 × 3 to be diagonalised. Here the real part of a matrix is defined by Re[𝑋𝑋] =

(𝑋𝑋 + 𝑋𝑋†)/2. More explicitly, equation (S4) is given by 

�
𝜖𝜖𝑟𝑟 + 2𝑡𝑡𝑟𝑟𝑟𝑟 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 −2𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 sin𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 −2𝑖𝑖𝑡𝑡𝑧𝑧𝑧𝑧 sin𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎

2𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 sin𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 𝜖𝜖𝑡𝑡 + 2𝑡𝑡𝑡𝑡𝑡𝑡 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 2𝑡𝑡𝑧𝑧𝑧𝑧 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎
2𝑖𝑖𝑡𝑡𝑧𝑧𝑧𝑧 sin𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 2𝑡𝑡𝑧𝑧𝑧𝑧 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 𝜖𝜖𝑧𝑧 + 2𝑡𝑡𝑧𝑧𝑧𝑧 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎

�, (S5) 

where 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎 = 𝑘𝑘𝑧𝑧𝑎𝑎 + 2𝜋𝜋𝜋𝜋/3. Since |𝑘𝑘𝑧𝑧𝑎𝑎| ≤ 𝜋𝜋/3, 𝑘𝑘�𝑧𝑧,𝜇𝜇  satisfies �𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎� ≤ 𝜋𝜋/𝑎𝑎 . Now the 

physical meaning of 𝑘𝑘�𝑧𝑧,𝜇𝜇  is clear: a generalised Bloch momentum in a quasi-extended 

Brillouin zone. Ignoring the helical rotation, the three atoms in the unit cell are located 

periodically so that the Brillouin zone can be extended to a three times larger space. We call 

this a quasi-extended Brillouin zone since the helical rotation makes such a direct extension 

impossible. The cost of the extension is the introduction of off-diagonal hopping terms in 

equation (S5), which corresponds to a discretised version of the gauge potential. 

 Since exact diagonalisation of equation (S5) is difficult, we treat 𝑡𝑡𝛽𝛽𝛽𝛽 perturbatively. 



Perturbation theory gives the following eigenstates of equation (5). 

|𝑝𝑝𝑟𝑟⟩� = |𝑝𝑝𝑟𝑟⟩ +
2𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 sin𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎

𝜖𝜖𝑟𝑟 − 𝜖𝜖𝑡𝑡
|𝑝𝑝𝑡𝑡⟩ +

2𝑖𝑖𝑡𝑡𝑧𝑧𝑧𝑧 sin𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎
𝜖𝜖𝑟𝑟 − 𝜖𝜖𝑧𝑧

|𝑝𝑝𝑧𝑧⟩, (S6) 

|𝑝𝑝𝑡𝑡⟩� = |𝑝𝑝𝑡𝑡⟩ −
2𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 sin 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎

𝜖𝜖𝑡𝑡 − 𝜖𝜖𝑟𝑟
|𝑝𝑝𝑟𝑟⟩ +

2𝑡𝑡𝑧𝑧𝑧𝑧 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎
𝜖𝜖𝑡𝑡 − 𝜖𝜖𝑧𝑧

|𝑝𝑝𝑧𝑧⟩, (S7) 

|𝑝𝑝𝑧𝑧⟩� = |𝑝𝑝𝑧𝑧⟩ −
2𝑖𝑖𝑡𝑡𝑧𝑧𝑧𝑧 sin 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎

𝜖𝜖𝑧𝑧 − 𝜖𝜖𝑟𝑟
|𝑝𝑝𝑟𝑟⟩ +

2𝑡𝑡𝑧𝑧𝑧𝑧 cos 𝑘𝑘�𝑧𝑧,𝜇𝜇𝑎𝑎
𝜖𝜖𝑧𝑧 − 𝜖𝜖𝑡𝑡

|𝑝𝑝𝑡𝑡⟩. (S8) 

From the expressions equation (S3) and (S6)-(S8), the eigenstates of the full 

Hamiltonian [equation (S1)] are then given by 

|𝑝𝑝𝑟𝑟 , 𝜇𝜇⟩� = |𝑝𝑝𝑟𝑟⟩� ⊗ |𝜇𝜇⟩, (S9) 

where ⊗ is the direct tensor product of the two spaces. 

 

Supplementary Note 2 | Band characterisation of the analytic eigenstates. 

To match the eigenstates [equations (S6)-(S8)] with the results from the first-principles 

calculations (Supplementary Figure 3), we note that |𝑝𝑝𝛼𝛼⟩�  is the perturbed eigenstate due to 

the hopping elements. Therefore, without hopping, i.e., 𝑘𝑘�𝑧𝑧,𝜇𝜇 = 0  gives the unperturbed 

eigenstates. Therefore, the orbital character at the zone center gives the characterisation of each 

eigenstates. For instance, the top band in Supplementary Fig. 3b is |𝑝𝑝𝑧𝑧⟩� . Since 𝑘𝑘�𝑧𝑧,𝜇𝜇  is a 

momentum in a quasi-extended Brillouin zone, there are corresponding three bands in the first 

Brillouin zone. Therefore, it is natural to conclude that the top three bands correspond to |𝑝𝑝𝑧𝑧, 𝜇𝜇⟩�  

for three 𝜇𝜇 values. Similarly, the three valence bands correspond to |𝑝𝑝𝑡𝑡, 𝜇𝜇⟩� . Our calculation 

for a wider energy range (not shown) shows that |𝑝𝑝𝑟𝑟 , 𝜇𝜇⟩�  are located far below |𝑝𝑝𝑡𝑡,𝜇𝜇⟩� . 

  



Supplementary Note 3 | The relation between orbital angular momentum and injection 

current in a one-dimensional chiral Se chain. 

According to Ref. 48 in main text, the photogalvanic current induced by a circularly-

polarised light is given by 

𝐽𝐽 = −
4𝜋𝜋𝜋𝜋𝜋𝜋
ℏ

�
𝑑𝑑𝑘𝑘𝑧𝑧
2𝜋𝜋

[Δ𝑣𝑣𝑧𝑧(𝑘𝑘𝑧𝑧)]𝜈𝜈(𝑘𝑘𝑧𝑧)𝛿𝛿(Δ𝜖𝜖(𝑘𝑘𝑧𝑧) − ℏ𝜔𝜔), (S10) 

where 𝜏𝜏  is the relaxation time, 𝑣𝑣𝑧𝑧(𝑘𝑘𝑧𝑧) is the group velocity, 𝜔𝜔  is the frequency of the 

incident light, 𝛥𝛥  means the difference between the initial and final states, and 𝜈𝜈(𝑘𝑘𝑧𝑧) =

�𝑃𝑃RCP(𝑘𝑘𝑧𝑧)�
2
− �𝑃𝑃LCP(𝑘𝑘𝑧𝑧)�

2
 is the optical absorption efficiency difference for the right and left 

circular polarised lights. Using ℏ𝑣𝑣𝑧𝑧(𝑘𝑘𝑧𝑧) = 𝜕𝜕𝑘𝑘𝑧𝑧𝜖𝜖 , equation (S10) is converted to an energy 

integration. 

𝐽𝐽 = −
4𝜋𝜋𝜋𝜋𝜋𝜋
ℏ2

�
𝑑𝑑[Δ𝜖𝜖(𝑘𝑘𝑧𝑧)]

2𝜋𝜋
𝜈𝜈(𝑘𝑘𝑧𝑧)𝛿𝛿(Δ𝜖𝜖(𝑘𝑘𝑧𝑧) − ℏ𝜔𝜔) = −

4𝜋𝜋𝜋𝜋𝜋𝜋
ℏ2

� 𝜈𝜈(𝑘𝑘𝑧𝑧)
Δ𝜖𝜖(𝑘𝑘𝑧𝑧)=ℏ𝜔𝜔

. (S11) 

When we consider a particular kz value satisfying Δ𝜖𝜖(𝑘𝑘𝑧𝑧) = ℏ𝜔𝜔, we do not need to keep the 

summation. 

To calculate 𝑃𝑃RCP/LCP(𝑘𝑘𝑧𝑧), it is necessary to calculate the matrix element of the 

perturbing electric field of the light. In Ref. 48, the system is periodic so that the velocity gauge 

was used, i.e., 𝑃𝑃RCP/LCP = (𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒⁄ )⟨𝑣𝑣|�𝑝𝑝𝑥𝑥 ± 𝑖𝑖𝑝𝑝𝑦𝑦�|𝑐𝑐⟩ , where A is the magnitude of the 

incident vector potential. However, for our case, the system is confined along the x and y 

direction so that the position gauge is more preferred, i.e., 𝑃𝑃RCP/LCP = 𝑒𝑒𝑒𝑒⟨𝑣𝑣|(𝑥𝑥 ± 𝑖𝑖𝑖𝑖)|𝑐𝑐⟩ 

where E is the magnitude of the incident electric field. Then, one can show that 𝜈𝜈 =

𝑒𝑒2𝐸𝐸2Im[⟨𝐼𝐼|𝑥𝑥|𝐹𝐹⟩⟨𝐹𝐹|𝑦𝑦|𝐼𝐼⟩], where I and F are the initial and the final states, respectively. As a 

result, we obtain 

𝐽𝐽 = −
4𝜋𝜋𝜋𝜋𝜋𝜋
ℏ2

𝑒𝑒2𝐸𝐸2Im[⟨𝑐𝑐|𝑥𝑥|𝑣𝑣⟩⟨𝑣𝑣|𝑦𝑦|𝑐𝑐⟩], (S12) 

and if there are multiple kz points satisfying Δ𝜖𝜖(𝑘𝑘𝑧𝑧) = ℏ𝜔𝜔 , the contributions should be 

summed up. Combining equation (S12) and equation (5) gives equation (6) in the main text. 

  



Supplementary Note 4 | Symmetry analysis of the emergence of nonzero orbital angular 

momentum components in bulk Se. 

We consider a general three-dimensional system with time-reversal symmetry and a 

mirror symmetry with respect to the zx plane. First, the time-reversal symmetry implies that all 

the physical relations should be invariant under the transformation k → -k and L → -L. In 

other words, 

𝐿𝐿𝑥𝑥�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = −𝐿𝐿𝑥𝑥�−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑦𝑦,−𝑘𝑘𝑧𝑧�, 

𝐿𝐿𝑦𝑦�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = −𝐿𝐿𝑦𝑦�−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑦𝑦,−𝑘𝑘𝑧𝑧�, 

𝐿𝐿𝑧𝑧�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = −𝐿𝐿𝑧𝑧�−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑦𝑦,−𝑘𝑘𝑧𝑧�. 

(S13) 

Similarly, the zx mirror symmetry implies that all the physical relations should be invariant 

under the transformation (kx, ky, kz) → (kx, -ky, kz) and (Lx, Ly, Lz) → (-Lx, Ly, -Lz). In other words, 

𝐿𝐿𝑥𝑥�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = −𝐿𝐿𝑥𝑥�𝑘𝑘𝑥𝑥,−𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧�, 

𝐿𝐿𝑦𝑦�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = 𝐿𝐿𝑦𝑦�𝑘𝑘𝑥𝑥,−𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧�, 

𝐿𝐿𝑧𝑧�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = −𝐿𝐿𝑧𝑧�𝑘𝑘𝑥𝑥,−𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧�. 

(S14) 

Now we consider a more simplified case that the system is confined along the x and y 

directions. Then, kx and ky become meaningless. By the same argument as equations (S13)-

(S14), dropping kx and ky, one obtains 

𝐿𝐿𝑥𝑥(𝑘𝑘𝑧𝑧) = −𝐿𝐿𝑥𝑥(𝑘𝑘𝑧𝑧), 

𝐿𝐿𝑦𝑦(𝑘𝑘𝑧𝑧) = 𝐿𝐿𝑦𝑦(𝑘𝑘𝑧𝑧), 

𝐿𝐿𝑧𝑧(𝑘𝑘𝑧𝑧) = −𝐿𝐿𝑧𝑧(𝑘𝑘𝑧𝑧). 

(S15) 

Therefore, 𝐿𝐿𝑥𝑥(𝑘𝑘𝑧𝑧) = 𝐿𝐿𝑧𝑧(𝑘𝑘𝑧𝑧) = 0 and only 𝐿𝐿𝑦𝑦(𝑘𝑘𝑧𝑧) can survive, which is depicted in Fig. 4b. 

  



 

Supplementary Figure 1 | a, b (a) Atomic and (b) electronic structure of bulk Se. 

 

 

Supplementary Figure 2 | Orbital angular momentum profiles of the conduction band 

minimum at the H point in bulk Se without the inclusion of SOC. Black contour lines denote 

energy levels of 0.05 and 0.2 eV, respectively. 

 



 

Supplementary Figure 3 | a, b Calculated band structure of a Se chain with (a) orbital-angular-

momentum resolution (Lz), and (b) atomic-orbital resolution using radial (pr), tangential (pt), 

and axial (pz) p-orbitals as the orbital bases.  

 

 

Supplementary Figure 4 | a, b Calculated band structure of a Se chain with orbital-angular-

momentum resolution (Lz) using the method of (a) atomic orbital decomposition and (b) 𝐫𝐫 × 𝐩𝐩 

operation. 

 



 

Supplementary Figure 5 | a Calculated band structure of a Te chain with orbital-angular-

momentum resolution (Lz) under hole doping (0.1 e/unit) in the presence of SOC. b-d 

Calculated (b) induced current (I), (c) total orbital angular momentum (Lz), and (d) total spin 

angular momentum (Sz) induced by a dc field (10-3 V/Å) along the Te chain. The quantitative 

definitions of I, Lz, and Sz are described in the Methods section. 

 

 

Supplementary Figure 6 | Time evolution of the density of states projected onto the 

unperturbed electron/hole states in a Se chain under a 0.0001 V/Å field. 

 



 

Supplementary Figure 7 | a Time evolution of the density of states projected onto the 

unperturbed electron/hole states in a Se chain without the inclusion of SOC. b Time evolution 

of the electron/hole weights projected onto the ground-state band structure of the Se chain 

without the inclusion of SOC. 

 

 

Supplementary Figure 8 | Comparison of total orbital angular momentum and two-band 

approximated orbital angular momentum. 

 



 

Supplementary Figure 9 | Handedness dependence of calculated circular photogalvanic 

current (injection current) spectrum of a Se chain as a function of the frequency. 

 

 

Supplementary Figure 10 | a-c Calculated (a) induced current (I), (b) total orbital angular 

momentum (Lz), and (c) total spin angular momentum (Sz) induced by a circularly polarised 

light with intensity of 0.51 V/Å and frequency of ħω=2.02 eV as a function of time. 

 

 

Supplementary Figure 11 | a Calculated circular photogalvanic current (injection current) 

spectrum of a Se chain as a function of the frequency for various circularly polarised lights. b 

Calculated band structure of the Se chain with orbital-angular-momentum resolution (Lx, Ly, 

and Lz). 



 

Supplementary Figure 12 | Calculated circular photogalvanic current (injection current) 

spectrum of bulk Se as a function of the frequency. 

 

 

Supplementary Figure 13 | Calculated band structure of the domain boundary between LH 

and RH domains with orbital-angular-momentum resolution (Lx, Ly, and Lz). 

 

 

Supplementary Figure 14 | a Schematic drawing of a slab structure for left-handed (LH) or 

right-handed (RH) chains exposed to vacuum. b Calculated injection current spectrum per unit 

length for the LH slab and the LH-RH domain structures with respect to domain length (d). 


	Bumseop Kim1,6, Dongbin Shin2,3,6, Seon Namgung1, Noejung Park1, Kyoung-Whan Kim4*, Jeongwoo Kim5*
	Bumseop Kim1,6, Dongbin Shin2,3,6, Seon Namgung1, Noejung Park1, Kyoung-Whan Kim4*, Jeongwoo Kim5*

