
Parametric Dynamic Mode Decomposition for
nonlinear parametric dynamical systems

Shuwen Sun∗ Lihong Feng∗ Hoon Seng Chan† Tamara
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Abstract: A non-intrusive model order reduction (MOR) method that combines features
of the dynamic mode decomposition (DMD) and the radial basis function (RBF) network
is proposed to predict the dynamics of parametric nonlinear systems. In many applica-
tions, we have limited access to the information of the whole system, which motivates
non-intrusive model reduction. One bottleneck is capturing the dynamics of the solution
without knowing the physics inside the “black-box” system. DMD is a powerful tool to
mimic the dynamics of the system and give a reliable approximation of the solution in
the time domain using only the dominant DMD modes. However, DMD cannot reproduce
the parametric behavior of the dynamics. Our contribution focuses on extending DMD
to parametric DMD by RBF interpolation. Specifically, an RBF network is first trained
using snapshot matrices at limited parameter samples. The snapshot matrix at any new
parameter sample can be quickly learned from the RBF network. DMD will use the newly
generated snapshot matrix at the online stage to predict the time patterns of the dynam-
ics corresponding to the new parameter sample. The proposed framework and algorithm
are tested and validated by numerical examples including models with parametrized and
time-varying inputs.

Keywords: Model reduction, Dynamic mode decomposition, Radial basis function, non-
linear systems with parametrized inputs

Novelty statement: Parametric dynamic mode decomposition using RBF network for
non-intrusive MOR of parametric nonlinear dynamical systems including systems with
parametrized and time-varying inputs.

1 Introduction

Nonlinear dynamical systems arise from many physical and engineering applications. Solving systems
with nonlinear effects and parameter variations indeed costs a lot of time and effort, which motivates
model order reduction, a technique of constructing compact surrogates of nonlinear systems to realize
accelerated computation with acceptable accuracy. The computational efforts in constructing the
surrogate, i.e., the reduced-order model (ROM) is usually constructed at the offline stage, while the
process of employing the ROM for simulation or any other multi-query tasks is known as the online
stage. When the online stage is fast enough, it can be stated as “real-time” computation and is

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-05-11

ar
X

iv
:2

30
5.

06
19

7v
1 

 [
m

at
h.

N
A

] 
 1

0 
M

ay
 2

02
3

mailto:ssun@mpi-magdeburg.mpg.de;


Sun, Feng and etc.: Parametric DMD for nonlinear parametric dynamical systems 2

promising for real applications. There are various subtopics and methods in MOR aiming at different
applications, such as modal truncation, balanced truncation [20,32], Krylov subspace methods (moment
matching) [17], local linear embedding (LLE) [41], proper orthogonal decomposition (POD, also known
as principal component analysis in the statistical area or Karhunen-Loeve expansion in the stochastic
area) [30, 31, 36, 44], reduced basis methods, dynamic mode decomposition (DMD) [45], data-driven
and machine learning approaches [2, 5, 10,18,19,22,24,34,37–39,51,53].

When a dynamic system is seen as a “black box” so that the only information of the system are
the inputs and its corresponding outputs, intrusive MOR based on projection is impossible, and non-
intrusive MOR is preferred. Efficient MOR for nonlinear time-evolution systems parametrized with
some physical or geometrical parameters is challenging. Although, intrusive MOR based on projection
for such systems has achieved much success [6–8], non-intrusive MOR methods that are robust for
systems characterized by all the above three properties, i.e., nonlinear, parametric and time-dependent,
are still not fully explored, though some are proposed [5, 9, 13, 16, 18, 21, 24, 38, 39, 50, 52]. At present,
more and more non-intrusive MOR methods are based on machine learning to tackle such systems
with strong nonlinearity [14,16,21,39,50,52]. Furthermore, many of the existing methods assume that
the solution space is of low dimension, and a global reduced space over the whole parameter domain is
assumed [10, 18, 37–39]. Fewer non-intrusive methods are successful for systems in which the solution
is non-smooth in the parameter domain [14,16,50,52]. Non-intrusive MOR methods with emphasis on
treating non-smooth or convection-dominated problems are also proposed [26, 33, 42, 47]. To the best
of the authors’ knowledge, many of them are only applicable to either parametric steady problems or
time-evolution problems without parameters.

Dynamic mode decomposition can provide a way of discovering low-rank space-time patterns of the
dynamics in an equation-free manner [11]. DMD is first introduced to realize the nonlinear evolution
of fluid dynamics. Based on the snapshot matrix from the system, DMD computes a linear operator
that maps the snapshots one time step further. It appeared firstly in [43] and then it was later used
for model order reduction. There exist different variants of the DMD method to overcome the different
drawbacks of the standard DMD, such as Extended DMD [48] and Kernel DMD [49]. DMD is also
combined with autoencoder for non-intrusive model reduction of nonlinear dynamical systems [35].

This work focuses on extending DMD to parametric DMD by combining DMD with the RBF net-
work to achieve fast approximation of both the parametric behavior and time-evolution of the dynamics
in a non-intrusive way. Compared with the existing methods based on deep learning, our proposed
method is much faster to train, since the RBF network is known as a shallow neural network with
much fewer parameters to be optimized during network training. Yet, the derived ROMs are still of
acceptable accuracy. Some closely related methods are proposed in [50], where the RBF network is
combined with POD and is also used for prediction in the time domain. Due to the limitation of the
RBF interpolation only in the time domain, the method in [50] cannot predict the solution at a future
time that is outside of the time interval used for training. Another recent work on parametric DMD
in [23] aims at reaching the same goal as our proposed method in different ways. Two different para-
metric DMD methods are proposed. The first method interpolates the eigenpairs associated with the
projected Koopman matrices at different parameter samples. The second method instead interpolates
the projected Koopman matrices corresponding to different parameter samples. Each method neces-
sitates the second stage of interpolation: interpolating the associated DMD modes in the parameter
domain to recover the solution in the original space. However, some limitations are also mentioned
in this paper. The most restricting limitations are the following assumptions. Given the polynomial
interpolation method used in [23], the smoothness of the eigenpairs over the parameter domain must
be satisfied for the accuracy of the first method, and smoothness of the projected Koopman operator
w.r.t the parameters is required for the second method to be successful. Another limitation lies in the
fact that projected DMD used in [23] can not assure the dynamic modes are exactly the eigenvectors
of the original Koopman matrix. In the latest paper [29], similar work has been done using DMD for
non-intrusive MOR of parametric systems, the reduced-order model at any testing parameter sam-
ple is obtained from manifold-interpolation of the left singular vectors at training parameter samples
and manifold-interpolation of the projected Koopman matrices. Some hyperparameters need to be
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heuristically tuned to achieve success, for example, the reference configuration i0, which could lead
to failure of the method if not optimally chosen. Furthermore, the proposed DMD method can only
reconstruct the observables of the solution. The solution needs to be recovered by implementing an
inverse mapping from the observables to the state space. For observables with a complex expression,
it is unclear how the inverse mapping can be computed.

In this work, the power of DMD for time-dependent problems is combined with the RBF network
to derive a method that is robust for prediction in both the parameter domain and the time domain.
When compared to the existing DMD-based methods for MOR of the parametric dynamical system,
the RBF network that is applied for snapshot interpolation leads to the proposed parametric DMD
method with much less constraints.

The remaining part of the work is organized as follows. In Section 2, a general overview of DMD
is provided. The algorithm of the exact DMD and the kernel DMD are presented for use in the
next sections. In Section 3, radial basis function (RBF) is shortly introduced. Then the proposed
method, a practical algorithm, and some discussions are given. In Section 4, three examples from real
applications are presented to demonstrate the robustness of the proposed method. We conclude the
work in Section 5 with further outlook.

2 Dynamic Mode Decomposition

DMD is a non-intrusive MOR method for time-dependent systems. It provides a low-dimensional
representation of the system solution via spatiotemporal decomposition of the dynamics. The main
tool is the singular value decomposition (SVD) of a large data matrix and the eigendecomposition of
a small projected data matrix. Suppose we have a nonlinear dynamic system of ordinary differential
equations (ODEs):

u′(t) = g(u(t)), (1)

where the state vector u(t) ∈ Rn , g: Rn → Rn is a nonlinear operator. Applying explicit time
integration scheme to (1) results in the following nonlinear evolution,

ui+1 = F (ui), i = 0, . . . ,m− 1. (2)

Note that F may also depend on ui−1, etc. for a multi-step integration scheme. For simplicity of
explanation, those dependencies are omitted here.

Consider the snapshot matrix X0 and the shifted snapshot matrix X1 as follows:

X0 =

 | | |
u0 u1 · · · um−1

| | |

 ∈ Rn×m,X1 =

 | | |
u1 u2 · · · um
| | |

 ∈ Rn×m, (3)

where uk = u(tk), k = 1, ...,m, are state vectors at time tk within a certain time interval. They are
also known as snapshots. It is worth pointing out that these snapshots do not necessarily follow the
order of their appearance during simulation, which means tk−1 is not necessarily smaller (earlier) than
tk, ∀k ≤ m [45]. DMD uses a linear time evolution to approximate the nonlinear evolution in (2), i.e.

X1 = KX0. (4)

Then it finds the best fit A for the linear operator K ∈ Rn×n. Mathematically, we have

A = argmin
Ã∈Rn×n

∥∥∥X1 − ÃX0

∥∥∥
F

= X1X
†
0, (5)

where ‖·‖F is the Frobenius norm and † is the pseudo-inverse operator. When X0 and X1 are linearly
consistent, i.e., whenever X0c = 0, then X1c = 0, then it is proved in [45] that A satisfies (4), i.e.,
X1 = AX0. From the eigendecomposition of A we obtain the eigenvalues and eigenvectors of A. The
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eigenvectors are also known as the DMD modes [45]. Reconstruction of the state can be done using
these DMD modes and their evolution configured by the eigenvalues. Each eigenvalue represents the
growth/decay rate (real part of the complex value) and oscillation with different frequencies (imaginary
part of the value) of the corresponding mode. When n is large, the eigendecomposition of A becomes
inefficient. The practical algorithm of implementing DMD takes use of dimension reduction via SVD of
the initial snapshot matrix X0 to compute the dominant DMD modes from the (truncated) left singular
vectors U and the eigendecomposition of the small projected matrix Â = U∗AU. Algorithm 1 presents
the detailed procedure of the exact DMD algorithm first proposed in [45].

The main difference between exact DMD and a previously proposed standard DMD (also known as
projected DMD) lies in the way of computing the DMD modes. For the standard DMD, a DMD mode
is computed from the matrix U of left singular eigenvector:

ϕ̂ = Uw, (6)

where w is an eigenvector of Â, corresponding to an eigenvalue λ. However, for the exact DMD, the
DMD mode ϕ is defined as lying in the image of X1 instead of that of X0. It is computed as follows:

ϕ =
1

λ
X1VΣ−1w. (7)

The aim of computing ϕ following (7) is to make sure that ϕ is the eigenvector of the original linear
operator A, i.e., Aϕ = λϕ. This property is used in Step 6 in Algorithm 1 for the reconstruction of
the dynamics. Whereas, ϕ̂ in (6) doesn’t meet such a requirement. A detailed explanation can be
found in [45].

After the DMD modes are computed in Algorithm 1, the solution at any future time ti can be
reconstructed from the DMD modes, and their initial amplitudes bk computed based on the initial
solution, see Steps 5-6 in Algorithm 1.

Remark 1. The truncation in Step 2 of Algorithm 1 did not appear in the original exact DMD in [45]
but was included in the exact DMD algorithm presented in [27] so that the computational cost of the
eigendecomposition of Â is further reduced. The truncation rank r is determined according to the
energy criteria: ∑d

i=r+1 σi∑d
i=1 σi

≤ η, (8)

where the η is the tolerance decided by the user. This may introduce truncation errors, however,
we found in the numerical tests that when r � d, the DMD still produces results with acceptable
accuracy. Furthermore, once the truncation is introduced, the DMD modes computed in Step 5 are
not the eigenvectors of A anymore.

2.1 Extended and kernel DMD

DMD uses a linear evolution scheme (4) to approximate the nonlinear evolution (2), which might cause
big errors for some problems with strong nonlinearities. To improve the accuracy of DMD, extended
DMD (EDMD) is proposed in [48]. Assuming that the state vector u in (1) can be spanned by s
eigenfunctions φk(u), k = 1, . . . , s of the Koopman operator K, i.e.,

u =

s∑
k=1

vkφk(u), (9)

then the nonlinear evolution (2) can be fully described by the Koopman operator via its eigenfunctions,
eigenvalues and modes (see [48] for detailed derivation), i.e.,

F (u) =

s∑
k=1

vk(Kφk)(u) =

s∑
k=1

λkvkφk(u). (10)
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Algorithm 1 Exact DMD [27,45]

1: Collect the snapshots for the snapshot matrix pair {X0,X1} in (3).
2: Compute the compact SVD of the data snapshot matrix X0 = UΣVT,U ∈ Rn×d,Σ ∈ Rd×d,V ∈

Rm×d, d ≤ min(m,n) is the rank of X0. Make truncation and remain only the r < d leading
eigenvalues and the corresponding eigenvectors, so that X0 ≈ UrΣrV

T
r , where Ur ∈ Rn×r,Σr ∈

Rn×r, and Vr ∈ Rm×r.
3: Compute Â = UT

r AUr by replacing Â with X1X0
†, and X0 with its SVD in Step 2, i.e., Â =

UT
r AUr = UT

r X1VrΣ
−1UT

r Ur = UT
r X1VrΣ

−1
r .

4: Compute eigendecomposition of Â: ÂW = WΛ, with Λ = diag(λ1, . . . , λr).
5: Compute the DMD modes Φ = [ϕ1, . . . , ϕr] by Φ = X1VΣ−1

r W. Given the initial solution u0

and suppose it can be represented by the DMD modes, i.e., u0 = Φb, then the vector of weights
(coefficient) b = (b1, . . . , br)

T can be computed as b = Φ†u0.
6: Reconstruct of the solution at any future time ti > 0 using the DMD modes: ui = Aiu0 =∑r

k=1 ϕkbkλ
i
k.

Here, K is the Koopman operator, φk(u) are the Koopman eigenfunctions, vk are the Koopman modes,
and λk are the Koopman eigenvalues. Motivated by (10), EDMD tries to approximate the nonlinear
evolution (2) via approximating the Koopman operator, its eigenfunctions and modes. The Koopman
operator is approximated by using not only the data matrices X0, X1 but also a dictionary of func-
tions of the state vector (observables), {ψ1(u), ψ2(u), . . . , ψM (u)}. Finally, the Koopman operator is
approximated by a matrix K̃:

K̃ = Ψ†0Ψ1, (11)

where Ψ0 and Ψ1 ∈ Rm×M can be written in the following form:

Ψ0 =


ψ1 (u0) · · · ψM (u0)
ψ1 (u1) · · · ψM (u1)

...
...

ψ1 (um−1) · · · ψM (um−1)

 , Ψ1 =


ψ1 (u1) · · · ψM (u1)
ψ1 (u2) · · · ψM (u2)

...
...

ψ1 (um) · · · ψM (um)

 . (12)

The eigenfunctions of the Koopman operator and the Koopman modes then can be computed from the
right eigenvectors and left eigenvectors of K̃, respectively. The eigenvalues of K̃ are the approximation
of the eigenvalues of K. For detailed derivation see [48]. A computational issue with EDMD is the
expensive cost of computing the eigendecomposition of K̃ ∈ RM×M when M � m, which is often the
case in many applications.

Kernel DMD is proposed in [49] to reduce the computational cost of EDMD. This is done by using
the compact SVD of the matrix Ψ0 = QΣZT,Q,Σ ∈ Rm×m,Z ∈ RM×m. It is then proved in [49]
that K̃ has the same eigenvalues with a smaller matrix K̂ = (Σ−1QT )(Ψ1Ψ

T
0 )(QΣ−1) ∈ Rm×m. Any

right eigenvector v of K̃ corresponding to an eigenvalue λ can be computed from the right eigenvector
v̂ of K̂ by v = Zv̂. From the SVD of Ψ0, it is noticed that the eigendecomposition of Ψ0Ψ

T
0 is,

Ψ0Ψ
T
0 = QΣ2QT ∈ Rm×m. (13)

Therefore, if we can compute the eigendecomposition of Ψ0Ψ
T
0 and get Q, Σ, then K̂ can be de-

rived without SVD of Ψ0. The eigendecomposition of Ψ0Ψ
T
0 is of complexity O(m3), which is less

than O(Mm2), the SVD cost of Ψ0Ψ
T
0 . It is further noticed that computing Ψ0Ψ

T
0 and Ψ1Ψ

T
0

is essentially implementing inner products of the two vectors ψ(ui) := [ψ1(ui), . . . , ψM (ui)]
T and

ψ(uj) := [ψ1(uj), . . . , ψM (uj)]
T , i, j = 0, 1, . . . ,m. When M is large, the computational cost of these

inner products cannot be neglected. Usually, the observables include both the state variables and
functions of them, making even M � n. The kernel function is then used to compute these inner
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products. As a result, the inner products in RM is equivalently transformed to inner products in Rn.
This reduces the computations of directly computing the inner products ψ(ui)

Tψ(uj). Please refer to
[49] for a detailed explanation using illustrative examples. The final kernel DMD algorithm is reviewed
in Algorithm 2, where f(ui, uj) is a kernel function. Since Z can be represented by Ψ0, Q and Σ, the

eigenvectors of K̃ can also be recovered without SVD of Ψ0. Furthermore, the eigenmodes of K̃ are
also computed independently of the SVD of Ψ0, see Step 7 in Algorithm 2. For a detailed derivation
of it, please refer to [49]. Some common kernel functions that can be chosen are the polynomial kernel

f(x, y) = (1 + yTx)α or Gaussian kernel f(x, y) = exp
(
−‖x− y‖2 /σ2

)
.

Algorithm 2 Kernel DMD [49]

1: Compute elements of two matrices Ψ0Ψ
T
0 and Ψ1Ψ

T
0 by kernel function: (Ψ0Ψ

T
0 )ij = f(ui, uj)

and (Ψ1Ψ
T
0 ) = f(ui+1, uj), with i, j = 0, . . . ,m− 1;

2: Compute the eigendecomposition of Ψ0Ψ
T
0 via (13) to get Q, and Σ.

3: (optional) Choose the truncation rank r that is smaller than the rank of Ψ0Ψ
T
0 to achieve a further

reduction of the computation. Truncate the matrices Q, and Σ by keeping the first r columns of
Q and first r diagonal blocks Σ to obtain Qr and Σr.

4: Compute K̂ = (Σ−1
r QT

r )(Ψ1Ψ
T
0 )(QrΣ

−1
r ).

5: Compute the eigendecomposition of K̂Ŵ = ŴΛ̂ with Λ = diag(λ1, . . . , λr).
6: Compute the eigenfuction matrix Φ = QrΣrŴ.
7: Set the Koopman modes as vi = (ξ̂∗i Σ

−1
r QT

r X1)T , where ξ̂i is the left eigenvector of the matrix K̂,

and ξ̂∗i ŵi = 1.
8: With eigenvalues, eigenfunctions and Koopman modes λi, φi, vi, the approximation of the evolution

can be done via (10).

However, either exact DMD or extended/kernel DMD cannot be straightforwardly applied to para-
metric problems, where the solution depends not only on the initial solution but also on the parameter
variations. The parametric behavior of the solution usually cannot be captured by the DMD modes
corresponding to any fixed value of the parameter provided by the DMD method. In the next section,
we extend DMD to parametric DMD based on the RBF network.

3 Proposed Parametric DMD

In many applications, parametric systems are widely used in multi-query tasks, such as optimal design,
control, or uncertainty quantification. In this work, we consider parametric systems in a general form
as,

du(t,µ)
dt = g(u(t, µ), µ), u(t0) = u0,

y(t, µ) = s(u(t, µ)).
(14)

where µ is the vector of parameters, u(t, µ) ∈ Rn is the vector of states, and y(t, µ) ∈ Rn0 is the
quantity of interest, also called the output. Existing DMD methods could not compute DMD modes
which are also parametric, and as a result, they can only reconstruct the dynamics corresponding to a
fixed value of µ. Whenever the parameter value changes, DMD has to be reimplemented from scratch.
In this section, we propose combining DMD with the RBF network to construct non-intrusive ROMs
for parametric systems, which can predict the system’s dynamics in both the parameter domain and
the time domain. In Section 3.1, we first review the RBF network, then in Section 3.2, we connect it
with DMD to realize parametric DMD.

3.1 Radial Basis Function Network

The RBF method uses the weighted kernel function to approximate a given function f(x): R` → R
based on the data of f(x). The approximate function f̂(x) constructed by RBF can be written as
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x`

x`−1

...

x2

x1

κ`

κ`−1

...

κ2

κ1

f̂(x)

w`

w`−1

w2

w1

Figure 1: RBF interpolation as a shallow neural network.

weighted summation of the RBFs, i.e.,

f(x) ≈ f̂(x) =
∑̀
i=1

wiκ (‖x− xi‖) . (15)

The kernel function is radially symmetric based on Euclidean distance ‖x− xi‖ or comparable
metrics. The coefficients or weights wi, i = 1, . . . , ` are determined by solving a linear system in (16).

The whole process of computing f̂(x) works like a shallow neural network shown in Figure 1, where
κi = κ (‖x− xi‖). After the weights are fixed, the interpolation can be completed simply using the

weighted summation in (15). The detailed process of computing the approximate function f̂(x) is
presented in Algorithm 3. κ (x1 − x1) . . . κ (x1 − x`)

...
...

...
κ (x` − x1) . . . κ (x` − x`)


 w1

...
w`

 =

 f (x1)
...

f (x`)

 (16)

In this work, when training the RBF network, the data points xi are the samples of the parameters
µi, and f(x) corresponds to each entry of the solution vector u(t, µ) at any time instance tk ≤ T0 and
any training sample of µ, i.e., each entry in the snapshot matrices X0 and X1 in (3). It will be further
clarified in later sections.

Algorithm 3 RBF network construction

1: Choose the appropriate kernel function κ and its shape factor ε when necessary.
2: Compute the Euclidean distance r = ‖x− xi‖ between data points.
3: Compute the radial basis function κ(r) and construct the coefficient matrix in (16).
4: Determine the coefficients wi by solving a linear system in (16).

The kernel functions can be chosen widely, such as splines, Gaussian, Multi-quadrics, and so on.
Table 1 provides a chart with some commonly used basis functions. In this work, inverse multi-quadrics
(IMQ) is used and its shape factor ε is set as 1/30.

3.2 Parametric DMD framework

In this section, we propose the parametric DMD framework. After the collection of snapshots at limited
samples of training parameters, the RBF network is first trained using these snapshots. The trained
RBF network can then predict snapshots at any new parameter. After the snapshot matrices X0,X1
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Linear splines ‖x− xi‖
Thin plate splines ‖x− xi‖k ln ‖x− xi‖ ; k ∈ [2, 4, . . .]

Cubic splines ‖x− xi‖3

Gaussian exp
(
−ε2 ‖x− xi‖2

)
Multi-quadrics

(
1 + ε2 ‖x− xi‖2

)1/2

Inverse multiquadrics
(

1 + ε2 ‖x− xi‖2
)−1/2

Table 1: Some commonly used RBFs [25], xi denotes the i-th center of the RBF.

Figure 2: Flowchart of the parametric DMD algorithm.

corresponding to the new parameter is computed, then DMD is implemented on the new snapshot
matrices to generate the DMD modes for predicting the solution in the time domain. The whole flow
chart of the parametric DMD framework can be seen in Figure 2. At the offline stage, the snapshot
matrices X(µk) := [u0(µk), . . . , um(µk)] corresponding to different samples µk, k = 1, . . . , ` of the
parameter µ are first computed via, e.g., black-box simulation of a dynamical system. These are used
as training data for the RBF network. Then the RBF network is used to construct an approximate
function X̂ij(µ) : µ 7→ R for each entry Xij(µ), i = 1, . . . , n, j = 1, . . . ,m + 1 of a snapshot matrix

function X(µ). More specifically, f̂(x) in (15) now becomes X̂ij(µ), and f(x) is now Xij(µ). The
RBF network is used to learn the i, j-th entry of X(µ) using the data Xij(µk), i.e., the i, j-th entry of
the snapshot matrices X(µk) at the ` parameter samples µk, k = 1, . . . , `. The weights wi in (15) are
computed once for each entry Xij(µ). After the weights are computed, the RBF network X̂ij(µ) for
the i, j-th entry is trained and is ready to be used at the online stage. The predicted snapshot matrix
at µ∗ is nothing but X̂(µ∗).

At the online stage, instead of repeated black-box simulation of the large-scale model in (14), the
maps X̂ij(µ) constructed by the RBF networks are called to compute the approximated snapshot

matrix X̂(µ∗) at any new parameter sample µ∗. X̂(µ∗) is then split into two snapshot matrices X̂0 ∈
Rn×m and X̂1 ∈ Rn×m. For example, if X̂(µ∗) ∈ Rn×m+1 approximates X(µ∗) := [u0(µ∗), . . . , um(µ∗)],
then X̂0(µ∗) = X̂(µ∗)[:, 1:m], and X̂1(µ∗) = X̂(µ∗)[:, 2:m+1]. Here we use the MATLAB notation for
matrix blocks. The exact DMD or the kernel DMD is then applied to X̂0(µ∗) and X̂1(µ∗) to predict the
time evolution of the solution corresponding to µ∗. In summary, the RBF networks are used to predict
the dynamics in the parameter domain and the DMD is employed for the time-evolution prediction.
This process of parametric DMD is detailed in Algorithm 4.
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Algorithm 4 Parametric DMD framework for parametric DMD

1: Sampling (equidistant or random) the parameters in the range of the parameter space.
2: Generate the snapshot matrices X(µi) for each parameter sample µi;
3: Train the RBF network for each entry of X(µ) by Algorithm 3, and get the approximate snapshot

matrix function X̂(µ) in the form of RBF networks.
4: For any new parameter sample µ∗, evaluate the approximate snapshot matrix function at µ∗ and

take X̂(µ∗) as the new snapshot matrix corresponding to µ∗. Split it into X̂0(µ∗) and X̂1(µ∗).
5: Apply the exact DMD Algorithm 1 or the kernel DMD Algorithm 2 to X̂0(µ∗) and X̂1(µ∗) to

reconstruct and predict the time-evolution of the dynamics corresponding to µ∗.

4 Numerical examples

In this section, we test the performance of the proposed parametric DMD method with some mod-
els from engineering applications. Two examples are related to electrochemical processes. The first
one considers lithium-ion battery model. Lithium-ion batteries are of high importance in the con-
text of electromobility. Understanding of their dynamics is of high interest. The second example
is a ferrocyanide reduction oxidation reaction. This is a common model system in electrochemistry
which exemplifies diffusion controlled fast electrochemical process. As the last example, the FitzHugh-
Nagumo model is a prototype of an excitable system, for example, a neuron. A common feature of all
the models is that they are systems with parameters and time-varying inputs that can be considered
as time-varying parameters. In the following subsections, we discuss the numerical tests on each of
them separately. In all the figures for the numerical result, “RBF-DMD” represents parametric DMD,
and “reference” refers to the solution computed by directly simulating the original model. According
to the error computation in the numerical examples, we use relative error at any testing parameter µ∗

defined as follows:

εi(t, µ
∗) =

|yi(t, µ∗)− ŷi(t, µ∗)|
max

0≤tj≤T
|yi(tj , µ∗)|

. (17)

Here the index i means the i-th output, i.e., the i-th entry of y(t, µ∗) ∈ Rn0 .To evaluate the performance
of the proposed method in the parameter domain, the time-average relative error is used and is defined
as:

εavei (µ∗) =
1

nT

nT−1∑
j=0

εi(tj , µ
∗). (18)

As for the computation time, on the one hand, the snapshot generation and the RBF training are
run only once at the offline stage. On the other hand, the runtimes of the RBF prediction, the DMD
prediction and the FOM simulation at the online phase are respectively the average values of the
runtimes over all the testing parameters.

4.1 Lithium-ion Battery Model

As an example for validating of the proposed methodology, we consider the widely implemented yet
complicated mathematical model of a lithium-ion battery, the pseudo-two-dimensional (P2D) battery
model, which was previously introduced in [15]. Figure 3a depicts the schematic of the P2D battery
model. As the name suggests, the P2D battery model comprises two modelling scales: the computation
of lithium concentration and potential gradients across the battery model (macro-scale) as well as the
diffusion of lithium ions within the electrode (micro-scale).

Further complexities arise in the P2D battery model when one considers a distribution of different
particle sizes in the electrode (anode), which has been introduced by Röder et al. [40]. Considering
different sizes of the solid particles, the battery dynamics at a wider operational condition can be
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(a) (b)

Figure 3: Mathematical model of the lithium-ion battery. (a) Schematic of the modelling domains of
the battery model. (b) Particle size distribution of electrode (anode) assumed in P2D battery
model simulation.

better reproduced via a model-based approach. Here, we assume the particle size distribution within
the electrode follows a Weibull distribution density defined as:

h (Ri; c1, c2) = c1c2 (c1Ri)
c2−1

e−(c1Ri)
c2
, (19)

where c1 is the scaling factor and c2 is the form factor of the distribution density. Ri is the particle
radius of the i-th particle size class in the electrode. Figure 3b shows the simulated particle size
distribution of the electrode with five different radius classes with c1 = 9.064 × 105 and c2 = 4.
Summing up the surface and volume densities across every particle radius class yields the surface area
ratio as well as the volume fractions of the total active materials in the battery.

as =

∫ ∞
0

farea (Ri) dRi

εs =

∫ ∞
0

fvol (Ri) dRi

(20)

The governing equations for the P2D-PSD model are derived from the conservation laws of species
and charge transport. The governing equations of the P2D battery model incorporating the effect of
particle size distribution are detailed in Table 2.

It is also seen that all the governing equations are coupled with each other. Due to the high
complexity of the coupled governing equations, it is almost impossible to extract the discretized system
matrices and nonlinear terms from the spatial discretization of the PDEs given all the parameters are
fixed, not to mention their parametrized forms. Consequently, projection-based MOR methods cannot
be applied to MOR for this model, and the non-intrusive MOR is the only possible choice. That leads
to the application of our proposed parametric DMD to this example. The input I(ω, t) is the current
with a certain frequency ω ∈ [10−2, 104] and the output E(ω, t) is the voltage, which can be shown
as the difference of potential at the current collectors between the anode and the cathode. Both are
shown in (21). The whole general in-output model is shown in Figure 4.

I(ω, t) =
I

Acell
sin(ωt)

E(ω, t) = φs(x = 0)− φs (x = Lcell)

(21)

The original spatially discretized ODE model has n = 325 states. We use 100 snapshot matrices
corresponding to 100 frequency training samples ωi, i = 1, . . . 100 with 10-base logarithmic spacing
in [−2, 4]. At the offline stage, the RBF network is trained with these parameters. The snapshots
corresponding to each frequency sample in a limited time interval [0, T0] are computed by an ODE
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Table 2: Governing equations of the P2D battery model with the corresponding boundary conditions
[28]. Subscript i describes the ith particle size classes, s for solid phase, e for electrolyte phase.

Model equations Boundary conditions
∂cs(r,Ri)

∂t
= 1

r2
∂
∂r

(
Ds,a/c · r2 · ∂cs(r,Ri)

∂r

)
∂cs(r=0,Ri)

∂r
= 0

∂cs(r=Ri,Ri)
∂r

=
jLi(x,Ri)
asDsF

εe
∂Ce(x)
∂t

= ∂
∂x

(
De,eff · ∂Ce(x)

∂x

)
+ (1 − tp) · j

Li (x)
F

∂ce(x=0)
∂x

= 0
∂ce(x=Lcell)

∂x
= 0

Js(x) = −σsεs ∂φs(x)
∂x

∂Js(x)
∂x

= −
(
jLi(x) + jDL(x)

) ∂Js(x=0)
∂x

= as
I

Acell
∂Js(x=Lcell )

∂x
= −as I

Acell

Je(x) = −σe(x) εe
τ
∂φe(x)
∂x

− σDe
εe
τ
∂ ln(ce(x))

∂x
∂Je(x)
∂x

= jLi(x) + jDL(x)

φe(x = 0) = 0
∂φe(x=Lcell)

∂x
= 0

jDL(x) = asCDL
∂(∆φ(x))

∂t

jLi (x,Ri) = as,j (Ri) j0 (Ri)
(

exp
(
αη(x,Ri)F

RT

)
− exp

(
(1−α)η(x,Ri)F

RT

))
η (x,Ri) = φs(x) − φe(x) − U (x,Ri)
jLi(x) =

∫
jLi (x,Ri) dRi

Table 3: Parameter set for P2D battery model simulation.

Symbol Parameter Unit Value
R Gas constant Jmol−1K−1 8.314
F Faraday constant Cmol−1 96485
T Temperature K 298
Rc Radius of cathode µm 1

δanode Anode’s thickness µm 50
δseparator Separator’s thickness µm 26.4
δcathode Cathode’s thickness µm 25.4
Ds,anode Diffusion coefficient anode m2s−1 2 × 10−16

Ds,cathode Diffusion coefficient cathode m2s−1 3.7 × 10−16

τanode Tortuosity anode - 3.67
τseparator Tortuosity separator - 1.4
τcathode Tortuosity cathode - 3.67
εe,anode Volume fraction electrolyte anode - 0.33
εe,cathode Volume fraction electrolyte cathode - 0.33
εe,separator Volume fraction electrolyte separator - 0.5
εs,cathode Volume fraction cathode - 0.5

α Charge transfer coefficient - 0.5
CDL,anode Double layer capacitance anode Fm−2 0.2
CDL,cathode Double layer capacitance cathode Fm−2 0.2

tp Transference number - 0.37
σs,anode Electrical conductivity anode Sm−1 100
σs,cathode Electrical conductivity cathode Sm−1 10
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Figure 4: Graphical model of a Lithium-ion battery.

solver: ode15s in MATLAB. Here T0 = T/2, with T being the final simulation time. That means the
original model is simulated till half of the final simulation time to get the snapshot matrices. The
dynamics corresponding to time span [0, T ] at any testing frequency will be predicted. At the online
stage, the snapshot matrix function X̂(ω) in the form of RBF networks is evaluated at a new frequency
sample ω∗ to get an approximate snapshot matrix X̂(ω∗) that is considered as the new snapshot matrix.
DMD is then applied to X̂(ω∗) to predict the output voltage E(ω, t) at any time t > T0.

Exact DMD is employed in the proposed parametric DMD for this model. The results are derived
by 14 dominant DMD modes, i.e., r = 14 in Algorithm 1. The time-evolution of the output voltage at
ω∗ computed by the ODE solver is considered as the reference solution. Both the reference solution
and the output computed by the parametric DMD are presented in Figure 5. The RBF-DMD solution
is the voltage derived by the proposed parametric DMD. The voltage in [0, T0] is predicted by the
RBF network. Based on this, DMD then predicts the evolution in [T0, T ]. The relative error between
the reference voltage and the RBF-DMD voltage is presented in Figure 6. It can be observed that
the maximal relative error is under 0.03%. The plot for the time-average relative error at different
testing frequencies ω∗ = 0.025, 0.1, 0.271, 1, 2.239, 3.690, 10, 100, 1000, 3689.776Hz is shown in Figure 7.
RBF-DMD predicts the voltage with no more than 0.007% relative error compared to the reference
solution both in low and high testing frequencies. Electrochemical impedance spectroscopy (EIS) is
commonly used to monitor the performance of the lithium-ion battery. When the input is the current
with different frequencies, the output voltage is transformed from time to frequency domain by Fast
Fourier Transformation (FFT) to analyse the model. In this example, the results of EIS are shown
in Nyquist and Bode diagrams, see Figure 8. The subfigure above is the Nyquist plot presenting the
imaginary part of the complex impedance as a function of the real part of it. It can be observed
that there exists a semicircle at the high frequency range and a non-vertical line at the intermediate
frequency range, which can be interpreted as the resistance of the electrolyte and the resistance of
the diffusive layer respectively in the practical application. In this subfigure, the complex impedance
computed by parametric DMD at the new frequency ω∗ = 3.69Hz conforms to the pattern from
the reference solution. The bottom-left one shows the relationship between the impedance and the
frequency, while the bottom-right one is the phase shift changing with the frequency. Both subfigures
show the great matching between the solution from the parametric DMD and the reference solution
at testing frequency ω∗. We can conclude that the proposed method delivers satisfactory accuracy in
the parameter space and the time domain.

The runtime comparison for this example is shown in Table 4. The computation time of parametric
DMD includes the offline stage and the online stage. The offline stage of computing all the snapshots at
100 training samples takes 171.581 seconds. Training the RBF network at the offline stage takes 0.445
seconds. The online RBF prediction at a new parameter sample in the training time interval costs
0.007 seconds. The online DMD prediction in the future time interval takes 1.697 seconds. Computing
the reference solution at one testing sample of ω∗ via ODE solver i.e., the FOM simulation needs 4.787
seconds. The online speed-up is around 2−3 times faster. It is clear that if the original model needs to
be simulated to get the output response at more than 40 different values of ω, the proposed parametric
DMD method will outperform the direct simulation without MOR.

4.2 Coupled electrochemical kinetics and diffusion model

This section presents the performance of the parametric DMD on a model of the ferrocyanide redox
reaction. The reaction kinetics under the influence of the rotation rate of the rotating disc electrode is of
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(a) (b)

Figure 5: Lithium-ion battery model: the parametric DMD solution vs the reference solution for
E(ω∗, t). (a) ω∗ = 0.025Hz. (b) ω∗ = 3.69Hz.

(a) (b)

Figure 6: Lithium-ion battery model: the relative error of the parametric DMD solution for E(ω∗, t).
(a) ω∗ = 0.025Hz. (b) ω∗ = 3.69Hz.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-05-11



Sun, Feng and etc.: Parametric DMD for nonlinear parametric dynamical systems 14

Figure 7: Lithium-ion battery model: the time-average relative error of the parametric DMD for
E(ω∗, t) at different testing frequencies ω∗.

Figure 8: Lithium-ion battery model: Nyquist and bode representations of the parametric DMD solu-
tion at ω∗ = 3.69Hz vs the reference solution.
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Table 4: Lithium-ion battery model: The computation time (seconds) of parametric DMD and that of
the FOM simulation.

Snapshot generation RBF training RBF prediction DMD prediction FOM simulation
171.581 0.445 0.007 1.697 4.787

Figure 9: Schematic of coupled electrochemical kinetics and diffusion model

interest [46]. A schematic representation of the investigated system is shown in Figure 9. This reaction
can be considered as a model reaction with coupled electrochemical kinetics and mass transport.
Similar to the first battery model, the governing equations of this model are based on mass and charge
conservation laws as well.

The mass conservation law is described by the second Fick’s law assuming that convective term can
be neglected, see (22).

∂ci(z, wd, t)

∂t
= Di

∂2ci(z, wd, t)

∂z2
, i = red, ox, (22)

where the subscript i stands either for the reduced (ferrocyanide, [Fe(CN)6]
4–) or oxidized (ferricyanide,

[Fe(CN)6]
3–) form, and ci, Di are their corresponding concentration and diffusion coefficients, respec-

tively.
The charge balance can be described as,

Cdl
dE(wd, t)

dt
= J(wd, t)− Fr(wd, t), (23)

where E(wd, t) is the electrode potential, Cdl is the double-layer capacitance, J(wd, t) is the cell current
density, F is Faraday constant, and r(wd, t) is the nonlinear reaction rate, computed by Butler-Volmer
kinetics,

r(wd, t) = k

{
cred(0, wd, t)

cred,∞
exp (βf (E(wd, t)− Er))−

cox(0, wd, t)

cox,∞
exp (−(1− β)f (E(wd, t)− Er))

}
.

(24)
Here, Er is the equilibrium electrode potential, β is the charge transfer coefficient, and f is deter-

mined as F/RT , where T is the temperature, and R is the universal gas constant.
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Table 5: Parameters in the model for ferrocyanide reaction.

Parameters Variables Value Range
rotation rate wd (rpm) [500, 5000]
input potential Etotal(V ) [−0.4, 1.0]
double layer capacity Cdl (F/m2) 0.2
charge transfer coefficient β 0.5
reaction rate constant k (m/s) [10−7, 10−2]
ohmic resistance of the electrolyte RΩ(Ω) [1, 100]
diffusivity coefficient for the ferrocyanide Dred (m2/s) [10−10, 9× 10−10]
diffusivity coefficient for the ferricyanide Dox (m2/s) [10−10, 9× 10−10]

The main source of the nonlinearity comes from r(t) and its coupling with the diffusion of the
reacting species through the boundary conditions (given in Figure 9 and (25)).

Di
∂ci(z, wd, t)

∂z

∣∣∣∣
z=0

= ±r(wd, t), i = red or ox . (25)

We list in Table 5 all the important parameters used to construct the model and their ranges of change.
We study the influence of the rotation rate wd (Figure 9) on the system output (current density

J(wd, t)). The rotation speed wd of the rotating disc electrode determinates the thickness of diffusion
layer δdiff for ox or red, as shown below:

δdiff = 1.61D
1/3
i ν1/6ω

−1/2
d , i = red or ox , (26)

where ν is the kinematic viscosity. The thickness of the diffusion layer further has impacts on the
concentration in (22) and its boundary as ci (δdiff , t) = ci,∞, i = red or ox (see also Figure 9). The
equation in (23) and (24) are discretized in space using finite difference method. The dimension of the
discretized system is n = 4003 while the simulation time is set as 10s with 10 periods. 20 different
rotation rates as training parameters are uniformly sampled in the range of [500, 5000] rpm. The kernel
DMD with Gaussian kernel in our parametric DMD method (Algorithm 2) is selected in this example.
r in step 2 of Algorithm 2 is chosen according to the criteria in (8) with η = 0.5%. Figure 10 presents
the current density computed by the parametric DMD and the reference solution. The relative error
changing with time at two testing samples of wd and the time average relative errors at 10 different
testing rotation rates are plotted in Figure 11 and Figure 12 respectively. In Figure 11, the relative
errors at all time instances are all below 5%. In Figure 12, the time average relative error at all testing
w∗d samples, i.e., w∗d = 600, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4800 rpm are under 0.7% when
using parametric DMD.

The runtime comparison for this model is listed in Table 6. At the offline stage, generating snapshots
and training RBF network take 1452.29 seconds and 0.082 seconds, respectively. The online runtime is
the average value over 10 testing samples of different rotation rates. RBF predicts the current in [0, T0]
using 0.082 seconds and in [T0, T ], DMD uses 7.312 seconds. The total runtime at the online stage is
around 7.4 seconds, which is much less than that of solving the original system (FOM simulation) by
an ODE solver with 77.703 seconds.

4.3 FitzHugh–Nagumo model

We further consider the nonlinear Fitz–Hugh Nagumo model as a benchmark example used in many
existing works [1, 3, 4, 12]. This model is designed to simulate the spike generation in an excitable
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(a) (b)

Figure 10: Ferrocyanide reaction model: the parametric DMD solution vs the reference solution for
the current density J(w∗d, t). (a) w∗d = 1000 rpm. (b) w∗d = 4800 rpm.

(a) (b)

Figure 11: Ferrocyanide reaction model: the relative error of the parametric DMD solution for the
current density J(w∗d, t). (a) w∗d = 1000 rpm. (b) w∗d = 4800 rpm.
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Figure 12: Ferrocyanide reaction model: the time-average relative error of the parametric DMD solu-
tion for the current density J(w∗d, t) at different testing rotation rates w∗d.

Table 6: Ferrocyanide reaction model: The computation time (seconds) of parametric DMD and that
of the FOM simulation.

Snapshot generation RBF training RBF prediction DMD prediction FOM simulation
1452.290 2.453 0.719 6.202 99.825

system, for example in a neuron.

εvt(x, ε, t) = ε2vxx(x, ε, t) + f(v(x, ε, t))− w(x, ε, t) + c

wt(x, ε, t) = bv(x, ε, t)− γw(x, ε, t) + c

y(x, ε, t) = [v(0, ε, t), w(0, ε, t)]T ,

(27)

with f(v) = v(v − 0.1)(1− v) as the cubic nonlinear term and the boundary conditions are:

v(x, ε, 0) = 0, w(x, ε, 0) = 0, x ∈ [0, L],
vx(0, ε, t) = −io(t), vx(L, ε, t) = 0, t ≥ 0,

The unknown state variable, v(x, ε, t) is the membrane potential, and w(x, ε, t) is a recovery of the
potential. Parameters are b, c, ε and γ. In this numerical test, the operating parameter is ε, changing
from 0.02 to 0.03, while other parameters are fixed as L = 20, b = 0.5, c = 0.05 and γ = 2. The input
term io(t) = 50000t3e−15t. The output vector y(x, ε, t) ∈ R2 includes two outputs: the membrane
potential and the recovery of the potential at the left boundary.

After discretization by the finite difference method, the resulting ODE is solved by an ODE solver
ode15s in Matlab. The total number of states is n = 16384. The time span is [0, 10]s with the time step
δt = 0.01s. The snapshots are taken in the time interval [0, 8]s. The number of the equidistant samples
in [0.02, 0.03] in the training phase is 15. For this example, kernel DMD is chosen in Algorithm 2.

The numerical results are shown in Figure 13. Figure 13a and Figure 13c show the evolution
of the two outputs v(0, ε∗, t) and w(0, ε∗, t) when ε∗ = 0.0225 and ε∗ = 0.0275. As is shown in
these figures, at the online stage of the proposed parametric DMD, RBF first predicts the solution
at the testing ε∗ in the time interval [0, 8]s, then DMD predicts the evolution of the solution in the
time period [8, 10]s. The red line is the parametric DMD results for v(0, ε∗, t) and the blue line
stands for w(0, ε∗, t). Both lines fit quite well with the black reference solution. Figure 13b and
Figure 13d are their corresponding phase-space diagrams. Figure 14 is the relative error changing
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(a) (b)

(c) (d)

Figure 13: FitzHugh-Nagumo model: the parametric DMD solution vs the reference solution. (a)
The outputs v(0, ε∗, t) and w(0, ε∗, t) when ε∗ = 0.0225. (b) Limit cycles of v(x, ε∗, t) and
w(x, ε∗, t) when ε∗ = 0.0225. (c) The outputs v(0, ε∗, t) and w(0, ε∗, t) when ε∗ = 0.0275.
(d) Limit cycles of v(x, ε∗, t) and w(x, ε∗, t) when ε∗ = 0.0275.

with time when ε∗ = 0.0225 and ε∗ = 0.0275. The maximum relative error of these two cases is
around 2− 3.5%. Figure 15 is the time average of the relative errors over all testing parameters, i.e.,
ε∗ = 0.021, 0.0225, 0.024, 0.0245, 0.0252, 0.027, 0.0275, 0.029. Their values never exceeds 1% in all these
testing cases. Through these error plots, it can be confirmed that the proposed method works well for
this nonlinear dynamic system.

The computation time is also listed in Table 7. 12656.380 seconds are needed at the offline stage
for generating training snapshots for training samples. RBF training takes 1.395 seconds based on
these training samples. At the online stage, the RBF prediction costs 0.5435 seconds and the DMD
prediction costs 0.694 seconds. Solving the original full order model for a single testing parameter
takes around 1057.4 seconds. It can be observed that around 850 times speed-up is achieved at the
online phase when using parametric DMD.
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(a) (b)

Figure 14: FitzHugh-Nagumo model: the relative error of the parametric DMD for v(0, ε∗, t) and
w(0, ε∗, t). (a) ε∗ = 0.0225. (b) ε∗ = 0.0275.

Figure 15: FitzHugh-Nagumo model: the time-average relative error of the parametric DMD solution
at different testing ε∗.
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Table 7: FitzHugh-Nagumo model: The computation time (seconds) of parametric DMD and that of
the FOM simulation.

Snapshot generation RBF training RBF prediction Online prediction FOM simulation
12656.380 1.395 0.5435 0.694 1057.400

5 Conclusion

We propose a non-intrusive parametric model order reduction method combining the DMD and RBF.
When heavy computations are needed for multi-query tasks in the parametric case, especially for
predicting the nonlinear dynamics, the proposed parametric DMD is promising for prediction in both
the parameter and the time domain.

The proposed method is tested on several examples and their results are compared with the reference
solutions obtained by direct simulations of the original models. The results demonstrates that the
proposed algorithm is effective. For the P2D battery model, the frequency of the current is the
changing parameter, parametric DMD predicts the output potential at a new frequency with high
accuracy. The second example of the ferrocyanide redox reaction is parametrized with rotation rates.
The numerical results also indicate the high accuracy of the parametric DMD. The FitzHugh-Nagumo
model further manifests the effective reduction and acceptable accuracy of the parametric DMD for
the large nonlinear dynamic system.

Further improvements can be done in several directions. Firstly, all the numerical examples are based
on a single parameter and the data are from simulation. Parametric DMD could also be applied to
real experimental data with multiple parameters, which is of high interest in the design of experiments
(DoE). Secondly, DMD and its related topic are being developed with a rapid speed, the proposed
method could be further extended to new variants of DMD.
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