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Abstract
We prove that semisimple four-dimensional oriented
topological field theories lead to stable diffeomorphism
invariants and can therefore not distinguish homeo-
morphic closed oriented smooth four-manifolds and
homotopy equivalent simply connected closed oriented
smooth four-manifolds. We show that all currently
known four-dimensional field theories are semisim-
ple, including unitary field theories, and once-extended
field theories which assign algebras or linear categories
to 2-manifolds. As an application, we compute the
value of a semisimple field theory on a simply con-
nected closed oriented 4-manifold in terms of its Euler
characteristic and signature. Moreover, we show that
a semisimple four-dimensional field theory is invari-
ant under ℂ𝑃2-stable diffeomorphisms if and only if
the Gluck twist acts trivially. This may be interpreted
as the absence of fermions amongst the ‘point parti-
cles’ of the field theory. Such fermion-free field theories
cannot distinguish homotopy equivalent 4-manifolds.
Throughout, we illustrate our results with the Crane–
Yetter–Kauffman field theory associated to a ribbon
fusion category, settling in the negative the question
of whether it is sensitive to smooth structure. As a
purely algebraic corollary of our results applied to this
field theory, we show that a ribbon fusion category

© 2023 The Authors. Journal of Topology is copyright © LondonMathematical Society. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

542 wileyonlinelibrary.com/journal/jtop J. Topol. 2023;16:542–566.

mailto:reutter@mpim-bonn.mpg.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jtop
http://crossmark.crossref.org/dialog/?doi=10.1112%2Ftopo.12288&domain=pdf&date_stamp=2023-04-11


SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 543

contains a fermionic object if and only if its Gauss
sums vanish.

MSC 2020
18M20, 57K16 (primary), 57K41 (secondary)

1 INTRODUCTION

1.1 Summary of results

Motivated by awealth of powerful field-theoretically-inspired 4-manifold invariants [15, 32, 36, 51],
a major open problem in quantum topology is the construction of a four-dimensional topological
field theory in the sense of Atiyah-Segal [1, 45] which is sensitive to exotic smooth structure. In
this paper, we prove that no semisimple topological field theory (Definition 2.6) can achieve this
goal. Every currently known example of a full four-dimensional oriented topological field theory
is semisimple and hence subject to our results, including invertible field theories (Example 2.7),
unitary field theories (Theorem 2.9) and once-extended field theories (Theorem 2.10) with values
in any of the symmetric monoidal bicategories appearing in the ‘bestiary of 2-vector spaces’ of [4,
Appendix A], such as

– the bicategory of algebras, bimodules and bimodule maps;
– the bicategory of additive and idempotent complete linear categories, linear functors and
natural transformations.

Concretely, we prove that semisimple field theories lead to stable diffeomorphism invariants.

Theorem A. Let 𝑍 be a semisimple oriented four-dimensional topological field theory and let𝑊
and𝑊′ be 𝑆2 × 𝑆2-stably diffeomorphic† connected compact oriented 4-bordisms.
Then 𝑍(𝑊) = 𝑍(𝑊′).

TheoremA is proven in Section 3 by decomposing 𝑍 into a finite direct sum of indecomposable
theories which aremultiplicative under connected sum (Proposition 3.2) and invertible on 𝑆2 × 𝑆2
(Theorem 3.5).
Using a theorem of Gompf [25] and the classification of stable diffeomorphism classes of 4-

manifolds [30, 49], we obtain our main theorem as a corollary of Theorem A.

Corollary B. Let 𝑍 be a semisimple oriented four-dimensional topological field theory and let 𝑀
and𝑁 be closed oriented 4-manifolds.

(1) If there is an orientation-preserving homeomorphism𝑀 
→ 𝑁, then 𝑍(𝑀) = 𝑍(𝑁).
(2) If𝑀 and𝑁 are simply connected and if there is an orientation-preserving homotopy equivalence

𝑀 
→ 𝑁, then 𝑍(𝑀) = 𝑍(𝑁).

† Two connected compact oriented 4-bordisms𝑊,𝑊′ ∶ 𝑀 
→ 𝑁 are 𝑆2 × 𝑆2-stably diffeomorphic if there is an integer 𝑛 ∈
ℤ⩾0 and an orientation-preserving diffeomorphism of bordisms between the 𝑛-fold connected sums 𝑊#𝑛(𝑆2 × 𝑆2) and
𝑊′#𝑛(𝑆2 × 𝑆2), where the connected sum is taken in the interior of the bordisms.
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544 REUTTER

(3) If there is an orientation-preserving homotopy equivalence𝑀 
→ 𝑁, and if the universal covers of
𝑀 and𝑁 do not admit spin structures, then 𝑍(𝑀) = 𝑍(𝑁).
More precisely, for any connected closed oriented 4-manifold whose universal cover does not

admit a spin structure,𝑍(𝑀) only depends on the Euler characteristic𝜒(𝑀), the signature 𝜎(𝑀),
the fundamental group 𝜋1(𝑀) and the image of the fundamental class 𝑐∗[𝑀] ∈ 𝐻4(𝜋1(𝑀), ℤ)
under a classifying map 𝑐 ∶ 𝑀 
→ 𝐾(𝜋1(𝑀), 1) of the universal cover.

Corollary B, proven in Section 3, is in marked contrast to the four-dimensional situation where
semisimple topological field theories such as theWitten–Reshetikhin–Turaev field theory [39] can
distinguish certain homotopy equivalent lens spaces [20].
UsingTheoremA,wemay evaluate a semisimple field theory on a closed oriented 4-manifold𝑀

by evaluating it on a simpler stably diffeomorphic 4-manifold𝑁.We exemplify this inCorollary 3.9
wherewe give an explicit expression for the value of an indecomposable semisimple field theory𝑍
on a connected, simply connected closed oriented 4-manifold𝑀 in terms of the Euler characteris-
tic𝜒(𝑀) and signature 𝜎(𝑀), and the value of𝑍 on the oriented 4-manifolds 𝑆4, 𝑆2 × 𝑆2, ℂ𝑃2, ℂ𝑃

2
,

and the Kummer surface 𝐾3.

1.2 ℂ𝑷𝟐-stability, the Gluck twist and emergent fermions

In Section 4, we show that the behaviour of a semisimple topological field theory 𝑍 on a manifold
whose universal cover admits a spin structure strongly depends on the presence of fermions in 𝑍.
A four-dimensional oriented topological field theory is said to have emergent fermions if the Gluck
twist 𝜙 ∈ Dif f (𝑆2 × 𝑆1) acts non-trivially (see Remark 4.3). To lift the non-spinnability assump-
tion in Corollary B.3, we prove the following correspondence between the presence of fermions in
a four-dimensional oriented topological field theory 𝑍 and the invariance of 𝑍 under ℂ𝑃2-stable
diffeomorphisms.

Theorem C. A semisimple oriented four-dimensional topological field theory is invariant under
ℂ𝑃2-stable diffeomorphisms† if and only if the Gluck twist 𝑍(𝜙) ∈ End(𝑍(𝑆2 × 𝑆1)) acts as the
identity, that is, if and only if the theory has no emergent fermions.

The following corollary is then an immediate consequence of the classification of ℂ𝑃2-stable
diffeomorphism classes of closed oriented 4-manifolds.

Corollary D. Let 𝑍 be a semisimple oriented four-dimensional topological field theory with-
out emergent fermions and let 𝑀 and 𝑁 be closed, oriented 4-manifolds such that there is an
orientation-preserving homotopy equivalence𝑀 
→ 𝑁. Then, 𝑍(𝑀) = 𝑍(𝑁).
More precisely, for any connected closed oriented 4-manifold 𝑀, 𝑍(𝑀) only depends on the

Euler characteristic 𝜒(𝑀), the signature 𝜎(𝑀), the fundamental group 𝜋1(𝑀) and the image of
the fundamental class 𝑐∗[𝑀] ∈ 𝐻4(𝜋1(𝑀), ℤ) under a classifying map 𝑐 ∶ 𝑀 
→ 𝐾(𝜋1(𝑀), 1) of the
universal cover.

Theorem C and Corollary D are proven in Section 4. Comparing Corollaries B and D raises the
following question.

† Two connected compact oriented 4-bordisms𝑊,𝑊′ ∶ 𝑀 
→ 𝑁 are ℂ𝑃2-stably diffeomorphic if there are integers 𝑛,𝑚 ∈

ℤ⩾0 and an orientation-preserving diffeomorphism of bordisms between𝑊#𝑛ℂ𝑃2#𝑚ℂ𝑃
2
and𝑊′#𝑛ℂ𝑃2#𝑚𝐶𝑃

2
.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 545

Question 1.1. In [46, Exmaple 5.2.4], Teichner constructs two closed, oriented, homotopy equiv-
alent 4-manifolds 𝑀 and 𝑁 that are not 𝑆2 × 𝑆2-stably diffeomorphic. Is there a semisimple
topological field theorywhich distinguishes these 4-manifolds? ByCorollaryD, such a field theory
necessarily needs to have emergent fermions.

As an application of Theorem C, we compute the value of an indecomposable semisimple field
theory on a connected, simply connected closed oriented 4-manifold.

Corollary E. Let 𝑍 be an indecomposable semisimple oriented four-dimensional topological field
theory and let𝑀 be a connected, simply connected closed oriented 4-manifold.
Depending on whether 𝑀 admits a spin structure and 𝑍 has emergent fermions, 𝑍(𝑀) ∶=

𝑍(𝑆4)−1𝑍(𝑀) can be computed as follows:
𝑴 spinnable 𝑴 non-spinnable

𝑍 has fermions 𝑍(𝐾3)−
𝜎(𝑀)

16 𝑍(𝑆2 × 𝑆2)
1

2
(𝜒(𝑀)−2+ 11

8
𝜎(𝑀)) 0

𝑍 has no fermions 𝑍(ℂ𝑃2)
1

2
(𝜒(𝑀)+𝜎(𝑀)−2) 𝑍(ℂ𝑃

2
)
1

2
(𝜒(𝑀)−𝜎(𝑀)−2)

Moreover, except for the top right entry, all entries in the above table are invertible.

Corollary E is proven in Section 4.4.

1.3 The Crane–Yetter–Kauffman field theory

Throughout this paper, we use the Crane–Yetter–Kauffman [11] topological field theory CYK ,
defined for an arbitrary ribbon fusion category , as our guiding example of an indecomposable
semisimple oriented four-dimensional topological field theory. Applying Corollary B to this field
theory settles in the negative the question [11] of whether CYK for a general (not necessarily
modular) ribbon fusion category is sensitive to smooth structure.
The field theory CYK has emergent fermions if and only if  contains a ‘fermion’—a trans-

parent simple object with non-trivial twist (Example 4.4). The values of CYK on 𝑆4, 𝑆2 × 𝑆2, ℂ𝑃2

and ℂ𝑃
2
encode important algebraic invariants of  (see, e.g., [17]), namely the global dimension

of  (see Example 2.3)

CYK(𝑆
4) =  ∶=

∑
𝑋𝑖∈Irr()

dim(𝑋𝑖)
2,

the global dimension of the symmetric centre of  (see Example 3.6)

CYK(𝑆
4)−2CYK(𝑆

2 × 𝑆2) =
∑

𝑋𝑖∈Irr(Zsym())

dim(𝑋𝑖)
2,

and the normalised Gauss sums (see Example 4.1)

CYK(𝑆
4)−2CYK(ℂ𝑃

2) = −1


∑
𝑋𝑖∈Irr()

𝜃𝑖 dim(𝑋𝑖)
2,

CYK(𝑆
4)−2CYK(ℂ𝑃

2
) = −1



∑
𝑋𝑖∈Irr()

𝜃−1𝑖 dim(𝑋𝑖)
2.
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546 REUTTER

In particular, applying Corollary E to CYK leads to a topological proof that a ribbon fusion
category over an algebraically closed field of characteristic zero contains a simple transparent
object with non-trivial twist if and only if one, or equivalently both, of the Gauss sums are zero
(Corollary 4.12).

Question 1.2. Treating the field theory CYK as an invariant of the ribbon fusion category 

and following Corollary E, one might expect that if  contains a transparent simple object with
non-trivial twist, the algebraic invariant CYK(𝐾3) should play a similarly important role as the
global dimensionsCYK(𝑆

4), CYK(𝑆
2 × 𝑆2) and theGauss sumsCYK(ℂ𝑃

2), CYK(ℂ𝑃
2
). Since

𝐾3 admits a handle decomposition without 1- and 3-handles [27], this invariantCYK(𝐾3) can be
computed by evaluating a certain framed 22-component link [27, Figure 2.15] labelled by objects
of  (as described in Example 2.3). Can this (much more complicated) invariant be expressed in
terms of known invariants of ?

1.4 Related work

In [23], Freedman,Kitaev, Nayak, Slingerland,Walker andWang construct a pairing on formal lin-
ear combinations of closed manifolds and investigate its positivity properties. As a consequence,
it is shown that a unitary topological field theory cannot distinguish smoothly s-cobordant mani-
folds. Since any two s-cobordant manifolds are stably diffeomorphic [37] (but not vice versa) and
since any unitary topological field theory is semisimple (Theorem 2.9, but again not vice versa),
our result may be viewed both as a strengthening and a generalisation of the four-dimensional
results of [23]. The efficiency of unitary field theories as invariants of smooth manifolds in other
dimensions is studied in [7, 31].
To our knowledge, the observation that sensitivity to smooth structure of a four-dimensional

topological field theories requires some form of nilpotency with respect to connected summing
with 𝑆2 × 𝑆2 was first made by Frank Quinn (see, e.g. [38]).
Our description of the Crane–Yetter–Kauffman theory CYK mostly follows Barrett and

Bärenz’ work on dichromatic invariants [3]. In particular, we generalise their formula [3, Lemma
3.12] for the value of the dichromatic invariant on simply connected 4-manifolds to an analogous
formula for arbitrary indecomposable semisimple field theories (Corollaries 3.9 and E). Their
formula, in turn, is a generalisation of a computation in [10] which expresses the 4-manifold
invariant resulting from the Crane–Yetter–Kauffman theory CYK for a modular category  (and
hence invertible field theory CYK , see also [44, Section 1.3]) in terms of Euler characteristic
and signature.
Similar to the Crane–Yetter–Kauffman theory, the oriented 4-manifold invariants in [3, 8, 12, 16]

are either proven or expected to arise from once-extended topological field theories with values
in one of the symmetric monoidal bicategories of the ‘bestiary of 2-vector spaces’ of [4, Appendix
A] and should therefore be subject to our results.

1.5 Outline

Section 2 concerns the definition and examples of semisimple field theories. After recalling back-
ground material in Section 2.1, we define semisimple field theories in Section 2.2. In Sections 2.3
and 2.4, we prove that both unitary and extended field theories are semisimple.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 547

In Section 3, we prove Theorem A and investigate its consequences. In Section 3.1, after estab-
lishing that indecomposable semisimple field theories are multiplicative under connected sums,
we combine a certain diffeomorphism of 4-bordisms (Proposition 3.4) with a well-known alge-
braic characterisation of semisimple Frobenius algebras (Proposition 3.3), to prove that such field
theories do not vanish on 𝑆2 × 𝑆2 (Theorem 3.5). Theorem A then follows from decomposing a
semisimple field theory into its components. In Section 3.2, we prove Corollary B and explicitly
compute the 4-manifold invariant arising from an indecomposable semisimple field theory on
simply connected closed 4-manifolds (Corollary 3.9).
In the last Section 4, we investigate the interplay between ℂ𝑃2-stability and the Gluck twist.

Theorem C is proven in Section 4.3, again by constructing a certain diffeomorphism of 4-
bordisms (Proposition 4.5) to establish the theorem for indecomposable semisimple field theories
(Theorem 4.8). In Section 4.4, we prove Corollaries D and E.

2 SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD
THEORIES

2.1 Background

Throughout, we let 𝑘 be an algebraically closed field and denote the symmetricmonoidal category
of 𝑘-vector spaces and linear maps by Vect𝑘.
All manifolds appearing in this paper will be smooth and oriented. In Propositions 3.4 and 4.5,

we use handle diagrams and the Kirby calculus of handle moves to prove that certain closed ori-
ented 4-manifolds are diffeomorphic. We refer the reader to [26] for a thorough introduction to
these techniques. Given two closed oriented (𝑛 − 1)-manifolds 𝑀 and 𝑁, recall that an oriented
𝑛-bordism 𝑀 
→ 𝑁 is a compact oriented 𝑛-manifold𝑊 together with an orientation-preserving
diffeomorphism 𝑖𝑊 ∶ 𝑀 ⊔ 𝑁 
→ 𝜕𝑊, where 𝑀 denotes the manifold 𝑀 with the opposite ori-
entation. An orientation-preserving diffeomorphism of oriented bordisms 𝑊,𝑊′ ∶ 𝑀 
→ 𝑁 is an
orientation-preserving diffeomorphism 𝑓 ∶ 𝑊 
→ 𝑊′ such that 𝑓 ◦ 𝑖𝑊 = 𝑖𝑊′ . We follow common
conventions and surpress the diffeomorphisms 𝑖𝑊 from our notation, leaving it to the reader
to recover them from context. We let Bord𝑛 denote the symmetric monoidal category of closed
oriented (𝑛 − 1)-manifolds and diffeomorphism classes of 𝑛-bordisms between them. A careful
definition of this category can, for example, be found in [29].
Following the Atiyah–Segal axiomatisation [1, 45], an oriented topological field theory is a sym-

metric monoidal functor Bord𝑛 
→ Vect𝑘. Concretely, this amounts to an assignment of a vector
space 𝑍(𝑀) to every closed oriented (𝑛 − 1)-manifold𝑀 and a linear map 𝑍(𝑊) ∶ 𝑍(𝑀) 
→ 𝑍(𝑁)

to every (diffeomorphism class of) oriented 𝑛-bordism𝑊 ∶ 𝑀 
→ 𝑁, in a way that is compatible
with gluing of bordisms and disjoint union.
Recall that a commutative Frobenius algebra (𝐴,𝑚, 𝑢, Δ, 𝜖) is a 𝑘-vector space 𝐴 equipped with

the structure of a commutative algebra (𝑚 ∶ 𝐴 ⊗ 𝐴 
→ 𝐴, 𝑢 ∶ 𝑘 
→ 𝐴) and a cocommutative coal-
gebra (Δ ∶ 𝐴 
→ 𝐴⊗𝐴, 𝜖 ∶ 𝐴 
→ 𝑘) such that𝑚 and Δ fulfill the following Frobenius compatibility
condition:

(id𝐴 ⊗𝑚) ◦ (Δ ⊗ id𝐴) = (𝑚 ⊗ id𝐴) ◦ (id𝐴 ⊗ Δ). (1)

(In any Frobenius algebra, it can be shown that the expression (1) furthermore equals Δ ◦𝑚.)
Commutative Frobenius algebra objects are defined analogously in any symmetric monoidal
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548 REUTTER

category. In particular, for 𝑛 ⩾ 2, the (𝑛 − 1)-sphere 𝑆𝑛−1 is a commutative Frobenius algebra
object in the bordism category Bord𝑛 with unit 𝑢𝑛−1 ∶ ∅ 
→ 𝑆𝑛−1 and counit 𝜖𝑛−1 ∶ 𝑆𝑛−1 
→ ∅

given by the 𝑛-disk 𝐷𝑛, and with multiplication 𝑚𝑛−1 ∶ 𝑆
𝑛−1 ⊔ 𝑆𝑛−1 
→ 𝑆𝑛−1 and comultiplica-

tion Δ𝑛−1 ∶ 𝑆𝑛−1 
→ 𝑆𝑛−1 ⊔ 𝑆𝑛−1 given by the ‘pair of pants bordism’ obtained from removing
two embedded 𝑛-disks from an 𝑛-disk. More generally, since any closed oriented 𝑘-manifold
𝑀 (0 ⩽ 𝑘 ⩽ 𝑛 − 1) induces a symmetric monoidal functor − ×𝑀 ∶ Bord𝑛−𝑘 
→ Bord𝑛, the man-
ifold 𝑆𝑛−𝑘−1 × 𝑀 admits the structure of a commutative Frobenius algebra object (𝑚𝑛−𝑘−1 ×

𝑀, 𝑢𝑛−𝑘−1 × 𝑀,Δ𝑛−𝑘−1 × 𝑀, 𝜖𝑛−𝑘−1 × 𝑀).
Besides theirwell-known role in the classification of two-dimensional oriented topological field

theories (see, e.g. [29]), commutative Frobenius algebras play important roles in the study of topo-
logical field theories in any dimension. Indeed,much of this paper is concernedwith the following
commutative Frobenius algebras associated to any four-dimensional oriented topological field
theory.

Definition 2.1. Let 𝑍 be an oriented four-dimensional topological field theory. Its algebra of local
operators is the commutative Frobenius algebra(

𝑍(𝑆3), 𝑍(𝑚3), 𝑍(𝑢3), 𝑍(Δ3), 𝑍(𝜖3)
)
.

Its fusion algebra is the commutative Frobenius algebra(
𝑍(𝑆2 × 𝑆1), 𝑍(𝑚2 × 𝑆

1), 𝑍(𝑢2 × 𝑆
1), 𝑍(Δ2 × 𝑆

1), 𝑍(𝜖2 × 𝑆
1)
)
.

Remark 2.2. The terminology ‘algebra of local operators’ and ‘fusion algebra’ is inspired by
physics. Physical topological field theories are expected to be local or extended, also assigning
algebraic data to manifolds of higher codimension. Informally, for an 𝑛-dimensional topological
field theory 𝑍, the value 𝑍(𝑆𝑘) (for 0 ⩽ 𝑘 ⩽ 𝑛 − 1) should be thought of as encoding the ‘col-
lection’ (really: an object of some 𝑛 − 𝑘-category) of labels of (𝑛 − 𝑘 − 1)-dimensional strata in
𝑛-manifolds (where the sphere 𝑆𝑘 is thought of as the linking sphere of that stratum). In particu-
lar, for a four-dimensional topological field theory, 𝑍(𝑆3) encodes the ‘local operators’ of the field
theory which can be inserted into points of 4-manifolds. Similarly, for a once-extended theory,
𝑍(𝑆2) encodes the data labelling one-dimensional strata in 4-manifolds. Equivalently, if we think
of our 4-manifolds as ‘spacetimes’ and of these one-dimensional strata as ‘worldlines’ of point
particles, 𝑍(𝑆2) encodes the point particles of the four-dimensional field theory. Since the algebra
structure on 𝑍(𝑆2 × 𝑆1)may be thought of as a decategorification, or trace, of the monoidal struc-
ture on 𝑍(𝑆2) induced from inclusions of 3-disks, it may be thought of as encoding the ‘fusion of
point particles’ in the quantum field theory 𝑍.

Example 2.3. Our guiding example throughout this paper is the Crane–Yetter–Kauffman theory
[11], an oriented four-dimensional topological field theory CYK ∶ Bord4 
→ Vect𝑘 over an alge-
braically closed field 𝑘 of characteristic zero, defined for any ribbon fusion category  (see [3] for
a definition of ribbon fusion category). Our use of the Crane–Yetter–Kauffman theory closely fol-
lows [3], where the resulting invariant of closed oriented 4-manifolds𝑀 is expressed† in terms of
a handle decomposition of 𝑀 (as a special case amongst a more general family of ‘dichromatic’

† To extend the Crane–Yetter–Kauffman 4-manifold invariant from [3] to a topological field theory, we need to use the
normalisation denoted as CY in [3], rather than the one used in their main definition and denoted as ĈY . Explic-
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 549

invariants). If 𝑀 admits a Kirby diagram with a single 0- and 4-handle and which is free of 1-
and 3-handles, the invariant can be computed as follows: Since  is a ribbon category, we can
evaluate any framed link 𝐿 with a labelling of each connected component 𝐿𝑖 of 𝐿 by an object 𝑋𝑖
of  to a scalar 𝐿(𝑋1, … , 𝑋𝑛). To compute CYK(𝑀), we then sum up these scalars over a set of
representing simple objects Irr() of  using appropriate normalisation factors:

CYK(𝑀) = 

∑
𝑋1,…,𝑋𝑛∈Irr()

(∏
𝑖

dim(𝑋𝑖)

)
𝐿(𝑋1, … , 𝑋𝑛). (2)

Here, dim(𝑋) denotes the quantum dimension of the object 𝑋, defined as the evaluation of the
0-framed unlink labelled by 𝑋, and ∶=

∑
𝑋∈Irr() dim(𝑋)

2 is the global dimension of . In the
general case, formula (2) has to be adapted slightly to the presence of 1- and 3-handles (see [3]).
The algebra of local operators and the fusion algebra of CYK can be understood in terms of

the symmetric centre of : Recall that an object 𝑥 in a braided monoidal category  is trans-
parent if it braids trivially with all other objects, that is, if 𝑐𝑦,𝑥 ◦ 𝑐𝑥,𝑦 = id𝑥⊗𝑦 for all objects
𝑦 of  where 𝑐𝑥,𝑦 ∶ 𝑥 ⊗ 𝑦 
→ 𝑦 ⊗ 𝑥 denotes the braiding natural isomorphism of . The sym-
metric centre 𝑍sym() of  is the full monoidal subcategory of  on all transparent objects. In
particular, 𝑍sym() is a symmetric monoidal category and is ribbon if  is ribbon (see [3, Def-
inition 2.41] for more details). The algebra of local operators CYK(𝑆

3) is the endomorphism
algebra HomZsym()

(𝐼, 𝐼) ≅ 𝑘 of the tensor unit 𝐼 of 𝑍sym() and the fusion algebra CYK(𝑆
2 ×

𝑆1) is the 𝑘-linearised Grothendieck ring.† 𝐾0(Zsym()) ⊗ℤ 𝑘 of Zsym() (see [48] for a proof
sketch).
It is expected that the Crane–Yetter–Kauffman theory arises from a fully extended field theory

with values in the 4-category of braided tensor categories [5] and that it is, in fact, an oriented
version of the fully extended framed field theory constructed via the cobordism hypothesis [2, 34]
from a braided fusion category in [5]. In particular, the 1-category ‘of point particles’ CYK(𝑆

2)

with its symmetric monoidal structure inherited from embeddings of 3-disks into 3-disks is
expected to be the symmetric centreZsym() of . And indeed, in any once-extended field theory𝑍
(with values in the symmetricmonoidal bicategory 2Vect𝑘 of additive and idempotent complete 𝑘-
linear categories, see Section 2.4), both algebras 𝑍(𝑆3) and 𝑍(𝑆2 × 𝑆1) are completely determined
by the 1-category 𝑍(𝑆2) with its induced monoidal structure with monoidal unit 𝐼; 𝑍(𝑆3) is the
endomorphism algebra Hom𝑍(𝑆2)(𝐼, 𝐼) (see, e.g. the proof of Theorem 2.10), while 𝑍(𝑆2 × 𝑆1) is
the 𝑘-linearised Grothendieck ring of the monoidal category 𝑍(𝑆2).

In the following, we say that an oriented topological field theory is zero if it is zero on all non-
empty closed 3-manifolds and on all non-empty compact 4-bordisms.

Proposition 2.4. Let 𝑍 ∶ Bord4 
→ Vect𝑘 be a non-zero oriented four-dimensional topological
field theory. Then, both its algebra of local operators 𝑍(𝑆3) and its fusion algebra 𝑍(𝑆2 × 𝑆1) are
non-zero.

itly, on a closed oriented 4-manifold𝑀, the invariants are related as follows: ĈY (𝑀) = CY (𝑀) 
1−𝜒(𝑀)


, where  ∶=∑

𝑋𝑖∈Irr()
dim(𝑋𝑖)

2 is the global dimension of the ribbon fusion category  and 𝜒(𝑀) is the Euler characteristic of𝑀. See
[3, Section 7] for more details.
† The Grothendieck ring 𝐾0() of a monoidal semisimple category  is as an abelian group freely generated by the
isomorphism classes of simple objects of  with ring structure induced from the monoidal structure of .
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550 REUTTER

Proof. First, note that if𝑍(𝐷4) is the zero linearmap, it follows by excising and regluing an embed-
ded 4-disk from the interior of any non-empty four-dimensional compact oriented bordism 𝑊,
that 𝑍(𝑊) = 0. Thus, the topological field theory 𝑍 is zero. In particular, if 𝑍(𝑆3) is the zero vector
space, 𝑍(𝐷4) is zero and hence 𝑍 is zero. Similarly, if 𝑍(𝑆2 × 𝑆1) is zero, by excising and regluing
an embedded 𝑆2 × 𝐷2 from 𝐷4, it again follows that 𝑍(𝐷4) = 0, and hence, that 𝑍 is zero. □

The direct sum 𝑍1 ⊕ 𝑍2 of two oriented topological field theories [18] is defined to be the topo-
logical field theory which assigns the vector space 𝑍1(𝑀) ⊕ 𝑍2(𝑀) to any non-empty connected
closed oriented (𝑛 − 1)-manifold𝑀 and the tensor product of these spaces to disconnected man-
ifolds. Similarly, to a non-empty connected compact oriented 𝑛-bordism𝑊, it assigns the direct
sum of linearmaps 𝑍1(𝑊) and 𝑍2(𝑊) (interpreted as a linearmap between the appropriate tensor
products of direct sums) and again extends to non-connected bordisms by taking tensor products.
In particular, the value of 𝑍1 ⊕ 𝑍2 on a non-empty connected closed oriented 𝑛-manifold is sim-
ply the sum of the values of 𝑍1 and 𝑍2. We say that a topological field theory is indecomposable if
it is not isomorphic to a direct sum of non-zero field theories.
Using the fact that for every non-empty connected closed oriented (𝑛 − 1)-manifold 𝑀, the

vector space 𝑍(𝑀) carries a canonical action of the algebra 𝑍(𝑆𝑛−1), Sawin [41] showed that direct
sum decompositions of a topological field theory 𝑍 ∶ Bord𝑛 
→ Vect𝑘 are controlled by its algebra
of local operators 𝑍(𝑆𝑛−1).

Proposition 2.5 [41, Theorem 1]. The algebra of local operators 𝑍(𝑆𝑛−1) is the direct sum of Frobe-
nius algebras 𝐴1 ⊕ 𝐴2 if and only if 𝑍 is the direct sum 𝑍1 ⊕ 𝑍2 of topological field theories 𝑍1 and
𝑍2 whose algebras of local operators are 𝐴1 and 𝐴2, respectively.
In particular, 𝑍 is indecomposable if and only if the algebra of local operators of 𝑍 is

indecomposable as a Frobenius algebra.

2.2 Semisimple topological field theories

Definition 2.6. An oriented four-dimensional topological field theory 𝑍 ∶ Bord4 
→ Vect𝑘
is semisimple if both its algebra of local operators 𝑍(𝑆3) and its fusion algebra 𝑍(𝑆2 × 𝑆1)
are semisimple.

Example 2.7. Due to their direct amenability to techniques from algebraic topology, the arguably
best-understood class of topological field theories are the invertible field theories [22, 43]. In our 1-
categorical setting, invertibility of a topological field theory 𝑍 ∶ Bord4 
→ Vect𝑘 amounts to the
requirement that all vector spaces 𝑍(𝑀3) are one-dimensional, and all linear maps 𝑍(𝑊4) ∶

𝑍(𝑀3) 
→ 𝑍(𝑁3) are invertible. Since any 𝑘-algebra on a one-dimensional vector space is trivial,
every oriented invertible four-dimensional topological field theory is automatically semisimple.

Using Proposition 2.5, we observe that every semisimple topological field theory decomposes
into a finite direct sum of semisimple field theories with 𝑍(𝑆3) ≅ 𝑘.

Proposition 2.8. Every semisimple oriented topological field theory admits a decomposition into a
finite direct sum of indecomposable semisimple field theories. A semisimple oriented topological field
theory 𝑍 is indecomposable if and only if 𝑍(𝑆3) ≅ 𝑘.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 551

Proof. By Artin–Wedderburn, every finite-dimensional semisimple commutative algebra over an
algebraically closed field 𝑘 is a finite direct sum⊕𝑖𝑘 of copies of the trivial algebra 𝑘. It therefore
follows from Proposition 2.5 that 𝑍 is indecomposable if and only if 𝑍(𝑆3) ≅ 𝑘.
Suppose that 𝑍 =

⨁
𝑖 𝑍𝑖 is a semisimple topological field theory, where 𝑍𝑖 are indecomposable

topological field theories. We then claim that each component 𝑍𝑖 is itself semisimple. Of course,
𝑍𝑖(𝑆

3) ≅ 𝑘 is semisimple. By the definition of the direct sum of topological field theories, it follows
that the algebra𝑍(𝑆2 × 𝑆1) is a direct sum of the algebras𝑍𝑖(𝑆2 × 𝑆1). The claim then follows since
every component in a direct sum decomposition of a semisimple algebra is again semisimple. □

2.3 Unitary topological field theories are semisimple

In this section, we work over the field 𝑘 = ℂ and prove that every unitary topological field theory
is semisimple.
For a bordism𝑊 ∶ 𝑀 
→ 𝑁, we let𝑊 ∶ 𝑁 
→ 𝑀 denote the bordism with opposite orientation

(and hence source and target interchanged). A unitary topological field theory is a symmetric
monoidal functor Bord𝑛 
→ Hilb into the symmetric monoidal category of Hilbert spaces and lin-
ear maps such that 𝑍(𝑊) = 𝑍(𝑊)† ∶ 𝑍(𝑁) 
→ 𝑍(𝑀) is the adjoint linear map of 𝑍(𝑊) ∶ 𝑍(𝑀) 
→
𝑍(𝑁). In other words, both symmetric monoidal categories Bord𝑛 and Hilb admit a dagger struc-
ture (also known as ∗-structure) and a unitary topological field theory is required to preserve that
structure.

Theorem 2.9. Any unitary topological field theory is semisimple.

Proof. For a unitary topological field theory, 𝑍(𝑆3) and 𝑍(𝑆2 × 𝑆1) are commutative †-Frobenius
algebras inHilb, which is commutative Frobenius algebras such that the comultiplicationΔ is the
adjoint linear map of the multiplication: Δ = 𝑚†. The theorem then follows from the fact that the
underlying finite-dimensionalℂ-algebra of every †-Frobenius algebra inHilb admits the structure
of a finite-dimensional 𝐶∗-algebra [9, Corollary 4.3] and is therefore semisimple. □

2.4 Once-extended 𝒌-linear topological field theories are semisimple

Most existing topological field theories—and in particular the ones motivated by physics—are
either proven or believed to be extended, meaning that they also assign algebraic data tomanifolds
of higher codimension and allow gluing not only along boundaries but also along higher codimen-
sional corners. Here, we show that any topological field theory that is ‘once-extended’ in the sense
that it also assigns 𝑘-linear categories to closed oriented 2-manifolds is automatically semisimple.
We follow [42] and letBord4,3,2 denote the symmetricmonoidal bicategory of once-extended ori-

ented bordism. Roughly speaking, its objects are closed oriented 2-manifolds, its 1-morphisms are
compact oriented three-dimensional bordism and its 2-morphisms are diffeomorphism classes of
compact oriented four-dimensional bordismswith corners.We refer to [42] for a precise definition
of this symmetric monoidal bicategory.
In the following, a once-extended 𝑘-linear oriented four-dimensional topological field theory is

a symmetric monoidal 2-functor Bord4,3,2 
→ 2Vect𝑘, where 2Vect𝑘 is the symmetric monoidal
bicategory of additive and idempotent complete 𝑘-linear categories, 𝑘-linear functors and natu-
ral transformations. In fact, there are many possible symmetric monoidal bicategories 𝑇 which
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552 REUTTER

serve as a potential target ‘extending’ Vect𝑘 (in the sense that Hom𝑇(𝐼𝑇, 𝐼𝑇) ≅ Vect𝑘). In [4,
Appendix A], various other natural candidates for such bicategories of ‘2-vector spaces’ are dis-
cussed, including the bicategory of 𝑘-algebras, 𝑘-bimodules and bimodule maps. By restricting
to closed oriented 3-manifolds and bordisms between them, any once extended 𝑘-linear topolog-
ical field theory 𝑍 ∶ Bord4,3,2 
→ 𝑇 induces an ordinary four-dimensional topological field theory
Ω𝑍 ∶ Bord4 
→ Vect𝑘 in the sense of Section 2.1.

Theorem 2.10. Let 𝑍 ∶ Bord4,3,2 
→ 𝑇 be a once extended 𝑘-linear oriented four-dimensional topo-
logical field theory, where 𝑇 is 2Vect𝑘 or any of the other symmetric monoidal bicategories of [4,
Appendix A]. Then,Ω𝑍 ∶ Bord4 
→ Vect𝑘 is semisimple.

Proof. Based on an observation of Tillmann [47], it is shown in [4, Theorem A.22] that the sym-
metric monoidal bicategory 2Vectf .d.

𝑘
of finite semisimple 𝑘-linear categories, 𝑘-linear functors

and natural transformations is equivalent to the fully dualisable subcategory of any of the bicat-
egories 𝑇. Therefore, any topological field theory Bord4,3,2 
→ 𝑇 factors through 2Vectf .d.

𝑘
and we

may henceforth assume that 𝑇 = 2Vectf .d.
𝑘
.

The cancellation of 0- and 1-handles gives rise to an adjunction† between the 1-morphisms
𝐷3 ∶ ∅ 
→ 𝑆2 and 𝐷3 ∶ 𝑆2 
→ ∅ in the bordism bicategory Bord4,3,2 with the following unit and
counit.

Omitting coherence isomorphisms from the notation, any adjunction (𝑓 ∶ 𝑎 
→ 𝑏, g ∶
𝑏 
→ 𝑎, 𝜂 ∶ id𝑎 ⇒ g ◦𝑓, 𝜖 ∶ 𝑓 ◦ g ⇒ id𝑏) in a bicategory  gives rise to an algebra object

(g ◦𝑓, g ◦𝑓 ◦ g ◦𝑓
g ◦ 𝜖 ◦𝑓
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ g ◦𝑓, id𝑎

𝜂
⇐⇐⇐⇐⇒ g ◦𝑓) in the monoidal category Hom(𝑎, 𝑎). Since the

right adjoint g , the unit 𝜂 and the counit 𝜖 are uniquely determined up to isomorphism by 𝑓,
it follows that this algebra is also uniquely determined by 𝑓 up to algebra isomorphism.

Decomposing 𝑆3 as ∅
𝐷3



→ 𝑆2
𝐷3



→ ∅ and observing that the ‘pair of pants bordism’ 𝑚3 ∶ 𝑆
3 ⊔

𝑆3 
→ 𝑆3 of Section 2.1 corresponds to a 1-handle attachment, it follows that the algebra structure
(𝑆3,𝑚3, 𝑢3) of Section 2.1 indeed arises in this way from the adjunction between 𝐷3 ∶ ∅ 
→ 𝑆2 and
𝐷3 ∶ 𝑆2 
→ ∅.
Up to isomorphism, the algebra (𝑍(𝑆3), 𝑍(𝑚3), 𝑍(𝑢3)) is therefore uniquely determined by the

linear functor 𝑍(𝐷3) ∶ 𝑍(∅) 
→ 𝑍(𝑆2). Since the monoidal unit of 2Vectf .d.
𝑘

is the finite-semisimple
category Vectf .d.

𝑘
of finite-dimensional vector spaces, and since every linear functor from Vectf .d.

𝑘
into a finite semisimple category is completely determined by where it sends the one-dimensional
vector space 𝑘, we will henceforth tacitly identify the category of linear functorsVectf .d.

𝑘

→  with

†Recall that a pair of 1-morphisms𝑓 ∶ 𝑎 
→ 𝑏 and g ∶ 𝑏 
→ 𝑎 in a bicategory forman adjunction if there are 2-morphisms 𝜂 ∶
id𝑎 ⇐⇒ g ◦𝑓 and 𝜖 ∶ 𝑓 ◦ g ⇐⇒ id𝑏 , called the unit and counit of the adjunction, such that (omitting coherence isomorphisms
for better readability) (𝜖 ◦ id𝑓) ⋅ (id𝑓 ◦ 𝜂) = id𝑓 and (idg ◦ 𝜖) ⋅ (𝜂 ◦ idg ) = idg . A 1-morphism 𝑓 ∶ 𝑎 
→ 𝑏 which is part of an
adjunction as above is said to be a left adjoint. Given a left adjoint 1-morphism 𝑓 ∶ 𝑎 
→ 𝑏, its right adjoint g ∶ 𝑏 
→ 𝑎 and
the unit 𝜂 and counit 𝜖 of the adjunction are uniquely determined up to isomorphism.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 553

 itself. It follows that 𝑍(𝐷3) ∶ 𝑍(∅) ≅ Vectf .d.
𝑘


→ 𝑍(𝑆2) singles out an object† 𝐼 of the category
𝑍(𝑆2). A right adjoint of this functor is the functor Hom𝑍(𝑆2)(𝐼, −) ∶ 𝑍(𝑆

2) 
→ Vectf .d.
𝑘

and the
resulting algebra structure on the composite Hom𝑍(𝑆2)(𝐼, 𝐼) (understood as an object of Vectf .d.𝑘

)
is simply the usual algebra structure induced by composition in the category 𝑍(𝑆2). Since 𝑍(𝑆2)
is a semisimple category, it follows that the endomorphism algebraHom𝑍(𝑆2)(𝐼, 𝐼) is semisimple.
Applying the same argument to the ‘dimensionally reduced’ topological field theory 𝑍(− ×

𝑆1) ∶ Bord3,2,1 
→ 2Vect implies that 𝑍(𝑆2 × 𝑆1) is the endomorphism algebra Hom𝑍(𝑆1×𝑆1)(𝐼, 𝐼)

of some object 𝐼 in the semisimple category 𝑍(𝑆1 × 𝑆1) and is therefore also semisimple. □

Example 2.11. As discussed in Example 2.3, the Crane–Yetter–Kauffman theory is expected to
be fully extended taking values in the 4-category of braided tensor categories [5, 48]. In particular,
Theorem 2.10 should imply that CYK is semisimple. Alternatively, one can directly show that
the algebra of local operators HomZsym()

(𝐼, 𝐼) ≅ 𝑘 and the fusion algebra 𝐾0(Zsym()) ⊗ℤ 𝑘 are
semisimple‡ [19, Corollary 3.7.7].

3 SEMISIMPLE TOPOLOGICAL FIELD THEORIES ARE
𝑺𝟐 × 𝑺𝟐-STABLE

Let 𝑋 be a connected, closed, oriented 𝑛-manifold. Two connected compact oriented 𝑛-bordisms
𝑀,𝑁 ∶ 𝐴 
→ 𝐵 are 𝑋-stably diffeomorphic if there are natural numbers 𝑘+, 𝑘− ⩾ 0 and an
orientation-preserving diffeomorphism of oriented bordisms

𝑀#𝑘+𝑋#𝑘−𝑋 ≅ 𝑁#𝑘+𝑋#𝑘−𝑋.

Here, and throughout this paper, connected sums are taken in the interior of bordisms.

Definition 3.1. An 𝑛-dimensional oriented topological field theory is 𝑋-stable if 𝑍(𝑀) = 𝑍(𝑁)
for 𝑋-stably diffeomorphic connected compact oriented 𝑛-bordisms𝑀 and 𝑁.

In this paper, we will be concerned with 𝑋 = 𝑆2 × 𝑆2 and 𝑋 = ℂ𝑃2 (note that 𝑆2 × 𝑆2 admits
an orientation-reversing diffeomorphism, whereas ℂ𝑃2 does not).
Most results in this paper ultimately follow from the followingwell-known and straightforward

observation about field theories with trivial algebra of local operators.

Proposition 3.2. Let 𝑍 be an oriented 𝑛-dimensional topological field theory with 𝑍(𝑆𝑛−1) ≅ 𝑘.
Then, 𝑍(𝑆𝑛) is invertible and 𝑍 is multiplicative under connected sums: For a connected closed

†Of course, this object 𝐼 is the tensor unit of the monoidal structure on  induced from embeddings of 3-disks. Even
though we will henceforth denote this object by 𝐼, this observation is not necessary for our proof of Theorem 2.10.
‡ In [19, Corollary 3.7.7], it is shown that for any fusion ring𝐴 [19, Definition 3.1.7], the algebra𝐴ℂ ∶= 𝐴 ⊗ℤ ℂ is semisim-
ple. To extend this to arbitrary fields of characteristic zero, note that any fusion ring 𝐴 admits a canonical Frobenius
algebra structure in the category of free abelian groups (using the notation of [19, Section 3.1], comultiplication and counit
are given by Δ(𝑏𝑖) ∶=

∑
𝑗 𝑏𝑗 ⊗ 𝑏∗

𝑗
𝑏𝑖 and 𝜏(1) ∶= 1, 𝜏(𝑏𝑖) = 0 for 𝑏𝑖 ≠ 1). In particular, by Proposition 3.3, 𝐴𝑘 = 𝐴⊗ℤ 𝑘 is

semisimple if and only if the endomorphism (of free abelian groups) 𝑓 ∶= 𝑚 ◦Δ ∶ 𝐴 
→ 𝐴 is invertible over 𝑘. But since
𝑓 is invertible over ℂ and since 𝑘 is of characteristic zero (as assumed for the Crane–Yetter theory), it follows that 𝑓 is
invertible over 𝑘 and hence that 𝐴𝑘 is semisimple.

 17538424, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12288 by M
PI 345 M

athem
atics, W

iley O
nline L

ibrary on [11/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



554 REUTTER

oriented 𝑛-manifold𝑀 and a connected oriented 𝑛-bordism 𝑁 ∶ 𝐴 
→ 𝐵, the following holds, where
the connected sum is taken in the interior of𝑁:

𝑍(𝑀#𝑁) = 𝑍(𝑆𝑛)−1𝑍(𝑀)𝑍(𝑁).

Proof. Since 𝑍(𝐷𝑛) ∶ 𝑍(∅) 
→ 𝑍(𝑆𝑛−1) and 𝑍(𝐷𝑛) ∶ 𝑍(𝑆𝑛−1) 
→ 𝑍(∅) are the unit and counit of a
Frobenius algebra on 𝑘, it follows that they and hence also their composite 𝑍(𝑆𝑛) are invert-
ible. Note that Proposition 3.2 follows from the special case 𝐴 = ∅ by precomposing 𝑁 ∶ 𝐴 
→ 𝐵

with the bordism 𝐴 × 𝐷1 ∶ ∅ 
→ 𝐴 ⊔ 𝐴. For 𝐴 = ∅, the proposition follows from the following
decomposition:

𝑍(𝑀#𝑁) = 𝑍(∅)
𝑍(𝑀⧵𝐷𝑛)








→ 𝑍(𝑆𝑛−1)

𝑍(𝑁⧵𝐷𝑛)








→ 𝑍(𝐵)

= 𝑍(∅)
𝑍(𝑀⧵𝐷𝑛)






→ 𝑍(𝑆𝑛−1)

𝑍(𝐷𝑛)



→ 𝑍(∅)

𝑍(𝐷𝑛)−1





→ 𝑍(𝑆𝑛−1)
𝑍(𝐷𝑛)−1





→ 𝑍(∅)
𝑍(𝐷𝑛)



→ 𝑍(𝑆𝑛−1)

𝑍(𝑁⧵𝐷𝑛)






→ 𝑍(𝐵)

= 𝑍(∅)
𝑍(𝑀)





→ 𝑍(∅)

𝑍(𝑆𝑛)−1








→ 𝑍(∅)
𝑍(𝑁)




→ 𝑍(𝐵). □

3.1 Proving 𝑺𝟐 × 𝑺𝟐-stability

Combining Propositions 2.8 and 3.2, proving 𝑆2 × 𝑆2-stability of semisimple topological field theo-
ries is equivalent to proving invertibility of 𝑍(𝑆2 × 𝑆2) for indecomposable semisimple topological
field theories. In the following section, we achieve this by combining a certain diffeomorphism
of 4-bordisms with the following well-known algebraic characterisation of semisimple Frobenius
algebras.

Proposition 3.3. A commutative Frobenius algebra (𝐴,𝑚, 𝑢, Δ, 𝜖) is semisimple if and only if the
‘window endomorphism’𝑚 ◦Δ ∶ 𝐴 
→ 𝐴 is invertible.

Proof. Recall that a 𝑘-algebra (𝐴,𝑚 ∶ 𝐴 ⊗ 𝐴 
→ 𝐴, 𝑢 ∶ 𝑘 
→ 𝐴) is separable if there exists a separat-
ing morphism 𝛿 ∶ 𝐴 
→ 𝐴⊗𝐴 such that 𝑚 ◦ 𝛿 = id𝐴 and such that 𝑚 and 𝛿 fulfill the Frobenius
condition (1). Over an algebraically closed field 𝑘, the notions of separability and semisimplicity
are equivalent† [14].
Let 𝛿 ∶ 𝐴 
→ 𝐴⊗𝐴 be a separating morphism for (𝐴,𝑚, 𝑢). Using the Frobenius condition (1)

and the fact that 𝛿 is a separating morphism, it can then directly be shown that 𝑥 ∶= (id𝐴 ⊗
𝜖) ◦ 𝛿 = (𝜖 ⊗ id𝐴) ◦ 𝛿 ∶ 𝐴 
→ 𝐴 is inverse to𝑚 ◦Δ.
Conversely, if 𝑚 ◦Δ ∶ 𝐴 
→ 𝐴 is invertible with inverse 𝑓 ∶ 𝐴 
→ 𝐴, then Δ ◦𝑓 is a separating

morphism. □

In Bord4, the ‘window endomorphism’ of the commutative Frobenius algebra object (𝑆2 ×
𝑆1,𝑚2 × 𝑆

1, 𝑢2 × 𝑆
1, Δ2 × 𝑆

1, 𝜖2 × 𝑆
1) is the composite bordism

𝑊𝑆2×𝑆1 ∶= 𝑆
2 × 𝑆1

Δ2×𝑆
1







→ 𝑆2 × 𝑆1 ⊔ 𝑆2 × 𝑆1
𝑚2×𝑆

1







→ 𝑆2 × 𝑆1.

This endomorphism has ‘eigenvector’ 𝑆2 × 𝐷2, as witnessed by the following diffeomorphism.

† This is more generally true over perfect fields. For more general fields, separability is a strengthening of semisimplicity
and is equivalent to the statement that 𝐴⊗𝑘 𝐾 is semisimple for every field extension 𝐾 of 𝑘.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 555

Proposition 3.4. There is an orientation-preserving diffeomorphism of the following oriented
bordisms ∅ 
→ 𝑆2 × 𝑆1:

𝑊𝑆2×𝑆1 ∪𝑆2×𝑆1 (𝑆
2 × 𝐷2) ≅ (𝑆2 × 𝐷2)#(𝑆3 × 𝑆1)#(𝑆2 × 𝑆2). (3)

Here, the connected sum # is taken in the interior of 𝑆2 × 𝐷2.

Proof. Let 𝐿 and 𝑅 denote the bordisms ∅ 
→ 𝑆2 × 𝑆1 on the left and right of (3), respectively. We
construct a diffeomorphism of bordisms between 𝐿 and 𝑅 by composing them with the bordism
𝐷3 × 𝑆1 ∶ 𝑆2 × 𝑆1 
→ ∅ and constructing a diffeomorphism of pairs(

𝐿̃ ∶= (𝐷3 × 𝑆1) ∪𝑆2×𝑆1 𝐿, 𝐷
3 × 𝑆1

)

→

(
𝑅 ∶= (𝐷3 × 𝑆1) ∪𝑆2×𝑆1 𝑅, 𝐷

3 × 𝑆1
)
. (4)

Using the standard diffeomorphism (𝐷3 × 𝑆1) ∪𝑆2×𝑆1 (𝑆
2 × 𝐷2) ≅ 𝑆4, it follows that the closed

oriented 4-manifold 𝑅 is diffeomorphic to (𝑆3 × 𝑆1)#(𝑆2 × 𝑆2). Moreover, the embedded circle
𝐷3 × 𝑆1 ↪ 𝑅 is null-isotopic.

Observe that the composite bordism 𝑆2
Δ2


→ 𝑆2 ⊔ 𝑆2

𝑚2



→ 𝑆2 is diffeomorphic to the bordism

(𝑆2 × 𝑆1)2 ∶ 𝑆
2 
→ 𝑆2 obtained from removing two 3-disks from the closed oriented 3-manifold

𝑆2 × 𝑆1. Therefore, (𝐷3 × 𝑆1) ∪𝑆2×𝑆1 𝑊𝑆2×𝑆1 is diffeomorphic to the bordism (𝑆2 × 𝑆1)1 × 𝑆
1 ∶

𝑆2 × 𝑆1 
→ ∅, where (𝑆2 × 𝑆1)1 is obtained from removing a single 3-disk from 𝑆2 × 𝑆1. In
particular, the embedded circle

𝐷3 × 𝑆1 ↪ 𝐿̃ = (𝑆2 × 𝑆1)1 × 𝑆
1 ∪𝑆2×𝑆1 (𝑆

2 × 𝐷2)

is null-isotopic. Since 𝐷3 × 𝑆1 ↪ 𝑅 is also null-isotopic, any orientation-preserving diffeomor-
phism of the closed oriented 4-manifolds 𝐿̃ 
→ 𝑅 may be isotoped to a diffeomorphism of
pairs (4).
The closed oriented 4-manifold 𝐿̃ ≅ (𝑆2 × 𝑆1)1 × 𝑆1 ∪𝑆2×𝑆1 (𝑆2 × 𝐷2) is obtained from 𝑆2 × 𝑆1 ×

𝑆1 by performing surgery—that is, replacing an embedded 𝐷3 × 𝑆1 by an 𝑆2 × 𝐷2—on the last
𝑆1 of 𝑆2 × 𝑆1 × 𝑆1. In Akbulut’s dotted circle notation for 1-handles [26, Section 5.4], the stan-
dard handle diagram for 𝑆2 × 𝑆1 × 𝑆1 is a Borromean link with two dotted and one 0-framed
component, together with an additional 0-framed unknot around the meridian of the 0-framed
component:

Performing surgery on the last circle of 𝑆2 × 𝑆1 × 𝑆1 corresponds to replacing one of the dotted
circles with a 0-framed circle. Sliding this new 0-framed circle (twice) over the small 0-framed
meridian circle disentangles it from the rest of the link and allows it to be cancelled against a
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556 REUTTER

3-handle:

The resulting handle diagram is precisely a diagram for 𝑅 ≅ (𝑆3 × 𝑆1)#(𝑆2 × 𝑆2). □

Combining the diffeomorphism of Proposition 3.4 with Proposition 3.3 results in the following
theorem.

Theorem 3.5. Let 𝑍 be an indecomposable semisimple oriented four-dimensional topological field
theory. Then, 𝑍(𝑆2 × 𝑆2) is invertible.

Proof. By definition, the commutative Frobenius algebra 𝑍(𝑆2 × 𝑆1) is semisimple. Hence, by
Proposition 3.3, the window endomorphism 𝑍(𝑤𝑆2×𝑆1) ∶ 𝑍(𝑆

2 × 𝑆1) 
→ 𝑍(𝑆2 × 𝑆1) is invertible.
Applying 𝑍 to the diffeomorphism of Theorem 3.4 and using multiplicativity under connected
sums (Proposition 3.2), we find:

𝑍(𝑊𝑆2×𝑆1) ◦𝑍(𝑆
2 × 𝐷2) = 𝑍(𝑆2 × 𝐷2)

(
𝑍(𝑆4)−2𝑍(𝑆3 × 𝑆1)𝑍(𝑆2 × 𝑆2)

)
.

Since 𝑍(𝑆2 × 𝐷2) ∶ 𝑘 
→ 𝑍(𝑆2 × 𝑆1) is the unit of the (non-zero by Proposition 2.4) algebra (𝑍(𝑆2 ×
𝑆1), 𝑍(𝑆2 × 𝑚1), 𝑍(𝑆

2 × 𝑢1)) and hence a non-zero vector in 𝑍(𝑆2 × 𝑆1), it follows that the scalar
𝑍(𝑆4)−2𝑍(𝑆3 × 𝑆1)𝑍(𝑆2 × 𝑆2) ∈ 𝑘 is an eigenvalue of the invertible endomorphism𝑍(𝑊𝑆2×𝑆1) and
is therefore itself invertible. □

Example 3.6. Using (2) and the standard handle diagram of 𝑆2 × 𝑆2 with two 2-handles attached
along a 0-framed Hopf link, the value of CYK(𝑆

2 × 𝑆2) can be explicitly computed as a product
of the global dimensions of  and of the symmetric centre of  (see [3, Section 6.1]):

CYK(𝑆
2 × 𝑆2) = 2



∑
𝑋∈𝑍𝑠𝑦𝑚()

dim(𝑋)2.

In particular, Theorem 3.5 may be understood as a geometric analogue of the invertibility of the
global dimension of braided fusion categories [17].

Our main Theorem A is a direct corollary of Theorem 3.5.

Proof of Theorem A. By Proposition 2.8, we can assume that 𝑍 is indecomposable and in partic-
ular that 𝑍(𝑆3) ≅ 𝑘. Let 𝑛 ∈ ℤ⩾0 be such that𝑀#𝑛(𝑆2 × 𝑆2) ≅ 𝑁#𝑛(𝑆2 × 𝑆2). Multiplicativity of
indecomposable semisimple field theories (Proposition 2.8) implies that

𝑍(𝑀) 𝑍(𝑆4)−𝑛𝑍(𝑆2 × 𝑆2)𝑛 = 𝑍(𝑁) 𝑍(𝑆4)−𝑛𝑍(𝑆2 × 𝑆2)𝑛.

Since 𝑍(𝑆2 × 𝑆2) is invertible (Theorem 3.5), it follows that 𝑍(𝑀) = 𝑍(𝑁). □
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 557

3.2 Consequences of Theorem A

Stable diffeomorphism is a very well-studied equivalence relation on the set of closed oriented
4-manifolds. A classical theorem of Wall [49] shows that two connected, simply connected closed
oriented 4-manifolds are 𝑆2 × 𝑆2-stably diffeomorphic if and only if they have isomorphic inter-
section forms. More generally, Kreck [30] showed that the stable diffeomorphism class of a closed
oriented 4-manifold is completely determined by its oriented 1-type and the bordism class of the
manifold in an appropriately structured bordism group. This essentially reduces the classifica-
tion of stable diffeomorphism classes to a bordism problem. Kreck’s classification is particularly
simple in the non-spinnable case: Indeed, the 𝑆2 × 𝑆2-stable diffeomorphism class of any closed
oriented 4-manifold𝑀 whose universal cover does not admit a spin structure is completely deter-
mined by its Euler characteristic 𝜒(𝑀), signature 𝜎(𝑀), fundamental group 𝜋1(𝑀) and the image
of the fundamental class 𝑐∗[𝑀] ∈ 𝐻4(𝜋1(𝑀), ℤ) under a classifying map of the universal cover
𝑐 ∶ 𝑀 
→ 𝐾(𝜋1(𝑀), 1).
Using these results and a theorem of Gompf [25], we obtain a proof of Corollary B.

Proof of Corollary B. The first statement follows from a theorem of Gompf [25] which shows
that two homeomorphic closed oriented 4-manifolds are 𝑆2 × 𝑆2-stably diffeomorphic. The sec-
ond statement follows from Wall’s theorem [49]. The last statement is a direct consequence of
Kreck’s classification [30] of 𝑆2 × 𝑆2-stable diffeomorphism classes of closed oriented 4-manifolds
with universal covers which do not admit spin structures. □

Remark 3.7. Alternatively, Corollary B.2 also follows from Corollary B.1 and Freedman’s cele-
brated classification of simply connected topological 4-manifolds [21] which implies that two
simply connected closed smooth 4-manifolds are homeomorphic if and only if they have the same
homotopy type.

Remark 3.8. In Corollary B, the assumptions on simply-connectedness or non-spinnability of uni-
versal covers are due to the relatively simple classification of stable diffeomorphism types in these
situations. For the classification of stable diffeomorphism types of more general manifolds, see,
for example, [13, 46] or Question 1.1.

Using Theorem A, we can evaluate an indecomposable semisimple theory 𝑍 on a manifold𝑀
by evaluating it on a potentially much simpler ‘reference manifold’ in the same 𝑆2 × 𝑆2-stable dif-
feomorphism class. For example, to evaluate 𝑍 on a simply connected closed oriented 4-manifold
𝑀, we only need to know the Euler characteristic and signature of 𝑀 and the value of 𝑍 on the
manifolds 𝑆4, 𝑆2 × 𝑆2, ℂ𝑃2, ℂ𝑃

2
and the Kummer surface 𝐾3.

Corollary 3.9. Let 𝑍 be an indecomposable semisimple oriented four-dimensional topological field
theory and let𝑀 be a connected, simply connected closed oriented 4-manifold. If𝑀 does not admit
a spin structure, then

𝑍(𝑀) = 𝑍(ℂ𝑃2)
1
2
(𝜒(𝑀)+𝜎(𝑀)−2) 𝑍(ℂ𝑃

2
)
1
2
(𝜒(𝑀)−𝜎(𝑀)−2). (5)

If𝑀 admits a spin structure, then

𝑍(𝑀) = 𝑍(𝐾3)−
𝜎(𝑀)
16 𝑍(𝑆2 × 𝑆2)

1
2

(
𝜒(𝑀)−2+ 11

8
𝜎(𝑀)

)
. (6)

Here, for a closed oriented 4-manifold𝑀, we use the notation 𝑍(𝑀) ∶= 𝑍(𝑆4)−1𝑍(𝑀).
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558 REUTTER

Proof. By Wall’s theorem [49], two connected, simply connected closed oriented 4-manifolds are
𝑆2 × 𝑆2-stably diffeomorphic if and only if they have isomorphic intersection forms. As a con-
sequence of Donaldson’s theorem [15], this is equivalent to requiring their Euler characteristic,
signature and parity to agree. Since the parity of the intersection form of a simply connected
smooth 4-manifold is even if and only if the manifold admits a spin structure, the classification
of 𝑆2 × 𝑆2-stable diffeomorphism classes of simply connected 4-manifolds splits into a spin and
non-spin case.
In the non-spin case, we note that ℂ𝑃2 is a simply connected non-spin manifold with Euler

characteristic 3 and signature 1. Since𝑀 is a simply connected 4-manifold which does not admit
a spin structure, it cannot be a homology sphere and hence has 𝑏+

2
(𝑀) + 𝑏−

2
(𝑀) = 𝑏2(𝑀) ⩾ 1.

Therefore, the simply connected 4-manifold𝑁 ∶= #𝑏
+
2
(𝑀)ℂ𝑃2#𝑏

−
2
(𝑀)ℂ𝑃2 has at least one factor of

ℂ𝑃2 or ℂ𝑃
2
and hence does not admit a spin structure. Since its Euler characteristic is 𝜒(𝑀) and

its signature is 𝜎(𝑀), it follows that 𝑁 is 𝑆2 × 𝑆2-stably diffeomorphic to𝑀. Formula (5) follows
from multiplicativity of 𝑍 up to 𝑍(𝑆4) factors.
For the spin case, we note that the 𝐾3-surface is a simply connected spin manifold with Euler

characteristic 24 and signature−16. By Rohlin’s theorem [40], the signature 𝜎(𝑀) of a closed spin
manifold 𝑀 is divisible by 16 and since 𝑀 is simply connected and hence 𝜒 ≡ 𝜎 (mod 2), the
Euler characteristic 𝜒(𝑀) is even. Assuming that 𝑀 has negative signature 𝜎(𝑀) = −16𝑠 ⩽ 0, it
follows that the following two simply connected spinmanifolds have the sameEuler characteristic
(namely 𝜒(𝑀) + 2𝑎 = 2 + 22𝑠 + 2𝑏) and signature (namely 𝜎(𝑀) = −16𝑠) and are therefore 𝑆2 ×
𝑆2-stably diffeomorphic:

𝑀#𝑎(𝑆2 × 𝑆2) #𝑠𝐾3#𝑏(𝑆2 × 𝑆2). (7)

Here, 𝑎 and 𝑏 are non-negative integers such that 𝑏 − 𝑎 = 1

2
(𝜒(𝑀) − 2 − 22𝑠). Since𝜒(𝑀) is even,

it is always possible to choose such integers.† Formula (6) then follows from multiplicativity
of 𝑍 and invertibility of 𝑍(𝑆2 × 𝑆2). If 𝜎(𝑀) = 16𝑠 ⩾ 0, we may replace 𝐾3 by 𝐾3 in (7) to get
an analogous stable diffeomorphism. It follows from the orientation-preserving diffeomorphism
𝐾3#𝐾3 ≅ #22(𝑆2 × 𝑆2) that 𝑍(𝐾3) and 𝑍(𝐾3) are invertible, and that we may replace 𝑍(𝐾3) by
𝑍(𝐾3)−1𝑍(𝑆2 × 𝑆2)22 in the resulting formula. This again results in formula (7). □

Remark 3.10. Using Kreck’s classification [30], analogous formulas can be derived in the non-
simply connected case. See Remark 4.10 for a discussion of this in the simpler case ofℂ𝑃2-stability.

4 ℂ𝑷𝟐-STABILITY, THE GLUCK TWIST AND EMERGENT
FERMIONS

To lift the spinnability assumption of Corollary B.3 and to better understand the behaviour of
field theories on manifolds which admit a spin structure, we turn to the question of ℂ𝑃2-stability
of semisimple oriented four-dimensional field theories. Since there is an orientation-preserving
diffeomorphism (𝑆2 × 𝑆2)#ℂ𝑃2 ≅ ℂ𝑃2#ℂ𝑃2#ℂ𝑃

2
(see, e.g. [26, Exmaple 5.2.5]), ℂ𝑃2-stability is a

stronger condition than 𝑆2 × 𝑆2-stability. And indeed, there are semisimple oriented topological
field theories which are not ℂ𝑃2-stable.

† In fact, it is not known whether one can always choose 𝑎 = 0. This is equivalent to the simply connected case of the
celebrated ‘ 11

8
-conjecture’ [35] that for any closed spin manifold 𝑏2 ⩾

11

8
|𝜎|.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 559

Example 4.1. Recall that the handle diagram forℂ𝑃2 consists of a single 2-handle attached along
a 1-framed unknot. In particular, using expression (2), the Crane–Yetter–Kauffman theory for a
ribbon fusion category  evaluates ℂ𝑃2 to the Gauss sum

CYK(ℂ𝑃
2) = 

∑
𝑋𝑖∈Irr()

𝜃𝑖 dim(𝑋𝑖)
2,

where 𝜃𝑖 ∈ 𝑘 denotes the ribbon twist of the simple object 𝑋𝑖 . In particular, for  the symmetric
monoidal category sVect𝑘 of super vector spaces† with two simple objects 𝑘+ and 𝑘− which both
have the same dimension dim± = 1 but different twists 𝜃± = ±1, we obtain CYKsVect𝑘 (ℂ𝑃

2) = 0.

Therefore, since 𝑆2 × 𝑆2 is ℂ𝑃2-stably diffeomorphic to ℂ𝑃2#ℂ𝑃
2
and since the indecomposable

semisimple oriented topological field theory CYKsVect vanishes on the latter but is invertible on
the former, it follows that CYKsVect is an example of a field theory which is 𝑆2 × 𝑆2-stable but not
ℂ𝑃2-stable.

4.1 The Gluck twist and emergent fermions

In condensed matter physics, the vanishing of the Gauss sum as in Example 4.1 is more gener-
ally anticipated for theories with emergent fermions [50][6, Corollary 3.6]. In this section, we
show that the vanishing of 𝑍(ℂ𝑃2) is indeed equivalent to the presence of fermions amongst the
‘point particles’ of the topological field theory. Mathematically, this ‘emergence of fermions’ can
be characterised as follows.
The Gluck twist 𝜙𝐺𝑇 is the diffeomorphism 𝑆2 × 𝑆1 
→ 𝑆2 × 𝑆1 defined as (𝑥, 𝑦) ↦ (𝛼(𝑦)𝑥, 𝑦),

where 𝛼 ∶ 𝑆1 
→ SO(3) is a representative of the generator of 𝜋1(SO(3)) = ℤ∕2ℤ.

Definition 4.2. An oriented four-dimensional topological field theory 𝑍 ∶ Bord4 
→ Vect𝑘 has
emergent fermions if the Gluck twist 𝑍(𝜙𝐺𝑇) acts non-trivially.

Remark 4.3. Recall from Remark 2.2 that from the perspective of physics, the ‘fusion algebra’
𝑍(𝑆2 × 𝑆1) may be understood as a decategorification, or trace, of the category (or more gener-
ally, object of some 2-category) of ‘point particles’ 𝑍(𝑆2) in an extended four-dimensional field
theory. From this perspective, the Gluck twist, seen as an invertible four-dimensional bordism
with corners 𝑆2 × [0, 1] ⇐⇒ 𝑆2 × [0, 1], may be understood as encoding the operation of rotating a
point particle by 360 degrees in 3-space. Indeed, we point out that even though our field the-
ory is ‘bosonic’ in that it is a functor from an oriented (and not, say, spin) bordism category to
the category of ordinary (and not, say, super) vector spaces, it may nevertheless have fermionic
point particles which do behave non-trivially under this action of 𝜋1(SO(3)) = ℤ∕2ℤ. In the
condensed-matter physics community, this phenomena is known as the ‘emergence of fermions’
in a bosonic topological order [33]. In particular, wemay decompose the vector space of ‘point par-
ticles’ 𝑍(𝑆2 × 𝑆1) into a vector space of bosons 𝑍(𝑆2 × 𝑆1)+ on which the Gluck twist acts trivially
and a vector space of fermions 𝑍(𝑆2 × 𝑆1)− on which the Gluck twist acts as minus the identity.

†As a monoidal category, sVect𝑘 is the category of ℤ2-graded vector spaces and grading preserving linear maps. The
symmetry isomorphism 𝜎𝑉,𝑊 ∶ 𝑉 ⊗𝑊 
→ 𝑊 ⊗𝑉 is defined in terms of the usual sign rule mapping homogenous vectors
𝑣, 𝑤 with grading |𝑣|, |𝑤| ∈ ℤ2 to 𝜎(𝑣 ⊗ 𝑤) = (−1)|𝑣||𝑤|𝑤 ⊗ 𝑣. Moreover, we always take 2Vect𝑘 to be equipped with the
unique ribbon structure for which all dimensions are positive.
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560 REUTTER

Example 4.4. For the Crane–Yetter–Kauffman theory of Examples 2.3 and 4.1, the Gluck twist
CYK(𝜙𝐺𝑇) ∶ CYK(𝑆

2 × 𝑆1) 
→ CYK(𝑆
2 × 𝑆1) is the endomorphism of 𝐾0(Zsym()) ⊗ℤ 𝑘map-

ping (the isomorphism class of) a transparent simple object 𝑋𝑖 to 𝜃𝑖𝑋𝑖 , where 𝜃𝑖 ∈ 𝑘× denotes the
ribbon twist of𝑋𝑖 . In particular, in agreementwith Remark 4.3, theGluck twist acts non-trivially if
and only if the ribbon category  has fermions†—transparent simple objects with non-trivial twist.

4.2 The Gluck twist is ℂ𝑷𝟐-trivial

In the following, we show that the Gluck twist, seen as an invertible four-dimensional bor-
dism 𝑆2 × 𝑆1 
→ 𝑆2 × 𝑆1, is ℂ𝑃2-stably diffeomorphic to the cylinder 𝑆2 × 𝑆1 × [0, 1]. Hence, any
ℂ𝑃2-stable oriented topological field theory has trivial Gluck twist, and can therefore not have
emergent fermions.
For an orientation-preserving diffeomorphism 𝜙 ∶ 𝑀 
→ 𝑁 of closed oriented 3-manifolds,

we write Cyl(𝜙) ∶ 𝑀 
→ 𝑁 for the mapping cylinder, defined as the compact oriented four-

dimensional bordism 𝑀
𝜙×{0}




→ 𝑁 × [0, 1]

id𝑁×{1}
←





 𝑁. Given a topological field theory, we abuse

notation and write 𝑍(𝜙) ∶ 𝑍(𝑀) 
→ 𝑍(𝑁) for the linear map 𝑍(Cyl(𝜙)).
All results of this section are direct consequences of the following diffeomorphism.

Proposition 4.5. There is an orientation-preserving diffeomorphism of the following oriented
bordisms 𝑆2 × 𝑆1 
→ 𝑆2 × 𝑆1:

ℂ𝑃2#Cyl(𝜙𝐺𝑇) ≅ ℂ𝑃2#(𝑆2 × 𝑆1 × [0, 1]). (8)

Proof. We construct a diffeomorphism 𝜓 of ℂ𝑃2#(𝑆2 × 𝑆1 × [0, 1]) such that 𝜓|𝑆2×𝑆1×{0} is the
identity and 𝜓|𝑆2×𝑆1×{1} is the Gluck twist 𝜙𝐺𝑇 . Recall that a relative Kirby diagram [26, Section 5.5]
for a connected compact oriented 4-bordism 𝑊 ∶ 𝜕−𝑊 
→ 𝜕+𝑊 with connected and non-empty
𝜕−𝑊 comprises a surgery diagram for the 3-manifold 𝜕−𝑊, together with a Kirby diagram for the
additional handles of𝑊 superimposed on that surgery diagram. Following the convention of [26,
Section 5.5], we put brackets around the framing coefficients of the link components belonging to
the surgery diagram of 𝜕−𝑊. Therefore, given a relative Kirby diagram, the 3-manifold 𝜕−𝑊 can
be obtained by doing surgery on the sublink with bracketed framing coefficients, and 𝜕+𝑊 can be
obtained by doing surgery on the entire link diagram.
A relative Kirby diagram for𝑊 = ℂ𝑃2#(𝑆2 × 𝑆1 × [0, 1]) consists of the disjoint union of a ⟨0⟩-

framed unknot (a surgery diagram for 𝑆2 × 𝑆1) and a 1-framed unknot (a 2-handle attachment
giving rise to the bordism ℂ𝑃2#(𝑆2 × 𝑆1 × [0, 1]). We construct 𝜓 as a sequence of relative Kirby
moves [26, Theorem 5.5.3] such that, when restricted to bracketed components, 𝜓 is the identity
and, when considered as a sequence of moves of surgery diagrams for 𝜕+𝑊 = 𝑆2 × 𝑆1, 𝜓 corre-
sponds to the Gluck twist. Explicitly, we define 𝜓 to be the handle slide of the 1-framed unknot
over the ⟨0⟩-framed unknot. When restricted to 𝜕−𝑊 = 𝑆2 × 𝑆1, 𝜓 is clearly the identity. When
restricted to 𝜕+𝑊,𝜓 defines an orientation-preserving diffeomorphism𝜓+ of 𝑆2 × 𝑆1. On the obvi-
ous embedding 𝐷2 × 𝑆1 ↪ 𝑆2 × 𝑆1, 𝜓+ restricts to a diffeomorphism of 𝐷2 × 𝑆1 which changes

† In our terminology, a fermion in a ribbon fusion category is a transparent simple object 𝑓 with non-trivial twist 𝜃𝑓 = −1.
This differs somewhat from the terminology in parts of the literature [6] where fermions are often also required to fulfill
𝑓 ⊗ 𝑓 ≅ I.
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 561

framing by one. Hence, it follows that 𝜓+ acts trivially on 𝜋1(𝑆2 × 𝑆1). However, following the
prescription of [26, Exaple 5.5.8] for gluing 𝑆2 × 𝐷2 along 𝜓+ to 𝑆2 × 𝐷2 results in the non-trivial
𝑆2-bundle 𝑆2×̃𝑆2. Hence, 𝜓+ is not isotopic to the identity. But it follows from [24] that up to
isotopy, the Gluck twist 𝜙𝐺𝑇 is the unique non-trivial orientation-preserving diffeomorphism of
𝑆2 × 𝑆1 which acts trivially on 𝜋1(𝑆2 × 𝑆1). Therefore, 𝜓+ is isotopic to the Gluck twist 𝜙𝐺𝑇 . □

Corollary 4.6. Let 𝑍 ∶ Bord4 
→ Vect𝑘 be a (not necessarily semisimple) ℂ𝑃2-stable oriented four-
dimensional topological field theory. Then, the Gluck twist 𝑍(𝜙) acts trivially, that is there are no
emergent fermions.

Proof. By Proposition 4.5, the connected bordisms Cyl(𝜙GT) and 𝑆2 × 𝑆1 × [0, 1] are ℂ𝑃2-stably
diffeomorphic. Hence, 𝑍(𝜙GT) = id𝑍(𝑆2×𝑆1). □

Example 4.7. Since any invertible topological field theory 𝑍 is multiplicative on connected sums
(up to 𝑍(𝑆4)-factors) and invertible on ℂ𝑃2, it is automatically ℂ𝑃2-stable and can therefore not
have emergent fermions.

4.3 Semisimple field theories are ℂ𝑷𝟐-stable iff they have trivial
Gluck twist

In this section, we show that for semisimple field theories, the converse of Corollary 4.6 is true.

Theorem 4.8. Let 𝑍 be an indecomposable semisimple oriented four-dimensional topological field
theory. Then, the following are equivalent.

(1) 𝑍 is ℂ𝑃2-stable.
(2) 𝑍 has no emergent fermions, that is, the Gluck twist acts trivially.
(3) One, or equivalently both of 𝑍(ℂ𝑃2) and 𝑍(ℂ𝑃

2
) are invertible.

Proof. Corollary 4.6 shows (1) ⇒ (2) for all oriented four-dimensional topological field theories.
To prove (2) ⇒ (3), we note that ℂ𝑃2#ℂ𝑃

2
can be obtained from 𝑆2 × 𝑆2 by Gluck surgery

(i.e. by removing an embedded 𝑆2 × 𝐷2 and gluing it back in via the Gluck twist). Hence,
triviality of the Gluck twist implies that 𝑍(𝑆2 × 𝑆2) = 𝑍(ℂ𝑃2#ℂ𝑃

2
). Since 𝑍(𝑆2 × 𝑆2) is invert-

ible (Theorem 3.5) and 𝑍 is indecomposable, and hence, multiplicative under connected sums
(Proposition 3.2), it follows that 𝑍(ℂ𝑃2) and 𝑍(ℂ𝑃

2
) are invertible.

If one of 𝑍(ℂ𝑃2) and 𝑍(ℂ𝑃
2
) is invertible, multiplicativity, invertibility of 𝑍(𝑆2 × 𝑆2) and the

orientation-preserving diffeomorphism ℂ𝑃
2
#2ℂ𝑃2 ≅ (𝑆2 × 𝑆2)#ℂ𝑃2 (or its orientation-reversal)

imply that the other is also invertible. Hence, (3) ⇒ (1) follows immediately frommultiplicativity
of 𝑍. □

Remark 4.9. For indecomposable semisimple four-dimensional field theories 𝑍, Theorem 4.8
implies that instead of requiring it for all connected oriented bordisms,ℂ𝑃2-stability is equivalent
to the—a prioriweaker—condition that𝑍(𝑀) = 𝑍(𝑁) for allℂ𝑃2-stably diffeomorphic closed ori-
ented 4-manifolds 𝑀 and 𝑁. Indeed, since 𝑆2 × 𝑆2 and ℂ𝑃2#ℂ𝑃

2
are ℂ𝑃2-stably diffeomorphic,
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562 REUTTER

ℂ𝑃2-stability on closed manifolds implies that 𝑍(𝑆2 × 𝑆2) = 𝑍(ℂ𝑃2#ℂ𝑃
2
) and hence that both

𝑍(ℂ𝑃2) and 𝑍(ℂ𝑃
2
) are invertible.

The proof of Theorem C follows immediately from Theorem 4.8 by decomposing a semisimple
field theory into its indecomposable components.

Proof of Theorem C. By Corollary 4.6, the Gluck twist acts trivially in any ℂ𝑃2-stable oriented
four-dimensional topological field theory. Conversely, suppose that 𝑍 is a semisimple oriented
topological field theory with trivial Gluck twist. By Proposition 2.8,𝑍 ≅

⨁
𝑖 𝑍𝑖 can be decomposed

into a finite direct sum of indecomposable semisimple field theories 𝑍𝑖 on which the Gluck twist
still acts trivially. Therefore, it follows from Theorem 4.8 that every component 𝑍𝑖 is ℂ𝑃2-stable,
and hence, so is 𝑍. □

4.4 Consequences of Theorem C

The classification ofℂ𝑃2-stable diffeomorphism types is considerably simpler than in the 𝑆2 × 𝑆2-
case. Indeed, it follows from Kreck’s work that two closed oriented 4-manifolds are ℂ𝑃2-stably
diffeomorphic if and only if they have the same Euler characteristic, signature, isomorphic funda-
mental groups and if the images 𝑐∗[𝑀] ∈ H4(𝜋1, ℤ) of their fundamental class under a classifying
map 𝑐 ∶ 𝑀 
→ 𝐾(𝜋1, ℤ) of their universal cover agree (see, e.g. [28]).

Proof of Corollary D. The data described in the last paragraph only depend on the oriented
homotopy type of𝑀. □

Similar to the 𝑆2 × 𝑆2-case, we may evaluate 𝑍 on some 4-manifold 𝑀 by evaluating it on
a simpler ‘reference manifold’ in the same ℂ𝑃2-stable diffeomorphism class. In particular, we
immediately obtain Corollary E as a refinement of Corollary 3.9.

Proof of CorollaryE. We first consider the case that𝑍 does not have emergent fermions, that is that
the Gluck twist acts trivially. In this case, it follows from Theorem C that 𝑍 is ℂ𝑃2-stable. By the
above discussion, two connected, simply connected closed oriented 4-manifolds are ℂ𝑃2-stably
diffeomorphic if and only if they have the same Euler characteristic and signature. In particular,
any such𝑀 is ℂ𝑃2-stably diffeomorphic to #𝑏

+
2
(𝑀)ℂ𝑃2#𝑏

−
2
(𝑀)ℂ𝑃

2
. The ‘no fermions’ entry of the

table follows frommultiplicativity of the indecomposable semisimple field theory 𝑍. Invertibility
of this entry follows from Theorem 4.8 3.
If 𝑍 has emergent fermions, it follows from Theorem 4.8 3 that 𝑍(ℂ𝑃2) = 𝑍(ℂ𝑃

2
) = 0, and

hence, byCorollary 3.9, that𝑀 vanishes on simply connectedmanifoldswhich do not admit a spin
structure. The value of𝑍 on simply connected spinmanifold follows fromCorollary 3.9. It is invert-
ible, since 𝑍(𝑆2 × 𝑆2) is invertible and since there is an orientation-preserving diffeomorphism
𝐾3#𝐾3 ≅ #22(𝑆2 × 𝑆2). □

Remark 4.10. More generally, as explained in [28, Section 1.4], if 𝑀 and 𝑁 are closed oriented
4-manifolds with the same fundamental group 𝜋 and class 𝑐∗[𝑀] = 𝑐∗[𝑁] ∈ 𝐻4(𝜋1) and 𝑍 is an
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SEMISIMPLE FOUR-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 563

indecomposable semisimple field theory without emergent fermions, it follows that

𝑍(𝑀) = 𝑍(𝑁) 𝑍(ℂ𝑃2)
1
2
(Δ𝜒+Δ𝜎) 𝑍(ℂ𝑃

2
)
1
2
(Δ𝜒−Δ𝜎),

where Δ𝜒 = 𝜒(𝑀) − 𝜒(𝑁) and Δ𝜎 = 𝜎(𝑀) − 𝜎(𝑁). For example, taking 𝑁 = 𝑆1 × 𝑆3 and not-
ing that 𝑍(𝑆1 × 𝑆3) = dim𝑍(𝑆3) = 1, this allows to evaluate the invariant on manifolds with
fundamental group ℤ as follows:

𝑍(𝑀) = 𝑍(𝑆4)−1 𝑍(ℂ𝑃2)
1
2
(𝜒(𝑀)+𝜎(𝑀))𝑍(ℂ𝑃

2
)
1
2
(𝜒(𝑀)−𝜎(𝑀)).

Example 4.11. As discussed in Example 4.4, the Crane–Yetter–Kauffman field theory CYK has
fermions if and only if  has a transparent simple object with non-trivial twist. In particular, if  is
a modular tensor category,CYK does not have fermions since the only transparent simple object
of  is the tensor unit 𝐼. Therefore, the non-fermion case of Corollary E may be seen as a general-
isation of the explicit computation of CYK in [10]. Of course, in this particular case, this explicit
expression follows more directly from the fact that modularity of  is equivalent to invertibility of
the field theoryCYK , and the classification of four-dimensional invertible oriented field theories
in terms of Euler characteristic and signature [44, Section 1.3].

Applying Theorem 4.8 to the Crane–Yetter–Kauffman theory results in a topological proof of
the following algebraic characterisation of ribbon fusion categories with fermions.

Corollary 4.12. Let  be a ribbon fusion category over an algebraically closed field of character-
istic zero. Then,  contains a simple transparent object with non-trivial twist if and only if one, or
equivalently both, of the Gauss sums 𝜏±


∶=

∑
𝑋𝑖∈Irr()

𝜃±1
𝑖
dim(𝑋𝑖)

2 are zero.

Proof of Corollary 4.12. Since CYK is an indecomposable semisimple field theory which has
emergent fermions if and only if  has a simple transparent object with non-trivial twist (Exam-
ple 4.4), and sinceCYK(ℂ𝑃

2) andCYK(ℂ𝑃
2
) are proportional to the Gauss sums (Example 4.1),

Corollary 4.12 follows from the equivalence 2 ⇔ 3 in Theorem 4.8. □

Remark 4.13. An equivalent, purely algebraic proof of Corollary 4.12 can be obtained starting from
the following formula [19, Lemma 6.10] which holds for any simple object 𝑌 in a ribbon fusion
category :

𝜃𝑌
∑

𝑋∈Irr()

𝜃𝑋 dim(𝑋)𝑠𝑋,𝑌 = dim(𝑌)𝜏
+

. (9)

Here, 𝜃𝑋 and dim(𝑋) denote the twist and dimension of a simple object 𝑋, respectively, and 𝑠𝑋,𝑌
denotes the value of the ‘𝑆-matrix’ of ; the evaluation of a (0-framed) Hopf link whose compo-
nents are labelled by the simple objects 𝑋 and 𝑌. As a direct consequence of (9) (and as a special
case of [19, Proposition 6.11]), it follows that

𝜏+

𝜏−

= dim()𝜏+

Zsym()
. (10)
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564 REUTTER

In particular, if every transparent object 𝑌 of  has trivial twist 𝜃𝑌 = 1, then 𝜏+
Zsym()

=

dim(Zsym()) and hence 𝜏+ 𝜏
−

= dim() dim(Zsym()) is non-zero. Conversely, if 𝑌 is a simple

transparent object, it follows from (9) and invertibility of dim(𝑌) that

𝜃𝑌𝜏
+

= 𝜏+


. (11)

Therefore, the existence of a simple transparent object 𝑌 with twist 𝜃𝑌 = −1 implies that 𝜏+ =
0, and similarly that 𝜏−


= 0. Note that Equations (10) and (11) may be understood as algebraic

analogues of the diffeomorphism between ℂ𝑃2#ℂ𝑃
2
and the non-trivial 𝑆2-bundle 𝑆2×̃𝑆2, and of

Proposition 4.5, respectively.
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