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Abstract 
The developing flexible ultrathin glass for use in foldable displays has attracted widespread attention as an alternative to rigid electronic 
smartphones. However, the detailed compositional effects of chemically strengthened glass are not well understood. Moreover, the spatially 
resolved chemistry and depth of the compression layer of tempered glass are far from clear. In this study, commonly used X-ray 
spectroscopy techniques and atom probe tomography (APT) were used comparatively to investigate the distribution of constituent elements 
in two representative smartphone glass samples: non- and chemically tempered. APT has enabled sub-nanoscale analyses of alkali metals (Li, 
Na, K, and Ca) and this demonstrates that APT can be considered as an alternative technique for imaging the chemical distribution in glass for 
mobile applications. 
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Introduction 
Chemical strengthening of glass was initially proposed by  
Kistler (1962). This process involved replacing one of the con-
stituents with an element of different atomic size and electron-
ic polarizability while maintaining the structure of the pristine 
glass. Since then, extensive research and industrial efforts have 
been carried out to develop this approach for the mechanical 
strengthening of glass in a wide range of applications, includ-
ing aircraft cockpits, digital dashboards, and passenger seat 
displays in automobiles, and hard disk drives for data storage 
(Gy, 2008). Most importantly, it is perceived as the best fabri-
cation method to effectively strengthen ultrathin glass (UTG) 
sheets without influencing their optical properties and mass 
(Yuan et al., 2021). With a thickness below 100 μm, UTG is 
an increasingly popular display material that can be folded 
or rolled like a flexible polymer while protecting the screen 
(Tanaka, 2013). There are many promising applications for 
UTG ranging from wearable devices to solar cells and even 
flexible smartphones (SCHOTT, 2021). A recently available 
commercial flip phone already uses UTG with a thickness of 
30 μm on its rigid display (SamsungDisplay, 2020). 
Moreover, UTGs with a thickness of ∼5 μm have demon-
strated good flexibility in micro-scale applications such as 
femtoliter nanofluidic valves (Kazoe et al., 2019) and dia-
phragm pressure transducers (Yalikun & Tanaka, 2017). 

The manufacture of UTG usually involves the replacement 
of small ions (e.g., Na+) by larger ones from an external ion 
source (e.g., K+). It creates a compressive stress at the surface 
that improves mechanical strength, preventing the possible for-
mation of micro/nano-cracks on the glass surface (Nordberg 
et al., 1964). However, if the ion-exchange process continues 
for a bulk glass, the surface compressive stress will increase, 

while the tensile stress inside the glass will rapidly increase. 
Additionally, a complete diffusion throughout the thickness 
could create severe internal-compressive stress, resulting in 
failure of the material (Shan et al., 2018; Terakado et al., 
2020). Therefore, the depth of the ion-diffused layer (DOL), 
which is defined as the depth at which the residual stress is 
equal to zero, must be measured to ensure high-quality chem-
ically strengthened glass. Generally, the DOL limitation for 
UTG is considered to be one-sixth of the glass thickness; hence, 
830 nm would be the threshold depth for a 5-μm-thick UTG. 

While the kinetics of the alkali ion interdiffusion process 
and chemical strengthening are well reported, the underlying 
atomic-scale compositional effect is less well understood, es-
pecially for UTG (Varshneya, 2010). This is due to the limita-
tions of in-depth chemical characterization instruments that 
offer site-specific analyses. Accordingly, most research still re-
lies on spectroscopy techniques or the nominal weight compo-
sitions from powder-melting synthesis (Farah et al., 2014;  
Wang et al., 2014; Kim et al., 2021). Herein, we assess the per-
formance of atom probe tomography (APT; Gault et al., 2021) 
in a systematic comparison with more conventional chemical 
analysis tools on an aluminosilicate tempered glass and correl-
ate it with increases in glass hardness. We also discuss the 
strength and weaknesses of these selected techniques and dem-
onstrate the complementarity offered by APT that provides 
spatially resolved distribution of alkali-(earth) elements at 
the subnanometer level, including light and trace elements. 

Materials and Methods 
Materials 
We selected an aluminosilicate glass with an initial thickness 
of 750 μm that is used for a commercial mobile display. The 
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material was supplied by a private company. Two glass sam-
ples were prepared; one without any further chemical or 
heat treatment (Glass_0), and one subjected to ion-exchange 
treatment by using an industrial-scale furnace that allowed 
the treatment of a series of samples (Glass_1). 

Ion Exchange 
In the ion-exchange process, the time that the pristine sample 
was submerged into the alkaline solution was calculated based 
on the diffusion law. Usually, a batch temperature of below 
460°C and a processing duration of <24 h are recommended 
(Bartholomew & Garfinkel, 1980). A potassium nitrate 
(KNO3) salt bath was prepared by heating an industrial source 
(>99.9%) of KNO3 to ∼460°C. The sample (Glass_1) was 
then submerged into the bath in the furnace for 1 h to achieve 
an equilibrium state. 

Mechanical Testing 
Two 2 × 2 cm2 samples were prepared from 750 µm thickness 
blank samples: Glass_0 and _1 glasses. Nano-indentations 
tests were done using a Berkovich indenter with an apex semi- 
angle of 65° and with a constant indenter load of 9 mN. One 
hundred indentations were made on each specimen and a dis-
tance of 5 µm was kept between the centers of each 
indentation. 

Characterization 
The Glass_0 and Glass_1 samples were characterized with re-
spect to their composition, structure, and vibration spectrum 
using inductively coupled plasma optical-emission spectros-
copy (ICP-OES, Agilent 5800) and Raman spectroscopy 
(WiTec: Alpha300) in the range of 200–2,000/cm with a green 
laser source (wavelength: 532 nm). 

Scanning electron microscope (SEM)-energy dispersive 
X-ray spectroscopy (EDS) elemental analysis (FEI Helios 
Nanolab 600i) was performed on the Au-coated glass samples 
at 30 kV accelerating voltage and 2.4 nA current. 

The surface region was prepared into a series of APT speci-
mens by using a site-specific preparation approach using a 
Ga-focused ion-beam (FIB)/SEM (FEI Helios Nanolab 600i) 
(Fig. 1; Thompson et al., 2007). The APT analyses were per-
formed on both samples by using local electrode atom probes 
[CAMECA reflectron-fitted LEAP 5000 (XR) and 
straight-flight-path LEAP 5000 (XS) systems] in pulsed UV la-
ser mode at a detection rate of 1%, a laser-pulse energy of 
90 pJ, and a pulse frequency of 125 kHz. The specimen tem-
perature was set to 60 K during the analyses. The data recon-
struction and analyses were performed using the commercial 
software Imago visualization and analysis system standard 
(IVAS) 3.8.2 developed by CAMECA Instruments. It should 
be noted that a low composition below 0.5 at% Ga originating 
from the focused-ion beam preparation was detected. 
However, when the Xe FIB system (Helios plasma-FIB 
Thermo-Fisher) was used for the APT specimen preparation 
a negligible amount of Xe was detected in the glass specimen. 

Results and Discussion 
Mechanical Testing 
Glass_0 and Glass_1 (2 h of chemical treatment) are displayed 
in Figure 2a. Nano-indentations were performed on both sam-
ples, where the hardness of Glass_1 exhibited a 7.3% higher 
value than that of Glass_0, which was expected (Fig. 2b). 
Although Raman spectroscopy is often used to identify the 
chemical structure in tempered glass, in our case, despite a suf-
ficient amount of time for a complete ion-exchange process, no 
clear indication of peak shifts or intensification between 

Fig. 1. APT specimen preparation: (a) surface of a Glass_0 sample, (b) FIB Pt-C coating, (c) lift-out process using an omniprobe, (d) welding on a Si 
micro-post, (e) annular milling process, and (f) final needle-like APT specimen.   
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samples was measured (Fig. 2c). Typically, a higher K content 
in silicate glass results in a shift of the Si–O peak toward 1,110/cm 
(Calahoo et al., 2016). The broad Raman peak at 1,050/cm cor-
responded with the mixed signal of the stretching T2 vibrational 
mode of Al/Si–O4 tetrahedra and stretching Al/Si–O of the differ-
ent Q-bands units (Mysen, 1990; Malfait et al., 2008; Le Losq 
et al., 2014). The peaks at D1 (480/cm) and D2 (580/cm) peaks 
corresponded to symmetric stretching of O atoms in the four 
and three-membered tetrahedral rings, respectively (Le Losq 
et al., 2014; Terakado et al., 2020). 

Bulk Characterization 
ICP-OES is commonly used for chemical analysis of tempered 
glass (Schenk & Almirall, 2012; Calahoo et al., 2016). Here, 

the dissolved liquid glass is heated with plasma emitting light 
which is then measured with the spectrometry. After the ex-
change process, an increase in K content was observed. 
However, the overestimation of the Na content after the ex-
change disagreed with the expected result (Fig. 3a, Table 1). 
A possible explanation for this could be the introduction of 
Na during the preparation of the specimens. Each glass display 
was crushed into a powder with a mortar and pestle, followed 
by dissolution with hydrofluoric acid. Moreover, the mortar 
and pestle constituent element (e.g., Zr) was also detected im-
plying the possible introduction of impurities during sample 
preparation, although this was not detected when using the 
other analytical techniques. 

The SEM-EDS elemental analysis is commonly employed for 
analyzing the chemical composition of glass (Erdem et al., 

Fig. 2. (a) As-received glass and chemically tempered glass. The black film around the tempered glass (Glass_1) is to protect the edge panel from 
scratches during mobile phone manufacturing. (b) Vickers hardness (LECO M-400) tests. (c) Raman spectroscopy (WiTec: Alpha300R) results.  

Fig. 3. Composition comparison plots of Li, Na, P, K, and Ca for Glass_0 and Glass_1 from (a) ICP-OES and (b) SEM-EDS.   
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2017; Fourmentin et al., 2021). With SEM-EDS, a depth reso-
lution of ∼2 μm is possible, which is typically sufficient for 
near-surface chemistry analysis (EDAX, 2020). Figure 4 dis-
plays the surface SEM images and EDS spectra of Glass_0 
and Glass_1. The atomic fraction of the detected trace elements 
(Na, P, and K) is plotted in Figure 3b. The decrease in Na after 
the ion-exchange process indicated that Na was replaced by K 
in the analyzed region. However, no information regarding 
other elements (Li and Ca) was obtained due to the elemental 
detection limit for the trace amount (<0.5 wt%), particularly 
for light elements (Leng, 2013). Unfortunately, this representa-
tive result might not provide sufficient details for advancing 
our understanding of the chemical-exchange effect. 

Atom Probe Tomography 
We performed APT to evaluate the composition and distribu-
tions of elements in both samples. Moreover, three APT meas-
urements were performed on each sample and we obtained 
total counts of 41.2 and 53.7 M ions before and after chemically 
tempering the samples, respectively. These were then used for the 
chemical compositional analysis. Unlike X-ray-based spectros-
copy or other bulk-mass spectrometry techniques, APT does 
not require corrections by relative sensitivity factors, which can 
vary by orders of magnitude depending on the considered elem-
ent. Moreover, despite the known issues when detecting substan-
ces [e.g., oxygen (Saxey, 2011; Gault et al., 2016; Zanuttini et al., 
2017) and alkalis (Greiwe et al., 2014; Lu et al., 2017)] in oxides, 
APT has the potential to provide local analysis with chemical sen-
sitivity in combination with a subnanometer spatial resolution 
for detecting local deviations in composition (Gin et al., 2013;  
Wang et al., 2016; Lu et al., 2017). 

Typically, different acquisition parameters (e.g., base tem-
perature and laser-pulse energy) can affect APT performance, 
including background levels and eventually mass and spatial 
resolutions. Particularly, in the case of poor- or non-conductive 
materials (such as glass), the measurement parameters require 
careful optimization (see Fig. 5). The laser parameters were 
swept every 2.5 million ions for the glass specimens. In general, 
pulsing at a low laser repetition rate requires relatively more 
time to collect a sufficient number of ions to ensure statistically 
relevant analyses, whereas field evaporation at high laser-pulse 
energy often results in the development of thermal tails. 
Accordingly, 125 kHz and 90 pJ were selected as the optimal 
parameter conditions in the LEAP 5000XR system. 

Examples of mass spectra obtained from both instruments are 
shown in Figures 6a and 6b. The former exhibited a detection 

efficiency of ∼80%, compared with the latter with only ∼50%. 
In contrast, the XR system achieved a higher mass resolution, 
as the reflectron enabled longer flight times, resulting in better 
separation of the mass peaks. For instance, in the XR system, a 
clear peak at 15.5 Da corresponding to 31P2+ ion was detected 
with the full width half maximum of 0.05244 (insets in Fig. 6). 
In comparison, the FWHW of the 31P2+ peak in the XS system 
was 0.15732, which was three times higher than that of the 
XR system. No significant difference in overall atomic compos-
ition was revealed between the two instruments (Table 1). 
However, a noticeable peak at 15.66 Da in the HR system (cor-
responding to PO3+) was detected, which was not observed in the 
XS mass spectra. Therefore, for a more accurate analysis, we 
used the HR system for detailed chemical analysis of the acquired 
mass spectrum. 

As mentioned previously, quantification by APT for a cer-
amic sample is challenging. The data set from Glass_2 in the 
LEAP 5000 XS was further analyzed to investigate the multi-
plicity of the detected ions to determine whether additional 
chemical information could be retrieved from the otherwise 
un-identified ions. In Figure 7a, the correlation histogram of 
the multiple-ion events demonstrates that there was continu-
ous field evaporation of complex oxygen-containing molecu-
lar ions caused by the electrostatic field. In other words, this 
was not triggered by the temperature increase associated 
with the laser pulse (which can be considered DC evaporation) 
or by the very long delay following the thermal pulse. These 
ions were the main contributors to the high background levels. 
From the origin, there were parabolic trails that indicated ion 
evaporation was induced by a standing DC field without 
the absence of pulsing (Saxey, 2011). Moreover, despite the 
strong and clearly discernible peaks throughout the 
mass-to-charge spectrum of the tempered state, the back-
ground still represents a large portion (30%). In addition, 
the single (M = 1) spectrum had a slightly different distribu-
tion to the multiple (M > 1) spectrum (Fig. 7b). This difference 
could be attributed to a distinct component corresponding to a 
higher fraction of DC evaporation events. This phenomenon 
was discussed previously by Yao et al. (2010, 2013). 
Nevertheless, our interest was primarily in the detection of al-
kali ion species that do not seem to be affected as much com-
pared with Al, Si, and mostly O ions. This could be related to 
their high electropositivity, which renders them less prone to 
forming molecular ions under intense positive electric fields.  

Figure 8 displays the overall reconstructed 3D atom maps 
of Glass_0 (up) and Glass_1 (down). Here, major elements 
(Al, Si, and O), minor elements (P, Li, Na, and K), and a trace 

Table 1. Atomic Composition of Elements for Glass_0 and Glass_1 Measured by ICP-OES, SEM-EDS, APT-HR, and APT-XS. Please note that the oxygen 
content from ICP-OES was calculated by normalizing from the detected composition. 

At% O Si Al Li Na P K Ca 

Impurities from Sample Preparation 

Ga Au Zr C  

Glass_0 
ICP-OES  36.96  34.66  15.26  0.42  8.82  3.46  0.13  0.032  —  —  0.25  0.01 
SEM-EDS  34.14  34.95  16.68  —  8.59  2.43  —  —  —  3.21  —  — 
APT_XR  56.47  21.95  11.52  4.87  3.25  1.85  0.017  0.023  0.048  —  —  — 
APT_XS  55.61  20.81  12.72  4.47  4.43  1.46  0.015  0.027  0.47  —  —  — 
Glass_1 
ICP-OES  36.95  34.36  14.99  0.37  9.26  3.5  0.37  0.028  —  —  0.23  0.01 
SEM-EDS  42.07  30.35  14.42  —  3.34  2.4  6.26  —  —  1.15  —  — 
APT_XR  57.15  22.86  12.31  1.97  1.96  1.76  1.69  0.05  0.24  —  —  — 
APT_XS  55.95  21.53  14.03  2.68  2.1  1.37  2.24  0.056  0.054  —  —  —   
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element (Ca, not shown in the atom maps) were detected. The 
mass spectrum in Figure 6c can be referenced for the element 
species. All the elements were visually homogeneously distrib-
uted and no enrichment or depletion are observed. To investi-
gate the chemistry and structure further, the inner regions of 
the atom maps were extracted as shown in Figure 9a: 
Glass_0 (right) and Glass_1 (left). 

After the ion exchange, different content levels of alkali el-
ements such as Li, Na, and K were detected in the Glass_1 
sample. The distributions of the alkali ions were assessed by 
using a nearest-neighbor analysis, and they appeared compar-
able with random distribution (Stephenson et al., 2007; Shariq 
et al., 2012) (Figs. 9b, 9c). For a quantitative assessment of the 
randomness analysis, the Pearson coefficient (µ) was measured 
for each alkali element. Here, all the coefficients are near-zero 
values (µLi = 0.0132, µNa = 0.0983, µK = 0.103) suggesting 
that the alkali ions were randomly distributed in the glass. 
The levels of Li+ and Na+ decreased by factors of 2.5 and 
1.6, respectively, whereas the content of K+ increased by up 
to 1.7 at%. Interestingly, the reduction in Li+ concentration 
was larger than for Na+. This can be simply explained by the 
higher diffusivity with respect to ion radii: Li+ has the smallest 

size of 78 p.m., whereas Na+ and K+ have the size of 98 and 
133 p.m., respectively. The Li+–K+ ion replacement would 
have a greater size mismatch; hence, a greater compressive 
stress was formed compared with the Na+–K+ exchange. 

For the Li-doped amorphous silicate, Li electromigration 
was observed and Li ions continuously moved toward the spe-
cimen apex during the field evaporation process (Greiwe et al., 
2014). In contrast, despite the long measurements (>5 M ions) 
in the aluminosilicate glass, no migration of Li or other ele-
ments was observed (see Figs. 8, 9c). This phenomenon could 
be due to difference in Li-ion transport characteristics between 
the amorphous and glass structures and thermal interaction 
between the laser and the specimen. The atomic ratio of Si 
to Al for both types of glass was ∼2, indicating that the mo-
lecular ratio of Al2O3 to SiO2 compounds was 1:1. This agrees 
with the 1:1 ratio of Al2O3 and SiO2 that was measured with 
other analytical instruments, as summarized in Figure 10a. 

In addition, P and Ca were also detected, with 1.85 at% and 
230 appm, respectively, in Glass_1. POx in aluminosilicate is 
known to increase compressive stresses, and any increase in con-
centration can effectively promote Na+ and K+ inter-diffusivity 
(Mysen, 1998; Zeng et al., 2016). Nevertheless, the POx in 

Fig. 4. (a) SEM surface images of Au-coated Glass_0 and Glass_1 samples, and (b) corresponding SEM-EDS spectra. A thin layer of Au was coated prior to 
the EDS-SEM measurements; hence, the Au signal was not from the sample.  

Fig. 5. Background levels versus (a) laser frequency and (b) pulsed-laser energy.   
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aluminosilicate is susceptible to water or moisture and can be 
leached even at room temperature (Tošić et al., 2013). 

General Discussion 
In the chemical-tempered glass industry, the presence of Ca cat-
ions in concentrations as low as 10 ppm in the ion-exchange 
KNO3 bath can cause major problems (Sglavo, 2015). This is 
because Ca2+ penetrates the silicate compound surface, 

inhibiting the Na+–K+ exchange and preventing the generation 
of the necessary compressive stress (Xiangchen et al., 1986;  
Sglavo et al., 2017). Given that Ca has an ionic radius (100 
pm) very similar to Na+ and smaller than K+, replacement 
with Na+ is favorable on the glass surface. Although a high pur-
ity level of molten KNO3 was used, the Ca content in the glass 
after the chemical tempering increased by a factor of 2. A com-
parison of minor elements compositions before and after 
chemically tempered glasses is summarized in Figure 10b. 

Fig. 6. Normalized mass spectra of Glass_0 (black) and Glass_1 (red) samples from (a) 5000 HR and (b) 5000 XS atom probe instruments. Insets display 
the extracted mass spectrum regions at 12–17 Da on each data set. (c) Three different ion-count mass spectrum ranges for each alkali species. The actual 
background level is plotted with a blue line.   
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When alkali-(earth) ions are exchanged in the network 
glass, the charge neutrality must be preserved. However, 
here more Li and Na ions were lost than replaced by K and 
Ca ions. Incorrect peak assignment or peak overlapping of al-
kali species from the acquired mass spectra are unlikely to oc-
cur as the ions evaporates in the single-charge state (Kingham, 

1982; Kim et al., 2022a, 2022b; Yoo et al., 2022). 
Hence, charge neutrality approximation was adopted in the 
ion-exchange glass for modeling purposes (Garfinkel, 1968) 
and was assumed for simplification. However, this approxi-
mation considers only two types of ions with the same va-
lence state (indigenous and modifier cations) in one-to-one 

Fig. 7. An issue in the mass spectroscopy of oxide materials arises from evaporation uncorrelated with the laser pulse. (a) Correlation histogram of 
multiple hits. (b) Multiplicity decomposition of single, double, triple, quadruple, and quintuple hits.  

Fig. 8. 3D atom maps of (top) Glass_0 and (bottom) Glass_1 samples. The APT measurements on semiconductor and ceramic materials exhibited a 
consistent deficiency in O, which could not be removed by parameter optimization. It is postulated that the fragmentation of evaporated molecular oxide 
ions could play a role in producing neutral O atoms that cannot cascade the signals on the analysis detector. Nevertheless, in this work, the APT results 
exhibited a high accuracy of O content compared with other analytical measurements.   
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direct exchanges. Moreover, there are other factors can be 
considered. 

Alumina (Al–O) 
The material studied herein is an aluminosilicate glass, where 
the alumina serves as a glass former and generally improves 
durability. Moreover, alumina generally plays an important 
role in ion exchange, since it provides a strong network and 
acts as a charge balancer. The structure of aluminum ions de-
pends on the glass composition (Yan et al., 1996). For ex-
ample, when the alkali-oxide (e.g., Na2-O) content is higher 
than alumina, all alumina is found in tetrahedral coordination 
with compensating the alkali ions charges. In constrast, when 
the alumina content is higher, alkali-oxide changes to an s di-
valent Na-O structure varying the degree of tetrahedral alumi-
num. As a result, depending on the alkali element content in 
the glass, this results in the formation of five- and sixfold coor-
dinated aluminum ions (Xiang et al., 2013), while retaining its 

glass network. This implies that no one-to-one exchanges are 
possible during the chemical tempering process. 

Hydrogen 
Hydrogen or hydronium ions could also affect the glass struc-
ture and contribute to charge neutralization. The diffusion 
and permeability of hydrogen in silicate glass have been exten-
sively studied (Williams & Ferguson, 1922), where it was re-
vealed that above 300°C, silica glass is permeable to 
hydrogen (the operating temperature for the chemical process 
of this work was >400°C). Moreover, Landford et al. ob-
served a hydrogen–sodium exchange in soda-lime glass 
(Lanford et al., 1979; Schnatter et al., 1988), and Isard et al. 
investigated Na–H ion exchange in aluminosilicate glass cata-
lyzed by sulfur oxides at room temperature (Douglas & Isard, 
1949). In recent studies, the field-assisted injection of hydro-
gen from the atmosphere into the glass was demonstrated to 
replace the indigenous ions (Na, K, and Ca) with hydrogen 
(Oven, 2021a, 2021b). They used a modified charge neutrality 

Fig. 9. (a) 3D reconstructed atom maps (35 × 35 × 35 nm3) of the Glass_0 and Glass_1. Light blue, green, blue, and red dots represent Li, Na, and K atoms 
in the SiOx complexes, respectively, while P and Ca atoms are not shown. Each cuboidal ROI was extracted from the overall atom map displayed in Fig. 8. 
(b) 1D atomic compositional profile of the Glass_1 along the measurement direction (ϕ15 nm × 50 nm3 and bin width of 1 nm). The standard error values 
were calculated from the binomial distribution. (c) Experimental and random (gray) alkali-alkali elements nearest-neighbor (1NN) distribution.  

Fig. 10. (a) Si/Al ratio of Glass_0 and Glass_1 from different analytical instruments: APT, SEM-EDS, and ICP-OES. Composition comparison plots of Li, Na, 
P, K, and Ca for Glass_0 and Glass_1 from APT. (c) Schematic illustration of alkali (earth) ion diffusion during glass tempering.   
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approximation by adding a concentration of H into the model, 
rending their system more accurate. 

Ultimately, as thinner UTG will open a wider range of 
technological applications within electronics, site-specific 
chemical information must first be provided to allow a better 
understanding of the material and its mechanical and func-
tional behaviors to avoid any mis-interpretations. For in-
stance, the spectroscopy results exhibited no/less signal of 
the Li and the alkali-earth element Ca. Herein, we demon-
strate the importance of using accurate chemical analysis on 
a commercial glass before and after strengthening by ion ex-
change. As presented in the summarized schematic diagram 
(Fig. 10c), Li+ and Na+ diffused from the glass to the KNO3 

bath, where K+ and impurity Ca2+ diffused into the surface. 

Conclusions 
In this paper, we reported on a comparative study of spectros-
copy and APT in the atomic-scale mapping of alkali ions in 
non- and ion-exchanged glass. We demonstrated that APT is 
superior to commonly used spectroscopy techniques in terms 
of both spatial resolution and quantification. In addition, 
direct-flight and reflectron-flight atom probe systems were 
compared and no significant difference was observed in terms 
of composition. In UTG technology, it is very important to 
quantify and image the exchanged alkali ions to simultaneous-
ly increase hardness and flexibility. Therefore, site-specific 
mass spectrometry techniques (such as APT) are required to 
understand the direct relationship between the chemistry 
and the mechanical properties of such types of glass. 
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