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Note S1. Diagonalization of the model Hamiltonian for a one-dimensional chiral Se chain.

Here we diagonalize the 9 × 9 matrix

𝐻 = ( ℎon ℎhop ℎ †
hop

ℎ †
hop ℎon ℎhop

ℎhop ℎ †
hop ℎon

), (S1)

in the  atomic basis. Here  and  are given by the following 3 × 3 matrices, |𝐴⟩,|𝐵⟩,|𝐶⟩ ℎon ℎhop

respectively.

ℎon = (𝜖𝑟 0 0
0 𝜖𝑡 0
0 0 𝜖𝑧

), ℎhop = 𝑒𝑖𝑘𝑧𝑎(𝑡𝑟𝑟 ― 𝑡𝑡𝑟 ― 𝑡𝑧𝑟
𝑡𝑡𝑟 𝑡𝑡𝑡 𝑡𝑧𝑡
𝑡𝑧𝑟 𝑡𝑧𝑡 𝑡𝑧𝑧

), (S2)

in the  orbital basis. We first diagonalize the atomic degree of freedom. One can |𝑝𝑟⟩,|𝑝𝑡⟩,|𝑝𝑧⟩

show that equation (S1) is diagonalized by the following eigenstates.

|𝜇⟩ =
1
3

(𝑒 ―2𝜋𝑖𝜇/3|𝐴⟩ + |𝐵⟩ + 𝑒2𝜋𝑖𝜇/3|𝐶⟩), (S3)

where . The corresponding eigen-Hamiltonians are given by𝜇 = ―1,0,1

ℎon + 2Re[𝑒2𝜋𝑖𝜇/3ℎhop] (S4)

which is 3 × 3 to be diagonalized. Here the real part of a matrix is defined by Re[𝑋] =

 More explicitly, equation (S4) is given by(𝑋 + 𝑋 † )/2.

(𝜖𝑟 + 2𝑡𝑟𝑟cos 𝑘𝑧,𝜇𝑎 ―2𝑖𝑡𝑡𝑟sin 𝑘𝑧,𝜇𝑎 ―2𝑖𝑡𝑧𝑟sin 𝑘𝑧,𝜇𝑎
2𝑖𝑡𝑡𝑟sin 𝑘𝑧,𝜇𝑎 𝜖𝑡 + 2𝑡𝑡𝑡cos 𝑘𝑧,𝜇𝑎 2𝑡𝑧𝑡cos 𝑘𝑧,𝜇𝑎
2𝑖𝑡𝑧𝑟sin 𝑘𝑧,𝜇𝑎 2𝑡𝑧𝑡cos 𝑘𝑧,𝜇𝑎 𝜖𝑧 + 2𝑡𝑧𝑧cos 𝑘𝑧,𝜇𝑎), (S5)

where . Since ,  satisfies . Now the 𝑘𝑧,𝜇𝑎 = 𝑘𝑧𝑎 + 2𝜋𝜇/3 |𝑘𝑧𝑎| ≤ 𝜋/3 𝑘𝑧,𝜇 |𝑘𝑧,𝜇𝑎| ≤ 𝜋/𝑎

physical meaning of  is clear: a generalized Bloch momentum in a quasi-extended 𝑘𝑧,𝜇

Brillouin zone. Ignoring the helical rotation, the three atoms in the unit cell are located 

periodically so that the Brillouin zone can be extended to a three times larger space. We call 

this a quasi-extended Brillouin zone since the helical rotation makes such a direct extension 

impossible. The cost of the extension is the introduction of off-diagonal hopping terms in 

equation (S5), which corresponds to a discretized version of the gauge potential.

Since exact diagonalization of equation (S5) is difficult, we treat  perturbatively. 𝑡𝛽𝛼
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Perturbation theory gives the following eigenstates of equation (5).

|𝑝𝑟⟩ = |𝑝𝑟⟩ +
2𝑖𝑡𝑡𝑟sin 𝑘𝑧,𝜇𝑎

𝜖𝑟 ― 𝜖𝑡
|𝑝𝑡⟩ +

2𝑖𝑡𝑧𝑟sin 𝑘𝑧,𝜇𝑎
𝜖𝑟 ― 𝜖𝑧

|𝑝𝑧⟩, (S6)

|𝑝𝑡⟩ = |𝑝𝑡⟩ ―
2𝑖𝑡𝑡𝑟sin 𝑘𝑧,𝜇𝑎

𝜖𝑡 ― 𝜖𝑟
|𝑝𝑟⟩ +

2𝑡𝑧𝑡cos 𝑘𝑧,𝜇𝑎
𝜖𝑡 ― 𝜖𝑧

|𝑝𝑧⟩, (S7)

|𝑝𝑧⟩ = |𝑝𝑧⟩ ―
2𝑖𝑡𝑧𝑟sin 𝑘𝑧,𝜇𝑎

𝜖𝑧 ― 𝜖𝑟
|𝑝𝑟⟩ +

2𝑡𝑧𝑡cos 𝑘𝑧,𝜇𝑎
𝜖𝑧 ― 𝜖𝑡

|𝑝𝑡⟩. (S8)

From the expressions equation (S3) and (S6)-(S8), the eigenstates of the full 

Hamiltonian [equation (S1)] are then given by

|𝑝𝑟,𝜇⟩ = |𝑝𝑟⟩ ⊗ |𝜇⟩, (S9)

where  is the direct tensor product of the two spaces.⊗

Note S2. Band characterization of the analytic eigenstates.

To match the eigenstates [equations (S6)-(S8)] with the results from the first-principles 

calculations (Supplementary Figure 3), we note that  is the perturbed eigenstate due to the |𝑝𝛼⟩

hopping elements. Therefore, without hopping, i.e.,  gives the unperturbed eigenstates. 𝑘𝑧,𝜇 = 0

Therefore, the orbital character at the zone center gives the characterization of each eigenstates. 

For instance, the top band in Supplementary Fig. 3b is . Since  is a momentum in a |𝑝𝑧⟩ 𝑘𝑧,𝜇

quasi-extended Brillouin zone, there are corresponding three bands in the first Brillouin zone. 

Therefore, it is natural to conclude that the top three bands correspond to  for three  |𝑝𝑧,𝜇⟩ 𝜇

values. Similarly, the three valence bands correspond to . Our calculation for a wider |𝑝𝑡,𝜇⟩

energy range (not shown) shows that  are located far below .|𝑝𝑟,𝜇⟩ |𝑝𝑡,𝜇⟩
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Note S3. The relation between orbital angular momentum and injection current in a one-

dimensional chiral Se chain.

According to Ref. 48 in main text, the photogalvanic current induced by a circularly-

polarised light is given by

𝐽 = ―
4𝜋𝑒𝜏

ℏ ∫
𝑑𝑘𝑧

2𝜋
[Δ𝑣𝑧(𝑘𝑧)]𝜈(𝑘𝑧)𝛿(Δ𝜖(𝑘𝑧) ― ℏ𝜔), (S10)

where  is the relaxation time,  is the group velocity,  is the frequency of the 𝜏 𝑣𝑧(𝑘𝑧) 𝜔

incident light,  means the difference between the initial and final states, and 𝛥 𝜈(𝑘𝑧) =

 is the optical absorption efficiency difference for the right and left |𝑃RCP(𝑘𝑧)|2 ― |𝑃LCP(𝑘𝑧)|2

circular polarised lights. Using , equation (S10) is converted to an energy ℏ𝑣𝑧(𝑘𝑧) = ∂𝑘𝑧𝜖

integration.

𝐽 = ―
4𝜋𝑒𝜏

ℏ2 ∫
𝑑[Δ𝜖(𝑘𝑧)]

2𝜋 𝜈(𝑘𝑧)𝛿(Δ𝜖(𝑘𝑧) ― ℏ𝜔) = ―
4𝜋𝑒𝜏

ℏ2 ∑
Δ𝜖(𝑘𝑧) = ℏ𝜔

𝜈(𝑘𝑧). (S11)

When we consider a particular kz value satisfying , we do not need to keep the Δ𝜖(𝑘𝑧) = ℏ𝜔

summation.

To calculate , it is necessary to calculate the matrix element of the 𝑃RCP/LCP(𝑘𝑧)

perturbing electric field of the light. In Ref. 48, the system is periodic so that the velocity gauge 

was used, i.e., , where A is the magnitude of the incident 𝑃RCP/LCP = (𝑒𝐴 𝑚𝑒)⟨𝑣|(𝑝𝑥 ± 𝑖𝑝𝑦)|𝑐⟩

vector potential. However, for our case, the system is confined along the x and y direction so 

that the position gauge is more preferred, i.e.,  where E is the 𝑃RCP/LCP = 𝑒𝐸⟨𝑣|(𝑥 ± 𝑖𝑦)|𝑐⟩

magnitude of the incident electric field. Then, one can show that , 𝜈 = 𝑒2𝐸2Im[⟨𝐼|𝑥|𝐹⟩⟨𝐹|𝑦|𝐼⟩]

where I and F are the initial and the final states, respectively. As a result, we obtain

𝐽 = ―
4𝜋𝑒𝜏

ℏ2 𝑒2𝐸2Im[⟨𝑐|𝑥|𝑣⟩⟨𝑣|𝑦|𝑐⟩], (S12)

and if there are multiple kz points satisfying , the contributions should be summed Δ𝜖(𝑘𝑧) = ℏ𝜔

up. Combining equation (S12) and equation (5) gives equation (6) in the main text.
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Note S4. Symmetry analysis of the emergence of nonzero orbital angular momentum 

components in bulk Se.

We consider a general three-dimensional system with time-reversal symmetry and a 

mirror symmetry with respect to the zx plane. First, the time-reversal symmetry implies that all 

the physical relations should be invariant under the transformation k → -k and L → -L. In 

other words,
𝐿𝑥(𝑘𝑥,𝑘𝑦,𝑘𝑧) = ― 𝐿𝑥( ― 𝑘𝑥, ― 𝑘𝑦, ― 𝑘𝑧),

𝐿𝑦(𝑘𝑥,𝑘𝑦,𝑘𝑧) = ― 𝐿𝑦( ― 𝑘𝑥, ― 𝑘𝑦, ― 𝑘𝑧),

𝐿𝑧(𝑘𝑥,𝑘𝑦,𝑘𝑧) = ― 𝐿𝑧( ― 𝑘𝑥, ― 𝑘𝑦, ― 𝑘𝑧).
(S13)

Similarly, the zx mirror symmetry implies that all the physical relations should be invariant 

under the transformation (kx, ky, kz) → (kx, -ky, kz) and (Lx, Ly, Lz) → (-Lx, Ly, -Lz). In other 

words,

𝐿𝑥(𝑘𝑥,𝑘𝑦,𝑘𝑧) = ― 𝐿𝑥(𝑘𝑥, ― 𝑘𝑦,𝑘𝑧),

𝐿𝑦(𝑘𝑥,𝑘𝑦,𝑘𝑧) = 𝐿𝑦(𝑘𝑥, ― 𝑘𝑦,𝑘𝑧),

𝐿𝑧(𝑘𝑥,𝑘𝑦,𝑘𝑧) = ― 𝐿𝑧(𝑘𝑥, ― 𝑘𝑦,𝑘𝑧).
(S14)

Now we consider a more simplified case that the system is confined along the x and y 

directions. Then, kx and ky become meaningless. By the same argument as equations (S13)-

(S14), dropping kx and ky, one obtains

𝐿𝑥(𝑘𝑧) = ― 𝐿𝑥(𝑘𝑧),

𝐿𝑦(𝑘𝑧) = 𝐿𝑦(𝑘𝑧),

𝐿𝑧(𝑘𝑧) = ― 𝐿𝑧(𝑘𝑧).
(S15)

Therefore,  and only  can survive, which is depicted in Fig. 4b.𝐿𝑥(𝑘𝑧) = 𝐿𝑧(𝑘𝑧) = 0 𝐿𝑦(𝑘𝑧)
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Note S5. Justification for the spin texture derived from the orbital texture.

When the total Hamiltonian is expressed as the sum of the orbital part (HL), the spin part (HS), 

and the spin-orbit coupling (SOC, HL-S), i.e., H = HL + HS + HL-S, the inclusion of the SOC 

term necessitates the re-diagonalization of the Hamiltonian. However, it is important to note 

that our argument simplifies the situation under specific conditions: (i) when HS is negligible, 

and (ii) when HL-S is not sufficiently large to favor the J = L+S basis over the L-S basis. The 

validity of the first condition is supported by a separate DFT calculation conducted without the 

inclusion of SOC, which demonstrates the absence of a spin texture while confirming the 

presence of a distinct orbital texture. The second condition is fulfilled by two supportive results, 

the separate behaviors of the OAM and the SAM in Figure 2c and Figure 2d, and the well-

separated orbital projection in Figure 1e.
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Figure S1. (a) Atomic and (b) electronic structure of bulk Se. (c) Schematic illustrations 

depicting the left-handed and right-handed crystal orientations.

Figure S2. Orbital angular momentum profiles of the conduction band minimum at the H point 

in bulk Se without the inclusion of SOC. Black contour lines denote energy levels of 0.05 and 

0.2 eV, respectively.
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Figure S3. Orbital/Spin angular momentum of a helical Se chain at the H point in the valence 

band. (a) Calculated band structure of a Se chain with and without spin-orbit coupling (SOC). 

The red circles in (a) indicate the point where we analyze the orbital and spin angular 

momentum texture in (b). (b) Orbital and spin angular momentum profiles of the valence band 

at the H point in bulk Se in the presence or absence of SOC.
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Figure S4. Orbital/Spin angular momentum of a helical Se chain around the A point. (a) 

Calculated band structure of a Se chain in the presence or absence of SOC. The orange (blue) 

circle in (a) indicate the valence (conduction) band point where we investigate the orbital and 

spin angular momentum texture in (b). (b) Orbital angular momentum profiles of the valence 

(orange) and conduction (blue) bands at the A point in bulk Se in the presence or absence of 

SOC.

Figure S5. Calculated band structure of a Se chain with (a) orbital-angular-momentum 

resolution (Lz), and (b) atomic-orbital resolution using radial (pr), tangential (pt), and axial (pz) 

p-orbitals as the orbital bases. 
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Figure S6. Calculated band structure of the Te chain with (a) orbital-angular-momentum 

resolution (Lz), (b) spin-angular-momentum resolution (Sz), and (c) atomic-orbital resolution 

using radial (pr), tangential (pt), and axial (pz) p-orbitals as the orbital bases. (d) Diagonal 

components of the imaginary parts of the dielectric tensor of helical Te chain. (e) Calculated 

circular photogalvanic current (injection current) spectrum of the Te chain as a function of the 

frequency of a circularly polarized light.

Figure S7. Calculated band structure of a Se chain with orbital-angular-momentum resolution 

(Lz) using the method of (a) atomic orbital decomposition and (b)  operation.𝐫 × 𝐩
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Figure S8. Time profile of the electric field used in the calculation of current-induced 

magnetism (Figure 2)

Figure S9. (a) Calculated band structure of a Te chain with orbital-angular-momentum 

resolution (Lz) under hole doping (0.1 e/unit) in the presence of SOC. Calculated (b) induced 

current (I), (c) total orbital angular momentum (Lz), and (d) total spin angular momentum (Sz) 

induced by a dc field (10-3 V/Å) along the Te chain. The quantitative definitions of I, Lz, and 

Sz are described in the Methods section.
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Figure S10. Time evolution of the density of states projected onto the unperturbed 

electron/hole states in a Se chain under a 0.0001 V/Å field.
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Figure S11. Chirality-dependent current-induced magnetism in a helical Se chain. (a) 

Calculated band structure of a right-handed (RH) or left-handed (LH) Se chain with orbital-

angular-momentum resolution (Lz) under hole doping (0.1 e/unit). Calculated (b) induced 

current (I), (c) total orbital angular momentum (Lz), and (d) total spin angular momentum (Sz) 

induced by a dc field (10-3 V/Å) along the Se chain for RH and LH chains. (e) Difference in 

induced current (I) between RH and LH chains. Summation of LH and RH results for (f) total 

orbital angular momentum (Lz) and (g) total spin angular momentum (Sz). Time evolution of 

the electron/hole weights projected onto the ground-state band structure of the (h) right-handed 

and (i) left-handed Se chain with +z-direction E-field. Calculated momentum-resolved orbital 

angular momentum in the (j) RH and (k) LH Se chain at t=101.6 fs.
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Figure S12. (a) Time evolution of the density of states projected onto the unperturbed 

electron/hole states in a Se chain without the inclusion of SOC. (b) Time evolution of the 

electron/hole weights projected onto the ground-state band structure of the Se chain without 

the inclusion of SOC.
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Figure S13. Comparison of total orbital angular momentum and two-band approximated 

orbital angular momentum.

Figure S14. Handedness dependence of calculated circular photogalvanic current (injection 

current) spectrum of a Se chain as a function of the frequency.
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Figure S15. Linear absorption spectrum and circular dichroism for the band-edge transition. 

(a) Diagonal components of the imaginary parts of the dielectric tensor of a helical Se chain. 

(b) Calculated band structure of the Se chain with orbital-angular-momentum resolution (Lz) 

near Fermi level. Two bands, denoted as CB and VB, have been selected to examine the 

relationship between circular dichroism and orbital angular momentum in the Se chain. (c) 

Circular dichroism ( ) and its denominator ( ) for the band-edge transition in the Se chain. 𝜂 𝜂′

We define two different circular dichroisms for the band-edge transition𝜂(𝐤) =

 and , where  
|𝑃𝑐𝑣

+ (𝐤)|2 ― |𝑃𝑐𝑣
― (𝐤)|2

|𝑃𝑐𝑣
+ (𝐤)|2 + |𝑃𝑐𝑣

― (𝐤)|2 𝜂′(𝐤) = |𝑃𝑐𝑣
+ (𝐤)|2 ― |𝑃𝑐𝑣

― (𝐤)|2 𝑃𝑐𝑣
± (𝐤) =

1
2[𝑃𝑐𝑣

𝑥 (𝐤) ± 𝑖𝑃𝑐𝑣
𝑦 (𝐤)]

and . c and v indicate conduction and valence bands, respectively. (d) 𝐏𝑐𝑣 = ⟨𝜓𝑐,𝐤│𝐩│𝜓𝑣,𝐤⟩

Calculated two-band orbital angular momentum ( ) between the CB and the VB in the Se ⟨𝐿𝑧⟩𝑐𝑣

chain. 
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Figure S16. Calculated (a) induced current (I), (b) total orbital angular momentum (Lz), and 

(c) total spin angular momentum (Sz) induced by a circularly polarized light with intensity of 

0.51 V/Å and frequency of ħω=2.02 eV as a function of time.

Figure S17. Calculated (a) induced current (I), (b) total orbital angular momentum (Lz), and 

(c) total spin angular momentum (Sz) induced by circularly polarized lights with intensity of 

0.051 V/Å and frequency of ħω=1.7 eV as a function of time.
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Figure S18. (a) Calculated circular photogalvanic current (injection current) spectrum of a Se 

chain as a function of the frequency for various circularly polarized lights. (b) Calculated band 

structure of the Se chain with orbital-angular-momentum resolution (Lx, Ly, and Lz).

Figure S19. Calculated circular photogalvanic current (injection current) spectrum of bulk Se 

as a function of the frequency.
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Figure S20. Calculated band structure of the domain boundary between LH and RH domains 

with orbital-angular-momentum resolution (Lx, Ly, and Lz).

Figure S21. (a) Calculated band structure of the domain boundary between the left-handed and 

right-handed Se domains with orbital-angular-momentum resolution (Ly). (b) Real space 

representation of the states with a non-zero Ly component inside the orange box in (a). Grey 

dotted lines indicate the boundary between the left-handed and right-handed Se chains.
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Figure S22. (a) Variation in the injection current spectrum per unit length of the domain 

structure upon the domain length (d) of helical Te chain. (b) Calculated band structure of the 

alternating chains with orbital-angular-momentum resolution of helical Te chain.

Figure S23. (a) Schematic drawing of a slab structure for left-handed (LH) or right-handed 

(RH) chains exposed to vacuum. (b) Calculated injection current spectrum per unit length for 

the LH slab and the LH-RH domain structures with respect to domain length (d).


