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1 Abstract

As the primary anode material of lithium ion batteries, lithium intercalated graphite is one of the
central materials behind the transition towards a less CO2-intensive energy economy. In spite of
that, the atomistic processes governing (dis-)charging cycles, and limiting the speed, safety and
reversibility thereof, are still not sufficiently understood. Specifically, diffusion kinetics, relative
energetics of stoichiometrically equivalent intercalant-orderings and non-equilibrium phenomena
like charge-density gradients due to fast charging speeds require additional research, so that bat-
teries can be further optimized.

In this work, a new semi-empirical Density-Functional Tight-Binding method was parametrized,
making use of modern machine-learning for the generation of the repulsion potential. In doing
so, an accuracy comparable to that of state-of-the-art, dispersion-corrected Density Functional
Theory calculations can be achieved at a fraction of the computational cost. The method was
successfully benchmarked against both structural and energetic system properties. Based on
it, accurate diffusion barriers, structural properties and the dielectric response were calculated,
all in dependence of the state of charge and the semi-local ordering of the charge carriers. At
the same time, the process of combining semi-empirical electronic structure based electrostatics
with machine-learned repulsion was rigorously investigated and explained – an approach, which
provides great promise for many other systems of interest. [1]
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2 Zusammenfassung

Als primäres Anodenmaterial für Lithium-Ionen Batterien spielt mit Lithium interkaliertes Graphit
eine zentrale Rolle beim Übergang zu einer weniger CO2-intensiven Energiewirtschaft. Den-
noch sind die atomistischen Prozesse, welche die Lade- und Entladezyklen bestimmen und
deren Geschwindigkeit, Sicherheit und Umkehrbarkeit limitieren, bis heute nicht ausreichend
verstanden. Insbesondere die Diffusionskinetik, die relative Energetik stoichiometrisch gleich-
wertiger Interkalant-Verteilungen und Phänomene im Nicht-Gleichgewicht, wie Ladungsdichte-
Gradienten wegen schneller Ladegeschwindigkeiten, erfordern zusätzliche Untersuchungen, damit
Batterien weiter verbessert werden können.

In dieser Arbeit wurde eine neue, semi-empirische "Density-Functional Tight-Binding" Meth-
ode parametrisiert. Dabei wurde zur Erzeugung der Repulsionspotentiale auf modernes maschinelles
Lernen zurückgegriffen. Dadurch konnte eine Genauigkeit erreicht werden, welche mit der
hochaktueller, dispersionskorrigierter "Density Functional Theory" Berechnungen vergleichbar
ist, jedoch nur einen Bruchteil der Rechenzeit erfordert. Die Methode wurde erfolgreich sowohl
für strukturelle, als auch für energetische Vergleichswerte des Systems validiert. Mit ihrer Hilfe
wurden genaue Diffusionsbarrieren, Struktureigenschaften und die dielektrische Antwort des Sys-
tems berechnet, alle in Abhängigkeit vom Ladungszustand und der semi-lokalen Verteilung der
Ladungsträger. Gleichzeitig konnte die Vereinigung semi-empirischer Elektronenstruktur und da-
rauf basierender Elektrostatik mit machinell erlernter Repulsion ausführlich erforscht und erklärt
werden – ein äußerst vielversprechender Ansatz auch für andere interessante Systeme.
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3 List of abbreviations

BEV battery electric vehicle

DFTB density functional tight binding

DFT density functional theory

GAP Gaussian approximation potential

GPrep Gaussian process repulsion

GPR Gaussian process regression

ACE atomic cluster expansion

PACE performant atomic cluster expansion

LIB lithium ion battery

SOC state of charge

vdW van der Waals

HOPG highly oriented pyrolytic graphite

NG natural graphite

SG synthetic graphite

FG flake graphite

MG micro-crystalline graphite

OCV open circuit voltage

SEM scanning electron microscope

GIC graphite intercalation compound

kMC kinetic Monte Carlo

DCACP dispersion corrected atom centered pseudopotential

PBE Perdew–Burke-Ernzerhof

FF force field

CC coupled cluster

LDA local density approximation

GGA general gradient approximation

MBD many-body dispersion
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SCC self-consistent charge

ChIMES Chebyshev interaction model for efficient simulation

ZORA zero-order regular approximation

PSO particle swarm optimizer

LJ Lennard Jones

SOAP smooth overlap of atomic positions
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4 Introduction & Motivation

With global warming being one of the greatest challenges mankind is presently facing as a species
[2–5], fast technological progress in the field of carbon-neutral, renewable energies will undeniably
have to be a central element of any possible solution. Beside the actual generation, by means of
solar-, wind- and water-power, storing that fluctuating energy for use at different times and in
different places is one of the primary challenges for the transition away from a fossil-fuel based
energy economy. Lithium ion batteries are currently, and have been for at least two decades
[6], the most important storage medium for a wide range of applications, from small consumer
electronics, to battery electric vehicles (BEVs) and even to off-grid energy storage of entire build-
ings [7]. Even with significant improvements in alternative technology like other battery types,
synthetic combustion fuels and hydrogen fuel cells, the great importance of lithium ion batter-
ies (LIBs) is not expected to subside anytime within the next multiple decades. To the contrary,
new applications and challenges, like electric mobility, require more efficient, safe and powerful
iterations than ever before.
Despite this quickly arising need, the atomistic processes governing the performance of all LIB
components - cathodes, electrolytes, and anodes - are not sufficiently understood yet, to harness
their full potential. In particular, the currently-used graphite anodes are a limiting factor to
charging speed and cycle stability [8], and need to be understood and improved for BEVs to
effectively replace combustion vehicles as soon as possible.

Beyond this specific application, we also express a profound methodological interest in the
density functional tight binding (DFTB) approach, which we consider a promising, but under-
used framework for accurate and informative yet affordable electronic structure calculations.
According to our assessment, the lack of high-quality parameters available in literature has been
the main hindrance regarding the broader adoption of this method, which partially stems from
the ambition to provide general, transferable parameters [9, 10] - and thus establishing DFTB as
a direct competitor to density functional theory (DFT), especially in terms of usability, without
any need for the end-users to perform any parametrization themselves. However, in attempting
this, a great deal of accuracy has to be sacrificed (at least up to now).
A fundamentally different approach to utilizing the power of DFTB is the creation of specialized
parametrizations for one specific system at a time – operating at the other end of the funda-
mental compromise and sacrificing transferability for accuracy, as opposed to the other way
round. This approach has not been used extensively yet, probably due to the amount of work in-
volved in creating a full parametrization in the past. However, due to the rapid advancements in
machine-learned interatomic potentials (like Gaussian process repulsion (GPrep) [11], Gaussian
approximation potential (GAP) [12–14] and atomic cluster expansion (ACE)/performant atomic
cluster expansion (PACE) [15–17]), both in terms of performance and – equally important – in
terms of workflow and usability, we believe that this will change rapidly in the future. Essentially,
the repulsion part (see chapter 7.2.7) within the DFTB framework is nothing else but an inter-
atomic potential itself, that is simply trained on the difference between the high-level reference
theory (e.g. DFT) and the simplified electronic part (see chapter 7.2.6). In that sense, it can
be understood as a ∆-learning approach, which is why we do not view DFTB as a competitor
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to the previously mentioned atomic potential methods at all, but as an enhancement thereof,
benefitting from all the recent progress in the same way, while maintaining the physicality of an
explicit (although simplified) electron density, that can be used for calculating band-structures,
densities of states, and long-ranged Coulomb interactions beyond the range of the local descrip-
tors, upon which the atomic potentials are constructed.

In this work, we constructed a DFTB-model with a machine-learned repulsion potential based
on the GPrep framework, for the system of lithium intercalated graphite. Using this model, we
investigated various previously inaccessible properties of the system, like the relative permittivity
as a function of the state of charge (SOC), geometric properties of large structural domains and
diffusion barriers depending on the surrounding configurations. With this, we hope to contribute
to creating direct links between macroscopic and atomistic properties, and consequently to the
systematic improvement of current battery technology, as well as the fundamental understanding
of new battery-materials.
At the same time, we unravelled the entire parametrization process, giving a step-by-step guide
to this process, with respect to the choice of hyper-parameters and training sets, hoping to
shine some light on the great potential of DFTB and inspire similar endeavours for different
applications in the future.
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5 Lithium Ion Batteries

Lithium ion batteries (LIB) were introduced to the market in 1991, thanks to research by John
B. Goodenough, M. Stanley Whittingham and Akira Yoshino, who were awarded the 2019 Nobel
Prize in chemistry. Since then, LIBs have been by far the most important storage medium
for electric power - with a production in the order of many billions per year [18] - in high-
demand application like consumer electronics, where high gravimetric and volumetric capacities
are crucial [19]. With the necessary transition towards a carbon-neutral energy system and
related new applications in e.g. mobility, the importance of energy storage technology will rise
significantly, and despite alternatives being actively researched, LIBs are expected to remain
among the primary storage media [20]. Broken down to the simplest processes, LIBs consist of
two electrodes (the cathode on the positive pole and the anode on the negative pole). They are
separated by an electrolyte, which is conductive for cations, but insulating for electrons, and a
cable with the opposite properties (see fig 1).

Figure 1: Illustration of a typical lithium ion battery (LIB). In the charged state, the Li-ions
(purple spheres) are located in the anode; in the discharged state, they are located in the cathode.
Both electrodes are separated by the electrolyte and the separator.

In the charged state, (most of) the lithium content is located in the anode, where it stays as
long as the two poles are disconnected. Once the connection is made, the positive lithium ions
travel through the electrolyte to the cathode, due to the difference in chemical potential, and the
electrons travel through the cable connecting the poles, where they can be accessed as electric
energy. The reverse process is achieved by applying an electric field (putting energy in).

In principle, this process is infinitely reversible, but in practice, limitations arise, caused by
the degradation of all cell components. This is caused by a plethora of processes, gaining control
over which has been the motivation for great research efforts for several decades, an endeavour
that still is not close to being concluded. Cycle-stability, safety and fast-charging capabilities
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are all still being improved upon by many research teams. [21, 22]

Lithium-deposition is the root cause of many problems LIB-technology still has not com-
pletely overcome. It is an umbrella-term for the formation of metallic lithium clusters of variable
shapes and sizes, and driven by different processes between the anode and the electrolyte. In
ideal equilibrium conditions, lithium intercalation is thermodynamically favoured over lithium
deposition, due to a higher chemical potential [23], to a degree that no deposition should occur at
all. However, charging and discharging processes do not take place in equilibrium and introduce
additional effects which need to be taken into account. So-called over-potentials can be caused
by diffusion kinetics, charge transfer and Ohmic drop. These over-potentials can make lithium
deposition competitive with intercalation under certain circumstances. This tends to be the case
especially at low temperature, for fast charging speed, and for high SOC [24]. In principle, the
deposited lithium will still intercalate into the anode if given enough time for equilibration, but
this is not always the case in everyday battery use. Furthermore, chunks of deposited metallic
lithium can "break off" and move into the electrolyte, becoming so-called "dead" lithium, which
is lost for future charging cycles, causing permanent reduction of capacity in the cell [25].

Beyond capacity-loss, lithium deposition also has severe implications for battery safety, as it
can cause catastrophic failure by thermal runaway. The most prominent mechanism for this is
the growth of so-called lithium dendrites – thin needles which can penetrate the liquid electrolyte
and the separator and cause a short circle in the cell, which in turn causes exothermic reactions
with the electrolyte. The reason for this phenomenon has been suggested to be an attractive
interaction between sharp tips in the deposited lithium metal and the free Li+ ions in the elec-
trolyte – causing a positive feedback loop for the formation of dendrites instead of evenly plated
lithium [26].
This important safety issue can be tackled in multiple ways. On one hand, the on-going devel-
opment of solid electrolytes has its motivation in preventing dendrites from growing all the way
to the cathode [27]. But on the other hand, it is equally important to understand the underlying
atomistic mechanisms at the surface of the anode better. Then, it might be possible to avoid
(or at least strongly reduce) lithium deposition with all its consequences altogether, by better
controlling and managing the conditions within individual cells during charging and discharging
processes.

5.1 State of the Art Cell Components

On the cathode side, two different types of material are mostly being used [28, 29]. The first
and most common type is a group of layered oxides with the formula LiMO2 (M=Co, Mn, Ni).
The composition of the M-elements is the primary focus in research on these materials and can
be altered in order to tweak the performance. At the same time, reducing the cobalt content
as much as possible is an additional goal, since cobalt is rare and often mined under morally
unacceptable conditions. The second common type of cathode materials are olivine phosphates
with the base formula LiFePO4.
The cathode has been the limiting part of the battery for a long time. This only changed recently,
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with new cathode materials outperforming graphite on the anode side. Nowadays, the limiting
factor governing the charging speed are the transport processes in the negative electrode (anode)
[8].

As anode material, graphitic carbon has been the overwhelmingly most common choice for a
long time. Lithium intercalation into graphite was first reported in the 1970s [30, 31], and the
first commercial LIB with a graphite anode was introduced in 1991 [32], after compatibility issues
with the electrolyte had been solved. As a material, graphite was and is an obvious choice, as
it provides a number of desirable qualities in its decent energy- and power-density, high lithium
diffusivity and electrical conductivity, as well as low volume change during charging and discharg-
ing, while at the same time being relatively cheap and abundantly available [33]. Specifically, it
offers a high theoretical gravimetric capacity of 372 mAh/g [34]. Because of these benefits, and
because Li-metal anodes were deemed too dangerous [35], the market share of graphite anodes
has been 98% [36] since the mid-1990s, with the remaining 2% being Li4Ti5O12 (LTO) [37].

In the near- and mid-term future, graphite is expected to remain an essential component
of commercial lithium-ion batteries – either as sole anode active material or in combination
with high-capacity compounds such as understoichiometric silicon oxide, silicon–metal alloys, or
elemental silicon [32]. This has been stated by BEV manufacturers [38], material suppliers [39]
and cell producers [40] alike, justifying the continuing pursuit of better understanding of this
material.
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6 Lithium Intercalated Graphite - the Devil in the Detail

The concept of storing lithium ions in a layered graphite structure may seem simple at first
glance, but upon closer inspection, it turns out that it is anything but. In this chapter, we give a
detailed overview over the numerous complexities that surface - both on the microscopic and the
macroscopic scale - during the study of this system, and that all need to be taken into account
when validating the performance of a model with the purpose of describing it physically.

6.1 Geometric Properties – Micro-Structure

The local atomic structure of graphite consists of carbon atoms oriented in hexagonal, flat
graphene-planes. Each atom forms covalent bonds with its three next neighbours, leaving one
valence electron to be delocalized and free to move and transport charge along the plane. This
is a fundamentally different bonding situation than in diamond, where all four valence electrons
of the carbon atoms are bound in covalent bonds, which is why diamond is an insulator, but
graphite is not. The graphene sheets are weakly bonded by van der Waals (vdW) interactions
and are stacked in an AB-pattern (see fig. 2), which transforms into an AA-pattern during
intercalation with lithium ions, at an SOC of roughly 10% [41–43].
The cell dimensions of empty graphite have been measured experimentally to high accuracies
as early as in the 1970s, with the C-C bond lengths being 1.23Å and the distance between the
graphene sheets being 3.36Å [44, 45].

Figure 2: Illustration of the AA- (left) and AB-stacking order (right) of graphite. Grey hexagons
indicate C6-rings, with the C-atoms implied in the corners.

Intercalation occurs in the way of lithium ions being deposited in the empty areas called
"galleries" between the graphene sheets. The lowest energy positions are above (and below) the
middle of the C6-rings, and diffusion between those occurs in a minima-hopping style of move-
ment governed by local diffusion barriers and larger-scale kinetics. At least, this is the case above
≈ 10% SOC, which is when the carbon sheets are AA-stacked. In the AB-stacking case, it is
less clear where exactly the Li-ions are ideally located and how their movement can be described.

Under ambient equilibrium conditions, a stoichiometry of LiC6 - which corresponds to one
out of three local minima being occupied - has been considered the maximum SOC (=100%) for
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a long time, and we will hold on to that definition within this work. Recently however, some
experimental evidence has surfaced for higher states of lithiation also being possible without ex-
treme conditions [46] - these shall be referred to as "over-lithiated". The fundamental difference
is the fact that, for those system states, direct next-neighbour positions are permanently occu-
pied by Li-ions, which in turn find themselves in a quasi-metallic chemical environment. In the
traditional view, this does not happen, at least not in equilibrium. During super-fast charging
processes, the situation may be different. It is conceivable, that if Li-ions are pumped into the
anode faster than they can distribute themselves within it, local areas of over-lithiation may
be created, which in turn may be responsible for some of the ageing effects, that are observed.
However, to our knowledge, there are - as of today - no simulation techniques capable of trying
to answer this question on an atomistic level.

Additionally, both defective and amorphous carbon micro-structures play a role in battery
materials. The most typical natural defects are 5-rings, 7-rings, and C-atom vacancies. At the
same time, purposefully introduced defects (doping) are also being actively researched, in at-
tempts to increase the volumetric capacity [47, 48], cycle stability [49], and to support efficient
recycling [50].
The term "amorphous" carbon is typically used to describe anything that is not purely graphite
and also not purely diamond, but somewhere in between. One defining property of this type of
material is the presence of "nano-pores" of varying sizes and shapes, which exhibit their own
unique behaviour during intercalation processes by allowing for the formation of small metal-like
clusters of the intercalant, even at lower SOC. These cavities seem to be crucial for enabling the
intercalation of larger alkali metals (especially sodium) [51, 52], but less so for lithium, which is
small enough to fit between the layers of ordered graphite without causing too much of a volume
expansion.

Due to both these phenomena, it is important to not only train a model on ideally ordered,
equilibrium structures, but to explore a wider, more diverse feature space.

6.2 Types of Graphite – Macro-Structure

While the term "graphite" is unequivocal on the microscopic scale (except for phenomena like
defect densities), it actually describes a number of related but not identical compounds on
the macroscopic scale. The closest to what is being studied in typical micro- and meso-scale
simulations with perfect, periodic supercells, is a single crystal of highly oriented pyrolytic
graphite (HOPG). Large single crystals can in principle be synthesized for experimental pur-
poses, but this very specific type of graphite is not what is used in most batteries. Instead, various
types of graphite powder fulfill the purpose of commercial anodes. By 2020, 39% were made of
natural graphite (NG) and 58% were made of synthetic graphite (SG) [53], yet the market share
of NG is expected to continue rising, due to the fact that it is less CO2- and energy-intensive
in its production [54]. It can be further classified into flake graphite (FG) and micro-crystalline
graphite (MG), depending on the size and shape of its grains. In general, one can summarize
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that graphite powder with larger anisotropic crystalline domains like FG has better volumetric
capacity, while a larger fraction of edge-planes (like in SG) causes better cycle stability and
kinetics [55, 56].
In current commercial LIBs, the desired particle shape (see fig. 3), which optimizes said com-
promise for the applications of interest, is more or less round ("potato-shape") and of a size of
8−30µm [32]. For NG, this shape is achieved by mechanical "spheroidization" during or after
the mining process [57]. For further enhancement of stability and performance in battery appli-
cations, these particles are often coated in amorphous carbon [58].

Figure 3: scanning electron microscope (SEM) images [32] of processed natural graphite (a) and
synthesized graphite (b) particles, as used in commercial LIBs

For these reasons, it is obvious that purely micro-scale theoretical studies cannot be directly
compared with experimental results and real-life anodes, without also taking into account factors
like boundary effects, average grain sizes and orientation. Furthermore, the behaviour of lithium
ions between grains - not only within them - is crucial for accurately simulating the functionality
of full anodes within actual batteries. All of this further illustrates the need for an extensive
multi-scale model, that can bridge the huge differences in length scales of all the relevant effects.

6.3 Staging and Domains

During the (de-)intercalation of lithium into a uniform area of a graphite crystal, it is energet-
ically more favourable for the intercalant ions to populate as few galleries as possible (at that
given SOC), as opposed to filling the whole structure up evenly. This concept was proposed as
early as in 1938 by Rüdorff and Hofmann [59]. Specifically, stage I corresponds to each layer be-
ing filled, stage II to each second layer and so on. Additionally, an "L" added to the stage stands
for "dilute" configurations with the populated layers being filled only partially, at less than their
maximum capacity. Based on these, one can explain the sequence of stage-transitions observed
in the open circuit voltage (OCV) curve of a (dis-)charging process of a graphite anode (see fig. 4).

9



Figure 4: Illustration of the different stages of Li-graphite intercalation compounds (GICs), where
they occur during the charging (lower curve) and discharging (upper curve) processes and what
kinds of phase transitions can be observed when transitioning between them [32].

From an energetical point of view, there are two basic requirements which a model needs to
fulfil, in order to correctly reproduce this OCV curve. Firstly, for any given SOC, the model
needs to assign the lowest potential energy to the "correct" ordering of charge carriers at that
stoichiometry, which in the ideal equilibrium case should be the one with the most pronounced
staging behaviour, or at least close to it. Secondly, the model has to predict correct formation
energies (in this case one may equivalently use the term intercalation energies) for the previ-
ously identified configurations, which are most favourable. Even these basic requirements by
themselves are anything but trivial to fulfil, which becomes obvious when examining the vastly
different formation energies predicted by different state-of-the-art DFT functionals [60]. This is
mostly due to the difficulties vdW interactions still pose for even the most advanced DFT ap-
proaches. Staged compounds are at least partially favoured due to the smaller volume expansion
they experience in z-direction, compared with their dilutely ordered counterparts at the same
SOC [61], which is one of the central effects causing the stage transitions in the first place – and
to a large degree governed by vdW interactions. In fact, Persson et al. claim that the stage
transition at 50% SOC can only be captured at all, with dispersion accounted for by the model
[62].

Once moving on from static, ideal conditions and actually looking at a full (dis-)charging
process, the staging picture by Rüdorff and Hofmann poses problems regarding the exact mech-
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anism of the previously mentioned phase-transitions. For example, in order to transition from
stage III to stage II, an entire gallery would have to be depopulated, and two others populated
instead. Diffusion through the graphene sheets is prohibited by a far too high energy barrier to
be the explanation, while the possible path out of the particle and around the grain boundary
would be very unfavourable from a kinetic point of view.
The solution was first put forward by Daumas and Herold in 1969 [63], in a proposed "domain-
model", with the core premise that the previously described stage-ordering is localized within
so-called domains - areas within the crystal of more or less arbitrary size (see fig. 5). In this
picture, transitions between the phases can be realized simply by moving groups of Li-ions hori-
zontally, within the gallery in which they are already located.

Figure 5: Illustration of a lithium GIC in a globally uniform stage II ordering (left) and in a
stage II ordering according to the domain model (right). The latter circumvents the presence
of globally full and empty galleries, enabling kinetically plausible transition paths between the
stages.

For the bulk of the theoretical groundwork, which originally validated the hypothesis by
Daumas and Herold in the early 1980s, we refer to Safran and Hamann [64–66], Hawrylak and
Subbaswamy [67], as well as Kirczenow [68–70] and Axdal [71]. Experimental validation came
much later, among others by Wang [72] and Dimiev [73] in the early 2010s, but nowadays, the
general hypothesis of the Daumas-Herold domain model has widely been accepted. However,
quantitative details, like the domain-size and dependencies thereof, as well as the underlying
mechanisms on an atomistic level, have not yet been understood to a satisfactory degree. Even
50 years after first being proposed, the formation, stability and movement of domains are still
being investigated in the present, both by theory [74, 75] and by experiment [56, 76].

One exemplary study we want to highlight here for informative purposes was presented
by Krishan et al. in 2013. They studied the stability of compounds in stages II and III by
means of kinetic Monte Carlo (kMC) simulations and DFT (using the Perdew–Burke-Ernzerhof
(PBE) functional and a dispersion correction scheme called dispersion corrected atom centered
pseudopotential (DCACP) [77]) in order to predict vdW forces between the graphite layers.
Based on this approach, they were able to simulate a phase transition from stage III to stage
II (see fig. 6) and to reproduce experimental results by Wang et al. from 2011 [72] – more
specifically the observation that stage-ordering is the most pronounced close to the interface
with the electrolyte. Furthermore, their kMC simulations (based on fixed diffusion barriers
from [78]) show that even after a time span of the order of microseconds, lithium concentration
gradients remain intact, thus further stressing the necessity of treating intercalation mechanisms
as non-equilibrium phenomena.
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(a)

(b)

Figure 6: Simulated (by means of kMC) phase transition from an initial stage III compound (a)
to one that is partially transformed to stage II (b) by Krishnan et al. [74]. Blue spheres signify
lithium ions, white spheres vacancies, graphene sheets separating the galleries are implied. A
particle bath on the left coupled via an interface to the compound is the driving force behind
the stage transition, as would be the case at the interface between electrolyte and anode in a
lithium ion battery.

However, despite these successes, the study was still strongly limited by the lack of a true
multiscale approach. Diffusion barriers are fixed (an approximation in and of itself), which also
means only small changes in the SOC can be investigated at a time. In order to simulate full
charging and discharging cycles, a framework is necessary, that can compute diffusion-barriers
on the fly, depending on the semi-local environment of the respective Li-ion. Furthermore, in
order to investigate the stability of domains the size actually reported from experiment, much
larger supercells are necessary.

An additional complication to keep in mind when investigating intercalation is the fact that
- since only every third C6-ring is occupied at 100% SOC - intercalated layers can assume
AaAa stacking or AaAb stacking, the first one denoting configurations where the occupied Li-
ion positions are directly above each other, and the second one configurations where they are
not, but shifted to an adjacent C6-ring. One can also define an AaAc-stacking, but this is
symmetrically equivalent to AaAb and amounts to the same local chemical environment, with
the main distributing feature being the presence or absence of Li-ion pairs on the positions above
and below the same C6-ring (see fig 7).
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Figure 7: Two layers of lithium intercalated graphite at a stoichiometry of LiC6, which corre-
sponds to an SOC of 100%, in an AaAa- (left), AaAb- (middle), and AaAc-stacking (right), the
latter two of which are symmetrically equivalent. Dark purple spheres correspond to Li-ions
above the indicated carbon sheet, light purple spheres to Li-ions below it.

One could in principle go into even more detail and investigate stacking orders like AaAbAc,
but the total energy differences between all those configurations are within kT at ambient con-
ditions [79] and only AaAa may stand out as sufficiently distinct from the others to have any
noticeable effect on kinetics and/or energetics. Whether this is actually the case is still an open
question and has to our knowledge not been answered experimentally, but there is still relevance
for our work at least to the degree that we demand of our DFTB parametrization to predict
comparable energy differences between AaAa and AaAb/AaAc stacking, as given by the DFT
reference method.

6.4 Inter-Layer Distance and Diffusion

The inter-layer distance between the graphene sheets is a property that deserves extra attention
for multiple reasons. A central driver of the formation of (locally) staged compounds as opposed
to uniform, dilute Li-ion distributions is the fact that the layer distance is slightly expanded
(from 3.355Å in the empty state [44, 45] to 3.7Å in the filled state [80]) in areas where there
already is a certain density of intercalant ions present, and thus makes these areas more energet-
ically favourable for additional Li-ions to settle in than completely vacant and therefore tighter
parts of the galleries. This effect is further enhanced by our own finding that the inter-layer
distance does not increase linearly with the percentage of filling within a gallery [79] - in fact
our DFTB-structure-relaxations predict that a filling precentage of 33% leads to an expansion
of 52% of the full expansion at 100% filling, a filling percentage of 66% leads to an expansion
of 80%. Because of this, the perfectly staged realization of any intermediate stoichiometry is
always the one with the lowest volume expansion.

Furthermore, the local inter-layer distance also has a strong effect on the diffusion barriers
of the Li-ion hopping process from one local minimum to the next. Persson et al. [78] calculated
that even slight deviations in the layer distances (≈ ±10%) lead to significant differences in the
migration barriers (≈ +100%,−70%), especially for dilute, lower saturation stages. Similar (yet
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not quite as pronounced) effects have also been reported by Xu et al. [81], as well. Consequently,
any attempt of predicting accurate diffusion barriers is tied to the ability to calculate very accu-
rate inter-layer distances.
Diffusion barriers for next-neighbour hopping are one of the defining properties (kinetics be-
ing the other one) of the overall diffusive behaviour within the system, a property that is
still rather poorly understood. In fact, big discrepancies of macro-scale diffusion coefficients
(10 –6 − 10 –14cm2

s ) have been reported in experimental literature [78]. These can be attributed
to a number of phenomena, like domain formation and sizes, grain boundary effects due to dif-
fering structural types of graphite powder (see section 6.2 for details), and more, but accurate
inter-layer distances (and diffusion barriers) are a necessary foundation for ever making sense of
these discrepancies with any theoretical approach.
Beyond that, diffusion barriers are also a fundamental building block of kMC simulations, which
are one of the most promising approaches for linking atomistic processes with macro-scale prop-
erties [75, 82, 83]. In the past, it was necessary to make severe approximations - Krishnan et al.
[74] assumed one fixed barrier height regardless of the semi-local environment of each respective
Li-ion, and had decent success with that for short-timed investigations of domain formation, but
such an approach would likely break down when attempting to simulate larger portions of (and
eventually full) charging and discharging cycles.

Unfortunately, despite a lot of interest, the inter-layer distances (which are mostly governed
by weak vdW interactions) in layered materials like lithium GICs are still notoriously difficult
to capture properly, even with state-of-the-art DFT functionals and dispersion corrections [60].
This is already the case just for empty graphite, let alone the entire range of charge.
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6.5 Summary

In summary, we strive to create a model which fulfils a rather long list of requirements. We
summarize those, together with the main contributors responsible for capturing these properties
well, in the following table:

Requirement Main Contributor

Be sufficiently affordable to calculate systems large enough Method choice (DFTB)
to capture realistic domain-sizes and low SOC

Correctly capture the increase in C-C bond lenghts with SOC Repulsion potential

Relax supercells to the correct inter-layer distances for the entire vdW correction
range of SOC

Energetically favour staged over dilute configurations Electronic part

Favour AB-stacking in empty graphite, but AA-stacking above Electronic part
around 10% SOC

Output correct formation energies (at least compared to the Electronic part &
reference DFT method of choice) Repulsion potential

Predict correct atomic forces when moving Li-ions out of Repulsion potential &
local minimum positions Training data

Capture the correct bulk modulus for slight bending of the Repulsion potential
graphene sheets

Be prepared to encounter the event of over-lithiation. Training data
(Corresponding to correctly describing Li-ion pairs on
direct next neighbour positions)

Deliver a satisfactory description of Li-metal Training data
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7 Theoretical Methods - Constructing the Multiscale Model

At the foundation of a large portion of elementary quantum chemistry lies the time-independent,
non-relativistic Schrödinger equation 1 – in this formulation for a system consisting of M nuclei
with N electrons, in the particular system state i, with Ĥ the Hamilton operator, and in absence
of any magnetic or electric fields:

ĤΨi(x⃗1, ..., x⃗N , R⃗1, ..., R⃗M ) = EiΨi(x⃗1, ..., x⃗N , R⃗1, ..., R⃗M ) . (1)

For any particular state of any chemical system, all information can be described by means of its
wave function Ψ [84], which depends on the 3N spatial coordinates and the N spin coordinates
of the electrons - both collected in x⃗ - as well as the 3M spatial coordinates of the nuclei R⃗.
For a general many-body system, the Hamiltonian consists of the kinetic energies of the nuclei
and the electrons (T̂e and T̂n), as well as the interactions between pairs of electrons (V̂ee), nuclei
(V̂nn) and mixed pairs (V̂en). However, within the realm of validity of the Born-Oppenheimer
approximation, the slow-moving nuclei can be considered stationary within the time-frames of
electron movement. Thus, T̂n is approximated as 0, and V̂nn is viewed as constant, leading to
the non-relativistic form of the Hamiltonian:

Ĥ = T̂e + V̂ee + V̂en + C . (2)

The central challenge of many quantum chemical methods is the evaluation of said equation, an
endeavour that - with increasing system size - quickly becomes impossible in analytical fashion
due to the 4N scaling with the number of electrons. Therefore, a multitude of approximations
and there-on based approaches have been developed - at vastly different regions of the accuracy
vs. cost compromise. On the one end of the spectrum, wave function methods like coupled
cluster (CC) theory [85] are highly accurate, yet hardly able to treat systems with more than
a handful of atoms at a time, while on the other end, fully empirical atomistic force field (FF)
approaches [86] are capable of calculating millions of atoms to somewhat reasonable accuracy,
but lack any kind of physical information within the model.
Whenever multiple levels of theory are combined, in order to make up for each others weak-
nesses, one speaks of "multiscale modeling". As of now, it is not possible to create a link
between atomic processes and macroscopic properties of solid materials by means of just one
theoretical approach. Instead, it is common practice to construct a hierarchy of methods, each
of them validated against more accurate calculations for relatively small systems, and then in
turn used to validate the next, cheaper, approach against systems at the high end of their own
computational capabilities. Figure 8 shows a summary of approaches commonly used in such a
fashion.
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Figure 8: Illustration of the different length- and time-scales, as well as modeling techniques
relevant to materials design and research.

Within this chapter, we give detailed introductions to the methods used in this work and
describe the way we used them to construct our own multi-scale model for lithium GICs.

7.1 Density Functional Theory

DFT has been one of the most prominent work-horses of electronic structure calculations for the
last multiple decades, with a vast variety of implementations and flavours available today. The
foundation of all these methods is the idea that, instead of the wave-function, the electron density
of a system can be used to calculate the energy. This property is significantly less complex, since
it does not depend on the exact positions of the electrons (and spin thereof), but solely on their
spatial distribution. It is also real and can in principle be measured.
The point of origin for the derivation of DFT is the total energy of a quantum mechanical system,
as formulated by Kohn and Sham [87] (see equation 3), which expresses the total energy as a
functional of the electron density n(r⃗), as well as the atomic positions R⃗:

EKS[n(r⃗), R⃗] = Ekin + Eext + EHartree + EII + EXC , (3)

where Ekin is the non-interacting part of the kinetic electron energy, Eext the interaction be-
tween all electrons and nuclei, as well as ions (if any are present), EHartree the classical Coulom-
bic ground state energy, EII the electrostatic potential between nuclei and ions and EXC the
so-called exchange-correlation energy. The first four of these contributions are well-defined and
can in principle be calculated to an arbitrary accuracy. However, this is not the case for the final
contribution (equation 4), which includes the non-classical many-body effects not covered by the
other terms in the expression:
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EXC = Eee − Ekin − EHartree . (4)

According to the foundational theorem by Hohenberg and Kohn [88], only the exact ground
state electron density results in the minimum total energy. Based on this, it is in principle possi-
ble to approach the ground state density and minimum energy by some variational minimization
scheme, from an initial density guess – given that the Kohn-Sham energy functional is known.
However, this is not quite the case, so the conundrum at the heart of every DFT-method is
approximating the exchange-correlation functional EXC as well as possible, while also remaining
computationally affordable.
Available functionals differ vastly in complexity and methodology of the derivation. The sim-
ple, but comparatively fast local density approximation (LDA) ([89]) – only taking into account
local values of the density – was introduced as early as 1980 and was the first truly productive
version of DFT. Later, the class of general gradient approximation (GGA) functionals came to
life in the late 90s, being based also on the local gradient of density. One famous example is the
functional by Perdew, Burke and Ernzerhof (PBE) [90–92] – probably the most-used to date and
the backbone of countless studies.
Further improvements upon certain shortcomings in the performance of GGAs have been at-
tempted in many different ways [93]. Hybrid functionals for instance mix the approximate ex-
change functional with a certain fraction of exact exchange, and are still being actively researched
to this day [94–97]. However, even these modern functionals are still local in nature. Therefore,
none of them are capable of describing long ranged dispersion effects (not even qualitatively).

7.1.1 Van der Waals Corrections

Dispersion effects like vdW interactions have been one of the biggest challenges to DFT for many
years [93]. Numerous approaches have been tried, but only in the 2010s, reliable post-corrections
surfaced, beginning with the 2-body schemes by Grimme [98, 99], and by Tkatchenko and Schef-
fler [100]. Soon after, the many-body dispersion (MBD) correction by Tkatchenko was presented
[101–105] and has been further improved both in terms of theory and in terms of implementation.

It is obvious, from just looking at the structure of lithium-GICs, that a good dispersion
correction model is at least as important as the actual DFT functional, in order to achieve high-
quality computations of all relevant system properties. As pointed out previously, the inter-layer
distance between two adjacent graphene sheets is of crucial importance for the prediction of
accurate Li-ion diffusion barriers – and is governed almost exclusively by dispersive interactions
at least for lower SOC. Beyond that, it has been shown by Persson et al. [78] that the stage-
transition at 50% SOC is only visible at all in DFT-calculations with vdW-corrections activated.
Furthermore, we want to point out that not only the correct positions of the minima of the
"potential energy vs. layer-distance" relationship are important, but also the related bulk mod-
ulus, i.e. how much any given non-minimum layer distance is punished energetically compared
with the minimum. This is relevant on the one hand, since due to the local nature of the stage-
domains, there are interfaces where the actual local layer-distance differs from the one that would
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be expected in a perfectly staged compound of the same SOC, and on the other hand in order
to correctly estimate the energy differences between different stacking order (AaAa, AaAb,...) in
otherwise identical stoichiometries.

Replicating all of these properties correctly with our DFTB-models, relative to the dispersion-
corrected DFT reference, has been one of the central challenges during this work.

7.1.2 Applications of DFT in this Work

DFT calculations are the primary reference and training method used in this work for the
parametrization of our DFTB model. We selected the PBE functional [90–92] and the MBD
dispersion correction [101], because this combination best captured experimentally known struc-
tural properties like bond lengths and inter-layer distances at both ends of the SOC-range of
Li-GICs. All calculations were performed with the all-electron framework FHI-aims [106], with
light settings and default tier-2 basis sets. The k-point grid is well-converged at 8 × 8 × 8 for
supercells in the training set, which are all smaller than 8Å × 8Å × 8Å. Relativistic treatment
is implemented via the atomic zero-order regular approximation (ZORA). Convergence criteria
for the self-consistent cycle have not been changed from the default settings, as suggested in [106].
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7.2 Density Functional Tight Binding

Semi-empirical electronic structure models have successfully played the niche role of capturing
non-local quantum mechanical effects that cannot be properly described by fully empirical atomic
force fields [107], which have otherwise been on the forefront of modern materials modeling - and
especially successful for covalent or metallic systems [108–110]. To fill this niche, a wide vari-
ety of semi-empirical quantum chemistry approaches have been developed [111–117]. The most
common among these is DFTB, which was first developed by Elstner, Porezag et al. [118, 119]
in the late 1990s, building upon ideas by Harris and Foulkes [120, 121] from the late 1980s,
and modernized into its state-of-the-art, self-consistent form by Oliveira et. al [122] in 2009. It
introduces additional tight-binding approximations to the theoretical DFT framework, which in
practice amount to not calculating the entire energy expression from scratch for each iteration.
Instead, certain elements are obtained by interpolating pre-computed tables and parametrized
potentials. The benefit of this is a speed-up of around 2-3 orders of magnitude compared to
traditional (GGA-)DFT, which places DFTB at roughly the same cost as charge adaptive force
fields like reaxFF [123] (which is 20 years old but still being heavily used and improved upon
[124–126]). However, as opposed to atomistic FF methods, DFTB also has the advantage of pro-
viding full access to electronic structure properties like band structures and densities of states,
which can be utilized in the same way as those output by DFT. Obviously, these benefits do
not come without a trade-off. This manifests as a compromise between reduced accuracy and
transferability, which can be tuned to a degree during the parametrization process, i.e. it is
possible to either create very accurate parametrizations which only work for one specific system,
or reasonably versatile parametrizations which have to sacrifice a fair bit of accuracy.

In the following sections we show a detailed derivation of the DFTB energy functional (specif-
ically in the formulation implemented in the DFTB+ framework [127, 128]) from the DFT-
functional, explain all simplifications and parameters that are introduced, and present the exact
procedure of calculating a total energy value from an atomic cell.

7.2.1 The Underlying Energy Functional

The notation in this section is chosen as follows: nuclei are indicated with i, j, particle states as a
and basis orbitals as µ, ν. We begin by explicitly writing the Kohn-Sham-energy (see equation 3)
that DFT is also based upon:

EKS[n(r⃗)] =
∑
a

fa ⟨ψa|


Ekin︷ ︸︸ ︷

−1

2
∇2+

Eext︷ ︸︸ ︷∫
Vext(r⃗)n(r⃗)

 |ψa⟩+

EHartree︷ ︸︸ ︷
1

2

∫ ∫ ′ nn′

|r⃗ − r⃗′| +EII + EXC (5)

with fa ∈ [0, 2] being the occupation of state ψa with energy ϵa and typically taken from
a Fermi distribution. Now, the tight-binding flavour is introduced to the framework by the
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assumption that the single-particle wave-functions can be sufficiently described by an orthogonal
and minimal basis set (eq. 6), constructed only from the valence orbitals, and thus reducing the
dimensionality of the problem greatly.

ψa =
∑
µ

caµϕµ(r⃗) with

coefficients of the orthogonal basis︷ ︸︸ ︷
caµ =

〈
µ︸︷︷︸

basis vectors

∣∣∣∣∣∣ψa

〉
(6)

As another approximation, a pseudo-density n0(r⃗) is introduced, which consists of the local
electron densities around the free, neutral and non-interacting atoms within the system. In order
to assure the latter of those qualities, a confinement potential is applied, which cuts off the diffuse
tails of the simplified wave-function orbitals [129]. Determining the exact shape of this potential
is part of the parametrization process and will be explained in section 7.2.6. The assumption
made at this stage of the derivation is that this pseudo-density is reasonably similar to the true
electron density of the structure and will therefore produce a similar system energy, when the
(simplified) Kohn-Sham energy functional is applied to it:

ntrue(r⃗) = n0(r⃗) + δn(r⃗) with δn(r⃗) << n0(r⃗) . (7)

As a consequence, the total system energy can be Taylor-expanded around the pseudo-density
of the non-interacting system n0(r⃗) by a small deviation δn(r⃗). Interactions and correlations are
treated in a perturbative manner [129]. In the earliest versions of DFTB, this expansion was
truncated after terms of order zero (DFTB0) [130]. This worked well for mostly covalent systems,
but not when any significant amount of charge transfer was present in the system. Today, it is
most common to truncate the Taylor expansion after terms of the second order. This approach
is called self-consistent charge (SCC) DFTB and was first proposed by Elstner et al. in 1998
[131]. It results in the following expression:

E[δn] ≈
∑
a

fa ⟨ψa|

H(n0), no charge transfer︷ ︸︸ ︷
−1

2
∇2 + Vext + VH [n0(r⃗)] + VXC[n0(r⃗)] |ψa⟩ (8)

+
1

2

∫ ∫ ′(δ2EXC[n0(r⃗)]

δnδn′
+

1

r⃗ + r⃗′

)
δnδn′ (9)

− 1

2

∫
(VHartree[n0(r⃗)]n0(r⃗) + EXC[n0(r⃗)] + EII)δn−

∫
(VXC[n0(r⃗)]n0(r⃗))δn (10)

The first (0-order) term was named "band-structure energy" (EBS) and amounts to the total
self-energy of the non-interacting pseudo-system we introduced before, thus consisting of a sum
of single-atom contributions. Due to the minimal basis set introduced in the first approximation,
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these contributions consider only valence-electrons.
The 1st-order term in the second line is called "Coulomb energy" (ECoul) and describes the
electrostatic interactions between local charge densities caused by the varying electronegativities
of the different species in the system, as well as some coupling effects between mobile charge
fluctuations.
The term in the third line is called "repulsion energy" (Erep) and is similar in spirit to the
exchange-correlation energy in DFT, as it contains everything that could not be captured by the
other terms: non-classical many-body effects, core effects and – in principle – all errors caused
by the approximations introduced previously – at least relative to the DFT reference.

7.2.2 The Band-Structure Energy

The first and simplest part of the DFTB energy is the total self-energy of the non-interacting
pseudo-system we introduced before. It straightforwardly amounts to the sum of the atomic
contributions:

EBS(δn) =
∑
a

fa ⟨ψa|H(n0) |ψa⟩ . (11)

With the minimal basis set (eq. 6) applied, this becomes:

EBS(δn) =
∑
a

fa
∑
µν

caµc
a
ν ⟨ϕµ|H0 |ϕν⟩︸ ︷︷ ︸
neutral−charge Hamiltonian H0

µν

. (12)

Note that so far, the basis coefficients caµ have yet to be specifically defined. This is done by
means of a variational principle, as explained in chapter 7.2.5.

7.2.3 The Coulomb Energy and Atomic Charge Populations

The second contribution to the DFTB energy is the Coulomb term ECoul. Before attempting to
describe this as a function of the electron density, it is helpful to first examine it as a function
of a partial atomic point charge ∆q, as put forward by Parr et al. [132]:

E(∆q) ≈ E0 +

(
δE

δ ∆q

)
∆q +

1

2

(
δ2E

δ ∆q2

)
∆q2 (13)

= E0 − χ∆q +
1

2
U∆q2 (14)

with χ =
1

2
(IE + EA) = neg. slope of ∆E (15)

and U = IE − EA = curvature of ∆E (16)

23



χ is the electric susceptibility, which describes the degree of polarization induced as a response
to an external electric field. U is the "Hubbard parameter" – two times the electronic hardness
– and can intuitively be understood as the shape-wise reaction of the local electron-density to
additional charge. Both these properties (for the free atom) can be calculated from the ionization
energy IE (energy necessary to negatively ionize the neutral atom) and the electron affinity EA
(energy needed to remove a second electron from the 1-anion) as shown in equations (15) and (16).

With this in mind, we can now specifically examine the Coulomb energy term in the DFTB
framework:

ECoul[δn] =
1

2

∫ ∫ ′(δ2EXC[n0(r⃗)]

δnδn′
+

1

|r⃗ − r⃗′|

)
δnδn′ . (17)

In a first simplification, the total space integral is reformulated as a sum of integrals over
areas Vi around the atomic positions of atom i:

∫
V
=

∑
i

∫
Vi

. (18)

At this stage, a distinction between the one-body (i = j) and the two-body (i ̸= j) cases is
necessary. For the first of the two, eq. 17 can be written as:

ECouli=j
[δn] =

1

2
∆q2i

∑
i

∑
i

′
∫
Vi

∫ ′

Vi

(
δ2EXC[n0(r⃗)]

δnδn′
+

1

|r⃗ − r⃗′|

)
δnδn′︸ ︷︷ ︸

≈Ui=IE−EA

(19)

By comparing this equation and eq. 14, it becomes apparent that a large part of the expres-
sion can be approximated by the Hubbard parameter U .

For the two-body part situation, EXC vanishes, since the exchange correlation functionals are
local. With this, equation 17 becomes:

ECouli̸=j
[δn] =

1

2

∑
i

∑
j

∆qi∆qj

∫
Vi

∫ ′

Vj

δniδn
′
j

|r⃗ − r⃗′| . (20)

This expression is purely electrostatic. To further unravel it, δni(r) is approximated as a
spherically symmetrical Gaussian:
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δni(r) ≈ exp

(−r2
2σ2i

)
with σ =

FWHM√
8ln2

. (21)

FWHM – the full width at half maximum – is derived by fitting the Gaussian to a reference
charge density as a function of the distance plot, which is usually calculated in DFT. By
comparing this with the one-body case, the following is derived:

FWHMi =

√
8ln2

π

1

Ui
=

1.329

Ui
. (22)

Applying this, and after further analytical simplifications, the Coulomb energy in the two-
body case can be written as:

ECouli̸=j
(δn) =

1

2

∑
i

∑
j

∆qi∆qj
erf(CijRij)

Rij
(23)

with Cij =

√
4ln2

(1.329Ui
)2 + (1.329Uj

)2
. (24)

Putting both cases together results in the following expression for the full Coulomb energy:

ECoul =
1

2

∑
ij

γij(Rij)∆qi∆qj (25)

with γij = Ui for i = j

and γij =
erf(C(Ui, Uj)Rij)

Rij
for i ̸= j

There are only two quantities this expression is dependent on: the Hubbard parameter U
is usually available in literature for most elements, or can be calculated by means of DFT.
However, if there is significant charge transfer present in the system of interest and the chemical
environments of the atoms differ more strongly from the free atom state, the choice can also be
made to treat U as an adaptable parameter, that is varied within reasonable boundaries during
the parametrization process for a better description of the system (but again most likely at the
cost of transferability).
The second necessary input for the computation of the Coulomb energy are the local charge
populations ∆qi,j at each atomic position. In order to treat these explicitly, Mulliken charge
analysis [133, 134] is employed. The first step is writing down the number of electrons located
in a volume around one atom i:
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qi =
∑
a

fa

∫
Vi

|ψa(r⃗)|2d3r⃗ (26)

Within the approximation of tightly bound electrons, it is sufficient to express the single-
particle wave-functions in a minimal orthonormal basis consisting of only atomic valence orbitals:

ψa =
∑
µ

caµϕµ(r⃗) . (27)

With this, eq. 26 can be written as:

qi =
∑
a

fa
∑
µν

cα∗µ cαν

∫
Vi

ϕ∗µ(r⃗)ϕν(r⃗)d
3r⃗ . (28)

There are three possible cases regarding the affinity of the orbitals µ and ν in relation to
atom i - both of them, one of them or neither of them belonging to it. Splitting up the integral
and treating all three cases explicitly, the equation becomes:

qi =
∑
a

fa

( ∑
µ,ν∈i

cα∗µ cαν

∫
Vi

ϕ∗µ(r⃗)ϕν(r⃗)d
3r⃗ (29)

+
∑

µ∈i,ν∈j ̸=i

cα∗µ cαν

∫
Vi

ϕ∗µ(r⃗)ϕν(r⃗)d
3r⃗ (30)

+
∑
µ,ν /∈i

cα∗µ cαν

∫
Vi

ϕ∗µ(r⃗)ϕν(r⃗)d
3r⃗

)
(31)

Within the present approximations, the first term is simply the number of valence electrons in
the neutral atom, while the third term vanishes completely due to the confined basis functions.
Therefore, the second term amounts to the extra electron population at atom i, which is the
negative of the local charge population ∆qi. By recognizing that the orbital overlap is distributed
evenly between the volume elements Vi and Vj around atoms i and j (eq. 32), the expression for
the charge populations can be further simplified (eq. 33 with c.c. for complex conjugate), finally
providing a workable form:

∫
Vi

ϕ∗µ(r⃗)ϕν(r⃗)d
3r⃗ ≈

∫
Vj

ϕ∗µ(r⃗)ϕν(r⃗)d
3r⃗ ≈

∫
V ϕ

∗
µ(r⃗)ϕν(r⃗)d

3r⃗

2
≈ Sµν

2
(32)

∆qi = −1

2

∑
a

fa
∑
µ∈i

∑
ν∈j ̸=i

(caµ
∗caν + c.c.) Sµν︸︷︷︸

overlap matrix elements

(33)

The requirements for calculating the charge populations are the expansion coefficients caµ,ν of
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the basis set and the corresponding element of the orbital overlap matrix Sµν .

7.2.4 The Repulsion Energy

Finally, the repulsion energy needs to be considered - the most obscure of the three contributions.
It consists of a variety of many-body contributions (with unknown shape), core effects and double
counting corrections (eq. 34). Similar in spirit to the exchange-correlation energy in DFT, it is
essentially the difference between the reference energy of the training method and the previously
discussed contributions to the DFTB energy:

Erep = −1

2

∫
VHartree(n0(r⃗))n0(r⃗) + EXC(n0(r⃗)) + EII −

∫
VXC(n0(r⃗))n0(r⃗) . (34)

In the context of traditional DFTB, it is constructed as a sum of spherically symmetric,
pairwise repulsive two-body potentials as in eq. 35 (although other ways of describing it are also
possible):

Erep ≈
∑
ij

V ij
rep(Rij) . (35)

Of course, assuming that such a simple form is able to capture the nuances of a superposi-
tion of many-body effects is a drastic approximation, but has worked surprisingly well for many
chemical systems [9, 135, 136] in the past. This may be due to the fact that these many-body
effects are usually small compared with their two-body counterparts, and also compared with
the other approximations made during the derivation of the method. However, with the re-
cent developments in machine-learned many-body atomic potentials like ACE/PACE ([15–17])
and previously GAP ([12–14]), using such an approach for the repulsion energy, in combination
with a traditional DFTB electronic part, is expected to be a promising pathway towards fur-
ther improving both methods. The recent addition of Chebyshev interaction model for efficient
simulation (ChIMES) [137–139] to the DFTB+ framework is already a first step in this direction.

Whichever specific formulation is chosen, the repulsion energy is typically obtained by fitting
to a DFT reference or other higher level theory and experimental properties, as described in
section 7.2.7.

7.2.5 The Full Energy Expression and the Requirements for its Calculation

With all three contributions in place, the full energy expression can be written as:

E =
∑
a

fa
∑
µν

caµ
∗caνH

0
µν +

1

2

∑
ij

γij(Uij , Rij)∆qi∆qj +
∑
i<j

V ij
rep(Rij) . (36)

From this (and equation 33), it is apparent that there are four objects which need to be
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calculated: the orbitals ϕ (as they appear in H0
µν = ⟨ϕµ|H0 |ϕν⟩ and in Sµν = ⟨ϕµ |ϕν⟩), the

neutral-charge Hamiltonian matrix H0, the overlap matrix S (which is part of the expression for
the charge populations ∆qi,j) and the basis set expansion coefficients caµ,ν .

The orbitals ϕ are obtained by applying a confinement potential to the free atom orbitals,
effectively cutting off the diffuse tails. See section 7.2.6 for a detailed explanation.

For the neutral Hamiltonian H0, the entries in the case µ, ν /∈ i vanish due to the localized
nature of the orbitals. In terms of the diagonal entries µ = ν ∈ i, there are a two options of
how to proceed. The simple one is to approximate them by the valence energies of free, neutral
atoms, which can be pre-calculated e.g. by means of DFT, or taken from literature. Alterna-
tively, they can also be considered parameters during the electronic part parametrization process,
which may increase the performance. Finally, the off-diagonal entries µ ∈ i, ν /∈ i are (in either
case) pre-computed based on Slater-Koster transformations in a two-centre approximation, as in
H0

µν = ⟨ϕµ|H0 |ϕν⟩.

The overlap matrix elements are calculated analogously (applying one- and two-body approx-
imations) from the orbitals:

Sµν = ⟨ϕµ |ϕν⟩ (37)

The largest part of the speed-up DFTB is able to achieve compared with DFT stems from
the fact that the three previously mentioned objects can be pre-calculated in the beginning of a
DFTB calculation and do not need to be obtained via a convergence-based variational approach.
However, the same is not true for the basis expansion coefficients. Here, a set of secular equations
is employed ( eq. 38), with llag being some undetermined Lagrange multipliers.

∑
ν

caν(Hµν − llag · Sµν) = 0 (38)

with Hµν = H0
µν +

1

2
(εi + εj)Sµν (39)

The total Hamiltonian Hµν can be separated into the Hamiltonian of the pseudo system H0
µν

and a contribution of charge fluctuations with εi,j being the electrostatic energy of atoms i and
j. Due to the fact that the expansion coefficients are needed to calculate the charge populations
∆q, which themselves are necessary for the computation of εi,j (see equations 25 and 33), a self-
consistent, iterative procedure is necessary, starting at e.g. neutral charges and iterating until
convergence is reached. This is the reason why second-order DFTB is also called self-consistent
charge SCC DFTB.

7.2.6 Electronic Part Parametrization

As described before, the "electronic part" in the SCC-DFTB framework consists of the self-energy
of the non-interacting, tightly bound pseudo system and the Coulomb interactions between the
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valence electron density, as well as fluctuations thereof. In order to calculate it from an atomic
structure, one requires values for the diagonal elements ε of the non-interacting Hamiltonian
(also called energy eigenvalues) and the Hubbard parameter U , as well as a defined functional
form for the confinement potential, which is responsible for localizing the orbitals. Each of these
is unique per species in the system.
The confinement potential is a necessary "parameter", which always needs to be optimized –
one for each species – by selecting an appropriate functional form and defining its coefficients.
Among the forms that have been used are quadratic [140] and power functions [136], as well as
the – in our opinion – slightly superior "Woods-Saxon potential" (see eq. 40), which achieves a
smoother transition to zero in the orbital tails without dramatically affecting the core region:

Vconf =
W

1 + exp(−a(r − ra))
. (40)

On the other hand, both ε and U are optionally optimizable parameters. Often, they are
simply taken from the free atom. However, depending on the amount of charge transfer occurring
in the system, the choice can be made to modify them as well. Either way, the parameter-space is
then optimized based on selected criteria, which can be summarized in an appropriate cost func-
tion – typically a selection of features from the band structures of the chemical species present in
the system of interest, compared with reference calculations e.g. from DFT. The cost function
is then minimized by some optimizer, yielding the electronic part parameters.

7.2.7 Repulsion Potential Training

As explained previously, the repulsion potential has a similar function as the exchange-correlation
energy in DFT, given that it attempts to capture all the higher-order effects that are not treated
by the electronic part. In the traditional framework of DFTB, it comes as a set of relatively
short-ranged two-body potentials - one for each possible combination of atomic species in the
system, both homo- and hetero-nuclear. Despite its name, there is no obligation for the repulsion
potential to be purely repulsive for its entire range - that is only the case in the short-distance
limit [141].
There are multiple challenges that arise during the process of fitting a good set of repulsion
potentials. It needs to be sufficiently adaptive to capture the physical nuances of all the effects
summarized by the repulsion energy, while also being not so complicated, that the complex-
ity and cost of the fitting procedure become a hindrance - especially the more different atomic
species there are present in the system of interest [11]. Past endeavours have typically struggled
with balancing these requirements, either being very rigid [9, 129, 136], or very cumbersome
[142, 143], with many functional parameters. The latter problem can be mitigated to a degree
by more efficient optimization algorithms, which has been attempted by multiple groups [144,
145], to some success, but only with the recent advances in machine-learning methods, it has
truly become possible to get the best of both worlds. Machine-learned repulsion potentials like
GPrep [11] allow for fully adaptive functional forms, while also making a simultaneous and fast
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parametrization process possible, in a purely data-driven approach. See section 7.3 for details.

A more general challenge to the traditional two-body interpretation of the repulsion potential
is the obvious fact that it cannot distinguish between different chemical environments around the
otherwise identical constellation of two atoms. This is irrelevant in many systems, but important
in many others, and strongly limits the possible transferability, which can ever be achieved with
this approach. There have been several ideas on how to circumvent this issue, among them
so-called generalized repulsive potentials [146], which employ machine-learning in order not only
to teach their potentials the atom-types of the pair, but also introduce a variable bond-type
between them. Another proposition is the introduction of polarizability and crystal field terms
[147]. However, with the recent progress in machine-learned atomic potentials like ACE/PACE
[15–17] and frameworks like ChIMES [137–139], we believe that many-body repulsion potentials
will become the superior approach to making DFTB more general and transferable in the future.

7.2.8 Applications in this Work

Creating and gradually improving our DFTB parametrization for lithium intercalated graphite
has been one of the primary tasks in this work. We trained against references based on DFT, with
the PBE functional [90, 91] and the many-body-dispersion correction MBD [101]. For the elec-
tronic part, we found it unnecessary to change the free-atom energy eigenvalues ε and Hubbard
parameters U . Our cost function consisted of a selection of features from the band-structures of
lithium metal, graphite and diamond, and was optimized in 2D space by means of the particle
swarm optimizer (PSO) [144].
The two-body repulsion potentials were fitted by means of the Gaussian process regression frame-
work GPrep [11], against forces of distorted equilibrium structures throughout the entire range
of charge, as well as diffusion step intermediates. In order to aid the learning of dispersive effects
to a sufficient degree, we furthermore switch on a Lennard Jones (LJ) [148] dispersion correction.
This way, we essentially teach the repulsion potential the difference between the simple LJ and
the more sophisticated MBD dispersion correction, which we assume to be comparable at least
in the long range beyond the cutoff of our repulsion potential.
In terms of applications, our DFTB parametrization was used extensively to investigate atom-
istic and previously inaccessible meso-scale properties of Li-GIC anodes. Beyond that, it is also
featured as an integral part of the multi-scale model in two ways: by providing accurate diffusion
barriers and relative permittivity in dependence of a large, semi-local environment of the respec-
tive Li-ion or vacancy, which is essential for (charge-) kMC simulations, and by providing large
reference databases for the future endeavour of training even cheaper cluster expansion models.
The exact settings like k-grid and convergence criteria of the DFTB calculations have been con-
tinually modified throughout this work and we refer to the papers for details.
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7.3 Gaussian Process Regression

As outlined previously, the task of fitting the repulsion potential can be formalized as follows:
based on a data set consisting of n data points (xi, yi), with x the input space and y the resulting
values of the property of interest, the goal is to approximate the underlying, unknown functional
relationship f(x) as accurately as possible. In our specific case, x corresponds to the relative
positions and species of the atoms, and y to the forces the atoms experience, as predicted by the
DFT reference method.

In order to achieve this, the approach of choice in this work is Gaussian process regres-
sion (GPR), which falls into the category of Bayesian machine learning. Specifically, it aims at
calculating a predicted probability distribution p(f(xtest)|xtest, x, y) of the property value corre-
sponding to an arbitrary input point xtest, which is not required to be part of the training space.
For this, Bayes theorem is employed:

p(fA|fB) =
p(fA)p(fB|fA)

p(fB)
(41)

with p(fA|fB) the conditional probability distribution of A in the event of B. In the context of
our present application, one can relate fB to the available training data, and fA to the model
parameters, which in turn determine the prediction.

First, some formalism to express our probability distributions is required. Here, the choice
is a Gaussian process (a generalization of the multivariate Gaussian distribution), which is fully
defined by its mean, which in turn is formally variable but has been set to zero within this
approach,

m(x) = ⟨f(x)⟩ (42)

and its covariance function, which measures the similarity between two points x, x’ of the input
space [149],

k(x, x′) = ⟨(f(x)−m(x))(f(x′)−m(x′))⟩ (43)

Based on this, Bayes theorem can be rewritten as

p(f(xtest), f(x)|xtest, x, y) =
p(f(xtest), f(x)|xtest, x)p(y|f(x))

p(y)
(44)

Next, the training targets f(x) are integrated out, leaving us with the desired probability distri-
bution:

p(f(xtest)|xtest, x, y) =
∫
p(f(xtest), f(x)|xtest, x, y)df (45)

Finally, after making use of the Gaussian process as the functional form, the mean of this posterior
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distribution can be written as

f(xtest) =

n∑
i=1

αik(xtest, xi) (46)

with the coefficients αi only depending on the training set. It is this mean, which is then used
as the repulsion potential – see figure 9 for an illustration.

Figure 9: Exemplary illustration of a Gaussian process regression in 1D input space [149].
Coloured lines constitute the ensemble of Gaussian processes – linear combinations of kernel
functions with different coefficients – with the black dashed line being the mean there-of. By
incorporating the knowledge of the training data points and their prediction values, the prior
distribution p(f(xtest)|xtest) (left) becomes the posterior distribution p(f(xtest)|xtest, x, y) (right).

The computational bottleneck for the determination of the coefficients is the inversion of the
covariance matrix K, which has the dimensions Npairs × Npairs, with Npairs denominating the
number of atom pairs in the training set, which can obviously become quite large. In order to
combat this problem, a sparsification approach is applied to reduce the dimensionality of the
problem, making use of redundancy in the data set. For details, we refer to the GAP framework
by Bartók et al. [12].

With all this in place, their remains the task to define the covariance (kernel) function k(x, x′),
which measures the similarity between two elements of the input space. For this, we choose to
employ the "squared exponential" kernel (SE):

kSE(x, x
′) = exp

(−|x− x′|2
θ2

)
(47)

The parameter θ defines the length-scale on which the kernel operates, or in other words,
how "lenient" it is, i.e. how quickly the kernel value decreases from 1 to 0 with decreasing
similarity between the input points. Since the repulsion potential Vrep is constructed as a linear
combination of kernel functions, θ also becomes a hyperparameter for the predictive model, which
contributes to the smoothness of the repulsion potentials.
There is a number of additional hyperparameters which need to be defined within the GPR
approach, namely the number of sparse input points Ns, the regularization parameter σ and
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parameters of the cutoff function limiting the range of the repulsion potential. For details, we
refer to the first paper included in this thesis [61], but in summary, within certain ranges, Vrep is
rather robust to minor changes of these hyperparameters. Finding these ranges is an integral part
of the parametrization process. An intuitive explanation for this can be derived – in the spirit of
Bayesian learning – from the fact that the choices of hyperparameters essentially correspond to
the choice of "prior" in the Bayesian context. Therefore, any reasonable prior should be able to
converge to a similarly good fit of the available training data, given that the latter is sufficiently
abundant and diverse.
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8 Publications

8.1 DFTB Modeling of Lithium-Intercalated Graphite with Machine-Learned
Repulsive Potential

||: These authors contributed equally to this work.

Summary: In this work, we first explored the possibility of using the GPR framework GPrep
[11], which was previously developed within the group, in order to construct an accurate DFTB
parametrization for lithium intercalated graphite. The primary focus was on establishing the
workflow and on providing some good practices, to ensure not only accurate predictions, but
also stability in the hyperparameter-space, and to avoid over- and under-fitting, which is crucial
for good extrapolation behaviour outside of the trained-upon chemical space.
For the electronic part, we proclaimed a reasonable cost function based on selected features of
the band structures of graphite, diamond and metallic lithium, which is optimized by means of
a PSO in the 2D hyperparameter-space. The band-structure of LiC6 was used as an example
to show that our resulting Slater-Koster files extrapolate well and produce good results (within
realistic expectations for a tightly bound model).
For the repulsion part, we investigated which types of structures (rattled and scaled equilibrium
configurations as well as diffusion step intermediates) need to be included in the training set.
The hyperparameter-space was rigorously investigated in terms of physicality and robustness of
the resulting parametrizations. Beyond that, we also explored how to best incorporate the very
important vdW interactions into our studies, settling on the MBD post-correction scheme [101]
for the reference DFT calculations. For the DFTB calculations, a simple Leonnard-Jones (LJ)
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model was applied. We found that the difference between the two corrections schemes can be
encoded in the repulsion potential sufficiently well.
With all that in place, we obtained a parametrization that is capable of reproducing structural
properties and local forces at all states of charge as well as the highest-level DFT methods avail-
able, at a fraction of the cost. We also predicted a set of diffusion barriers which agree well with
significantly more expensive results from literature.

Individual Contributions: The parametrization process of the electronic part was a col-
laborative effort conceptually, but mostly executed by Dr. Chiara Panosetti. The construc-
tion of the various training set geometries, selection of the reference DFT functional and vdW
correction, parametrization of the repulsion potentials and investigation of the corresponding
hyperparameter-space was done by me, in close collaboration with Dr. Panosetti and Dr.
Christoph Scheurer. The writing process and presentation of the results were a shared effort.
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8.2 Accessing Structural, Electronic, Transport and Mesoscale Properties of
Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion
Potential

Summary: In this work, we continued the development of our parametrization by including
some previously neglected key features and additional benchmark criteria. One primary task
was adding the lithium-lithium repulsion potential to the parametrization, without negatively
impacting the previously demonstrated performance. Those interactions had been skipped in
the previous work, because they are not needed for describing Li-GICs of the stoichiometries
LixC6, x ∈ [0:1], which was until very recently considered the "full" range of SOC. However, new
findings by our experimental collaborators suggested that locally over-lithiated configurations
are in fact possible at ambient conditions. In order to be able to investigate those, as well as
dendrite formation at the anode-electrolyte interface and metallic lithium deposition between
graphite grains, repulsive Li-Li interactions become non-negligible. We showed that extending
the existing model by these interactions is unproblematic within the framework we had devel-
oped, simply by adding some lithium metal clusters and molecular dynamics snapshots to the
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training set.
Additionally we extended our list of benchmark properties to the formation energies of LiC6,
LiC12 and LiC18, which are necessary for estimating open circuit voltage (OCV) curves upon
charging and discharging the anodes, as well as LiC2 – representative for over-lithiated com-
pounds, which we were able to capture nicely after some modifications of the hyperparameters.

Based on these improvements, we were able to conduct some new investigations, that were
not possible before. We demonstrated that our method is capable of the full structure relaxation
of large supercells in the order of thousands of atoms, and that within those, local domain areas
relax to the expected local layer distances and are energetically favoured over dilute configura-
tions (which is in agreement with experimental results and accepted theory). We furthermore
sampled the intra-layer, long-ranged interactions between two lithium ions, validated that those
are indeed predicted as Coulombic in nature, and explained how the intrinsic dielectric constant
of the material can be calculated from it.

Individual Contributions: The construction of the Li-metal-like reference structures was
done by Dario Mauth, under the supervision of Dr. Chiara Panosetti. The reparametrization,
including said structures and taking into account the formation energies, was a shared effort be-
tween Dr. Panosetti and me. Dr. Christiane Rahe provided additional experimental references
for the energetics, which were used for validation. The groundwork for analyzing the long-ranged
Coulomb interactions was laid by Maria Voronenko. All other calculations and analyses there-of
were performed by me, as well as most of the writing process and the presentation of the results.
Dr. Panosetti and Dr. Christoph Scheurer provided input and guidance throughout the whole
project.

38



8.3 The Intrinsic Electrostatic Dielectric Behaviour of Graphite Anodes in
Li-Ion Batteries – Across the Entire Functional Range of Charge

Summary: Building directly upon the results presented in the previous paper, we set out
– for the first time – to investigate the dielectric behaviour of lithium intercalated graphite an-
odes, for the entire stoichiometric range accessed during a full charging-/discharging-cycle - a
property, that is highly desired by the charge kinetic Monte Carlo (kMC) community, for the
investigation of non equilibrium processes during fast charging cycles and in general for finally
linking macro- and meso-scale properties of the system. At the present time, this investigation
would not have been possible with any other modeling technique, due to the long-ranged nature
of the interactions of interest.
Our approach was to sample the interactions between Li-ion- and Li-ion-vacancy-pairs at varying
distances and with varying charge densities surrounding them. This required hundreds of full
structure relaxations of supercells in the order of 1000 atoms, a size that was necessary in order
to avoid the long-ranged Coulomb interactions being affected by the periodic images. Based on
these calculations, we were able to discover a linear dependency of the dielectric screening on
the state of charge (from ≈ 7 at 0% SOC to ≈ 25 at 100% SOC), which is reasonably robust
to the exact realization of each stoichiometry. Furthermore, we also investigated the qualita-
tive differences between the dielectric screening in-plane vs. out-of-plane, which is important
for comparing experimental results that were obtained with randomly oriented graphite powder
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samples, with theoretical results stemming from a perfectly oriented single crystal.
While the qualitative behaviour presented here is robust, the qualitative results are to a degree
dependent on the Mulliken partial charge estimation within the DFTB framework and need to be
taken with a grain of salt because of that, but we illustrated that, in principle, two experimental
measurements at different SOC would suffice to validate them.

Individual Contributions: I constructed all geometries and performed all calculations fea-
tured in this paper. The theoretical analysis, discussion of the energetics and partial charges
and presentation of the results were performend by me, in close collaboration with Dr. Chiara
Panosetti and Dr. Christoph Scheurer. The writing process was mostly done by me.
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9 Conclusions & Outlook

Kinetic and electrochemical processes inside and at the interface of the carbon anode are the
causes of many limitations regarding the further development and improvement of lithium ion
batteries (LIBs) in terms of safety, charging speed and low temperature performance. The
complex behaviour of intercalated lithium, including the formation of stages and domains, the
appearance of stage transitions, as well as the necessity of investigating the full range of state
of charge (SOC) require simulations at mesoscale length scales inaccessible to density functional
theory (DFT). Furthermore, an accurate description of dispersion effects like van der Waals
(vdW) forces is required in order to achieve accurate diffusion barriers and energy ordering of
different realizations of identical stoichiometries. These interactions are long-ranged in nature
and can therefore not be captured by employing an atomic force field approach like ACE [15, 17]
– at least not by itself.

In this work, we aimed at and succeeded in bridging this gap in simulation capability. This
was achieved by developing a density functional tight binding (DFTB) parametrization, based
on the GPrep [11] module – a framework for employing Bayesian GPR in order to formulate and
train accurate, flexible repulsion potentials. This allowed us to bring forward a simulation tool
which combines the speed and efficiency of an atomic force field approach with the physicality
and versatility of DFT – at only a very minor cost in accuracy compared to the latter.

Making use of this model, we were able to calculate accurate diffusion barriers at speeds that
are viable for an on-the-fly approach within kinetic Monte Carlo (kMC) simulations. Alterna-
tively, sufficiently large sets of diffusion processes with differing surrounding lithium distributions
could be calculated in order to train a surrogate model based on local environment descriptors
like smooth overlap of atomic positions (SOAP) [13] for the same purpose. This should help
bring forward much more advanced kMC simulations in the future, which are no longer reliant
on a crude fixed barrier approximation.

Beyond that, our ability to calculate and relax much larger crystal cells, than e.g. with
DFT, allowed for the validation of mechanisms stabilizing local domains during the intercalation
process. Furthermore, we were able to sample the long-ranged Coulomb interactions between
intercalated pairs of Li-ions and vacancies, within different surrounding charge densities, in order
to – for the first time – calculate the dependency of the relative permittivity (also referred to
as dielectric constant) on the state of charge. This was found to be linear and only negligibly
dependent on the exact realization of a certain stoichiometry. Additionally, we were able to sep-
arately calculate this relative permittivity for the in-plane and the out-of-plane space directions,
finding large differences. This allows for a more educated comparison between calculations and
experimental measurements performed on graphite powder samples.

With our work here, we laid the groundwork for promising future investigations. Especially,
kMC simulations will benefit greatly from the diffusion barriers (and semi-local dependencies
there-of), as well as the SOC dependence of the dielectric behaviour we uncovered in this work.
Due to this, new insights into the kinetic processes governing the limits of safe fast-charging of
LIBs are expected in the near future.

41



Additionally, we see great promise in the general approach and workflow presented here. The
combination of a simplified electron density in a tight-binding formulation with recently devel-
oped machine-learned interatomic force fields like ChIMES and ACE will be a major break-
through for the simulation of complex functional materials, and we believe future endeavours of
this nature will benefit from the example we lay out in this work.
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10 Licences

Figures 3 and 4 are from the open access source [32], accessible at
https://doi.org/10.1039/D0SE00175A. Full ownership is with the publisher. This work is licensed
under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, PO
Box 1866, Mountain View, CA 94042, USA.

Figure 6 is from the open access source [74], accessible at https://doi.org/10.1063/1.4850877.
Full ownership is with the publisher. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

Figure 9 is from the source [149]. Permission for use has been granted by the author and can
be proved upon request.
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ABSTRACT: Lithium ion batteries have been a central part of
consumer electronics for decades. More recently, they have also
become critical components in the quickly arising technological fields
of electric mobility and intermittent renewable energy storage.
However, many fundamental principles and mechanisms are not yet
understood to a sufficient extent to fully realize the potential of the
incorporated materials. The vast majority of concurrent lithium ion
batteries make use of graphite anodes. Their working principle is based
on intercalation, the embedding and ordering of (lithium-) ions in
two-dimensional spaces between the graphene sheets. This important
process, it yields the upper bound to a battery’s charging speed and
plays a decisive role in its longevity, is characterized by multiple phase transitions, ordered and disordered domains, as well as
nonequilibrium phenomena, and therefore quite complex. In this work, we provide a simulation framework for the purpose of better
understanding lithium-intercalated graphite and its behavior during use in a battery. To address large system sizes and long time
scales required to investigate said effects, we identify the highly efficient, but semiempirical density functional tight binding (DFTB)
as a suitable approach and combine particle swarm optimization (PSO) with the machine learning (ML) procedure Gaussian process
regression (GPR) as implemented in the recently developed GPrep package for DFTB repulsion fitting to obtain the necessary
parameters. Using the resulting parametrization, we are able to reproduce experimental reference structures at a level of accuracy
which is in no way inferior to much more costly ab initio methods. We finally present structural properties and diffusion barriers for
some exemplary system states.

■ INTRODUCTION
Within the past decade, studies investigating the consequences
of man-made climate change1−3 have become more specific,
the predicted time frames shorter, and the warnings more
urgent. The immediate and radical reduction of carbon dioxide
emissions by replacing fossil fuel-based energy sources with
renewable ones has been found to be the only reasonable
approach to at least limit those consequences.4 While the
generation of electric energy from wind and sun is already
quite advanced and efficient, its storage and transport are the
main factors holding it back compared to coal and oil.
Currently, two main approaches are being pursued to eliminate
these drawbacks. One aims directly at the synthesis of
alternative liquid or gas-phase fuels. The other intends to
improve upon existing battery technology, especially lithium
ion batteries, enough, to make it a serious contender in terms
of energy sustenance. In this work, we intend to lay some
groundwork for gaining deeper insight into some of the
atomistic mechanisms limiting the (dis-)charging speed and
lifetime of the most common types of lithium ion batteries,
with graphite intercalation anodes.
Ever since graphite was ascertained experimentally and

theoretically to be an excellent candidate as an anode for Li-ion
batteries, numerous attempts were made at fully describing the

working system.5−9 Most of the electrochemical properties of
the anode material itself are well known. However, in
particular, transport processes during strongly driven operating
conditions, like fast charging, are only poorly understood at a
microscopic level. These technologically important macro-
scopic conditions are accompanied, e.g., by temperature
variations, leading to a capacity fade during ageing, as well as
lithium plating. All of the above limit the lifetime of the
battery.10−12 Against this background, experiments and theory
are pushed quite far to gain insight into the real processes
occurring during the electrochemical operation. Depending on
the quantities accessible via experiments and theory, two
hypotheses are regularly invoked to explain the findings in the
range of 0% (graphite) to 100% (LiC6) state of charge (SOC):
the staging and the domain model. The lithium intercalation
process shows evidence of multiple phase transitions in the
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voltage vs SOC diagram. The corresponding system config-
urations are termed “stages” I, II, and so forth. In the simple
staging model, these correspond directly to the number of
empty galleries (spaces between graphene sheets) between the
fully occupied ones (see Figure 1). In the domain model, these

motifs are not assumed to range over meso-/macroscopic
dimensions but to form regions of finite lateral extent.
Consequently, it is quite clear that different SOC with the
same nominal stoichiometry LiCx will not be configurationally
homogeneous, making Li-intercalated graphite a profoundly
nontrivial system to address.
To effectively connect to experimental studies, a theoretical

framework for simulating large-scale and long-duration non-
equilibrium processes in the graphite anode, based on kinetic
Monte Carlo (kMC)15 simulations, is required. The first step
toward this goal is gaining the ability to quickly and accurately
calculate diffusion barriers on the fly, which is the primary
motivation of this work. This requires the ability to reproduce
reliably and accurately layer distances (ideally of all possible
configurations but predominantly of dilute, low-saturation
stages) and the forces affecting the lithium ions, while the
strains within the graphene layers are of lesser importance.
Large-scale atomistic simulations typically pursue force field

approaches16 for those systems where energetics and kinetics
are well described within the upper end of the SOC range.
However, those approaches are limited when it comes to the
entire range of different SOC, from extremely diluted stages to
fully concentrated ones. Recently, a Gaussian approximation
potential (GAP) was reported to be able to describe
amorphous carbon well.17 However, when the latter was later
extended to model lithium intercalation,18 it became apparent
that the insertion of lithium into those host structures requires
a nontrivial description of the electrostatic interaction.
Contrary to most approaches, including the one presented in
this work, Fujikake et al. did not treat the full Li−C system but
attempted to model the energy and force differences arising
from lithium intercalation separately and then added them to
the carbon GAP. More specifically, their machine learning
(ML) process is based on fitting the energy and force

differences between identical carbon host structures but with
and without an intercalated lithium atom. However, due to the
fact that lithium intercalation energies are significantly larger in
magnitude than electrostatic lithium−lithium interaction
energies, they were not able to recover the latter from the
data to a satisfactory degree and had to manually add an extra
correction term (fitted to density functional theory (DFT)) to
account for those contributions. To avoid similar short-
comings, we rather base our approach on density functional
tight binding (DFTB),19 a semiempirical, and thus computa-
tionally much cheaper, approximation to density functional
theory (DFT),20 which has been the most common technique
for high-accuracy electrochemical simulations for many
decades.21 However, since the DFTB’s speedup is achieved
by precalculating atomic interactions to avoid expensive
integrations at runtime, this comes at the costor rather,
initial investmentof pairwise parametrization. As of now, no
Li−Li and Li−C DFTB parameters are available. In the
following, we combine for the first time the recently developed
particle swarm optimization (PSO)22 parametrization ap-
proach as first proposed by Chou et al.23 with a more flexible
ML repulsive potential,24 obtained with Gaussian process
regression (GPR) as implemented in the recently developed
GPrep package,25 to obtain finely tuned parameters for this
systemtaking advantage of its physics, albeit perhaps at the
expense of some transferability. Let us however stress that the
parametrization procedure employed here remains completely
general, as the system specificity lies entirely in the choice of
the training set(s).

■ METHODS
DFTB: Electronic Part. In DFTB jargon, the so-called

“electronic part” includes the semiempirical band structure and
the Coulombic contributions to the total energy of the
system.21 These depend parametrically on the diagonal
elements ϵ of the noninteracting Hamiltonian, the Hubbard-
U, and a confinement potential which is used to cut off the
diffuse tails of the basis orbitals. For the free atom, the first two
quantities are tabulated for most elements or can be calculated
with DFT. However, using the free atom values is an
approximation, and the decision whether it is justified must
be made carefully on a case-to-case basis. The confinement
potential, on the other hand, is always treated as a parameter.
Quadratic26 and general power-law functional forms27 are
commonly used, as well as the Woods−Saxon potential23 (also
employed here), which assures a smoother transition to zero in
the orbital tails. Each of these parameters needs to be
determined for every chemical species present in the system of
interest, typically in a nonlinear optimization process. In the
PSO, each particle then represents a set of parameters ({ϵ},
{U}, and the confinement constants), with which the DFTB
interaction is constructed, so that the parametrization can be
improved by minimizing a cost function. The central task is
thus the definition of a meaningful cost function. Frequently,
one uses the weighted sum of an arbitrary number of
contributions f(σDFT,σDFTB), each providing a measure of the
deviation between DFT and DFTB for some system property
σ. Hereby, as we are optimizing the electronic parameters only,
the chosen target properties must not depend on repulsion.
For our system, we target the band structures of metallic
lithium, graphene, and diamond. Additional details on the
definition of the corresponding cost function, as well as the
resulting optimal values of the onsite energies ϵ and the

Figure 1. Sketch of Li-intercalated graphite in stage I−III
configurations.13 Violet spheres represent lithium ions; dark gray
lines correspond to graphene sheets. Bottom right: illustration of the
domain model.14 The structure has the same nominal stoichiometry
as the structure in stage II (top right).
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confinement coefficients, are provided in the Supporting
Information (SI). Figure 2 shows our resulting band structures.
Overall, we recognize decent agreement for all band structures,
while some deviations are expected given the minimal basis in
DFTB. For example, the pronounced mismatch in the
conduction band at the H point in the lithium band structure
as well as the incorrectly direct band gap of diamond can be
ascribed to this oversimplification in the DFTB model. For the
two carbon systems, we see very good qualitative agreement
for most regions of the band structures but notice a small
degree of overall compression toward the Fermi level.
Given the overall agreement and also considering the fact

that the repulsion potential is capable of quite effectively
correcting small imperfections in the electronic part, we decide
not to optimize the latter any further in this work, a decision
justified in retrospect by the excellent results we present.
However, let us still emphasize the opportunity for improve-
ment here, should it eventually become necessary.
From a more technical standpoint, we note in passing that

while during the PSO optimization we employed an {sp} basis
set for lithium, the production Slater Koster (SK) table was
constructed including only the s orbital for lithium (with the
confinement optimized in the {sp} basis). While this may
strike as a rather unorthodox choice, it is motivated by the
concomitant observation that (i) optimizing the lithium
confinement with the s orbital only produces inherently
wrong results, and (ii) the optimization of the repulsive
potential on top of an {sp}-basis electronic part showed
inherent pitfalls that likely cannot be overcome by any choice
of training set. A detailed justification is provided in the SI.
DFTB: Repulsive Potential. It is common practice to

assume some analytical form for the repulsive potential and fit
the functional parameters as to minimize a set of DFT-DFTB
force differences,21 a protocol easily implemented also for the
PSO approach. However, limitations and bias may result from
the choice of said parametrized functional form. It needs to be
sufficiently flexible to cover a large space of systems and
bonding situations. This typically yields a high-dimensional
nonlinear optimization problem, which might still be
insufficient to capture unexpected subtle, yet extremely
relevant physical features. We rather adopt the GPrep
method recently developed in our group,24,25 which employs
Gaussian process regression (GPR)28 to create a flexible
functional form “on the fly”, while adapting to the physics
captured by the training data set, instead of forcing us to guess
it a priori. In the SI, we give a short introduction to the method
and explain the character and effect of the related hyper-
parameters, referring the reader to Rasmussen28 for the
underlying stochastic theory and to refs 24 and 25 for the
application to DFTB repulsive potentials. For the global
damping, correlation distance, and data noise hyperparameters,

we verified (see the SI) that results are appropriately robust in
a sizeable subspace of the overall hyperparameter space. The
same is not necessarily true for the cutoff radii Rcut. Since the
electronic energy contribution is entirely based on just a sum
of noninteracting atomic contributions, the repulsion potential
has to account for different chemical environments affecting
the same type of atom. In a GPR setting, it is therefore of
paramount importance to sample a sufficiently large set of
training data that covers all interatomic distance ranges and
chemical environments relevant for a faithful representation of
the system studied. Ideally, it should also be ascertained that
the model quality is stable with respect to (wrt) the explicit
choice of the cutoff radii as well as the other hyperparameters,
at least within physically motivated boundaries roughly defined
by characteristic lengths of the system, e.g., nearest neighbor
(NN) distances. For instance, it is generally accepted that
adequate Vrep cutoff values should fall somewhere between the
first and the second NN distances for the pair in
consideration.21 However, Vrep may extend to include ranges
beyond the second NN distance, should the particular physics
the parametrization is aimed at not be entirely captured by
shorter-ranged repulsive potentials.

■ RESULTS AND DISCUSSION

DFTB Repulsion Training. In terms of DFT functional,
our starting point is PBE,29 which has been used by the
majority of researchers working on intercalation phenomena
and is known to describe LiC6 well. However, it does not
reproduce the dispersive interaction between graphene sheets.
To address this, we finally (see “set 3” below) combine the
reference PBE calculation with a many-body dispersion
(MBD@rsSCS, throughout the text referred to as MBD)30,31

treatment and the DFTB model with a computationally cheap
Lennard-Jones (LJ)32 dispersion correction.33 The rationale
for this choice is that PBE should reproduce galleries
containing many lithium atoms correctly and LJ dispersion
should predict empty galleries well while not interfering too
much with the PBE description of the concentrated ones.
However, it is unclear, how this interaction shapes out for
intermediate, dilute lithium stoichiometries. During our
investigations, we find that this approach works somewhat
decently but needs some controlled adjustments (vide inf ra) to
produce truly satisfactory results.
As a first guess, we construct a set of training structures (set

1) that consists of a balanced mix of LinC36 supercells (n ∈ (0,
1, ..., 6)), to represent the entire range of charging states.
Additionally, those structures are rattled (each atom randomly
displaced), as well as compressed or expanded. This procedure
yields a smooth distribution of bond lengths and forces. We
then train a GPR repulsion potential by matching DFTB

Figure 2. Comparison of band structures calculated with Perdew−Burke−Ernzerhof (PBE)-DFT (blue) and our DFTB electronic part parameters
(red) for metallic lithium, graphene, diamond, and LiC6 (left to right). The latter was not part of our cost function and serves as validation. All of
the band structures are shifted to the respective DFT Fermi levels.
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against PBE forces for this structural ensemble, aiming at a
first, mostly transferable model. The standard LJ DFTB
correction is subsequently applied on top of this parametrized
DFTB model. With this approach, we are able to find
parametrizations that reproduce all layer distances (of graphite,
LiC12, and of LiC6) correctly, albeit not for a stable range of all
parameters.
As shown in Figure 3, the choice of cutoff radius Rcut

CC for the
C−C repulsion potential does not have a major influence on

the layer distances for quite a large range of values. In fact, the
point at which the predictions stop being accurate can be
identified as approximately the experimental values for the
interlayer distances. Going beyond that with the cutoff radius
essentially corresponds to including interlayer interactions in
the potential fit, mixing their description with intralayer
covalent bonds. Thus, the restriction of the cutoff radius we
find here is physically motivated by the range separation of the
interactions that characterize our system: as the second next-
neighbor distance in a relaxed graphene sheet is around 2.45 Å
and the layer distance is 3.35 Å, the cutoff range defined by the
plateau in Figure 3 represents a sweet spot where the GPR
learns second next-neighbor interactions but does not yet
(mistakenly) take any interlayer interactions (even in the
compressed structures) into account in the repulsion potential.
However, the same reasoning does not apply to CC bond
lengths, which are not correctly reproduced if the GPR learns
forces beyond the first NN distance (see the SI). In light of
these findings, we select the cutoff value of 2.2 Å for the C−C-
repulsion potential. Indeed, we did not encounter any reason
to change this selection during the entirety of this work
(despite rigorously testing it for each of the training data sets).
However, with this first training set, we do not obtain an

equally stable plateau as a function of the Li−C repulsive cutoff
(see the SI), with the correct values corresponding to Rcut

LiC =
4.0 Å not belonging to a plateau at all. Furthermore, quite
strongly distorted graphite planes in these structures lead to

large forces compared with those acting on intercalated lithium
ions, causing a systematic underestimation in lithium force
prediction. We tackle the second problem first: while the
rattled, scaled structures in set 1 cover a sufficiently large range
of bond lengths, they only account for configurations with the
lithium ions sitting over the center of a graphite ring, i.e., in a
local energy minimum. We recognize this as the reason for the
comparably small lithium forces. To balance out this structural
bias, we calculate a number of transition paths for lithium
diffusion processes in LiC6 and LiC12 stage I/II compounds
using a nudged elastic band (NEB) method.36,37 We are now
able to extract structures from these trajectories, in which the
lithium ions are subject to stronger forces commensurable with
the graphite layers. For our second training set (set 2), we
replace higher-saturated rattled and scaled structures with
those extracted from the transition paths. In doing so, we
assume higher-saturated structures to be responsible for the
slight contraction observed in C−C bonds (see the SI).
By this measure, we are able to improve the accuracy for

predicting forces on Li ions significantly (albeit still slightly
underestimated), without sacrificing the description of the
graphite layers. However, while we do observe a plateau for the
resulting layer distances with respect to Rcut

LiC, the interlayer
distances are not reproduced equally well as in Figure 3 for set
1 (see Figure 4, yellow area), with the exception of points 3.5

and 4.0 Å which do not belong to a plateau. This behavior
suggests that our problem here does not lie in the choice of the
training set but rather in the treatment of long-ranged
interactions.
Let us consider the underlying predicament: so far, the

DFTB part of the force residues used for the ML process is
calculated without LJ dispersion correction. We then construct
the repulsion potential with the purpose of making those
DFTB calculations match references based on PBE-DFT,
which reliably predicts layer distances for LiC6. By then using

Figure 3. Interlayer distances for graphite (gray), LiC12 (SOC 50%,
gray-purple), and LiC6 (SOC 100%, purple) as a function of Rcut

CC.
Note that for LiC12 there are two different layer distances to consider:
one for the empty gallery and one for the full gallery. Here, we plot
the average of the two. The dashed lines show the experimental layer
distances we aim to reproduce, as in Trucano et al.34 (graphite) and
Vadlamani et al.35 (LiC12 and LiC6). The green colored area
represents the range within which the absolute deviation between the
DFTB value and the experimental reference is smaller than 0.06 Å.

Figure 4. Interlayer distances for LiC12 (SOC 50%, gray-purple) and
LiC6 (SOC 100%, bright purple) as a function of Rcut

LiC, with a fixed
Rcut
CC set to 2.6 Å. The repulsion was trained on a set analogous to set 1

(cf. text), where the higher-saturated structures were replaced by
geometries randomly extracted from intralayer Li diffusion paths. For
LiC12, the plotted interlayer distance is the average between the values
for the filled and the empty gallery. The dashed lines show the
experimental layer distances. The yellow colored area represents the
range within which the results are stable, however at a wrong value.
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LJ (required to obtain the correct empty layer distance in
graphite) in our actual DFTB calculations (after the para-
metrization process), we cause the aforementioned offset for
highly lithiated compounds. Using LJ already for the force-
residue calculations during the ML seems like the obvious
solution to this problem. However, this presents a new issue in
the lower-saturation range (LiCx, x > 12). There, we previously
fitted the repulsion to PBE-DFT references, which are not
correct in that range without dispersion correction. The
resulting DFTB forces are then shifted by LJ toward the
correct value (as is indicated by the quite decent results for
LiC12 with set 2). However, after the modification, we would
then fit the final DFTB forces (that result after applying the LJ)
to the (incorrect) PBE-DFT references, thus improving our
performance for highly saturated system states, but ruining it
for dilute ones, by effectively double-counting dispersive
contributions. It becomes apparent that to make this approach
work, we need to utilize dispersion-corrected DFT reference
forces that are also correct for low-saturation states and, at the
same time, compatible with the computationally cheap DFTB-
LJ correction.
Our ansatz is that we can, to a degree, encode the difference

between the LJ dispersion and the “true” dispersion into the
repulsion potential. At this point, we stress that ideally, both
the true, nonlocal exchange−correlation functional in DFT and
an ideal repulsion energy in DFTB would already encompass
all dispersion effects, and it is solely due to approximations in
the derivations, e.g., of generalized gradient approximations
(GGAs), that they do not in these models. Therefore, rather
than mixing our repulsion potential with something
fundamentally different (which would be physically question-
able), what we do here simply corresponds to partially adding
back a contribution that should have been there in the first
place. To our knowledge, the currently best way to calculate
dispersion-corrected lithium-intercalated graphite, with correct
layer distances predicted for the entire saturation range, is the
many-body dispersion (MBD) correction.30,31 This method is
computationally rather expensive, but since we only need to
run DFT calculations for our training data set, which is very
limited in size, this is not vital to us.
In practical terms, we then build a set 3 where DFTB-DFT

force residues are replaced by DFTB(LJ)-DFT(MBD) force
residues. We do realize that this approach most likely comes
with some cost in terms of transferability. To retain as much of
it as possible, we choose not to replace all force residues, but
only ≈66% (more precisely, only for structures containing no
or one lithium atom), which proves sufficient to demonstrate
the effectiveness of the presented method in a general way.
Nonetheless, further investigating the effect this percentage has
on the performance is certainly a task that should be tackled in
the future. Of course, alternatively to our approach, it is
possible to simply apply the MBD correction scheme directly
to our DFTB calculations. However, doing so would cost us
1−2 orders of magnitude in speed, as MBD then becomes the
computationally dominating step in production DFTB
calculations.
Using the previously explained modifications, we have

succeeded at shifting the predicted interlayer distances (within
the stable Rcut

LiC plateau) into the very close proximity of the
experimental reference values for both LiC6 and LiC12, as
shown in Figure 5. To be precise, the ranges of Rcut

LiC = ∼3.3−
4.3 and ∼4.3−5.3 Å should be regarded as two distinct
plateaus, both close to the correct experimental values.

However, we shall consider the second as our final plateau,
where the resulting interlayer distance falls between the
experimental and the DFT reference values, since we trained
against DFT reference forces. Of note, the predicted interlayer
distance for LiC12 becomes wrong already at Rcut

LiC = 5.5 Å.
Once again, this is a physically motivated boundary: it is the
distance at which Li atoms start to “feel” the next layer. In
LiC6, which has a larger interlayer spacing and for which the
resulting interlayer distance is correct at that point, this
happens for Rcut

LiC > 5.5 Å.
Especially the excellent results for the stage II compound

LiC12 show that our parametrization is now able to handle
both mainly ionic concentrated and mainly dispersive dilute
layers to a satisfactory degree. In Figure 6, we illustrate the
effect our modification has on the repulsion potential
landscape for a wide range of Li−C cutoff radii. First (and
most notably), we have moved and solidified the local
minimum related to the next-neighbor lithium−carbon
interaction (see bottom right). For the set 2 and set 3
potentials, the minima (black and green dashed lines,
respectively) are located at atomic distances of 2.33 and 2.30
Å, respectively, which correspond to LiC6 interlayer distances
of 3.80 and 3.73 Å, the exact values which do, in fact, result
from the relaxation of those structures, using the two repulsion
potentials, respectively. The two-dimensional (2D) maps (top)
show that this behavior is apparent for an entire range of cutoff
radii, thus ruling out the possibility that the fit is only
accidentally correct (as it happens, e.g., for set 1 with Rcut

LiC = 4.0
Å). We can also clearly see the upper (∼5.3 Å) and lower
(∼4.3 Å) boundaries for the cutoff radius, beyond which the
physicality of the model falls apart. They define exactly the
range within which we find the stable cutoff dependency
plateau, which is now at the correct numerical value, as shown
in Figure 5. We may identify the upper boundary at 5.3 Å (as
discussed above), as the distance between a lithium ion and the
second closest graphene sheet, which is an intuitively plausible

Figure 5. Interlayer distances for LiC12 (SOC 50%, gray-purple) and
LiC6 (SOC 100%, bright purple) as a function of Rcut

LiC, with a fixed
Rcut
CC set to 2.6 Å. The repulsion was trained on a set analogous to set 2

(cf. text), where 70% of the structures were replaced by geometries
with MBD-corrected forces. For LiC12, the plotted interlayer distance
is the average between the values for the filled and the empty gallery.
The dashed lines show the experimental layer distances. The yellow-
hatched area represents a range within which the results are stable and
correct; however, we consider them not ideal.
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limitation. It is less obvious, though, to assign a clear physical
meaning to the lower bound at 4.3 Å, as it cannot be directly
related to any particular structural feature of LiCx. The most
likely cause, we believe, is that the cosine-shaped cutoff
function employed in the GPR framework starts cutting off
physically relevant details from the repulsion potential below
that.
A physically motivated lower bound of different nature may

be identified by evaluating the relative root-mean-square

deviation (RMSD) of forces as a function of Li−C cutoff,
shown in the SI. Overall, we now observe two separate Li−C
cutoff plateaus: between approximately 4.3 and 5.3 Å, we
obtain accurate layer distances (Figure 5), while for radii above
roughly 4.0 Å and until 6.0 Å, our predictions for forces and
transition energies are correct. This duality can very simply be
explained by the fact that the first property is mostly a z-
direction phenomenon (and interactions with the second
closest graphene sheet limit the physicality of our model),

Figure 6. Top: 2D repulsion potential landscape (units eV, expressed by the color bar) depending on the chosen Li−C cutoff radius (y-axis) for set
2 (left) and set 3 (right). The black and green dashed lines represent the next-neighbor Li−C distances for sets 2 and 3, respectively. The diagonal
lines illustrate the cutoff radii, at which the potential is set to zero. The plateaus are highlighted between thin dotted lines. Bottom: (left) influence
of the inclusion of MBD vs LJ force residues in the training data on the repulsion potential (units eV, expressed by the color bar). (Right) Detailed
repulsion potentials at Rcut

LiC = 5.0 Å.

Table 1. Summary of the Interlayer Distancesa

(average) interlayer distances with detailed analysis of layer spacing and barriers.

compound experimental (Å) DFTB (mÅ) DFT (mÅ)38 filled (mÅ) empty (mÅ) barrier (meV)

graphite 3.35534 +17 +62 +17
LiC18 stage III 3.470c +35 +173 +198b −98b 468
LiC12 stage II 3.51135 +52 −16 +148b −147b 480
LiC6 stage I 3.68735 +46 +56 +46 503

aWe compare interlayer distances resulting from our DFTB parametrization (via structure optimization using the BFGS algorithm39) with
experimental values, where available. For stage II and III compounds, we consider the average layer distance. We show the relative deviation of our
results and compare them with those computed by Krishnan et al.38 bNote that these numbers are not errors but differences between specific and
average layer distances cEstimated from experimental values for graphite and LiC6, assuming the filled gallery and the empty galleries to have the
same interlayer spacing as LiC6 and graphite, respectively.
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while the other takes place almost exclusively in the xy-plane,
where no such limitation applies, hence the broader plateau.
Given this difference in fundamental nature, it is very plausible
to trust both these plateaus. Thus, their overlap (4.3−5.3 Å)
defines the region within which any value of the Li−C cutoff
radius produces an almost identical parametrization that
performs very well, for all our benchmark criteria, in a stable
and trustworthy manner.
Interlayer Distances and Diffusion Barriers. Table 1

reports some resulting interlayer distances and diffusion
barriers based on our DFTB parametrization, compared with
experimentally determined values, as well as previous
theoretical findings. For all calculations, we chose a Li−C
cutoff radius of 5.0 Å, following the findings discussed above.
As a quick reminder, stages I, II, and III correspond to every,

every other, and every third gallery being filled (to any degree)
with lithium. Additionally, one may describe the concentration
of the intercalant in a filled gallery as dilute (low) or
concentrated (high), thus allowing for a simple classification of
fundamentally different compounds. Here, however, we take
only concentrated stages into consideration. Therefore, the
three states of charge considered here, and the respective
elementary diffusion processes (schematically depicted in
Figure 7) only differ by the number of empty layers.

As Table 1 clearly illustrates, we systematically outperform
the method by Krishnan et al.,38 in terms of accuracy, for every
structure they provide comparison for. This is especially
remarkable considering the fact that they used full GGA-DFT
with dispersion corrections in postprocessing, which is the
current state-of-the-art approach, as well as significantly more
computationally expensive than our method.
Subsequently, we investigate intralayer next-neighbor

diffusion barriers and compare our results to recent
experimental findings from ref 40 (based on muon spin
relaxation spectroscopy) and theoretical from ref 41 (calcu-
lated at the local-density approximation (LDA)-DFT level
without dispersion correction, which is only reliable for the
predominantly ionic, filled state of charge).
Our calculations yield purely microscopic results within 50

meV from each other for all three relevant compounds, as is
shown in Table 1. The deviations between them correlate with
the slight differences in the filled-layer spacing of different
structures. Our 503 meV barrier for the elementary diffusion in
LiC6 is in perfect agreement with the value of 490 meV
reported by Toyoura et al.41 In contrast, the experimentally
determined active barriers of 270 meV for LiC6 and 170 meV
for LiC12 show a strong dependency on the system stage.40 We
believe this difference to be caused by concerted effects.
Capturing those using kinetic Monte Carlo simulation is
something we intend to do in the near future.

■ CONCLUSIONS

In this work, we put forward, for the first time combining
particle swarm optimization (PSO) for the electronic part23

and machine learning for the repulsion (GPrep24,25), a well-
performing DFTB parametrization for lithium-intercalated
graphite which is capable of very accurately reproducing
structural properties and qualitative trends in elementary
diffusion barriers. The modest computational cost of DFTB
will allow us to finally access calculations relating to the
intercalation mechanism for LiCx compounds in the widest
range of states of charge, including extremely dilute ones,
without sacrificing accuracy. Particularly crucial in this regard is
a correct description of dispersion interactions, which for this
system, to the best of our knowledge, are consistently captured
across all states of charge only by the state-of-the-art many-
body dispersion (MBD) approach.30,31 A careful choice of the
training set for GPrep allowed us to encode the effect of
MBD directly in the pairwise DFTB repulsion, thus saving
additional computational cost at runtime.
In the course of this process, we believe to have shown that

DFTB is a superior approach for modeling intercalation
compared with methods based on classical interatomic
potentials or force fields, including the most sophisticated
machine learning approaches (e.g., the GAP by ref 18 requires
a manual correction term for lithium−lithium electrostatic
interactions, which are instead naturally well described by
DFTB as employed here). Furthermore, we share key details
and choices along this process, showing, e.g., how the choice of
the repulsion cutoff is not trivial at all, and thus provide
guidance for similar endeavors in the future.

Outlook. Let us conclude with some remarks regarding
both perspective applications and future developments. The
primary motivation of this work is to ultimately enable a
multiscale approach to lithium-intercalated graphite, using
DFTB as the ab initio energetics driveror more precisely, a
semiempirical surrogate thereof. Among other advantages,
DFTB can provide fast and accurate transition barriers for
elementary (microscopic) diffusion processes, for the first time
accessible in the entire range of states of charge. These can be
subsequently used as inputs for kinetic Monte Carlo (kMC)
models, to obtain mesoscopic observables, such as electrical
impedance42 or diffusion coefficients, that can be directly
compared to experimental data (e.g., spin alignment echo
NMR43,44). The application of kMC models to battery
materials requires a correct treatment of charge transport
and polarization phenomena. The necessary methodological
adjustments are the subject of ongoing work and will be
presented in follow-up publications. Finally, we believe that
DFTB shows great promise in the simulation of battery
materials in general, thanks to two of its fundamental
characteristics: (i) the access to an explicit electronic structure
at a fraction of the cost of DFT, and (ii) the correct treatment
of long-range electrostatic interactions. Both these qualities are
lacking in “conventional” fast-energetics models based on
classical interatomic potentials, including the more sophisti-
cated machine-learned ones. In perspective, we thus envision
the extension of this parameter set to include not only the Li−
Li repulsion but also parameters for the species involved in
liquid and/or solid electrolytes and solid electrolyte interfaces
(SEI), which are necessary to a full characterization of battery
materials along the lines of multiscale modeling as hinted
above. We note in passing that DFTB parameters for most

Figure 7. Sketch of some elementary diffusion processes, represented
by red arrows, in Li-intercalated graphite in stage I−III configurations.
Violet spheres represent lithium ions, and dark gray lines correspond
to graphene sheets. The dashed diamond indicates the unit cell.
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atomic species involved in electrolytes and SEI compounds are
already available in, e.g., the 3ob and matsci parameter sets,
both available free of charge at https://dftb.org/
parameters/download;however, there is no guarantee
they would perform well for these applications. Nevertheless,
one may consider the electronic tabulation of the DFTB
interaction as the “transferable” part of the parametrization. In
this light, one may adopt the repulsion-less SK tables extracted
from the existing DFTB parameters or alternatively use the
latter as starting guesses to refine in the PSO, to build new
training sets for GPrep. Subsequently, more specific
chemistry can be targeted “on the fly,” exclusively by (re-
)training the repulsion. Of note, this procedure is equally valid
within a “standard” repulsion fitting approach; however, one of
the advantages of GPrep is making this step particularly
painless. Suitable training sets may, perhaps naively, include
molecular dynamics (MD) snapshots, or random displace-
ments, of a representative range of small−medium organic
molecules and their complexes with relevant ions, taken as
“building blocks” of electrolyte and SEI polymers. Such a
training set may or may not be complete enough to capture the
complexity of SEI structural features, which are to this day
largely unknown but surely would represent an appropriate
starting point.
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Abstract: Lithium-graphite intercalation compounds (Li-GICs) are the most popular anode material
for modern lithium-ion batteries and have been subject to numerous studies—both experimental
and theoretical. However, the system is still far from being consistently understood in detail across
the full range of state of charge (SOC). The performance of approaches based on density functional
theory (DFT) varies greatly depending on the choice of functional, and their computational cost is
far too high for the large supercells necessary to study dilute and non-equilibrium configurations
which are of paramount importance for understanding a complete charging cycle. On the other hand,
cheap machine learning methods have made some progress in predicting, e.g., formation energetics,
but fail to provide the full picture, including electrostatics and migration barriers. Following up on
our previous work, we deliver on the promise of providing a complete and affordable simulation
framework for Li-GICs. It is based on density functional tight binding (DFTB), which is fitted to
dispersion-corrected DFT data using Gaussian process regression (GPR). In this work, we added
the previously neglected lithium–lithium repulsion potential and extend the training set to include
superdense Li-GICs (LiC6−x; x > 0) and lithium metal, allowing for the investigation of dendrite
formation, next-generation modified GIC anodes, and non-equilibrium states during fast charging
processes in the future. For an extended range of structural and energetic properties—layer spacing,
bond lengths, formation energies and migration barriers—our method compares favorably with
experimental results and with state-of-the-art dispersion-corrected DFT at a fraction of the computa-
tional cost. We make use of this by investigating some larger-scale system properties—long range
Li–Li interactions, dielectric constants and domain-formation—proving our method’s capability to
bring to light new insights into the Li-GIC system and bridge the gap between DFT and meso-scale
methods such as cluster expansions and kinetic Monte Carlo simulations.

Keywords: lithium-ion batteries; DFTB; Li-GIC; graphite; intercalation; multiscale modeling; diffu-
sion barriers; formation energies; energy materials; machine learning

1. Introduction

Lithium-graphite intercalation compounds (Li-GICs) are the primary anode material
for commercial Li-ion batteries with a market share of 98% [1] due to their good volumetric
and gravimetric capacities, long cycle life, abundant availability, and low cost. Despite in-
vestigations into alternatives such as lithium-metal anodes, graphite and modified-graphite
compounds will not be replaced in the foreseeable future, as important EV manufacturers,
material suppliers and cell producers have recently announced that graphite-containing
composites will mark the state of the art for next-generation lithium-ion batteries [2].
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Lithium can intercalate into graphite (in an energetically favorable way) up to a
stoichiometry of LiC6 which is commonly taken as the compound defining the state of
charge (SOC) of 100%. Recent studies [1,3] (and references therein) have shown that so-
called superdense configurations (LiCx; x = 2 − 6) must also be expected, at least locally, as
well under ambient conditions. It has been suggested that doping may have the potential
to stabilize these compounds and make them accessible for use in batteries [4].

Between SOC 0% (i.e., graphite) and 100% (LiC6), the system goes through multiple
phase transitions [5,6] between so-called stages (n = 1, 2, . . .) that can be experimentally
discriminated. Traditionally, these stages have been interpreted in an idealized structural
model to directly correlate with the number of (n − 1) empty layers between each pair of
filled layers. According to the Daumas–Heróld domain model [7], these configurations
will rather form local islands or domains of unknown size.

During the process of filling the system, the lattice parameter in the z direction changes
from 3.355 Å per layer at SOC 0% to 3.687–3.706 Å at SOC 100% [8,9]. Additionally, at some
point between 5% and 15% SOC, the graphite structure shifts from AB-stacking to AA-
stacking, possibly with intermediate configurations such as AAB or ABC [10,11].

Several characteristics make this system challenging to simulate: firstly, layers filled
with Li-ions are governed by electrostatics, whereas empty layers are governed by van
der Waals (vdW) interactions. Any reliable model must be able to treat both accurately.
Secondly, properties such as domain sizes and low-SOC phenomena require large supercells
to be investigated. Furthermore, thirdly, Li-GICs—in the context of Li-ion batteries—are an
active material. Therefore, not only are energetics important, but so are transport properties
such as diffusion barriers.

To date, neither a full DFT approach nor a pure machine learning (ML) approach have
proven to be capable of efficiently meeting all of these requirements: DFT methods [12–14]
are too computationally expensive to treat the size of supercells necessary and allow
for extensive sampling, whereas pure machine learning approaches [10,15] usually only
predict some of the required properties, but not all of them, since they do not grant access
to electronic properties such as band structures and charge transfer. Density functional
tight binding (DFTB), however, can be 2–3 orders of magnitude faster than DFT (which is
comparable to, e.g., charge-adaptive force fields) while still retaining a physical description
of the system’s electronic properties [16].

In this work, we thus employed a DFTB approach to calculate the structural and
energetic properties necessary for a full description of the Li-GIC at all states of charge
including superdense ones beyond LiC6. This comprises bond lengths, layer spacing,
formation energetics, long-range Li–Li interactions, and diffusion barriers, all over a wide
range of SOC. Our predictions compare favorably with experimental results [5,6,9,17–23]
and state-of-the-art dispersion-corrected DFT [11–14,24,25], wherever available.

2. Materials and Methods
2.1. Computational

For this study, we used the implementation in DFTB+ [16] with the parametrization
developed in our group. The corresponding Slater-Koster files are publicly available (see
Data Availability Statement). The electronic parameters (in [26], only the confinement
potential) were optimized by means of particle swarm optimization (PSO) [27]. In our
GPrep approach, the repulsion potential was then fitted using Gaussian process regression
(GPR) [28] as described in [26]. The initial parametrization in [26] did not include the
Li–Li repulsion. Extending that earlier work, the training set now includes not only a
wide variety of Li-GIC configurations between SOC 0% and 100%, but also molecular
dynamics (MD) snapshots of lithium metal clusters (cf. Supplementary Information),
as well as rattled structures extracted from geometry relaxation pathways of LiC2 and
LiC1.75, so that our model can also be used to investigate superdense compounds as well
as regions governed by metallic interactions, such as dendritic, mossy, or plated lithium.
The GPrep hyperparameters were manually adjusted to reproduce selected properties.
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Additional details on how the potential shapes changed between [26] and the present work
are provided in the Supplementary Information.

DFT calculations, serving as a reference for the DFTB fit, were performed with the
all-electron framework FHI-aims [29] with light settings and default tier-2 basis sets, using
the PBE exchange-correlation functional [30]. For dispersion correction, the MBD approach
was chosen [31,32]. MD simulations for generating the training set and validation structures
were performed in the NVE ensemble at 300 K and 1000 K using the LAMMPS code [33]
with the embedded atom method (EAM) potential for alkali metals developed by Nichol
and Ackland [34].

Geometries were constructed and analyzed by means of the atomic simulation envi-
ronment (ASE [35]) which we also used as a base framework for all force and energy calcu-
lations, structure relaxations (specifically using the BFGS algorithm as an optimizer [36]),
and barrier calculations. For the latter, we employed the nudged elastic band (NEB) [37,38]
algorithm with the FIRE-optimizer [39] and climbing image switched on.

For all DFTB calculations, we used a well-converged k-point density of at least 0.1/Å.
The SCC-tolerance is 10−7. We employed Fermi filling with a Fermi temperature of 300 K,
as well as a Broyden mixer [40] for convergence acceleration with a mixing parameter of 0.5.
All of these settings were tested with regard to convergence for the whole range of SOC.
As described in [26], our parametrization is meant to be used with the Leonnard–Jones
dispersion correction [41] switched on.

2.2. Experimental

Open circuit voltage (OCV) curves were recorded to compare the simulation with
real measured values. For this purpose, cells were built with graphite against lithium as
well as highly oriented pyrolytic graphite (HOPG) against lithium. The cells from EL-Cell
(ECC-Std), comparable to button cells, were used as the housing. A Whatman GF\D
was used as the separator and EC:DMC 1:1 with 1 mol/L LiPF6 from Sigma-Aldrich was
used as the electrolyte. The graphite electrodes were coated on copper current collectors,
whereas the HOPG was used without a current collector. The electron conductivity was
sufficient due to its low current rate. The graphite was used in 18 mm blanks, whereas
the HOPG was cut into narrow strips with a width of approximately 2 mm to ensure the
highest possible surface-to-volume ratio. The ions can only intercalate into the HOPG from
the cut edges and not through the surface. The graphite cells were initialized with a current
rate of C/10 and the HOPG cells were cyclized with a current rate of C/30.

3. Results and Discussion
3.1. Structural Properties

Graphite consists of graphene sheets, within which the C-atoms are arranged in a
hexagonal honeycomb structure. The sheets are stacked in an AB-stacking order. The lattice
is hexagonal with a 2-layer, 4-atom unit cell and lattice parameters a and c [42]. In our first
benchmark, we compared the performance of our DFTB parametrization with Gaussian
process regression-based repulsion potential (GPrep-DFTB) with experimental and recent
theoretical findings (Table 1).

Table 1. Lattice parameters a and c of the AB-graphite unit cell, predicted using GPrep-DFTB,
compared with experimental results, state-of-the-art dispersion-corrected DFT calculations, and a
recently published machine learning model.

GPrep-DFTB Experiment DFT ML

Method: (a) (b) (c) (d) (e) (f ) (g)

a[Å] 2.476 2.464 2.461 2.468 2.465 2.477 2.472 2.461
c[Å] 6.746 6.711 6.709 6.712 6.645 7.087 6.975 7.538

Experimental references: (a) [17]; (b) [18]; DFT: (c) revPBE-D3-BJ [14]; (d) optB88-vdW [12]; (e) revPBE-vdW [12];
( f ) vdW-optPBE [43]. Machine learning (ML) reference: (g) Atomistic Neural Network [10].
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All considered benchmark methods performed well in reproducing the in-plane lattice
parameter a, which is governed by covalent C–C bonds. However, even state-of-the-art
dispersion-corrected DFT functionals (except for [14]) struggle with predicting the out-of-
plane lattice parameter c. This is due to the fact that the latter is governed by van der Waals
interactions, which are still notoriously difficult to account for despite considerable effort
in creating various correction schemes [31,44–46] for DFT. The recent machine learning
approach [10] overestimates c by an even larger margin.

GPrep-DFTB results are very close to the experimental references—closer than even
the majority of DFT approaches—proving that the method is very capable of treating both
covalent C–C bonds and van der Waals interactions in graphite.

When lithium intercalates into graphite, the graphene sheets shift from AB-stacking
to AA-stacking somewhere between 5% and 15% SOC, and the interlayer distance expands
from ~3.36 Å to ~3.62–3.7 Å (depending on the SOC of adjacent galleries) for the full gallery.
Empty galleries adjacent to filled galleries also slightly expand, due to the extra charge
transferred to the graphene sheet from the intercalated Li-ions, making the overall increase
in the average z direction lattice parameter non-linear.

It is generally accepted that Li-ions do not evenly distribute throughout the entire
GIC, but tend to arrange themselves in fully filled domains and empty domains [7,47]
(see Figure 1), leading to a local staging behavior with the staging number (n = 1, 2, . . .)
indicating that n− 1 galleries are empty between each pair of filled galleries only within that
limited region. For our second benchmark, we calculated the average interlayer distances
depending on the stage n = 1, . . . , 9 of stoichiometry LiC6n (corresponding to LiC6, LiC12,
LiC18, LiC24 and higher) with the GPrep-DFTB and compared with experimental and DFT
references, where available (Figure 2 and Table 2).

In order to be able to directly compare with DFT, this set of unit cells was constructed
with global staging (Figure 1, left) and not according to the domain model, which would
render them far too big for DFT. Because of that, it is not obvious whether AA- or AB-
stacking should be assumed for the empty layers. In real samples, which are large of
scale and governed by the domain model (Figure 1, right), it is probable that empty parts
of galleries also exhibit AA-stacking, because they are forced into that configuration by
adjacent filled domains within that same gallery and because they are not truly empty,
either. However, in an idealized system, without factoring this in (Figure 1, left), AB-
stacking of the empty galleries (as in pure graphite) is also conceivable. Therefore (and
because it is unclear which stacking order has been assumed in the DFT reference [13]), we
provide predictions for both as well as a prediction area (light blue). Filled galleries are
always in AA-stacking.

Figure 1. Stage 2 Li-GIC compound (purple: Li-ions, gray: graphene sheets) in a global staging
model (left) and the Daumas–Heróld domain model (right).

For the empty galleries, we predict that interlayer distances remain mostly constant
throughout all stages with a slight increase in stage 2, due to the additional electrostatic
repulsion caused by the charge transfer from Li-ions in the adjacent filled galleries to the
carbon sheets. For the filled galleries, a constant interlayer distance can be observed for
stages 4 and higher, whereas stages 3, 2, and 1 progressively show increased interlayer
distances, which we attribute again to the electrostatic repulsion of the increasing charge
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density. Based on these findings, a simple building block model that assumes invariant
interlayer distances proves sufficient to describe the system’s behavior in the high-stage
(n > 3) limit, where filled galleries are too far apart to interact in any way (Figure 2, left: ‘fit
AA’ and ‘fit AB’). Only for stages 1 and 2 can the increased filled interlayer distance cause
a significant deviation from this model.

Experimental results [5,9] agree very well with our GPrep-DFTB predictions for
stages 1, 2, and 3. The DFT-based Ising model by [13] is also accurate for stages 1 and 2,
but maintains an overly steep slope for higher stages 3 and 4, which—if continued—would
clearly converge towards wrong asymptotic behavior.

Figure 2. (Left): Average C–C interlayer distance in the z direction as a function of the stage of the
compound in Å. AA and AB signifies AA-stacking and AB-stacking assumed for the empty graphite
layers. Where available, experimental and theoretical references are also shown. The curves ‘fit AA’
and ‘fit AB’ correspond to a simple building block model with just two fixed interlayer distances for
empty and filled galleries, respectively. For stages 3 and higher, our predictions adhere closely to
that model. For stages 1 and 2, the interlayer spacing of the filled galleries was expanded due to the
additional charge transfer. (Right): Interlayer spacing of the full galleries, as well as empty galleries
in AA and AB stacking, as a function of the stage (calculated with GPrep-DFTB).

Table 2. C–C interlayer distances in Å. For details, see the caption of Figure 2.

DFTB Experiment DFT

Filled Empty
AA/AB

Avg.
AA/AB

Avg.
Dahn [5]

Avg.
Kambe [9]

Avg.
Pande [13]

stage 1 3.682 - 3.682/3.682 3.700 3.706 3.713
stage 2 3.652 3.416/3.387 3.535/3.518 3.520 3.530 3.546
stage 3 3.639 3.406/3.376 3.478/3.465 3.450 3.460 3.439
stage 4 3.625 3.403/3.373 3.457/3.440 - - 3.406
stage 6 3.622 3.405/3.372 3.440/3.414 - - -
stage 9 3.622 3.403/3.372 3.427/3.407 - - -

graphite - 3.402/3.373 3.402/3.373 3.355 3.355 3.35

3.2. Diffusion Barriers

Diffusion barriers for ion transport are among the most interesting properties of
mixed ion-electron conductor (MIEC) materials such as Li-GICs. They are the crucial
input parameter of any kinetic Monte Carlo simulation [48] that aims to predict large-scale
phenomena such as phase transitions between stages or non-equilibrium configurations
during fast charging. They are also quite difficult to reliably calculate, since they are closely
linked to the interlayer distance, which, as previously pointed out, is still hard to predict,
even with state-of-the-art DFT, especially for dilute, low SOC configurations.

In order to rigorously investigate the transport properties of Li-GICs, we constructed
a variety of structures based on 2- and 3-layered supercells with 36 and 48 carbon atoms,
respectively. This allows us to consider different staging and Li-stacking orders for equiv-
alent stoichiometries. We fully relaxed all structures, extracted the interlayer distances,
and calculated the energy barriers (Table 3) for exemplary bridge-path diffusion processes
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(connecting the next-neighbor Li positions) using the NEB method (see Supplementary
Information). for the exact initial and final states of the bridge path NEBs, as well as the
predicted barrier diagrams.

Table 3. Interlayer distances and migration barriers (to the neighboring Li-position), calculated with
GPrep-DFTB for a variety of differently stacked, staged, and filled Li-GICs. Regarding the stacking
description, A refers to the carbon sheets, whereas α and β refer to the ordering of Li-ions.

Stage Stacking In-Plane % Avg LS [Å]
Filled/Empty

[Å] Barrier [eV]

LiC48 III AAAα 1/3 3.446 3.525/3.406 0.493
Li2C48 III AAAα 2/3 3.478 3.616/3.409 0.441
Li3C48 III AAAα 3/3 3.478 3.631/3.402 0.424
LiC36 II AAα 1/3 3.469 3.530/3.408 0.504
Li2C36 II AAα 2/3 3.512 3.614/3.410 0.451
Li3C36 II AAα 3/3 3.535 3.652/3.418 0.426
Li2C36 I AαAα 1/3 3.539 3.539/ − 0.492
Li4C36 I AαAα 2/3 3.625 3.625/ − 0.443
Li4C36* I AαAβ 2/3 3.658 3.658/ − 0.412
Li6C36 I AαAα 3/3 3.682 3.682/ − 0.404
Li6C36* I AαAβ 3/3 3.758 3.758/ − 0.396

Analyzing the interlayer distances first, there are multiple trends to observe. First of
all, structures with an AαAα order (Greek letters indicating the Li layer order) consistently
relax to a smaller interlayer distance than structures with an AαAβ stacking, implying that
the former may be more favorable. In terms of the total energy per unit of 6 carbon atoms,
however, we see virtually no difference (AαAβ: −297.279 eV/6C, AαAα: −297.253 eV/6C)
for both structures fully relaxed in terms of cell parameters and all atom positions. This de-
viation of E(AαAα)− E(AαAβ) = 26 meV/6C is on the order of kBT at room temperature,
implying that at ambient conditions, no clear distinction between the Li orderings can be
made and experiments would probably see a mixture of both. For reference, DFT (PBE +
D3), which we consider trustworthy at least for high SOC compounds, predicts a deviation
of E(AαAα)− E(AαAβ) = −14 meV/6C. It is necessary to recognize the difference in sign
here, but since both values are within kBT at room temperature and at the limit of DFT
errors, we do not believe that this constitutes a relevant difference.

Furthermore, for stoichiometries which can either be arranged as dilute stage 1 or
dilute stage 2 (Li2C36) geometries, stage 2 has the lower interlayer distance and is therefore
favored, which is in line with the agreed upon theory of staging and domain formation [47].
This is due to the fact that the z direction expansion of a gallery does not vary linearly
with the filling factor. The total expansion from the 0% filling to 100% filling is 0.315 Å for
AαAα-stacked stage 1 compounds. Filling empty layers by 33% (stage 1—Li2C36) already
expands the interlayer distance by 0.165 Å, which is 52% of the total expansion. At 66%
filling (stage 1—Li4C36), the interlayer distance is expanded by 0.252 Å, which is 80% of
the total expansion.

In terms of the diffusion barriers, experimental sources vary quite a lot. This is due to
the fact that the measuring technique, as well as additional factors such as temperature,
play a role. Furthermore, if total diffusivities are measured, it is difficult to separate those
into energetic and kinetic contributions. Langer et al. [21] measured a barrier of 0.55 eV
(LiC6) by means of Lithium nuclear magnetic resonance (Li-NMR), Freilander et al. [22]
report 0.6 eV (LiC6) and 1.0 eV (LiC12) using beta-NMR and Magerl et al. [23] find 1.0 eV
(LiC6) by means of the quasielectric neutron scattering (QENS) at T > 630 K.

On the theoretical (DFT) side of things, the revPBE-D3-BJ approach by Thinius et al. [14]
(which has proven very accurate for structural parameters and formation energies) predicts
the barriers of 0.42 eV (LiC6) and 0.47 eV (LiC12). Toyoura et al. [24] reported 0.3 eV
(LiC6) and 0.49 eV (empty gallery) by means of DFT (LDA) and Persson et al. [25] predict
0.283 eV (LiC6) and 0.297 eV (LiC12), using DFT (GGA) with the interlayer distances fixed
at experimental values. Even though there is some variation in the absolute numbers, both
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theoretical and experimental studies are in general agreement on the ordering of the barrier
heights: LiC6 < LiC12 < empty gallery. This corresponds to an inverse dependency on the
interlayer distance of the respective gallery.

Using GPrep-DFTB, we predict barriers of 0.404 eV (LiC6), 0.426 eV (LiC12) and
0.504 eV (empty gallery). These results capture the same previously explained qualitative
trend as the references. This also holds true for other configurations that had not been
investigated before, such as AαAβ-stacked and stage 3 structures. Quantitatively, our
results are in particularly good agreement with the revPBE-D3-BJ approach [14].

3.3. Formation Energetics

The intercalation energies of Li-ions entering the GIC at different states of charge are
a crucial measure for predicting the most stable configurations throughout the charging
process and the phase transitions between those. Therefore, as a third benchmark, we
calculated the formation energies of LiC6, LiC12 and LiC18, and compared them with
various experimental and theoretical studies (Table 4).

We calculate the intercalation energies per lithium atom (or, equivalently, per formula
unit), as

∆Eint(LiC6n) = E(LiC6n)− nE(C6)− E(Li) (1)

where n is the stage number and E(·) is the DFTB total energy. These are directly com-
parable to the corresponding literature values obtained by DFT calculations. The latter
thus do not include any finite temperature effects. On the other hand, experimental values
are formation-free energies or enthalpies. Additionally, the calorimetric reference [20] is
taken at elevated temperature (455 K) and with liquid lithium as precursor, rather than
at room temperature with a solid lithium electrode. As a final note, the calculated values
correspond to infinite phases of perfect stage n stoichiometry, whereas the true compounds
at the corresponding stoichiometries are a mixture of domains of yet unknown structural
details. Consequently, the values given within the scope of this parametrization study
are not yet intended to be quantitatively comparable to the experiment, but one may still
identify qualitative trends, just like with regular DFT. The DFTB model opens up the way
to forthcoming more realistic, quantitative simulations.

Table 4. Formation energies in eV per formula unit, calculated with GPrep-DFTB and compared
to an overview of the experimental and theoretical results from other studies. Both DFTB and DFT
values are variations in the total energy ∆Eint, while experimental values are variations in enthalpy
∆Hint where available—otherwise they are variations in free energy ∆Gint).

GPrep-
DFTB Experiment DFT

Ref: (a) (b) (c) (d) (e) (f ) (g)

LiC6 −0.14 −0.156 * −0.114 −0.144 −0.17 −0.22 −0.07 −0.23
LiC12 −0.40 −0.228 * −0.352 −0.257 −0.27 −0.28 −0.12 −0.33
LiC18 −0.42 −0.273 * −0.492 − − − − −0.29

Experimental references: (a), [19] (b) [6] OCV, vs. solid Li; (c) calorimetry, vs. liquid Li [20]; DFT references: (d)
revPBE-D3-BJ [14]; (e) optB88-vdW [12]; ( f ) revPBE-vdW [12]; (g) GGA-PP [11]; * These values are intercalation
free energies ∆Gint. The value for LiC18 is not directly given in the paper but can be consistently extracted using
the same formula the authors used for LiC12.

For the formation energies, the experimental studies [6,19,20] do not agree as closely,
as for the structural parameters, but they do at least provide the same ordering for LiC6
and LiC12 and LiC18. Interestingly, the values extracted from open circuit voltage (OCV)
measurements only agree in the ordering if the energies are taken per formula unit. Nor-
malizing the energies per graphite unit, LiC12 would have a less negative formation energy
than LiC6. As the OCV curves in [6,19] agree with each other, we attribute the mismatch to
different methods for extracting the formation energies from the OCV curve. We also note
here that our structural models closely correspond to highly oriented pyrolytic graphite
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(HOPG), while all the referenced OCV curves were taken with different forms of graphitic
carbon. In order to make sure that the deviation was negligible, we measured the OCV
curve for HOPG. Due to the small insertion surface for Li-ions, the characteristic voltage
plateaus are not as visible. However, in the regions corresponding to the phase transitions
between LiC18 to LiC12 and LiC12 to LiC6, the measured HOPG curve matches within
0.01 V with the references. Our measured OCV curve is shown in the Supplementary
Information for both HOPG and the coin cell.

Similarly, as for the C–C interlayer distance, the different DFT functionals vary signifi-
cantly in their performance predicting the formation energetics of Lithium-GICs. Compared
with the experimental studies, revPBE-D3-BJ [14] proves to be best, just as it did previ-
ously for the C–C interlayer distance. According to [12], revPBE-vdW correctly predicts
the phase transitions between stage 1 and stage 2 qualitatively (even though it strongly
underestimates the formation energies), whereas optB88-vdW does not. For revPBE-D3-BJ,
we do not have this information.

Overall, the formation energy for LiC6 tends to be consistent across experimental
measurements and most computed references. Our results with GPrep-DFTB are equally
accurate for LiC6, while for both LiC12 and LiC18, we obtain more negative formation
energies than the majority of references (with the exclusion of [6]). However, this is not
necessarily a pitfall, considering that the finite temperature contributions are not included.
The effect of the latter is generally nontrivial; in particular, the entropy variation in Li-GICs
is negative for the largest part of the state of charge range. Given the overall uncertainty
in both experimental and computed references, we leave this question open for further
investigation and adjustments to the parametrization, if needed. We note in passing that
potential refinements to the GPrep-DFTB parametrization are possible with little effort,
by simply retraining the repulsion potential with additional training data and/or finely
tuned hyperparameters. As a perspective, we intend to use this parametrization to train
a cluster expansion similarly to [10,49], in order to perform free energy sampling and
calculate the OCV curve. If that agrees with the measurements, then the non-perfect
energetics of single ideal geometries is only a minor setback.

3.4. Long-Range Interactions

Having successfully benchmarked our GPrep-DFTB approach against a variety of
comparatively small-scale properties, we proceeded towards calculating some larger-scale
properties which are out of reach of DFT (at least at a reasonable computational cost).
First, we want to investigate the long-range in-plane interaction between two Li-ions
within Li-GIC. In order to do that, we constructed a supercell with 218 carbon atoms and
two layers to eliminate any periodic next-layer interactions and allow for the bulging of
the graphene sheets. We then exhaustively performed 47 full structure relaxations of all
symmetry-inequivalent local minima and maxima for two Li atoms within a single layer
in that supercell, as well as 41 five-image NEBs for the diffusion processes between each
adjacent pair of local minima. With our method, all of this is possible within days and on a
regular workstation. This leaves us with 170 data-points, which we use to fit a 2D potential
energy landscape for the whole supercell (Figure 3a) and also to plot the Li–Li interactions
as a function of the Li–Li distances (Figure 3b,c).

As our results clearly show, the in-plane Li–Li interactions are governed by Coulombic
repulsion. Even quantitatively, our predictions agree very well with the approach of
Pande et al. [13] (BEEF-vdW-DFT + Ising model). However, they were only able to provide
four data points which are local minima and therefore quite cheap to calculate, whereas
we can also predict transition states (which require NEB calculations and are much more
computationally expensive because of that). This proves that GPrep-DFTB is capable of
very accurately capturing the Li-GIC system’s electrostatic properties, and of doing so for
vastly more and larger supercells than DFT.
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(a)

(b)

(c)

Figure 3. (a) Calculated potential energy surface for a freely moving Li-ion with respect to a second
fixed ion in the corner of the unit cell (see main text for details of the structural model). Color gradient
in eV relative to the global minimum at (0/0). Circles are local minima, diamonds are local maxima,
stars are transition states (calculated with the cNEB method), and squares are additional images
from the NEBs—all of which have been used for the 2D fit; (b) Potential energy depending on the
distance between the two Li-ions (blue dots are the transition positions, red dots are the ground
states); (c) Potential energy depending on the reciprocal distance—clearly showing the Coulombic
nature of the interaction, which agrees with [13].

Based on this, it is then possible to extract the slope from Figure 3c, which, via the
relation:

E =
e2Z2

4πεr

1
R

(2)

gives us access to the relative dielectric constant εr of the system. We note, however, that
this is the effective dielectric response experienced by Li-ions within the Li-GIC and not
the macroscopic dielectric constant of the GIC including the contribution due to the Li
ion motion. By means of linear regression, we obtain a slope of 0.996 ± 0.015 eVÅ. This
leads to εr/Z2 = 14.46 ± 0.22. For an assumed partial charge Z of 0.8 to 0.9 for the Li-ions,
which is in line with the charge analysis performed by Rana et al. [50], we then predict a
relative dielectric constant of 9.1–11.9. Expanding on this in future work, we will be able
to, for the first time, determine the dielectric constant of Li-GIC as a function of the state
of charge, which is an important input parameter for kinetic Monte Carlo simulations of
charge carriers.

3.5. Domains vs. Dilute

While the general truth of the Daumas–Heróld domain model [7] has been widely
accepted and supported by both theoretical [51,52] and experimental [53,54] studies, quali-
tative details such as domain sizes and shapes, dependencies on the charging speed and
other dynamic factors have not been understood to a sufficient degree. As pointed out
in [55], the formation of domains is at least partially responsible for the wide range of
Li-ion diffusivities reported from the experiment (10−6 − 10−14 cm2

s [25]), and therefore of
crucial importance for understanding the overall behavior of Li-GICs, especially when
exposed to the rapidly growing charging speeds that are necessary today.

In order to provide a further demonstration of our method’s potential to bring forward
a new understanding of these phenomena in the future, we constructed four supercells with
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roughly 600 atoms each—two of them in a dilutely spaced configuration (with the Li-ions
spread evenly across the filled layers, right column in Figure 4) and two of them with a
configuration according to the Daumas–Heróld domain model (Figure 4, left column)—and
performed full structure relaxations on each of them. Note that what we show here is one
possible realization of the dilute LiC12 and LiC24, but there are necessarily many other
disordered realizations with very similar total energies and any experiment would likely
see a mix of these.

Figure 4. Top- and sideview of stage 1 and stage 2 domain-like and dilute Li-GIC configurations.
Structures are fully relaxed, providing both overall average interlayer distances and local interlayer
distances for filled and empty areas. For both stages, the domain-like structure has a smaller overall
interlayer distance.

Our results show that both in the stage 1 (upper row) and the stage 2 (bottom row)
compound, the domain–structure expanded to a significantly smaller overall interlayer
distance, meaning it is favored compared to the evenly spaced one. This agrees with the
Daumas–Heróld domain model [7]. Furthermore, we were also capable of extracting local
interlayer distances for different areas of the structure. As shown in Figure 4, the difference
in interlayer distance between the empty and filled domains is larger than 0.2 Å, which
is much larger than any residual differences in the computed values above. According to
both DFT [56] and our own results (Table 3), this difference corresponds to a difference in
diffusion barriers of approximately 0.1 eV or 25%. Given this direct dependency, GPrep-
DFTB could, for example, be used to reliably predict local diffusivities in large structures
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without the need to perform costly NEB calculations. Additionally, we believe that the
capacity of GPrep-DFTB for fully relaxing large unit-cells with a multitude of Li-ion
distributions has great potential for building more diverse and well-rounded training-sets
for, e.g., lattice gas expansions or machine-learning models, than DFT could, also including
the ’empty’ or ’almost empty’ regions of the Daumas–Heróld domain model, for which we
provided an extensive model in Figure 3. This makes GPrep-DFTB a crucial new bridge
between the atomistic scale and the macroscopic scale of Li-GIC modeling.

4. Conclusions

The structural, energetic and electronic properties of Li-GICs were theoretically inves-
tigated with our DFTB parametrization (based on GPR repulsion fitting) and benchmarked
against dispersion-corrected DFT calculations and experiments. The calculated lattice
parameters of graphite (a = 2.476 Å, c = 6.746 Å) agree better with experiments than
most DFT approaches. For stages 1 through 4, our method correctly predicts the non-
linear nature of the increase in the interlayer distance in LiCx upon intercalation, not only
qualitatively but quantitively as well. LiC6 relaxes to an interlayer distance of 3.682 Å.
The calculated formation energies of −0.14 eV (LiC6), −0.40 eV (LiC12) and −0.42 eV
(LiC18) per formula unit slightly overestimate the experimental results, but are within the
range of DFT predictions. We expect future calculations which include entropy effects to be
even more accurate. The calculated diffusion barriers (0.396 eV–0.504 eV, depending on
the configuration) show trends supported by accepted theory, such as the Daumas–Heróld
domain model, and agree with state-of-the-art DFT studies and experiments. In terms of
long-range Li–Li interactions, our model captures the Coulombic nature also discovered
by DFT, but is at the same time capable of accessing much larger supercells. Based on
these calculations, we predict a dielectric constant for LiC108 in the range of 9.1–11.9 and
recognize the potential of GPrep-DFTB to, for the first time, calculate the dielectric constant
of the Li-GIC as a function of the SOC in the near future. Finally, the GPrep-DFTB relaxation
of large structures in both dilute and domain-like configurations predicts less expansion
of the interlayer distance for the domain structure—again agreeing with previous studies
and illustrating the potential of our method for further investigation into the complex and
large-scale physics taking place in Li-GICs and for being a new kind of bridge between the
atomistic scale and the macroscopic scale of future battery materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14216633/s1, Supplementary Information.

Author Contributions: Conceptualization, C.P. and C.S.; data curation, S.A.; formal analysis, S.A.;
funding acquisition, C.S.; investigation, S.A., C.P., M.V., D.M. and C.R.; project administration, C.S.;
supervision, C.P. and C.S.; validation, S.A.; visualization, S.A., C.P. and M.V.; writing—original draft,
S.A. and C.P.; writing—review and editing, C.P., S.A. and C.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by the German Federal Ministry of Education and Research (BMBF)
as part of the research cluster “AQua” within the project InOPlaBat (grant number 03XP0352) and
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—EXC 2089/1-390776260. Open access funding was enabled and organized by
the Max Planck Digital Library (MPDL).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available at https://doi.org/10.5281/zenodo.5636279 (accessed
on 27 October 2021).

Acknowledgments: The authors gratefully acknowledge the computational and data resources
provided by the Leibniz Supercomputing Centre (LRZ). The authors jointly thank Cristina Grosu,
Stefan Seidlmayer and Sebastian Matera for fruitful discussions on Li-GICs.



Materials 2021, 14, 6633 12 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X. Graphite as anode materials: Fundamental mechanism, recent progress and

advances. Energy Storage Mater. 2020, 36, 147–170. [CrossRef]
2. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode

material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy
Fuels 2020, 4, 5387. [CrossRef]

3. Grosu, C.; Panosetti, C.; Merz, S.; Jakes, P.; Matera, S.; Eichel, R.A.; Granwehr, J.; Scheurer, C. Lithium intercalation into graphite
beyond LiC6 at ambient pressure. arXiv 2021, arXiv:2107.11137.

4. Zhang, C.; Ma, J.; Han, F.; Liu, H.; Zhang, F.; Fan, C.; Liu, J.; Li, X. Strong anchoring effect of ferric chloride-graphite intercalation
compounds (FeCl 3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage. J. Mater. Chem. A 2018,
6, 17982. [CrossRef]

5. Dahn, J.; Fong, R.; Spoon, M. Suppression of staging in lithium-intercalated carbon by disorder in the host. Phys. Rev. B 1990,
42, 6424. [CrossRef]

6. Reynier, Y.; Yazami, R.; Fultz, B. The entropy and enthalpy of lithium intercalation into graphite. J. Power Sources 2003, 119, 850.
[CrossRef]

7. Daumas, N.; Heróld, A. Relations between phase concept and reaction mechanics in graphite insertion compounds. C. R. Acad.
Sci. C 1969, 268, 373.

8. Vadlamani, B.; An, K.; Jagannathan, M.; Chandran, K.R. An in situ electrochemical cell for neutron diffraction studies of phase
transitions in small volume electrodes of Li-ion batteries. J. Electrochem. Soc. 2014, 161, A1731. [CrossRef]

9. Kambe, N.; Dresselhaus, M.; Dresselhaus, G.; Basu, S.; McGhie, A.; Fischer, J. Intercalate ordering in first stage graphite-lithium.
Mater. Sci. Eng. 1979, 40, 1. [CrossRef]

10. Babar, M.; Parks, H.L.; Houchins, G.; Viswanathan, V. An accurate machine learning calculator for the lithium-graphite system. J.
Phys. Energy 2020, 3, 014005. [CrossRef]

11. Imai, Y.; Watanabe, A. Energetic evaluation of possible stacking structures of Li-intercalation in graphite using a first-principle
pseudopotential calculation. J. Alloy. Compd. 2007, 439, 258. [CrossRef]

12. Lenchuk, O.; Adelhelm, P.; Mollenhauer, D. Comparative study of density functionals for the description of lithium-graphite
intercalation compounds. J. Comput. Chem. 2019, 40, 2400. [CrossRef]

13. Pande, V.; Viswanathan, V. Robust high-fidelity DFT study of the lithium-graphite phase diagram. Phys. Rev. Mater. 2018,
2, 125401. [CrossRef]

14. Thinius, S.; Islam, M.M.; Heitjans, P.; Bredow, T. Theoretical study of Li migration in lithium–graphite intercalation compounds
with dispersion-corrected DFT methods. J. Phys. Chem. C 2014, 118, 2273. [CrossRef]

15. Fujikake, S.; Deringer, V.L.; Lee, T.H.; Krynski, M.; Elliott, S.R.; Csányi, G. Gaussian approximation potential modeling of lithium
intercalation in carbon nanostructures. J. Chem. Phys. 2018, 148, 241714. [CrossRef] [PubMed]

16. Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M.Y.; Dumitrică, T.; Dominguez,
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A B S T R A C T

Lithium–graphite intercalation compounds (Li-GICs) are by far the most common anode material for modern
Li-ion batteries. However, the dielectric response of this material in the electrostatic limit and its variation
depending on the state of charge (SOC) has not been investigated to a satisfactory degree – neither by means
of theory nor by experiment – and especially not for the higher range of SOC. In this work, we – for the
first time – predict a mostly linear dependency of the relative permittivity 𝜖𝑟 on the SOC, from ≈ 7 at SOC
0% to ≈ 25 at SOC 100%. This is achieved by making use of our recently published DFTB parametrization
for Li-GICs based on a machine-learned repulsive potential in order to overcome the computational hurdles
of sampling the long-ranged Coulomb interactions within this material. In doing so, we provide novel insight
into a property which is highly desired, particularly as an input parameter for charged kinetic Monte Carlo
simulations.

1. Introduction

The relative permittivity (RP) is one of the defining properties
of many materials, as it describes the degree to which the Coulomb
interactions between charge carriers are screened within the material
compared to vacuum. Especially in older literature, this property is also
known as ‘‘dielectric constant’’, even though it is far from being con-
stant, but dependent on temperature, the frequency of probing electric
fields and even the underlying mechanisms in terms of polarizability,
conductivity and others.

Traditionally, the RP has primarily been of interest for insulators,
but in recent times it has also been increasingly investigated for con-
ducting materials [1], where it stems from the interaction between
a small fraction of the charge carriers and the atoms. The fact that
these charge carriers are mobile in conducting materials fundamen-
tally changes the way the property and its dependencies need to be
understood within these materials, compared with insulators.

One group of materials of great interest are lithium–graphite in-
tercalation compounds (Li-GICs), which constitute by far the most
common anode material in modern lithium ion batteries. During the
charging and discharging cycles of the battery, Li-ions are stored be-
tween the layers of the graphite host structures, up to a stoichiometry
of LiC6, which traditionally translates to a state of charge (SOC) of
100% and corresponds to one Li-ion above every third C6 ring of the
hexagonal base lattice—even though recent studies have shown that

∗ Corresponding author at: Fritz-Haber-Institute of the Max–Planck-Society, Faradayweg 4-6, 14195, Berlin, Germany.
E-mail address: annies@fhi-berlin.mpg.de (S. Anniés).

overlithiation beyond that point is possible at ambient conditions [2].
The distribution of the Li-ions for intermediate SOCs is not uniform,
but ordered as shown in Fig. 1, as first explained in [3].

Within the scope of this specific material, we define the RP we
are investigating as ‘‘the damping of the electrostatic interaction be-
tween two Li-ions or Li-ion vacancies embedded in the material caused
by the surrounding charge-carrier density’’. As of note, this is the
electrostatic, low-frequency RP, as opposed to what is measured in
many experiments, which make use of alternating AC-fields at a vast
variety of frequencies [1,4]. Furthermore, we point out that this specific
property is directionally separated—its contribution in the xy-plane
(in this work defined as parallel to the graphene sheets, i.e., the ab-
plane in crystallographic notation) is expected to be different from
the contribution in z-direction (orthogonal to the graphene sheets).
This makes direct comparison with experiments performed on graphite
powder as opposed to a ‘‘perfect’’ crystal non-trivial—a problem we
address in Section 3.4.

One of the primary motivations for investigating the RP of Li-GICs
is the fact that it is a required input parameter for including charge in
kinetic Monte Carlo simulations (kMCs), which in turn are a crucial
method for studying charge carrier dynamics in functional energy
materials [5–8]. Long-ranged Coulomb interactions are a necessity
when performing kMC on systems, which include charged or partially
charged particles. For example, Casalegno et al. [9] have shown that
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Fig. 1. Illustration of lithium-ions (purple spheres) intercalated into a graphite host structure (grey lines) at 50% state of charge, based on the Daumas–Herold domain model [3].
Li-ions tend to fill up every second layer completely (staging, left), before starting to intercalate into the other half of the layers. However, this behaviour is not global, but occurs
in finite-sized domains (right) and is not expected to be perfect in real systems. During the intercalation process, the distance between the graphene sheets (interlayer distance) is
increased by around 10%.

not including such interactions, as it would be the case when using
e.g. force field approaches with finite-size descriptors, causes an error
of 14% in the protonic diffusion coefficients in doped perovskites. The
situation becomes especially complicated when looking at materials,
which involve changes in the density and/or local ordering of charge
carriers as part of their intended function. Examples are anodes, cath-
odes and electrolytes. but also e.g. perovskites in solar cells. This is
due to the fact that the local relative permittivity then is not only
influenced by the ‘‘host’’ material, but also by the charge carriers close
by. Therefore, the RP of Li-GICs changes significantly depending on the
SOC (vide infra).

Beyond the previously outlined interest for charge-kMC, we be-
lieve there to be many more valuable applications for the relative
permittivity of Li-GICs also at higher levels of the multiscale simulation
hierarchy: one such motivation is understanding charge gradients, as
they occur during the fast charging of modern batteries in electric
vehicles, and the chemical pressure which leads to plating and dendrite
formation inside the batteries under certain operational conditions. The
latter phenomenon is typically investigated by means of continuum
simulations like e.g. by Hein et al. [10], which also rely at least im-
plicitly on knowledge of the dielectric response. Furthermore, a simple
model of the charge carrier electrostatics could be used as a physical
baseline for otherwise short-ranged machine learning models or cluster
expansions. Another related field is the development of functional
materials based on doped graphite [11].

In order to bring forward new insight into the dielectric behaviour
of LI-GICs, we put forward a systematic approach – based on our DFTB
parametrization – to investigating this crucial property. The root prin-
ciple is based upon considering the dielectric response ‘‘as felt by the
charge-carriers’’. This translates to sampling the Coulomb-interactions
between pairs of charge carriers inside the system, while varying the
surrounding charge-carrier density in order to access different states of
charge. In doing so, we are able to determine the relative permittivity
of Li-GICs, as a function of the SOC, for the entire functional range of
the material.

2. Methodology

2.1. Derivation of the relative permittivity 𝜖𝑟 from the Coulomb law and
discussion of the partial charge transfer

In order to determine the relative permittivity within the system,
our approach is to sample the electrostatic interactions between two
charge carriers inside the system, placed at varying distances from each
other. We begin our considerations with the electrostatic energy 𝐸𝐶𝑜𝑢𝑙
of two charge densities 𝜌1 and 𝜌2, governed by the Coulomb law

𝐸𝐶𝑜𝑢𝑙 =
1

4𝜋𝜖0𝜖𝑟
⋅∬

𝜌1 ⋅ 𝜌2
|𝑟1 − 𝑟2|

𝑑𝑟1𝑑𝑟2 (1)

where 𝜖0 is the vacuum permittivity. In this work, we chose to approx-
imate the sampled charge carriers as point charges, an approximation

that is unproblematic for Li-ions, but requires a bit more consideration
for Li-ion vacancies, which may be more diffuse in shape. In this
approximation, the expression becomes

𝐸𝐶𝑜𝑢𝑙 =
1

4𝜋𝜖0
⋅
𝑄1 ⋅𝑄2

𝜖𝑟
⋅

1
|𝑟1 − 𝑟2|

(2)

which has been rearranged to clearly separate the continuum electro-
static from the geometric quantities. With the two point charges being
Li-ions or Li-ion vacancies intercalated into the graphite host structure,
we get

𝐸𝐶𝑜𝑢𝑙 =
𝑒2

4𝜋𝜖0
⋅
𝑍2

𝐿𝑖
𝜖𝑟

⋅
1
𝑅

(3)

where 𝑒 is the electron charge, 𝑍𝐿𝑖 the partial charge on the Li-ion and
𝑅 the distance between the two charge carriers. In order to link this
Coulomb energy to the potential energy 𝐸𝑝𝑜𝑡 of an entire supercell, as
we obtain from our DFTB calculations, an appropriate reference energy
𝐸0 needs to be introduced, which is the host structure energy in the
limit of 𝑅 → ∞ at that specific stoichiometry. With this we finally get:

𝐸𝑝𝑜𝑡 =
𝑒2

4𝜋𝜖0
⋅
𝑍2

𝐿𝑖
𝜖𝑟

⋅
1
𝑅

+ 𝐸0 (4)

The first two terms of this expression can be accessed as the slope
of a linear regression, when plotting 𝐸𝑝𝑜𝑡 over 1∕𝑅. In order to relate
said slope to 𝜖𝑟, we approximate 𝐸𝐶𝑜𝑢𝑙 ≈ 𝐸𝑝𝑜𝑡−𝐸0. While this obviously
holds in the macroscopic limit for a homogeneous medium, here we are
attempting to measure the Coulombic repulsion felt by two particles
on a potential energy surface (PES) resolved at the atomistic level.
The latter is not infinitely smooth, but presents minima, maxima and
saddle points due to the carbon host structure. It however shows a
sufficiently regular pattern (as shown in [12]) to assume that analogous
points (i.e., comparing minima with minima etc.) exhibit analogous
local shape. Consistently, the DFTB total energy is indeed expressed,
within the formalism of the method [13], as a sum of three contri-
butions: the so-called band structure energy, the Coulomb energy (the
expression of which depends explicitly on the partial charges on the
individual atoms, vide infra), and the repulsive energy. Ideally, we can
isolate the Coulomb energy between two particles in the system by
considering ‘‘the rest of the DFTB total energy’’ as a background to
subtract pointwise, assuming that it will be similar enough in similar
local environments. Ideally, this would correspond to the limit for
infinitely dilute, unperturbed PES, where the Coulombic interaction
between charge carriers vanishes. In this light, for each sampled point
we may identify a suitable pointwise reference 𝐸0 as the corresponding
point on such unperturbed PES, e.g., in the case of minima, the total
energy of a minimum at the centre of any C6 ring of the graphitic host
sufficiently far away from the other charge carrier.

We point out that this approximation neglects distortions of the
local structure and electron density that may be caused by two charge
carriers being close together—an approximation that holds well for the
low SOC regime, but not quite as well for the high SOC regime, as
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Fig. 2. Left : Illustration of the investigated layer for pairwise Coulombic Li-ion-interactions with one fixed Li-ion (purple). Of the local minimum locations marked with an ‘‘X’’,
a maximum of one is occupied by the other Li-ion, while all others are empty. This layer will be referred to as inv(Li) throughout this work. Right : Illustration of a ‘‘transition
state’’ between two local minima.

will be shown. The reference energy 𝐸0 does not impact the relative
energetics, but only causes an up or down shift along the 𝑦-axis.
Therefore, it is not immediately relevant for the extraction of the 𝜖𝑟,
but it is needed for consistent plotting of the Coulomb energy. For this
reason, we estimate 𝐸0 by interpolating the slope to the 1∕𝑅 → 0 limit
(see the following chapters for more details).

The only other variable that is left, then, is the partial charge of
the intercalated lithium 𝑍𝐿𝑖. It is known that, upon intercalation, the
electron density of the Li-atom is partially transferred to the carbon host
structure, leaving the intercalant as something usually denominated
as Li+, but the exact magnitude of said charge transfer is hard to
pinpoint—and not an observable. The self-consistent-charge cycles of
our DFTB+ calculations output a local electron population of around
0.21 to 0.26 for the Li-intercalants depending on the local environment
of the respective Li-ion, which corresponds to a partial charge of +0.79𝑒
to +0.74𝑒. However, literature reports a variety of different values.
Valencia et al. [14] pointed out the large dependency of the partial
charge transfer on the method of analysis and presented values of
0.43𝑒 (Mulliken charge analysis), 0.47𝑒 (Voronoy), 0.6𝑒 (Löwdin) and
1.0𝑒 (Bader). Krishnan et al. [15] found 0.86𝑒, also by Bader analysis.
Song et al. [16] determined 0.68𝑒 by means of quantum mechanical
calculations and comparison with experimental layer spacing, but also
pointed out that this value may change with SOC. Finally, Rakotom-
ahevitra et al. [17] calculated 0.517𝑒, using an extra-orbital model.
To complicate things further, 𝜖𝑟 depends on 𝑍𝐿𝑖 quadratically (see
Eq. (4)) and is therefore very sensitive to it. For consistency, we will
move forward in this work assuming 𝑍𝐿𝑖 = 0.765 ± 0.05—the median
partial charge to which the SCC converges. The latter indeed directly
enters the expression for the Coulombic contribution to the DFTB total
energy, as mentioned before, and therefore represents a natural choice
within the framework (and within the approximations) of DFTB. We
add a generous, but arbitrary measure of uncertainty, and we stress that
all absolute numbers for the relative permittivity 𝜖𝑟 presented in this
work need to be understood with this assumption in mind. However,
the same is not true for the electrostatic screening captured by the
slopes of the linear regression—this can be taken at face value and may
be, depending on the model or method employed, the more valuable
property to take into account for future research.

2.2. Computational details

For this study, we used self-consistent-charge Density Functional
Tight Binding (SCC-DFTB [18]) as implemented in DFTB+ [19], with
the parametrization developed in our group. The corresponding Slater–
Koster files are available upon request and have been parametrized
and tested as described in [12,20]. The repulsion potential is machine-
learned by means of Gaussian Process Regression (GPR) [21].

Geometries have been constructed and analysed by means of the
Atomic Simulation Environment (ASE [22]) which we also used as
a base framework for all force- and energy-calculations, structure
relaxations (specifically using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm as an optimizer [23]), and transition state calcula-
tions. For the latter, we employed the Nudged Elastic Band (NEB, [24])
algorithm with the BFGS optimizer and climbing image [25,26]
switched on.

For all DFTB calculations, we used a well converged k-point density
of at least 0.1/Å for the 𝑧-component of the unit cell. The xy-size of the
cell is large enough to sample at the Gamma point. The SCC-tolerance
is 10−6. We employed Fermi filling with a Fermi temperature of 0.001
Kelvin, as well as a Broyden mixer [27] for convergence acceleration
with a mixing parameter of 0.5. All of these settings have been tested
with regard to convergence for the whole range of SOC. As described
in [20], our parametrization is meant to be used with the Lennard-Jones
dispersion correction [28] switched on.

In terms of supercell size convergence, satisfactory convergence of
the extracted slopes of the energies relative to the inverse distances
(see Section 2 for details) is reached at distances of around 15 Å
between the periodic images of the sampled areas of the investigated
layers (see Fig. 2 and Fig. 5), a value we reach or exceed with all
used supercells. We point out that convergence of total energies is still
not reached at those distances due to the long-ranged nature of the
Coulomb interactions, however our property of interest – the previously
mentioned slope – is rather robust to total energy shifts of the whole
sampled area. Slight further improvements would still be probable with
even larger supercells, but due to computation time constraints, and
due to the fact that other effects introduce much larger errors to the
final results, we chose the supercells described in the previous sections.

3. Results and discussion

3.1. Lithium-intercalant pairwise interaction screening (xy-plane)

In order to sample the pairwise Li-ion interactions within the ma-
terial, we construct an investigated layer, called inv(Li), consisting of
300 carbon atoms and two Li-ions, one of them fixed in the corner, the
other one sampling a number of different positions, as schematically
illustrated in Fig. 2. We then combine this investigated layer with
varying stackings of empty and filled layers (see Fig. 3), as they
predominantly appear in the system according to the staging model.
We perform full structure relaxations on the resulting supercells, with
two or three layers and 600–900 carbon atoms, for each of the 21
possible Li-ion positions per data point on the SOC axis, and extract
the potential energies of the cells. We also perform nudged elastic band
(NEB) calculations between all combinations of two relaxed structures,
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Fig. 3. Illustration of the periodic Li-ion ordering in an adjacent layer at 100% SOC.

Fig. 4. Approximate Coulomb energies 𝐸𝐶𝑜𝑢𝑙 ≈ 𝐸𝑝𝑜𝑡 − 𝐸0 of minima and transition states relative to 𝐸0 (at the respective SOC) in dependence of the distance (left) and inverse
distance (right) between the investigated Li-ions at different SOCs (see Table 1). The slopes have been extracted by means of linear regression. The global minima 𝐸0 in the
1∕𝑅 → 0 limit are extrapolated from the linear regression of the slopes of the minima and set to 0 in the plot. The DFT reference is taken from an Ising model based on BEEF-vdW
DFT [29]. The data points represent the pair-interactions for next-neighbour, second, third and fourth next neighbour lithium positions. The SOC is not clearly defined without
giving the size of the otherwise empty supercell (a limitation of the Ising model), but can be understood as ‘‘low’’ and taken as comparison for our blue data-points.

which have directly adjacent occupied Li-positions, thus acquiring 41
transition states per data point of diffusive next-neighbour jumps.

This is especially relevant for kinetic Monte Carlo applications,
where the dynamics are governed by the rates – and therefore, the ac-
tivation barriers – corresponding to elementary processes bringing the
system from one state to another. As our results show, the Coulombic
behaviour we get is identical, within method accuracy, for both cases
(Fig. 2). This justifies the application of simplified rescaling rules solely
based on Coulombic interactions to include the effect of next-neighbour
occupations on the elementary barriers, allowing to set up a charged
kMC model with one, simple, elementary barrier (the jump of one Li-ion
from one site to another in the infinitely dilute limit), and correcting
the latter depending on the number and distance of nearest neighbours
as well as on the direction of the jump.

By plotting the estimated Coulomb energies 𝐸𝐶𝑜𝑢𝑙 = 𝐸𝑝𝑜𝑡 − 𝐸0
as functions of the (inverse) distance between the two Li-ions in the
investigated layer, we clearly illustrate how our model captures the
Coulombic nature of the interaction close to perfectly in the case where
no other Li-ions are present in the adjacent layers (Fig. 4, blue) that
could distort the electron density. The very minor scatter in this case
likely stems from the small distortions in the carbon structure close to
the Li-intercalants and the fact that our full cell relaxations cannot be
converged to infinity, but have to be stopped at some threshold forces.
In the other two cases, there is some more scatter present, caused by
the slightly deformed charge density, due to the filled adjacent layers
(one in case of SOC 34.7%, two in case of SOC 52%), but the overall
behaviour is still predominantly Coulombic.

Table 1
Results for the data points constructed with an otherwise empty investigated layer
with sampled lithium positions inv(Li). The slopes and their RMSEs stem from
linear regression of all data points (minima and transition states)—shifted to the
same baseline. The corresponding relative permittivities have been calculated via the
Coulomb law in Eq. (4).

Structure Stoichiometry SOC Slope [eVÅ] rel. permit.

𝑖𝑛𝑣(𝐿𝑖) − 𝑒𝑚𝑝𝑡𝑦 Li2C600 2.0% 1.168 ± 0.013 7.23 ± 0.86
𝑏𝑖𝑙𝑎𝑦𝑒𝑟 𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 Li2C600 2.0% 1.111 ± 0.018 7.55 ± 1.04
𝑖𝑛𝑣(𝐿𝑖) − 𝑒𝑚𝑝𝑡𝑦 − 𝑓𝑢𝑙𝑙 Li52C900 34.7% 0.759 ± 0.018 11.32 ± 1.74
𝑖𝑛𝑣(𝐿𝑖) − 𝑓𝑢𝑙𝑙 Li52C600 52.0% 0.407 ± 0.026 21.04 ± 4.05

In a next step, we extract the slopes from the 1/R-plots by means
of linear regression (see Table 1). We achieve this by shifting the
transition state energy levels down to the ground states and then fit
all data points at once. Based on that, the relative permittivity 𝜖𝑟
can be extracted from the Coulomb law in Eq. (4). For the sake of
comparison with experiment, we also perform the same procedure with
freestanding bilayer graphene, consisting of one inv(Li)-layer between
two graphene sheets, which according to our model, has a very similar
𝜖𝑟 as (periodic) graphite at the same stoichiometry.

As pointed out in Fig. 4, there is one DFT study available for
comparison by Pande et al. [29], and the slope they find at low SOC
agrees well with ours. However, due to the computational cost of DFT,
they were only able to provide 4 data points, and only at the low end
of the range of charge, which is the cheapest to compute.
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Fig. 5. Illustration of the investigated layer for pairwise Coulombic vacancy-interactions with fixed Li-ions (purple) and fixed vacancy #1 (bottom left, dashed circle). Of the
positions marked with an ‘‘X’’, the sampled vacancy #2 is located on one, while all others are occupied by Li-ions. This layer will be referred to as inv(Vac) throughout this work.

Fig. 6. Approximate Coulomb energies 𝐸𝐶𝑜𝑢𝑙 ≈ 𝐸𝑝𝑜𝑡 − 𝐸0 of local minima relative to 𝐸0 (at the respective SOC) in dependence of the distance (left) and inverse distance (right)
between the investigated Li-ion vacancies at different SOCs (see Table 2). Slopes have been extracted by means of linear regression. The global minima 𝐸0 in the 1∕𝑅 → 0 limit
are extrapolated from the linear regression of the slope and set to 0 in the plot.

Furthermore, Bessler et al. measured a relative permittivity of 𝜖𝑟 =
6 ± 2 for bilayer graphene, which agrees surprisingly well with our
result of 𝜖𝑟 = 7.55±1.04 for bilayer graphene with intercalated Li at the
level of 2% SOC of a stoichiometrically equivalent HOPG.

3.2. Vacancy pairwise interaction screening (𝑥𝑦-plane)

It is clear that it is not possible to investigate SOCs close to 100%
following the same approach, i.e. using the same investigated layer
described in the previous chapter. Furthermore, for the higher SOCs,
the diffusion mechanism transitions towards vacancy hopping instead
of Li-intercalant hopping. Therefore, we introduce a second type of
investigated layer (Fig. 5), which samples the pairwise Coulomb in-
teractions between Li-vacancies within a filled layer instead, called
inv(Vac).

A key difference here is the fact that, in a filled layer, only every
third C6 ring is occupied by a Li-ion, so the investigated vacancies
cannot be placed on each 𝐶6-ring, but only on every third one. Due
to this, a slightly larger cell is needed (384 carbon atoms) in order to

Table 2
Results for the data points constructed with a filled investigated layer with sampled
vacancy positions inv(Vac). The slopes and their RMSEs stem from linear regression of
the data points (minima). The corresponding relative permittivities have been calculated
via the Coulomb law in Eq. (4).

Structure Stoichiometry SOC Slope [eVÅ] rel. permit.

𝑖𝑛𝑣(𝑉 𝑎𝑐) − 𝑒𝑚𝑝𝑡𝑦 Li62C768 48.4% 0.602 ± 0.047 14.28 ± 2.95
𝑖𝑛𝑣(𝑉 𝑎𝑐) − 𝑒𝑚𝑝𝑡𝑦 − 𝑓𝑢𝑙𝑙 Li126C1152 65.6% 0.448 ± 0.041 19.28 ± 4.22
𝑖𝑛𝑣(𝑉 𝑎𝑐) − 𝑓𝑢𝑙𝑙 Li126C768 98.4% 0.350 ± 0.034 24.70 ± 5.55

sample a reasonable number of data points (15 per SOC), while also
keeping the separation from the periodic image large enough to be well
converged.

Another consequence is the fact that the diffusion path from one
vacancy location to another is not clearly defined—it may be a straight
line or pass through one of the two next-neighbour minima in between.
Because of this and because we already showed before that the slopes
extracted from the minima and from the diffusion path intermediates
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Fig. 7. Illustration of the periodic Li-ion ordering in an adjacent layer at 50% SOC.

Fig. 8. Approximate Coulomb energies 𝐸𝐶𝑜𝑢𝑙 ≈ 𝐸𝑝𝑜𝑡 − 𝐸0 of local minima relative to 𝐸0 (at the respective SOC) in dependence of the inverse distance between the investigated
sites in the inv(Li) – dilute (left) and inv(Vac) – dilute (right) configurations (see Table 3). The global minima 𝐸0 in the 1∕𝑅 → 0 limit are extrapolated from the linear regression
of the slope and set to 0 in the plot.

are very similar, we limit our calculations to the minima in this chapter.
Other than that, the procedure is the same as in Section 3.1.

As can be seen in Fig. 6, there is more distortion to the Coulombic
behaviour present in this case, some of which is even qualitative and
cannot just be attributed to the uneven electron density in the adjacent
layers. Especially, the data points at ‘‘medium’’ distance (≈ 8 Å in
the left plot or ≈ 0.125 1∕Å in the right plot of Fig. 6) have lower
energy than expected if it was purely governed by the Coulomb law. As
pointed out before, this is to be expected within our approximations,
since a combination of multiple effects are at play here, that cannot be
addressed without explicit treatment of the overlapping local environ-
ments of the charge carriers: firstly, for these compositions, there is not
just vacuum present in the space between the investigated sites, as it
is the case in all configurations in Section 3.1, as well as the closest
possible vacancy positions (see Fig. 5). This additional charge density
between the sampled sites seems to have an additional stabilizing effect
in our DFTB calculations. For vacancy pairs at distances larger than
≈ 10 Å, this effect probably becomes negligible again, since there is
hardly any interaction energy left to be screened at those distances.
Secondly, the point-charge approximation may be less accurate for a Li-
vacancy, than it is for a Li-ion, since the next-neighbour local minima
within the host structure are not occupied either. And thirdly, upon
inspection of the fully relaxed structures, one realizes that the Li-ions
adjacent to the investigated vacancies are not located in the middle of
their respective C6 ring, but slightly displaced towards the vacancy. Due
to these additional effects, fitting the potential energies found for these
configurations to the unperturbed Coulomb law (𝐸𝐶𝑜𝑢𝑙 = 𝐸𝑝𝑜𝑡 −𝐸0) is a
more severe approximation in the context of the inv(Vac) investigated
layer than it was for the inv(Li) investigated layer. Finally, the slopes

and relative permittivities 𝜖𝑟 are summarized in Table 2, analogous to
Section 3.1.

3.3. Dilute adjacent layers

One of the complications when investigating Li-GICs is the fact
that the same stoichiometry can be realized in a variety of different
ways, and while it is known that staged configurations are favoured in
equilibrium and in perfect crystals, other – dilute – configurations may
still play a role, when the system is under the effects of defects, grain
boundaries or nonequilibrium states caused by fast charging. Because
of this, we choose to investigate some of these configurations, as well.
For this purpose, we make use of the same investigated layers as before,
but combine them with an adjacent layer, that is dilutely filled at 50%
capacity, with an ordering as illustrated in Fig. 7. In order to realize the
periodicity of said layer, a slightly larger cell with 360 carbon atoms is
necessary in the case of the Li-ion investigated layer. It is not possible to
realize this exact stoichiometry with a perfectly even spacing of the Li-
ions, an additional challenge we welcome to further test the robustness
of our approach.

As expected, this dilutely filled adjacent layer causes a larger scatter
of the potential energies of the individual configurations, which is
due to the less even electron density of such a layer compared to a
completely empty or full one.

In the 𝑖𝑛𝑣(𝑉 𝑎𝑐) − 𝑑𝑖𝑙𝑢𝑡𝑒 case, this effect is also combined with
the already larger scatter we observed and explained previously when
sampling this type of investigated layer. We tried to mitigate this by
also sampling over two different orientations of the dilute adjacent
layers – averaging out the uneven electron density – but the scatter
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Table 3
Results for the data points constructed with dilutely filled adjacent layers. The
slopes and their RMSEs stem from linear regression of the data points (minima).
The corresponding relative permittivities have been calculated via the Coulomb law
in Eq. (4). These results correspond to Fig. 8.

Structure Stoichiometry SOC Slope [eVÅ] rel. permit.

𝑖𝑛𝑣(𝐿𝑖) − 𝑑𝑖𝑙𝑢𝑡𝑒 Li32C720 26.7% 0.594 ± 0.078 14.03 ± 3.12
𝑖𝑛𝑣(𝑉 𝑎𝑐) − 𝑑𝑖𝑙𝑢𝑡𝑒 Li94C768 73.4% 0.463 ± 0.152 21.45 ± 9.52

remains very large, which leads to a much larger uncertainty of the
resulting slope and relative permittivity 𝜖𝑟 (see Table 3).

Nevertheless, the Coulombic nature of the interaction is still clearly
visible despite the scatter at least for the inv(Li) – dilute case (Fig. 8,
left), and is expected to be captured by the (admittedly rough) linear
fit in the other case as well – yet of course with a larger uncertainty.
Indeed, the resulting slope is still in line with the overall behaviour we
find throughout the whole system.

3.4. Dielectric screening in the xy-plane vs. in 𝑧-direction

Thus far, we have focused on the dielectric behaviour of Li-GICs par-
allel to the graphene sheets (xy-plane), because that is what governs the
diffusion and intercalation of the Li-ions. However, real graphite anodes
and experimental samples often come in powder form, with graphite
nanoparticles in random spatial orientation. Experimental measure-
ments of the dielectric behaviour of such samples cannot be directly
compared to the results we have presented so far. Therefore, we also
investigate the dielectric behaviour in 𝑧-direction (perpendicular to the
graphene sheets).

In order to do so, we construct a 15-layered supercell with a
stoichiometry of Li2C720 which corresponds to an SOC of 1.7%. We
sample 5 of the 15 layers (to ensure no self-interaction with the periodic
image) with one pair of Li-ions, placed in positions both directly above
each other and shifted by one next-neighbour position (those latter
interactions are not perfectly in 𝑧-direction, but still ‘‘through’’ the
graphene sheets). As can be seen, the resulting electrostatic behaviour
is not purely Coulombic (see Fig. 9). Similar to the results for the
investigated layer inv(Vac), the presence of charge carriers in between
the investigated Li positions seems to cause some extra, nonlinear
screening. Holding on to the assumption of a linear trend, a linear fit
finds a slope of 0.411±0.054, which translates to a relative permittivity
of 𝜖𝑧 = 21.35 ± 5.50—significantly larger than the in-plane relative
permittivity 𝜖𝑥𝑦 we find at similar SOC. Based on this, we can average
over the 3 spatial dimensions in order to provide a rough estimate of
the relative permittivity 𝜖𝑟 of randomly oriented graphite powder at
very low SOC, simply by applying:

𝜖𝑟 = (2𝜖𝑥𝑦 + 𝜖𝑧)∕3 = 11.93 (5)

This result is comparable to the 𝜖𝑟 ≈ 15 found by Hotta et al. [4] in
the GHz range, but again, it is not entirely clear that this comparison
is physically valid. Once a more reliable consensus is reached in exper-
iment, our estimation of the partial charge can be further validated. It
is also necessary to point out that grain-boundary and grain-size effects
may play a significant role, especially the smaller the particles in the
powder get, but these effects are not considered at all in the numbers
we present here—those are simply intended to help with comparison
between our results and experiments.

3.5. Relative permittivity 𝜖𝑟 as a function of the SOC

Putting the previous results together (see Fig. 10), we find an
approximately linear dependency of the relative permittivity 𝜖𝑟 (in the
xy-plane) on the SOC of the Li-GIC. Between 20% and 80% SOC, we
observe some additional effects of the local ordering – dilute or staged –
and of whether Li-ions in the otherwise empty layers or Li-ion vacancies
in the otherwise full layers are sampled. These deviations are largest
at around 50% SOC, but the average 𝜖𝑟 of configurations at roughly
equal SOC are still close to the weighted linear regression fit, so the
more macroscopic a viewpoint is taken, the less these local phenomena
matter. The final uncertainty intervals are translated through Eq. (4)
and stem from a combination of our arbitrarily chosen uncertainty in
the partial charge 𝑍𝐿𝑖, as described in the methodology section, and
the root mean square error (RMSE) of the slope, which is returned
by the linear regression and caused by scatter around the Coulombic
behaviour, which in turn is due to variations in the electron densities
of adjacent layers, local structural perturbations and similar effects not
captured by the approximations we made when introducing 𝐸𝐶𝑜𝑢𝑙 ≈
𝐸𝑝𝑜𝑡 − 𝐸0 (as described throughout the previous sections), as well as
the intrinsic limited accuracy of DFTB.

3.6. Literature overview

The dielectric behaviour of Li-GICs, and solid materials in general,
is significantly more complicated than the expression ‘‘dielectric con-
stant’’ would suggest, and is governed by vastly different physics at
different frequencies of a probing field. Because of this, one needs to
carefully examine whether or not reported numbers from literature can
meaningfully be compared or not, as will be discussed in this section. In
the static limit, which this work aims to investigate, the probing field
is essentially the electrostatic field of the intercalated ion itself, and
no periodic movement beyond thermal fluctuations of the electrons is
induced. However, this picture changes in the kHZ range, where the
entire charge carrier density oscillates with the probing field, causing
large polarization and large dielectric screening. For example, Chung
et al. [1] measured an RP of 𝜖𝑟 = 2100 for highly oriented pyrolytic

Fig. 9. Approximate Coulomb energies 𝐸𝐶𝑜𝑢𝑙 ≈ 𝐸𝑝𝑜𝑡 − 𝐸0 of local minima relative to 𝐸0 (at the respective SOC) in dependence of the distance (left) and inverse distance (right)
between the investigated Li-ions in 𝑧-direction.
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Fig. 10. Relative permittivity 𝜖𝑟 in xy-plane (parallel to the graphene sheets), found for different configurations of the Li-GIC material as a function of the respective SOC . The
weighted linear fit yields the expression 𝜖𝑟(𝑆𝑂𝐶) = 6.8 + 18.2 ⋅ SOC.

graphite (HOPG) and even higher ones for other carbon structures,
at 2–10 KHz. Moving on to the GHz regime, a balance is reached
where the field oscillations are too fast for macroscopic bulk currents
to build up, and a situation occurs that is arguably similar to the static
limit and may serve as comparison for our research. Hotta et al. [4]
put forward a dielectric constant for graphite powder of 𝜖𝑟 ≈ 15, at
6 GHz. Finally, at even higher frequencies beyond THz, the electric
field becomes high enough in energy to excite a significant number
of electrons, again creating a physically different situation with much
lower dielectric screening, which converges to transparency in the 𝜔 →
∞ limit. A study by Jellison et al. [30] in the frequency regime of visible
light finds an RP in xy-plane for HOPG of 𝜖𝑟 = 4.21, which, for the
previously mentioned reasons, cannot be used as comparison either and
is expected to serve as a lower bound in the following.

It is apparent that there is a glaring lack of studies investigating
the exact property of interest to us, which is – again – the electrostatic
dielectric response of a perfect graphite crystal in xy-plane, i.e. parallel
to the graphene sheets, as experienced by some internal charge carriers
(in this case Li-ions and vacancies). There are some studies available on
graphene, either on some substrate or quasi-freestanding, with results
ranging from 𝜖𝑟 = 2.2 − 5.0 by Elias et al. [31] to 𝜖𝑟 = 15.4 by Reed
et al. [11], and another study by Bostwick et al. finding 𝜖𝑟 ≈ 4.4 [32],
none of which can serve as direct comparison to our research either.
However, there is a study on bilayer graphene (which according to
our calculations can be compared with graphite quite well) by Bessler
et al. [33], putting forward an RP of 𝜖𝑟 = 6 ± 2. This is likely the most
reliable direct experimental comparison currently available to us.

In terms of theoretical approaches to determining the dielectric
response of materials, substantial work has been done on water [34–
37]. There is also some promising work by Gigli et al. [38] in the
development of an integrated machine learning model predicting the
dielectric response of BaTiO3. However, all these methods are reliant
on the presence of polarizable dipoles within the system, which is not
the case for Li-GICs.

4. Conclusion

With this work, we present the first rigorous investigation of the
dielectric behaviour of lithium–graphite intercalation compounds (Li-
GICs) for the entire functional range of charge during the application
as anode of a modern Li-ion battery. In doing so, we provide a straight-
forward approach for investigating the intrinsic relative permittivity
of materials with mobile charge carriers in the electrostatic limit, that
can be applied to other materials in the future—given that sufficiently

fast and long-ranged computational methods are available. Thanks to
our recently published DFTB parametrization [12,20], we are able to
sample the long-ranged Coulomb interactions between two intercalated
charge carriers (Li-ions or vacancies) in a variety of stoichiometries and
configurational realizations thereof. By examining the approximations
we made during this process, we additionally outline ways to further
improve this methodology in the future.

The primary finding of this work is the mostly linear dependency
from 𝜖𝑟 ≈ 7 at SOC 0% to 𝜖𝑟 ≈ 25 at SOC 100% of the relative permit-
tivity on the state of charge. With this, we make valuable contributions
to the future modelling of functional materials by means of charged
kinetic Monte Carlo and continuum simulations and to the general
understanding of Li-GICs. Our results hold for qualitatively different
realizations of the intermediate stoichiometries (staged or dilute), as
well as both possible types of diffusion (Li-ion or vacancy). The few
available experimental studies agree reasonably well with our results,
but more investigation is necessary to really pinpoint the quantitative
dielectric response, especially at higher SOC. Thanks to our results, it
is now clear that only two measurements – one at low and one at high
SOC – would suffice for that purpose.

We find that an approximation neglecting the local distortions of
the structure and of the electron density caused by the sampled charge
carriers holds very well if those charge carriers are Li-ions, and slightly
less well, but still within reason, in the vacancy case. Future improve-
ments could be achieved by correcting with some local descriptor based
machine learning model that is specifically trained to pick up those
local effects.

Additionally, we provide a rough estimate on how the relative
permittivity of a perfect crystal and a powder can be compared. Grain-
boundary effects are neglected, but should be uniform with space
direction and therefore should not have any qualitative impact on our
results. This is useful for translating an experimental result for (inter-
calated) graphite powder to the internal xy-plane relative permittivity
the Li-ions feel locally, which is the one that is actually relevant for
their diffusion behaviour.
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