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SUMMARY
Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic sta-
tus of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states
based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate meta-
bolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic
switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differ-
ences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was
associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme
expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic pertur-
bation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled
the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the poly-
amine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in
CNS autoimmunity.
INTRODUCTION

Cellular metabolism regulates normal cell functions as well

as the pathophysiology of multiple disease conditions.

Recently, the study of metabolism in immune cells (immuno-

metabolism) emerged as an active field of research and re-

vealed metabolic regulation of inflammation in almost all
4168 Cell 184, 4168–4185, August 5, 2021 ª 2021 Elsevier Inc.
contexts, including anti-viral immunity, autoimmunity, and

anti-tumor response (Buck et al., 2017; Certo et al., 2021;

Chapman et al., 2020; Diskin et al., 2021; Elia and Haigis,

2021; Geltink et al., 2018; Ho and Kaech, 2017; Hotamisligil,

2017; Jung et al., 2019; Makowski et al., 2020; O’Neill et al.,

2016; Roy et al., 2021; Russell et al., 2019; Varanasi

et al., 2020).
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Due to the scale and complexity of the metabolic network, a

metabolic perturbation can create cascading effects and alter

a seemingly distant part of the network or cut across traditional

pathway definitions. Therefore, computational tools are needed

to contextualize observations on specific reactions or enzymes

into a systems-level understanding of metabolism and its dysre-

gulation in disease. One successful framework is flux balance

analysis (FBA), which translates curated knowledge on the net-

work’s topology and stoichiometry into mathematical objects

used for in silico predictions on metabolic fluxes (Lewis et al.,

2012; O’Brien et al., 2015; Orth et al., 2010; Palsson, 2015).

FBA methods proved particularly useful when contextualized

with functional genomic data (Bordbar et al., 2014), usually

gene expression of bulk cell populations. The advent of single-

cell RNA sequencing (scRNA-seq) now offers an opportunity to

harness FBA to study themetabolic heterogeneity of single cells.

We and others have studied transcriptional and functional di-

versity among T helper 17 (Th17) cells (Gaublomme et al., 2015;

Wang et al., 2015) and Foxp3+ regulatory T cells (Tregs) (Miragaia

et al., 2019). Th17 and Treg cells share lineage signals, and their

balance shapes the outcome of tissue inflammation (Eisenstein

andWilliams, 2009; Omenetti and Pizarro, 2015). Although trans-

forming growth factor b1 (TGF-b1) alone induces Foxp3+ Tregs

in vitro, a combination of TGF-b1 and interleukin (IL)-6 induce

Th17 cells in vitro and in vivo (Bettelli et al., 2006; Mangan

et al., 2006; McGeachy and Cua, 2008; Veldhoen et al., 2006).

On top of the Th17/Treg balance, there exists functional diver-

sity within the Th17 compartment. Th17 cells may induce dis-

ease but they also protect mucosal tissues by promoting tissue

homeostasis, maintaining barrier function, and restraining

opportunistic microbiota (Bettelli et al., 2008; Conti et al., 2014;

Gaffen et al., 2011; Guglani and Khader, 2010; Korn et al.,

2009; Ouyang et al., 2008; Romani, 2011; Yang et al., 2014). Mu-

rine Th17 cells induced by TGF-b1+IL-6 in vitro produce IL-17

but are incapable of inducing potent tissue inflammation upon

adoptive transfer (Jäger et al., 2009; McGeachy et al., 2007)

without additional stimuli, such as IL-1b and IL-23 (Awasthi

et al., 2009; Chung et al., 2009; Cua et al., 2003; Ghoreschi

et al., 2010; Lee et al., 2012; McGeachy et al., 2009). Therefore,

there appear to be at least two different types of Th17 cells: ho-

meostatic ones that do not promote tissue inflammation, to

which we refer as non-pathogenic Th17 cells and ones that pro-

duce IL-17 together with interferon (IFN)g and granulocyte-

macrophage colony-stimulating factor (GM-CSF) and induce tis-

sue inflammation/autoimmunity, to which we refer as pathogenic

Th17 cells (Lee et al., 2014). Distinct types of Th17 cells have also

been identified in humans, where cells similar to mouse patho-

genic Th17 cells are specific for immune response toCandida al-

bicans,whereas cells similar to the non-pathogenic mouse Th17

are observed with Staphylococcus aureus infection (Zielinski

et al., 2012). Thus, Treg, non-pathogenic Th17, and pathogenic

Th17 cells represent a functional spectrum in tissue homeosta-

sis, infection, and tissue inflammation in vivo and can be differen-

tiated with different cytokine cocktails in vitro.

Metabolism is an established regulator of the Th17/Treg axis

(Barbi et al., 2013). We hypothesized that metabolism similarly

regulated the effector functions of Th17 subtypes. However,

most cellular assays, including metabolic assays, are targeted
and difficult to undertake at a single-cell resolution. Furthermore,

low cell numbers may prohibit direct metabolic assays, for

example, in the study of immune cells present at tissue sites.

In contrast, scRNA-seq is broadly accessible and rapidly

collected in concentrated efforts to reach a complete represen-

tation of human physiology (Regev et al., 2017). A computational

method is thus required to capitalize on the opportunities af-

forded by scRNA-seq for contextualization of metabolic models,

while systematically addressing the unique challenges of this

data modality (e.g., its sparsity).

Here, we present Compass, an FBA algorithm that uses sin-

gle-cell transcriptomic profiles to characterize cellular metabolic

states at single-cell resolution and with network-wide compre-

hensiveness. Compass allows detection of targets across the

entire metabolic network, agnostically of pre-defined metabolic

pathway boundaries, and including ancillary pathways that are

normally less studied yet important for cellular function (Puleston

et al., 2017). We applied the algorithm to Th17 cells, uncovering

substantial immunometabolic diversity associated with their in-

flammatory effector functions. In addition to differential wiring

of central carbon metabolism, this analysis identified the poly-

amine pathway as a critical regulator of Th17 effector function,

which we experimentally validated.

RESULTS

Compass—an algorithm for comprehensive
characterization of single-cell metabolism
We reasoned that even though the mRNA expression of en-

zymes is not an accurate proxy for their metabolic activity, a

global analysis of the metabolic network (as enabled by RNA-

seq) in the context of a large sample set (as offered by single-

cell genomics) coupled with strict criteria for hypotheses testing,

would provide an effective framework for predicting cellular

metabolic states. This led us to develop the Compass algorithm,

which integrates scRNA-seq profiles with prior knowledge of the

metabolic network to infer metabolic states of cells (Figure 1A).

The metabolic network is encoded in a genome-scale meta-

bolic model (GSMM) that includes reaction stoichiometry,

biochemical constraints such as reaction irreversibility, nutrient

availability, and gene-enzyme-reaction associations. Here, we

use Recon2, which is comprised of 7,440 reactions and 2,626

unique metabolites (Thiele et al., 2013). To explore the metabolic

capabilities of each cell, Compass solves a series of constraint-

based optimization problems (formalized as linear programs)

that produce a set of numeric scores, one per reaction (STAR

Methods). Intuitively, the score of each reaction in each cell re-

flects how well-adjusted is the cell’s overall transcriptome to

maintaining high flux through that reaction. Henceforth, we refer

to the scores as quantifying the ‘‘potential activity’’ of a meta-

bolic reaction (or ‘‘activity’’ in short when it is clear from the

context that Compass predictions are discussed).

Compass belongs to the family of FBA algorithms that model

metabolic fluxes (the rate by which chemical reactions convert

substrates to products), through constrained-based optimiza-

tion (Palsson, 2015). The first step of Compass is agnostic to

gene expression and computes, for every metabolic reaction r,

the maximal flux voptr it can carry while imposing only
Cell 184, 4168–4185, August 5, 2021 4169
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Figure 1. Algorithm overview

(A) Computation of Compass scores matrix. Compass leverages the topology and stoichiometry of the metabolic network to analyze single-cell RNA expression.

Briefly, it computes a reaction-penalties matrix, where the penalty of a given reaction is inversely proportional to the expression of its respective enzyme-coding

genes. The reaction-penalties matrix is the input to a set of flux-balance linear programs that produce a score for every reaction in every cell, namely the Compass

score matrix.

(B) Soft information sharing between a cell and its k-nearest neighbors mitigates technical noise in single-cell data.

(C) Downstream analysis of the score matrix. Metabolic reactions are hierarchically clustered into meta-reactions; scores are used in differential expression of

reactions, detection of reactions correlated with a phenotype of interest, dimensionality reduction, and data-driven network analysis.

See also Figure S1.
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Figure 2. Compass-based exploration of metabolic heterogeneity in Th17 cells

(A) The experimental system. Naive CD4+ T cells differentiated into pathogenic (Th17p) or non-pathogenic (Th17n) IL-17+ T cells that cause severe or mild CNS

autoimmunity upon adoptive transfer, respectively.

(B) PCA of the Compass score matrix with top loadings shown.

(C) Compass-score differential activity test between Th17p and Th17n cells (STAR Methods).

(legend continued on next page)
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stoichiometry andmass balance constraints. Next, Compass as-

signs every reaction in every cell a penalty inversely proportional

to the mRNA expression associated with the enzyme(s) cata-

lyzing the reaction in that cell. Finally, for every reaction r and

every cell, Compass finds a flux distribution (an assignment of

flux values to every reaction in the network) that minimizes the

overall penalty incurred, while maintaining a flux of at least u$

voptr (here, u = 0.95) through r. The additive inverse of this penalty

term is the reaction score.

The use of genome-scalemetabolic networks allows the entire

metabolic transcriptome to impact the computed score for any

particular reaction, rather than just the mRNA coding for the en-

zymes that catalyze it. We reasoned that this helps reduce the ef-

fect of instances where mRNA expression does not correlate

with metabolic activity and of scRNA-seq dropouts (Wagner

et al., 2016). Compass further mitigates data sparsity effects

through information-sharing on a k-nearest neighbors graph,

similar to other scRNA-seq algorithms (Baran et al., 2019; van

Dijk et al., 2018; Grün, 2020; Haghverdi et al., 2018; Huang

et al., 2018; Lun et al., 2016) (Figure 1B; STAR Methods).

The output of Compass is a quantitative profile for the meta-

bolic state of every cell, which is then subject to downstream an-

alyses (Figure 1C). The statistical power afforded by the large

number of individual cells in a typical scRNA-seq study adds

robustness and allows these downstream analyses to gain bio-

logical insight despite the high dimension of the metabolic space

in which Compass embeds cells.

Th17 functional states are associated with metabolic
states
We used Compass to study the metabolism of Th17 cells differ-

entiated in vitro into two extreme functional states (Figure 2A)—

pathogenic (Th17p) and non-pathogenic (Th17n). We analyzed a

dataset we generated in a previous study that included 139

Th17p and 151 Th17n cells sorted for IL-17A/GFP+ (Gaublomme

et al., 2015; Wang et al., 2015). We computed Compass scores

and aggregated reactions that were highly correlated across the

entire dataset (Spearman’s rhoR0.98) into meta-reactions (me-

dian of two reactions per meta-reaction) (Figure S1A) for down-

stream analysis. We tested the robustness of Compass by

running the algorithm on the same gene expression input with

added random noise. The deviation of the noised Compass

scores from the original output did not exceed the deviation

induced by the noise to the gene expression input (Figures

S1B–S1C).

To investigate the main determinants of metabolic heteroge-

neity between Th17 cells, we first analyzed the Compass output

as a high dimensional representation of the cells that parallels the

one produced by scRNA-seq but with features corresponding to

metabolic meta-reaction rather than genes. We performed prin-

cipal component analysis (PCA) on the meta-reaction matrix,

while restricting it to 784 meta-reactions (out of 1,911) that are
(D) Spearman correlation of Compass scores with the expression of pro-pathog

significant correlations (BH-adjusted p R 0.1) shown in gray. Rows are 489 me

correlated or anti-correlated with at least one of the genes.

(E) Differential activity (as in C) of metabolic reactions. Reactions (dots) are partiti

See also Figure S2 and Tables S1, S2, and S3.
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associated with core metabolism (STAR Methods), spanning

conserved and well-studied pathways for generation of ATP

and synthesis of key biomolecules.

The first two principal components (PCs) were associated

with overall metabolic activity and T effector functions (Figures

2B, S2A, and S2B; Table S1). PC1 correlated with the cell’s to-

tal metabolic activity, defined as the expression ratio of genes

coding metabolic enzymes out of the total protein coding genes

(Pearson’s rho = 0.36, p < 4e�10), as well as a transcriptional

signature of late stages of Th17 differentiation over time (Yosef

et al., 2013) (Figure S2C) (Pearson’s rho = 0.18, p < 0.003)

(STAR Methods). PC2 and PC3 represented a choice between

ATP generation through aerobic glycolysis versus fatty acid

oxidation, similar to previous observations in comparisons of

Th17 to Tregs, or Teff to Tmem (Geltink et al., 2018). Accord-

ingly, these PCs correlated with multiple Th17 pathogenicity

markers, as well as a signature of Th17 pathogenicity consist-

ing of cytokines, chemokines, and transcription factors (TFs)

that are associated with each phenotypic group (Lee et al.,

2012) (Figures S2D and S2E). PC2 and PC3 were also associ-

ated with nitrogen metabolism and were enriched in urea cycle

targets whose power to modulate Th17 pathogenicity is

demonstrated below.

Compass predicts metabolic regulators of Th17 cell
pathogenicity
To detect metabolic targets associated with the pathogenic

capacity of individual Th17 cells, we defined pro-pathogenic

and pro-regulatory reactions as ones that were significantly

differentially active in Th17p or Th17n, respectively (Figures

2C and S2F; Table S2; STAR Methods) (1,213/6,563 reactions,

Benjamini-Hochberg [BH] adjusted Wilcoxon rank-sum p <

0.001). Many of these reactions were also correlated with

the expression of cytokines and TFs relevant for Th17 function

(Figures 2D and S2G; Table S3) (note that these genes do not

code metabolic enzymes and thus were not used by Com-

pass). Notably, many classically defined metabolic pathways

included both reactions predicted to be pro-pathogenic and

pro-regulatory (Figure 2E), highlighting the value in examining

single reactions within a global network rather than con-

ducting a pathway-level analysis. A similar result is obtained

at the gene expression level—many metabolic pathways

included both genes that were upregulated and genes that

were downregulated in Th17p compared to Th17n

(Figure S2H).

Compass highlighted differences in central carbon meta-

bolism between the Th17p and Th17n states, which mirror

those found between Th17 and Treg. The algorithm predicted

that glycolytic reactions were generally more active in Th17p

than in Th17n (Figures 2C and 3A). This parallels previous re-

sults showing that Th17 upregulate glycolysis, and failure to

do so promotes a Treg fate (Gerriets et al., 2015; Michalek
enic (magenta) or pro-regulatory (green) Th17n genes (Lee et al., 2012). Non-

ta-reactions that belong to core pathways (STAR Methods), and significantly

oned by Recon2 pathways and colored by the sign of their Cohen’s d statistic.
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Figure 3. Differential usage of glycolysis

and fatty acid oxidation by pathogenic and

non-pathogenic Th17 cells

(A) Central carbon metabolism overlaid with

Compass predictions for differentially active re-

actions; Th17p versus Th17n, BH-adjusted Wil-

coxon rank-sum p < 0.1 denoted in non-gray.

(B) Mito stress test by Seahorse assay of differ-

entiated T cells (68 h).

(C and D) LC/MS metabolomics (n = 6 mice; C

showsmeans and SE error bars) of cells harvested

at 68 h (C, left), replated in fresh media with no

additives (C, right), or with 13C-tagged glucose for

15 min (D). (D) The ratio of 13C-tagged carbon out

of the total carbon content associated with the

metabolite.

(E) T cells were measured for their oxygen con-

sumption rate measured in T cells with control or

40 mM etomoxir (n = 2, each with 6 mouse repli-

cates).

See also Figure S3.
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et al., 2011; Shi et al., 2011). Compass also predicted an

increased activity in Th17p through two segments of the TCA

cycle, but not the cycle as a whole (Figures 2C and 3A). A

similar breakdown of the TCA cycle in relation with pro-inflam-

matory function has been described in macrophages where M1

polarization divided the TCA cycle at the same two points:

isocitrate dehydrogenase (Jha et al., 2015) and succinate dehy-

drogenase (Mills et al., 2016), which supported macrophage in-

flammatory functions (Mills and O’Neill, 2014; Shi et al., 2019).

In fatty acid (FA) metabolism, Compass predicted that cyto-

solic acetyl-CoA carboxylase (ACC1), the committed step

toward FA synthesis, was upregulated in Th17p, whereas

the first two steps of long-chain FA oxidation (long chain fatty

acyl-CoA synthetase and carnitine O-palmitoyltransferase

[CPT]) were predicted to be higher in Th17n. These predic-

tions mirror a known metabolic difference between the Th17

and Treg lineages, where Th17 rely on de novo FA synthesis

(Berod et al., 2014), whereas Tregs scavenge them from their

environment and catabolize them and produce ATP through

beta-oxidation (Michalek et al., 2011; Pompura et al., 2021).

We note, however, that recent evidence suggests that CPT

may be upregulated in Treg over Th17 but is not functionally

indispensable for Treg to obtain their effector phenotypes

(Raud et al., 2018).

Multiple amino-acid metabolism reactions were also differen-

tially active between Th17p and Th17n (Figure 2C; Table S2).
Amino acids are important for Th17 cell

differentiation (Sundrud et al., 2009),

and Compass adds further granularity to

these findings. In particular, it predicted

that serine biosynthesis from 3-phospho-

glycerate and three downstream serine

fates—sphingosines, choline, and S-ad-

enosyl-methionine (SAM)—were higher

in Th17p. On the other hand, parts of

urea cycle and arginine metabolism are

significantly associated with both Th17
states, (Figure 2C), suggesting that alternative fluxing within

this subsystem may be associated with diverging Th17 cell

function.

Pathogenic Th17maintain higher aerobic glycolysis and
TCA activity, whereas non-pathogenic Th17 oxidize
fatty acids to produce ATP
We validated the Compass prediction that Th17p and Th17n

differ in their central carbon metabolism (Figure 3A). First, we as-

sayed glycolysis and mitochondrial function of Th17 cells (Fig-

ure 3B). Th17p had higher extracellular acidification rate

(ECAR) than Th17n, indicating accumulation of lactate due to

aerobic glycolysis. Th17p also generated more ATP in a mito-

chondria-dependent fashion, consistent with the predicted

higher entrance of pyruvate into the TCA cycle despite the diver-

sion of some pyruvate toward the lactate fate.

Liquid chromatography-mass spectrometry (LC/MS) metabo-

lomics indicated that glycolytic metabolites were higher in Th17p

than in Th17n (Figure 3C, top). When further pulsed with fresh

media containing glucose for 15 min, there was a substantial in-

crease in glycolyticmetabolites in Th17p but less so in Th17n. Af-

ter 3 h, the level of these metabolites decreased back to steady

state (Figure S3A). TCA metabolites, apart from succinate, were

more abundant at steady state in Th17p than in Th17n (Figure 3C,

middle), consistent with Compass prediction that two parts of

the TCA cycle, but not the cycle as a whole, were upregulated
Cell 184, 4168–4185, August 5, 2021 4173
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Figure 4. Prediction and metabolic validation of the polyamine pathway as a regulator of Th17 function

(A) x axis: Compass-score differential activity test; Th17p versus Th17n. BH-adjusted Wilcoxon rank-sum p signed by the direction of change. y axis: Spearman

correlation between Compass scores and cell pathogenicity scores (STAR Methods). Dots are meta-reactions, and green dots are meta-reactions containing at

least one reaction that appears in the network of (B). All reactions comprising the meta-reaction labeled ‘‘polyamine metabolism’’ are denoted in (B).

(B) Ametabolic network that is preferentially active in Th17n based onCompass results. Green arrows represent reactions predicted to be significantly associated

with the Th17n program; double arrows are reactions belonging to the meta-reaction labeled ‘‘polyamine metabolism’’ in (A). SAM, S-adenosyl-methionine; SAH,

S-adenosyl-homocysteine; GABA, gamma-aminobutyric acid.

(C) Schematic polyamine pathway based on KEGG.

(D–F) T cells were differentiated (STAR Methods) (shown is a representative of 2–3 experiments with 3–4 mice each) and harvested at 48 h for qPCR (D) and 68 h

for polyamine enzymatic assay (E) and metabolomics (E and F).

See also Figure S4 and Table S2.
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in Th17p. Therefore, both Compass and the metabolomics data

point to succinate as a potential metabolic control point.

To test whether not only absolute metabolite levels, but also

the relative allocation of carbon into alternative fates, differ be-

tween Th17p and Th17n, we performed carbon tracing with
13C-glucose. Consistent with our predictions, Th17p had higher

relative abundance of 13C-labeled glycolytic metabolites (Fig-

ure 3D). Furthermore, Th17p preferentially incorporated

glucose-derived carbon into serine (that branches from glycol-

ysis) (Figure S3B) and its downstream product choline (Fig-

ure 3D), confirming a Compass prediction (Figure 2C).

Conversely, Th17p had lower relative abundance of 13C-labeled

TCA metabolites (Figure 3D), suggesting that the higher level of

TCA intermediates observed in Th17p at steady state (Figure 3C)

might not be supported from glucose, but rather from other sour-

ces (Johnson et al., 2018; Pucino et al., 2019). Taken together,

our results suggest that Th17p cells have higher overall activity

through the TCA cycle at steady state but quickly switch to aer-
4174 Cell 184, 4168–4185, August 5, 2021
obic glycolysis when glucose is readily available in the

environment.

We next validated the prediction that Th17n cells prefer beta-

oxidation. Metabolomics analysis shows that Th17n were en-

riched in acyl-carnitine metabolites, particularly short- to me-

dium-length acyl groups (Figures 3C and S3A), indicating active

lipid transport through the mitochondrial membrane. When eto-

moxir was used to block acyl-carnitine transportation, oxygen

consumption rate decreased in Th17n but not Th17p (Figure 3E).

Although etomoxir has off-target effects (Divakaruni et al., 2018;

Raud et al., 2018), overall our data support the hypothesis that

Th17n cells ultimately divert fatty acid breakdown products

into the electron transport chain to generate ATP.

Identifying the polyamine pathway as a candidate
regulator of Th17 function
The polyamine pathway stood out as one of the most signifi-

cantly associated with differences in Th17 pathogenicity
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(legend on next page)
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according to Compass predictions (Figure 4A; Table S2). We

constructed a data-driven metabolic network anchored around

putrescine, the starting metabolite in canonical polyamine syn-

thesis, by including adjacent metabolites whose reactions are

predicted to be associated with pathogenicity (Figure 4B).

Although several polyamine-associated genes were differentially

expressed between Th17p and Th17n, the network tied the dif-

ferential polyamine metabolism to differences in upstream and

downstream metabolic reactions that could not be captured

from differential gene expression directly. Specifically, Compass

predicted that Th17n cells are more active in arginine metabolic

pathways, upstream of putrescine, and in alternative fates of pu-

trescine (other than conversion to spermidine along the canoni-

cal polyamine synthesis pathway).

Cellular polyamines are suppressed in regulatory T cells
and non-pathogenic Th17
We asked whether critical enzymes of the polyamine pathway

(Figure 4C) were differentially expressed between CD4+ T cell

subsets using qPCR. Ornithine decarboxylase 1 (ODC1) and

spermidine/spermine N1 acetyltransferase 1 (SAT1) are the

rate-limiting enzymes of polyamine biosynthesis and catabolic

processes, respectively. SAT1 level was higher in Th17p than

in Th17n or Treg, whereas ODC1 was similarly expressed in

Th17n and Th17p but significantly lower in Treg. Interestingly, ar-

gininosuccinate synthetase 1 (ASS1), an enzyme upstream of

polyamine biosynthesis was upregulated in Th17n, consistent

with Compass-predicted alternative flux in the polyamine neigh-

borhood (Figure 4D). Collectively, these data suggest that the

polyamine pathway may be associated with functional state in

Th17 and other T cell lineages.

We next measured polyamine metabolites using an enzymatic

assay and LC/MSmetabolomics (STAR Methods). Compared to

Th17p, Treg and Th17n had reduced levels of total polyamines

(Figure 4E), reflecting reduced import, reduced biosynthesis, or

increased export of polyamines in these cells.We thenmeasured

metabolites in the polyamine neighborhood (Figures 4F and

S4A). Consistent with Compass’s predictions, there was higher

creatine content in Th17n than in Th17p. Although cellular orni-

thine (polyamine precursor) was comparable between Th17p

and Th17n, Th17p had higher levels of putrescine and acetyl-pu-

trescine (Figure 4F). Of note, cellular spermidine and acetyl-sper-

midine were not different between the conditions, and spermine

was not detected (Figure 4F). The reduced putrescine and its

acetyl form in Th17n are unlikely due to increased export,

because we observed very little polyamines in themedia of either

Th17n or Th17p (Figure S4A). These data suggest that poly-

amines accumulate within Th17p and that the main function of
Figure 5. Chemical and genetic perturbations of the polyamine pathwa

(A) Polyamine pathway schematic depicting chemical inhibitors.

(B–E) Flow cytometry of differentiated cells on day 3 (d3); (B), (D), and (E) intracell

(water) was added at d0.

(F) Inhibition of polyamine pathway targets in in vitro differentiated Th17n.

(G and H) Addition of 2.5 mM putrescine has a rescue effect in cultures with inhi

(I) Flow cytometry of T cells differentiated fromWT or ODC1�/�mice under the ind

or one-way ANOVA, as appropriate for the context, with Bonferroni adjustment f

See also Figure S5.
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SAT1 in Th17p may be to recycle rather than to export

polyamines.

Arginine and citrulline can be used to synthesize the polyamine

precursor ornithine. We used carbon- or hydrogen-labeled argi-

nine or citrulline to study polyamine biosynthesis (Figures S4B

and S4C). We harvested cells and media for LC/MS at 0, 1, 5,

and 24 h post addition of labeled arginine. Although labeled

cellular guanidinoacetic acid, a byproduct of arginine conversion

into ornithine, was comparable between Th17n and Th17p, over

time Th17p cells accumulated more intracellular putrescine,

acetyl-putrescine, and acetyl-spermidine (Figure S4B), consis-

tent with increased polyamine biosynthesis and/or recycling ac-

tivity in these cells. Conversely, Th17n accumulated more

labeled arginine than Th17p. This prompted us to investigate

whether Th17n can also better synthesize (as opposed to better

uptake) arginine, which would be consistent with higher ASS1

expression (Figure 4D) in these cells. We pulsed cells with

labeled citrulline, an arginine precursor, and indeed observed

higher levels of labeled arginine in Th17n (Figure S4C). Collec-

tively, the targeted metabolomics and tracing data suggest

that Th17n accumulate arginine, and Th17p preferentially syn-

thesize or recycle polyamines. We conclude that differences in

polyamine biosynthesis are associated with the different Th17

functional states.

ODC1 or SAT1 inhibition restricts Th17 function in a
putrescine-dependent manner
We studied the effects of polyamine pathway inhibitors on Th17

differentiation in vitro. Difluoromethylornithine (DFMO), an irre-

versible inhibitor of ODC1, suppressed polyamines and inhibited

IL-17 expression in both Th17n and Th17p (Figures 5A, 5B, and

S5A). DFMO also inhibited the expression of other canonical

Th17 cytokines such as IL-17A, IL-17F, IL-21, and IL-22, while

promoting IL-9 levels in culture supernatant (Figure 5C). IL-17 in-

hibition does not appear to be solely related to IL-2 regulation

(Bowlin et al., 1987), because DFMO promoted IL-2 expression

in Th17p, but not Th17n (Figure 5C). In support of this view, IL-

2 neutralization did not rescue the inhibitory effects of DFMO

(Figures S5B–S5E). DFMO reduced cell proliferation (data not

shown) and this likely contributed to its suppression of Th17

effector functions. However, when considering only cells that

had divided exactly once asmeans to select cells that are equally

potent proliferators, DFMO treatment led to a lower frequency of

IL-17+ cells (data not shown). Therefore, DFMO can regulate

Th17 also independently of proliferation. The increased secretion

of IL-9 (a Th9 cytokine) by DFMO-treated cells also suggests that

DFMO does not inhibit Th17 function solely by reducing cell

viability.
y suppress canonical Th17 cytokines

ular staining; (C) secreted cytokines by LEGENDplex. DFMO or solvent control

bited ODC1 (G) or SAT1 (H).

icated conditions (n = 4mice). Statistical significance computed by paired t test

or multiple comparisons.
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Turning to Th17 transcription factors, DFMO suppressed

Rorgt and Tbet expression in Th17p but not Th17n (Figure 5D),

suggesting a nuanced effect. Consistently, DFMO decreased

pStat3, and not total Stat3 protein levels, only in Th17p (Fig-

ure S5F). IL-17 inhibition is not due to increased Foxo1 activity,

another critical regulator of Th17 function, because DFMO pro-

moted pFoxo1(S256) (Figure S5F). Given the reciprocal regula-

tion of Th17 and Treg, and because DMFO also impacted poly-

amine levels in Tregs (Figure S5A), we asked whether DFMO

regulates Foxp3 even under Th17 differentiation conditions.

DFMO increased the frequency of Foxp3+ cells in Th17n but

not Th17p (Figure 5E), presumably because TGF-b1 is required

for Foxp3 expression.

To determine whether other enzymes of the polyamine

pathway also regulate Th17 function, we used inhibitors of sper-

mine synthase (SRM) and spermidine synthase (SMS) (Fig-

ure 5A). Similar to DFMO, inhibitors of any of the biosynthesis en-

zymes suppressed IL-17 and promoted IL-9 and Foxp3

expression, the latter in Th17n (Figure 5F). Furthermore, using di-

minazene aceturate to inhibit SAT1, a rate-limiting enzyme of

polyamine acetylation and recycling, had similar effects (Fig-

ure 5F). SAT1 and ODC1 are probably part of a self-regulating

feedback loop, because perturbation in one was previously re-

ported to affect the other (Jell et al., 2007; Mounce et al., 2016;

Pegg, 2008). Consistent with this finding, inhibition of ODC1

with DFMO suppressed SAT1 expression in Th17 cells

(Figure S5G).

Finally, we confirmed that the effect of DFMO was through in-

hibition of ODC1, as addition of putrescine to cells treated with

DFMO completely reversed their phenotype (Figure 5G). Inter-

estingly, addition of putrescine with SAT1 inhibition partially

reversed the upregulation of Foxp3, but not the suppression of

IL-17 (Figure 5H). This suggests that ODC1 and SAT1 have not

only shared but also (despite their proximity in the metabolic

network) distinct functions in the regulation of the T effector

program.

ODC1�/� Th17 cells upregulate Foxp3 expression
To further confirm the effects of polyamine pathway inhibition on

T cells, we differentiated Th17 cells from wild-type (WT) and

ODC1�/� mice. Similar to DFMO treatment, there was complete

inhibition of Th17 canonical cytokines, such as IL-17A, IL-17F,

and IL-22, but not IFNg, in ODC1�/� Th17 cells (Figures 5I and

S5H). Although ODC1 deficiency did not lead to a decrease in
Figure 6. DFMO treatment promotes Treg-like transcriptome and epig

T cells were harvested at 68 h for live cell-sorting and population RNA-seq (A–C

(A) PCA plot of the RNA-seq.

(B) Volcano plots (upper) and qPCR validation (lower) of genes affected by DFM

(C and D) Density plot showing DFMO effects on transcriptome (C) and chroma

accessible, respectively, in Th17 cells (orange), Treg (violet) or neither (gray) (STA

(E) IGV plots of IL17a region; Rorgt binding sites with significantly altered access

(F) Rows show hypergeometric enrichment computed for peaks annotated with a

Methods). Dots are fold enrichment of peaks more accessible in DFMO-treated

(G) Differentiated cells were rested at 68 h and harvested at 120 h for analysis of in

***p < 0.001. A representative of 2 experiments with 4 mice each.

(H) Cells from (G) were harvested at 68 h for RNA-seq (n = 4). Density plots showing

defined similarly to (C).

See also Figure S6 and Tables S4, S5, S6, and S7.
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Rorgt expression (data not shown), the loss of Th17 canonical

cytokines is consistent with loss of the Th17 program. Further-

more, ODC1�/� Th17n upregulated Foxp3, consistent with pro-

motion of a Treg program (Figure 5I). Finally, the observed effects

of ODC1�/� were rescued by addition of putrescine (Figures 5I

and S5H).

DFMO restricts Th17-cell transcriptome and epigenome
in favor of Treg-like state
To gain mechanistic insight, we profiled bulk RNA from Th17p,

Th17n, and iTreg cells treated with DFMO or control (STAR

Methods). DFMO had a profound impact on the transcriptome

of all three lineages, driving Th17 cells toward a Treg profile (Fig-

ure 6A). We next determined the aggregate effect of DFMO on

genes that are upregulated (n = 1,284), downregulated (n =

1,255), or comparable (n = 8,257) in untreated Th17 versus

Treg (Figure 6B). In both Th17p and Th17n, DFMO suppressed

the Th17-specific in favor of the Treg-specific transcriptome

(Figure 6C; Tables S4 and S5). Canonical Th17 cell genes such

as IL17a, IL17f, and IL23r were suppressed, whereas Treg-

related genes, such as Foxp3 and CCL3, were upregulated (Fig-

ure 6B). There was no consistent effect of DFMO on Treg or

genes expressed comparably in Th17 and Treg (Figure 6C).

Thus, the polyamine pathway is important for restricting the

Treg-like program in Th17 cells in both Th17p and Th17n states.

DFMO also promoted a subset of genes that are characteristic

to Th17n but not to Th17p or iTreg (Figure S6A; Table S6).

Notably, DFMO treatment in both Th17n and Th17p led to

elevated levels of the pro-regulatory IL-9 transcript (Lee et al.,

2012), consistent with the aforementioned protein analysis (Fig-

ure 5C) and the initial Compass prediction (Figure 2D). This ac-

cords with polyamine metabolism promoting Th17 over Treg

fate on the one hand, while being associated with a Th17n fate

(marked by high IL-9 expression) over Th17p on the other.

Furthermore, DFMO-treated Th17 upregulated the CD5L/AIM

transcript, which we showed to be predominantly expressed

by Th17n (Wang et al., 2015).

Although DFMO profoundly altered the Th17 transcriptome, it

did not consistently restrict phosphorylation of key Th17 cell

regulators, particularly not in Th17n (Figure S5F). We hypothe-

sized that polyamines may impact the epigenome, which was

also suggested by the altered expression of many chromatin

modifiers in DFMO-treated cells (Figure S6B). To test this hy-

pothesis, we measured chromatin accessibility by ATAC-seq
enome

) and ATAC-seq (D–F).

O treatment.

tin accessibility (D). Genes or loci are divided into those upregulated or more

R Methods).

ibility by DFMO are highlighted. A representative (WT1) of 3 mice is shown.

genomic feature by ChIP-seq (Ciofani et al., 2012) or DNA binding motifs (STAR

(blue) or untreated (gray) Th17n against a background of iTreg peaks.

tracellular Foxp3 or GM-CSF, and IL-10 secretion. BH-adjusted ****p < 0.0001;

JMJD3 deficiency and DFMO treatment effects. Treg and Th17 programswere
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in Th17n and iTreg cells (STAR Methods). Overall, DFMO treat-

ment resulted in considerable changes in accessible regions in

both lineages (Figure S6C). We asked whether DFMO preferen-

tially altered accessibility in Th17- and Treg-specific regions by

partitioning all accessible peaks into those more accessible

(n = 10,431), less accessible (n = 3,421), or comparably acces-

sible (n = 34,591) in untreated Th17n versus Treg (Figure 6D).

Consistent with the RNA-seq data, DFMO restricted accessi-

bility in Th17-specific regions and favored accessibility in

Treg-specific regions (Figure 6D; Tables S5 and S7). Differen-

tially accessible regions were found near loci encoding key

effector molecules (Table S7). For instance, DFMO restricted

peaks in the promoter and intergenic regions of IL17a-IL17f

that correspond to Rorgt binding sites known to regulate IL-

17 expression (Figure 6E) (based on a chromatin immunopre-

cipitation sequencing [ChIP-seq] of Th17 cells by Xiao et al.

[2014]). Thus, DFMO can shape chromatin accessibility in favor

of a Treg epigenomic landscape, and this may contribute to the

emergence of a Treg-like transcriptional program in DFMO-

treated Th17 cells.

The chromatin regulator JMJD3 maintains Treg-like
state in Th17 cells in a polyamine-dependent manner
To investigate which TFs may be responsible for the suppres-

sion of the Th17-specific program and upregulation of the

Treg program, we looked for putative binding sites overlapping

with regions whose accessibility is modulated by DFMO. When

considering genomic regions that are typically more accessible

in Tregs compared to Th17 and may be modulated by DFMO

(Figures 6F and S6D; Table S7), we found that in Th17n cells,

DFMO increased chromatin accessibility near potential binding

sites of JMJD3 along with a number of POU-domain contain-

ing TFs.

Because JMJD3 regulates T cell plasticity (Ciofani et al.,

2012; Li et al., 2014; Liu et al., 2015), we tested whether the

transcriptional shifts induced by DFMO were altered in

JMJD3fl/flCD4cre T cells. JMJD3 deficiency reduced Foxp3

expression and abrogated the upregulation of Foxp3 and IL-

10 by DFMO in Th17n (Figure 6G). On the other hand, both

JMJD3 deficiency and ODC1 inhibition suppressed GM-CSF

expression in Th17p (Figure 6G). Of note, DFMO did not alter

JMJD3 expression in Th17 cells (data not shown). These data

suggest that JMJD3 and ODC1 have both distinct and over-

lapping functions. Consistent with the flow cytometry data,

JMJD3 deficiency in Th17n resulted in a global transcrip-

tome-wide shift restricting the Treg and (to a lesser extent)

promoting the Th17 program (Figure 6H; Table S5). This

agrees with previous findings that JMJD3 ablation in vivo pro-

moted intestinal Th17 differentiation (Li et al., 2014). Notably,

ODC1 inhibition by DFMO abolished the suppression of the

Treg program by JMJD3 deficiency (differences between solid

and dotted curves in Figures 6H and S6E; Table S5). However,

the milder transcriptomic shift toward the Th17 program in

JMJD3fl/flCD4cre mice was not reversed with further ODC1 in-

hibition by DFMO. In the other direction, JMJD3 had little

global impact on the effects of DFMO (Figure S6F). We

conclude that JMJD3 requires uninhibited ODC1 activity to

sustain the Treg program, whereas the promotion of the
Th17 program and the suppression of the Treg program by

ODC1 activity do not require JMJD3.

Perturbation of ODC1 and SAT1, key enzymes of the
polyamine pathway, alleviates EAE
We investigated the polyamine pathway in vivo in the context of

EAE, a CNS autoimmune disease, via two approaches: chemical

inhibition of ODC1 and T cell-specific genetic deletion of SAT1

(Figure 7). Because targeting multiple nodes in the polyamine

pathway upregulated Foxp3 during Th17 differentiation in vitro

(Figures 5 and 6), we hypothesized that perturbing rate-limiting

enzymes in vivo would regulate the induction of EAE.

We first tested ODC1 inhibition by adding DFMO to the drink-

ing water of mice immunized with MOG/CFA for EAE induction.

DFMO delayed the onset and severity of EAE (Figure 7B), and

reduced antigen-specific recall responses as measured by

T cell proliferation in the draining lymph node (dLN) (Figure 7C).

Further analysis of T cells isolated from the CNS showed no dif-

ference in cytokine production but increased frequency of

Foxp3+ CD4+ T cells (Figure 7D and data not shown). These re-

sults agree with polyamine biosynthesis regulating the Th17/

Treg balance in favor of Th17 and consequently, the induction

of autoimmune CNS inflammation.

Because administration of DFMO via drinking water could

affect multiple cell types, we also genetically deleted SAT1 in

CD4+ T cells (SAT1fl/flCD4cre). We confirmed that genetic SAT1

deficiency in Th17 abrogated polyamine acetylation (Figure 7E).

Notably, loss of SAT1 also reduced (non-acetylated) putrescine

levels, supporting a feedback mechanism as discussed above

(Figure S5G).

We observed delayed onset and severity of EAE in

SAT1fl/flCD4cre mice (Figure 7F), as well as inhibition of anti-

gen-specific recall responses (Figure 7G), similar to the ef-

fects observed with DFMO treatment. Although cytokine pro-

duction was unaltered ex vivo by SAT1 deficiency, there was a

trend toward decreased antigen-dependent IFNg, IL-17, and

TNF production, and increased IL-9 (Figure 7H and S7A).

Foxp3+CD4+ T cells were increased with a concomitant

decrease of Rorgt+CD4+ T cells isolated from the CNS of

SAT1fl/flCD4cre mice (Figure 7I). Notably, the frequencies of

Foxp3+ or Rorgt+ cells were not different in dLN (Figure S7B),

suggesting that the effect of SAT1 on T cells may be amplified

in tissue recall responses. In conclusion, we demonstrated us-

ing both chemical and genetic perturbations at multiple levels

that the polyamine pathway is an important mediator of auto-

immune inflammation.

DISCUSSION

We presented Compass, an FBA algorithm, to study metabolism

in single-cell transcriptomic data and validated a number of its

predictions by molecular and functional analyses. These results

support the power of transcriptomic-based FBA to make valid

predictions in a mammalian system. The network-wide

approach enabled Compass to successfully predict metabolic

targets in both central and ancillary pathways.

Static FBA assumes that the system under consideration op-

erates in chemical steady state (Varma and Palsson, 1994).
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Figure 7. Targeting ODC1 and SAT1 alleviates experimental autoimmune encephalomyelitis (EAE)

(A) Polyamine pathway schematics.

(B–D) Effects of chemical inhibition of ODC1 by DFMO in drinking water on MOG35–55/CFA induced EAE in wild-type mice.

(B) Clinical score over time.

(C) Antigen-specific proliferation of cells isolated from draining lymph node (dLN) at d23 (STAR Methods).

(D) Flow cytometry of T cells isolated from CNS at d15.

(E–I) Effects of genetic perturbation of SAT1.

(E) Abundance of metabolites in differentiated WT or SAT1�/� T cells.

(F–I) EAE was induced in WT and SAT1fl/flCD4cre mice.

(F) Clinical score (left) and histological score (right) showing the number of CNS infiltrates.

(G and H) Antigen-specific response of cells from dLN (d23) is analyzed by proliferation (G) and antigen-specific cytokine secretion by LEGENDplex (H).

(I) Flow cytometry of cells isolated from CNS at d15. Linear regression analysis (B, C, F, and G), two-way ANOVA (E) and Student’s t test (D and I) were used for

statistical analysis.

See also Figure S7.
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Even under this assumption, there remain an infinite number of

feasible flux distributions that satisfy the preset biochemical

constraints. Therefore, most studies assume that cells aim to
4180 Cell 184, 4168–4185, August 5, 2021
optimize some metabolic function, usually biomass production

(Damiani et al., 2019). However, although biomass maximiza-

tion may successfully predict phenotypes in unicellular
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organisms (Lewis et al., 2010), it is ill-suited for studying

mammalian cells (Adler et al., 2019). To overcome this chal-

lenge, rather than optimizing a single metabolic objective,

Compass optimizes a set of objective functions, each esti-

mating the degree to which a cell’s transcriptome supports car-

rying the maximal theoretical flux through a given reaction. The

result is a high dimensional representation of the cell’s meta-

bolic potential (one coordinate per reaction). A biological signal

(e.g., differential reaction activity) can be detected despite the

high-dimension owing to the statistical power afforded by the

large number of cells in a typical scRNA-seq dataset. Nonethe-

less, there is no inherent limitation preventing one from

applying Compass to study bulk (i.e., non-single-cell) transcrip-

tomic data.

Compass correctly predicted the role of aerobic glycolysis in

the induction of pathogenic Th17 and the role of beta-oxidation

in the induction of pro-regulatory Th17, mirroring previous find-

ings in comparisons of Th17 to Treg. Compass also predicted

novel metabolic targets that were associated with Th17 patho-

genicity, one of which was the polyamine pathway. We investi-

gated the metabolic circuitry centered around the polyamine

pathway, and demonstrated its critical role in promoting path-

ogenicity and restricting a Treg-like program in Th17 cells.

Because of reciprocal generation of Th17/Treg cells, the effects

observed with the inhibition of polyamine pathway may be

unique to diseases where Th17 cells are the effector cells.

The significance of the polyamine pathway in autoimmunity

contexts is further supported by anecdotal data that polyamine

levels are increased in several autoimmune diseases (Hsu et al.,

1994; Karouzakis et al., 2012) and it is thought that aberrant

polyamine metabolism contributes to autoantigen stabilization

(Brooks, 2013). Here, we present a mechanism through which

the polyamine pathway can regulate epigenome and thereby

Th17/Treg balance and impact development of autoimmunity.

We showed that DFMO, which inhibits a key step of polyamine

synthesis, substantially alters the Th17 effector profile.

Because DFMO is a well-tolerated, Food and Drug Administra-

tion (FDA)-approved drug (Casero et al., 2018), there might be

grounds for drug repurposing of DFMO for use in immune

disorders.

Limitations of the study
Compass is subject to the limitations of static FBA. The Recon2

metabolic network is incomplete (e.g., lacks annotation of

enzyme moonlighting functions) and pertains to a generalized

human cell. Consequently, the current version of Compass

does not consider the differences between human and mouse

metabolism or tissue-specificity of the metabolic network. The

algorithm makes the simplifying assumption of metabolic

steady state and heuristically aggregates expression of multiple

genes that are linked to a reaction. The inference of metabolic

programs based on transcriptomes does not consider post-

transcriptional and post-translational regulation, which could

be particularly important for metabolic adaptations on short

timescales. Last, the metabolic state of a cell depends on the

nutrients available in its environment, which are often poorly

characterized. Here, our computations assume an environment

rich with nutrients, which accords with the studied in vitro
growth media. A more accurate representation of the cellular

environment should increase the algorithm’s predictive

capabilities.

Concerning polyamine metabolism, chemical inhibitions of

several target enzymes led to similar effects on Th17 cells, but

genetic deletions of ODC1 and SAT1 did not produce identical

results. Although both ODC1 and SAT1 deletion promoted

Foxp3 expression, ODC1, but not SAT1, suppressed Th17 cyto-

kines in vitro (Figure 5I and data not shown). Further studies are

necessary to understand the mechanistic roles and reciprocal

regulation between the enzymes of the polyamine pathway

in vivo.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Foxp3 ebioscience Cat# 12-5773-82; RRID:AB_465936

Rorgt ebioscience Cat# 12-6981-82; RRID: AB_10807092

IL17A biolegend Cat# 506922; RRID:AB_2125010

IL-2 BD Cat# 560547; RRID:AB_1727544

T-bet biolegend Cat# 644814; RRID: AB_10901173

GMCSF biolegend Cat# 505404; RRID: AB_315380

Chemicals, peptides, and recombinant proteins

Etomoxir sodium salt hydrate Sigma-Aldrich E1905-5MG

L-Carnitine hydrochloride Sigma-Aldrich C0283-5G

Antimycin Sigma-Aldrich A8674-25MG

Poly-D-Lysine Thermo Fisher Scientific A3890401

D-Glucose-13C6 Sigma-Aldrich 389374

Putrescine dihydrochloride Sigma-Aldrich P7505

L-Arginine-13C6 hydrochloride Sigma-Aldrich 643440

L-Citrulline-5-13C,5,5-d2 Sigma-Aldrich 734187

Eflornithine hydrochloride hydrate Selleckchem S4582

Critical commercial assays

legendplex Biolegend 741044

Total Polyamine Assay Kit BioVision K475

Deposited data

Bulk RNA-Seq and ATAC-Seq of DFMO

and Jmjd3 cKO in Th17 and Treg

GEO GEO: GSE164999

Smart-Seq dataset of Th17p and Th17n

single cells

GEO GEO: GSE74833

Experimental models: organisms/strains

Mouse: Jmjd3fl/fl; B6.Cg-Kdm6btm1.1Rbo/J The Jackson Laboratory 029615

Mouse: Sat1fl/fl Dr. Manoocher Soleimani’s lab Sat1fl/fl

Mouse: ODC1fl/flCD4cre Dr. Erika Pearce’s lab ODC1fl/flCD4cre

Oligonucleotides

Ass1 taqman probe ThermoFisher Scientific 4331182 (Mm00711256_m1)

Odc1 taqman probe ThermoFisher Scientific 4331182 (Mm02019269_g1)

Sat1 taqman probe ThermoFisher Scientific 4351372 (Mm07296282_g1)

Software and algorithms

Compass Prof. Nir Yosef’s lab Github page https://github.com/YosefLab/Compass
RESOURCE AVAILABILITY

Lead contact
Please direct comments and requests for software or laboratory resources to Nir Yosef (niryosef@berkeley.edu).

Materials availability
There are no newly generated materials in this paper. SAT1fl/fl mice were obtained from Dr. Manoocher Soleimani under MTA and

cannot be redistributed.
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Data and code availability
Compass is open-source and free for academic use. A Github repository is available at https://github.com/YosefLab/Compass.

Sequencing data used in this study has been deposited to GEO under accession GEO: GSE164999. The data published in

Gaublomme et al. (2015) and Wang et al. (2015) and reanalyzed here was deposited as GEO: GSE74833.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

T cell differentiation culture
Naive CD4+CD44-CD62L+CD25-T cells were sorted using BD FACSAria sorter and activated with plate-bound anti-CD3 (1mg/ml)

and anti-CD28 antibodies (1mg/ml) in the presence of cytokines at a concentration of 0.5 106 cells/ml. For T cell differentiations

the following combinations of cytokines were used: pathogenic Th17: 25ng/ml rmIL-6, 20ng/ml rmIL-1b (both Miltenyi Biotec) and

20ng/ml rmIL-23 (RD systems); non-pathogenic Th17: 25ng/ml rmIL-6 and 2ng/ml of rhTGFb1 (Miltenyi Biotec); iTreg: 2ng/ml of

rhTGFb1; Th1: 20ng/ml rmIL-12 (RD systems); Th2: 20ng/ml rmIL-4 (Miltenyi Biotec). For differentiation experiments, cells were har-

vested at 68 hours for RNA analysis or ATAC-Seq and 72-96h for flow cytometry analysis and Seahorse assay.

Mice
C57BL/6wild-type (WT)micewere obtained from Jackson Laboratory (Bar Harbor, ME).WT 2D2 transgenicmicewere bred in house.

SAT1flox mice were kindly provided by Dr. Manoocher Soleimani (University of Cincinnati), which we crossed to CD4cre to generate

conditional T cell deletion of SAT1. ODC1fl/flCD4cre were gifted by Dr. Erika Pearce (Max Planck Institute). For experiments, micewere

matched for sex and age, and most mice were 6–10 weeks old. Littermate WT or Cre- mice were used as controls. All experiments

were performed in accordance to the guidelines outlined by the HarvardMedical Area Standing Committee on Animals at the Harvard

Medical School or the Brigham and Women’s hospital Institutional Animal Care and Use Committees (Boston, MA).

Experimental Autoimmune Encephalomyelitis (EAE)
For adoptive transfer EAE, naive T cells (CD4+CD44-CD62L+CD25-) were isolated from 2D2 TCR-transgenicmice and activatedwith

anti-CD3 (1mg /ml) and anti-CD28 (1mg /ml) in the presence of differentiation cytokines for 68h. Cells were rested for 2 days and re-

stimulated with plate-bound anti-CD3 (0.5mg/ml for pathogenic condition; 1mg/ml for non-pathogenic condition) and anti-CD28

(1mg/ml) for 2 days prior to transfer. Equal number (2 to 8 million) cells were transferred per mouse intravenously.

For active EAE immunization, MOG35-55 peptide was emulsified in complete freund adjuvant (CFA). Equivalent of 40mgMOGpep-

tide was injected per mouse subcutaneously followed by pertussis toxin injection intravenously on day 0 and day 2 of immunization.

Mice were treated with 0.5% DFMO in drinking water for 10 days as indicated. DFMO was replenished every third day.

EAE was scored as previously published (Jäger et al., 2009).

METHOD DETAILS

Flow cytometry
Intracellular cytokine staining was performed after incubation for 4-6h with Cell Stimulation cocktail plus Golgi transport inhibitors

(Thermo Fisher Scientific) using the BD Cytofix/Cytoperm buffer set (BD Biosciences) per manufacturer’s instructions. Transcription

factor staining was performed using the Foxp3/Transcription Factor Staining Buffer Set (eBioscience). Proliferation was assessed by

staining with CellTrace Violet (Thermo Fisher Scientific) per manufacturer’s instructions. Apoptosis was assessed using Annexin V

staining kit (BioLegend). Phosphorylation of proteins to determine cell signaling was performed with BD Phosflow buffer system

(BD bioscience) as per manufacturer’s instructions.

Seahorse assay
Seahorse assay was performed and seahorse media was prepared following manufacturer instructions (Agilent). Approximately

50,000 T cells were seeded per well in 96 well plate for seahorse assay and readout were normalized against cell count.

Inhibitors and metabolites
Inhibitors are added at the time of differentiation as follows: 100-200mMDFMO, 500mM trans-4-methylcyclohexylamine (MCHA, both

Sigma), 500mM N-(3-Amino-propyl)cyclohexylamine (APCHA, Santa Cruz Biotechnology), 50mM diminazene aceturate (Dize,

Cayman Chemical) with or without 2.5 mM putrescine (Sigma, P7505) as indicated.

qPCR
543369581089400RNA was isolated using RNeasy Plus Mini Kit (QIAGEN) and reverse transcribed to cDNA with iScript cDNA Syn-

thesis Kit (Bio-Rad). Gene expression was analyzed by quantitative real-time PCR on a ViiA7 System (Thermo Fisher Scientific) using

TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific) with the following primer/probe sets:

d Ass1 (Mm00711256 m1)
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d Odc1 (Mm02019269 g1)

d Sat1 (Mm00485911 g1)

d Srm (Mm00726089 s1)

d Sms (Mm00786246 s1)

d Il-17a (Mm00439618 m1)

d Il-17f (Mm00521423 m1)

d Foxp3 (Mm00475162 m1)

d Tead1 (Mm00493507 m1)

d Taz (Mm00504978 m1)

d Actb (Applied Biosystems)

Expression values were calculated relative to Actb detected in the same sample by duplex qPCR.

Polyamine ELISA
Cell pellets of in vitro differentiated cells were frozen down and further processed with the Total Polyamine Assay Kit (BioVision Inc.)

according to the manufacturer’s instructions.

Legendplex
Cytokine concentrations in supernatants of in vitro cultures were analyzed by the LegendPlex Mouse Th Cytokine Panel (13-plex)

(BioLegend) according to the manufacturer’s instructions and analyzed on a FACS LSR II (BD Biosciences).

RNA-Seq
Bulk RNA sequencing

For population (bulk) RNA-seq, in vitro differentiated T cells were sorted for live cells and lysed with RLT Plus buffer and RNA was

extracted using the RNeasy Plus Mini Kit (QIAGEN). Full-length RNA-Seq libraries were prepared as previously described (Singer

et al., 2016) and paired-end sequenced (75 bp 2) with a 150 cycle Nextseq 500 high output V2 kit.

Smart-Seq single-cell RNA sequencing

Full experimental details are given in Gaublomme et al. (2015). Briefly, we sequenced CD4+ naive T cells 48hrs post polarization un-

der the pathogenic (Th17p) or non-pathogenic (Th17n), ultimately retaining after quality tests 151 IL-17A/GFP+ Th17n cells, and 139

IL-17A/GFP+ Th17p cells. Unlike Gaublomme et al. (2015), in the present study we analyze only IL-17A/GFP+ sorted cells.

Estimation of transcript abundance from RNA libraries

We aligned single-cell SMART-Seq libraries with Bowtie2, quantified TPM gene expression with RSEM, and performed QC as we

described in detail in a previous publication (Fletcher et al., 2017). This computational pipeline is a massively revised and updated

version of the one originally used to analyze these libraries (Gaublomme et al., 2015). Batch effects and other nuisance factors

were normalized with a model chosen empirically with SCONE (Cole et al., 2019). Bulk RNA-Seq were processed with a modified

variant of the same pipeline, or with a Kallisto (Bray et al., 2016) pipeline. Both gave similar results.

Differential gene expression

For the Smart-Seq libraries, due the absence of UMIs in the dataset, differentially expressed geneswere called through a linearmodel

fitted to TPM values with the limma R package and with a mean-variance trend added to the empirical Bayes prior (Ritchie et al.,

2015). For the bulk RNA libraries, differentially expressed genes were called with limma-trend or limma-voom (Law et al., 2014) de-

pending on the variance of library sizes, as recommended in the limma package manual. Differentially expressed genes (DEGs) were

decided by cutoffs of BH-adjusted p % 0.05 fold-change of at least 1.5 in absolute value.

Further bioinformatic analysis of RNA-Seq data

Bulk RNA libraries from DFMO- or vehicle-treated Th17p, Th17n, or Treg were studied with 3 replicates per condition for a total of 18

libraries as shown in Figure 6A. In all subsequent analyses, genes are considered differentially expressed by the cutoffs

defined above.

The PCA shown in Figure 6Awas computed on the set of 3,414 that were differentially expressed in comparisons of vehicle-treated

Th17 (i.e., Th17n or Th17p) versus with iTreg, or vehicle-treated Th17p versus Th17n to focus it on the subspace of the transcriptome

relevant to Th17 pathogenicity phenotypes.

Genes that are associated with a Th17 or Treg programs (orange and purple, respectively, in Figures 6B and 6C) were determined

by differential expression test between bulk RNA libraries of vehicle-treated Th17 (i.e., Th17n or Th17p) one side and iTreg on the

other. Similar results were obtained when the definition of the Th17 program (orange curve) and Treg programs was based on a com-

parison of only Th17n against iTreg cells.

A similar analysis was performed on the independent bulk-RNA dataset that involved Jmjd3 conditional knockout (Figures 6H and

S6F). Th17 and Treg programs were defined based on differential expression of the vehicle-treated conditions from the dataset (i.e.,

not borrowed from the results of comparison within the previous dataset). Note, however, that no Th17p cells were included in this

dataset, and therefore the Th17 program (orange curve) in Figures 6H and S6F is based on a comparison of Th17n against iTreg cells.

Th17 and Treg-associated peaks in ATAC-Seq (Figure 6D) were similarly defined based on the ATAC-Seq dataset.
e3 Cell 184, 4168–4185.e1–e11, August 5, 2021
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To further stratify genes into Th17-related programs (Figure S9A; based on the bulk RNA dataset shown in Figure 6A), we applied a

heuristic based on four comparisons (all in vehicle-treated cells):

d Th17 (i.e., Th17n or Th17p) versus iTreg

d Th17p versus iTreg

d Th17n versus iTreg

d Th17p versus Th17n

The comparisons are decided based on differentially expression with the cutoffs defined above. A label is assigned to each gene as

follows:

1. IF Th17 versus iTreg = = iTreg AND

Th17p versus iTreg = = iTreg AND

Th17n versus iTreg = = iTreg

THEN RETURN Treg (purple)

2. ELSE IF Th17 versus iTreg s iTreg AND

Th17p versus iTreg = = Th17p AND

Th17p versus Th17n = = Th17p

THEN RETURN Th17p (magenta)

3. ELSE IF Th17 versus iTreg s iTreg AND

Th17n versus iTreg = = Th17n AND

Th17p versus Th17n = = Th17n

THEN RETURN Th17n (green)

4. ELSE IF Th17 versus iTreg = = Th17

THEN RETURN Th17 (orange)

5. ELSE RETURN NS (gray)

The gene is associated with the Th17n, Th17p, general Th17, or Treg program by the returned label.

LC/MS metabolomics and carbon tracing
Assays

For untargeted metabolomics, Th17 cells were differentiated as described. Culture media were snap frozen. Cells were harvested at

96h. 1 106 cells per sample were snap frozen and extracted in either 80%methanol (for fatty acids and oxylipids) or isopropanol (for

polar and nonpolar lipids). Two liquid chromatography tandem mass spectrometry (LC-MS) methods were used to measure fatty

acids and lipids in cell extracts.

For carbon tracing experiments Th17 cells were differentiated as described. At 68hrs, cells were washed and cultured in media

supplemented with 8mM [U-13C]-glucose for 15min or 3hrs. Alternatively, at 68hrs, cells were washed and cultured in media sup-

plemented with arginine (13C6, Sigma, Cat 643440) or aspartic acid (13C4, Sigma, Cat 604852) for 1, 5 and 24 hours.

Statistical analysis

Differentially abundant metabolites were found with Student’s t test and a significance threshold of BH-adjusted p < 0.1.

To find metabolites with differential 13C relative abundance, we computed the ratio yi,j of 13C out of the total carbon contents for

eachmetabolite i in sample j. Let |Ci| be the number of carbon atoms inmetabolite i, and let xc,i,j be themeasured signal of metabolite i

in sample j (subsequent to all normalization and QC procedures) in which there are exactly c 13C atoms. We define the 13C/C ratio:

yi;j =

PjCi j

t = 0

t$xt:i:j

jCij$
PjCi j

t = 0

xt:i:j

Downstream analysis of Compass scores
Core metabolic reactions and meta-reactions

In this work, we define we core metabolism based on reaction metadata included in the Recon2 database. Recon2 assigns a con-

fidence score to each reaction based on the level of evidence supporting it between 1 (no evidence) and 4 (biochemical evidence),

with 0 denoting reactions whose confidencewas not evaluated. Since pathways generally considered part of primarymetabolism are

also the best studied ones, we define a reaction as belonging to core metabolism if (a) its Recon2 confidence is either 0 or 4; and (b) it

is annotated with an EC (Enzyme Commission) number. We chose to label reactions with unevaluated confidence (i.e., Recon2 con-

fidence score of 0) as part of core metabolism because some of them were found to be key reactions in primary metabolic pathways

based onmanual correction. Our definition of core metabolism is equivalent to taking the set of all metabolic reactions in Recon2, but
Cell 184, 4168–4185.e1–e11, August 5, 2021 e4
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excluding reactions that either don’t have an annotated EC number or for which the Recon2 curators explicitly specified they do not

have direct biochemical support. We define ameta-reaction as belonging to core metabolism if it contains at least one core reaction.

Core pathways are defined as Recon2 subsystems that have at least 3 core reactions. Metabolic genes are defined as the set of

genes annotated in Recon2.

Finding reactions with differential potential activity

To test for differential potential-activity of reactions based on Compass predictions, we computed for each meta-reactionM the Wil-

coxon’s rank sum between the Compass scores of M in the two populations of interest (here, Th17p and Th17n). Effect size were

further assessed with Cohen’s d statistic, defined as the difference between the sample means over the pooled sample standard

deviation. Let n1, x1, s1 be the number of observations in population 1, and the sample mean and standard deviation of their scores

in a given meta-reaction, respectively (with a similar notation for population 2). Then

d =

�
x1 � x1

�
s

with
s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs21 + ðn2 � 1Þs22

n1 + n2 � 2

s

The resulting p values are adjusted with the Benjamini-Hochberg (
BH) method. Note that so far, the computation was done for meta-

reactions. We assigned all reactions r∈M the Cohen’s d andWilcoxon’s p value that were computed forM . We call a reaction differ-

entially active if its adjusted p is smaller than 0.1. The computation was done on all reactions in the network (namely, both core and

non-core reactions).

Manual curation of central carbon predictions

Wemanually curated the significant predictions of the central carbon metabolism pathways discussed in the manuscript (glycolysis,

TCA cycle, and fatty acid synthesis/oxidation). Recon2 takes account of metabolite localization, and reactions may be functional in

more than one cellular compartment. For every reaction, we picked the prediction corresponding to the pertinent cellular compart-

ment (here, cytosol or mitochondria, as shown in Figure 4A). Note that Compass operates independently on the forward and back-

ward directions of every reaction, and that the direction is denoted in the pathway diagrams of this manuscript.

Transcriptomic signatures
Th17 pathogenicity

We used a transcriptomic signature that we have previously shown to capture a Th17 cell’s pathogenic capacity (Gaublomme et al.,

2015; Wang et al., 2015). Briefly, for each cell compute the average z-scored expression (log(1 +TPM)) of pro-pathogenic markers

(CASP1, CCL3, CCL4, CCL5, CSF2, CXCL3, GZMB, ICOS, IL22, IL7R, LAG3, LGALS3, LRMP, STAT4, TBX21) and pro-regulatory

markers (AHR, IKZF3, IL10, IL1RN, IL6ST, IL9, MAF), with the latter group multiplied by �1.

A compendium of T cell state signatures

A compendium of T cell state transcriptomic signatures was described in Gaublomme et al. (2015). Every signature consists of two

gene subsets: a set of positively associated genes and an optionally empty set of negatively associated genes. A scalar signature

value is computed for every cell based on its transcriptome profile as described above for pathogenicity. Signatures that are based

on KEGG (Kanehisa et al., 2017) pathways or similar resources are constructed by defining the set of positively-associated genes as

the ones belonging to the pathway and defining the set of negatively-associated genes as an empty set.

Total metabolic activity of a cell

We defined the total metabolic activity of a cell as the sum expression of metabolic enzyme coding genes over the sum expression of

all protein coding genes in log-scale TPM (transcripts per million) units. We computed the partial correlation between this quantity

and cell PC1 coordinates, while controlling for the sum expression of all protein coding genes in the cells (the aforementioned divisor)

to verify the correlation does not arise from the ratio of protein-coding to non-protein coding RNA in the RNA libraries. The correlation

was more significant when not controlling for the covariate (Pearson rho = 0.56, p < 3$10�16).

Late-stage Th17 differentiation

We defined a transcriptomic signature for late-stage differentiation of Th17 cells based on microarray data from Yosef et al. (2013).

We assignedmicroarrays into three differentiation stages as described in that paper into early (up to 4h), intermediate (6-16h) and late

(20-72h) and fitted with the limmaR package a linear model for the discrete 3-level stage covariate. We called differentially expressed

genes (BH-adjusted p < 0.05 and log2 fold-change R 3) and used them to define a transcriptomic signature as described above.

ATAC-Seq
Library preparation

For population ATAC-Seq, in vitro differentiated T cells were sorted for live cells and stored in Bambanker freezing media (Thermo

Fisher Scientific) at�80◦C until further processing. Prior to library preparation, cells were thawed at 37◦C and washed with PBS. For
e5 Cell 184, 4168–4185.e1–e11, August 5, 2021
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ATAC-Seq, cell pellets were lysed and tagmented in 1X TD Buffer, 0.2ml TDE1 (Illumina), 0.01% digitonin, and 0.3X PBS in 40ml re-

action volume following the protocol described in Corces et al. (2016). Transposition reactions were incubated at 37for 30 min at

300 rpm. The DNA was purified from the reaction using a MinElute PCR purification kit (QIAGEN). The whole resulting product

was then PCR-amplified using indexed primers with NEBNext High-Fidelity 2X PCR Master Mix (NEB). First, we performed 5 cycles

of pre-amplification. We sampled 10% of the pre-amplification reaction for SYBR Green quantitative PCR to assess the number of

additional cycles needed for final amplification. After purifying the final library with the MinElute PCR purification kit (QIAGEN), the

library was quantified for sequencing using qPCR and a Qubit dsDNA HS Assay kit (Invitrogen). Libraries were sequenced on an Il-

lumina NextSeq 550 system with paired-end reads of 37 base pairs in length.

Alignment of ATAC-Seq and peak calling

All ATAC-Seq reads were trimmed using Trimmomatic (Bolger et al., 2014) to remove primer and low-quality bases. Reads smaller

than 36bp were dropped. Reads were then passed to FastQC [https://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to

check the quality of the trimmed reads. The paired-end readswere then aligned to themm10 reference genome using bowtie2 (Lang-

mead and Salzberg, 2012), allowing maximum insert sizes of 2000 bp, with the–no-mixed and–no-discordant parameters added.

Reads with a mapping quality (MAPQ) below 30 were removed. Duplicates were removed with PicardTools, and the reads mapping

to the blacklist regions and mitochondrial DNA were also removed. Reads mapping to the positive strand were moved +4bp, and

reads mapping to the negative strand were moved �5bp following the procedure outlined in Buenrostro et al. (2013) to account

for the binding of the Tn5 transposase.

Peaks were called using macs2 on the aligned fragments (Zhang et al., 2008) with a qvalue cutoff of 0.001 and overlapping peaks

among replicates were merged.

Tests of differential accessibility

Differential accessibility was assessed using DESeq2 (Love et al., 2014) with a matrix of peaks (merging all samples) by samples.

Similar to common practice in the analysis of differential gene expression, our analysis of differential accessibility was conducted

using the number of observed Tn5 cuts (i.e., number of reads).

Peaks that are associated with a Th17 or Treg programs (orange and purple, respectively, in Figure 6D) were determined by dif-

ferential accessibility test between libraries of vehicle-treated (water) Th17n and Th17p on one side (unpublished dataset) and Treg

on the other with BH-adjusted p % 0.05 and absolute value of log2 fold-change of at least 1.

Reprocessing of published ChIP-Seq data

ChIP-Seq Peaks from Xiao et al. (2014) were transferred from mm9 to mm10 using the UCSC liftOver tool. ChIP-Seq replicates from

Ciofani et al. (2012) were downloaded and were trimmed using Trimmomatic (Bolger et al., 2014) to remove primer and low-quality

bases. Reads were then passed to FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to check the quality of the

trimmed reads. These single-end reads were then aligned to the mm10 reference genome using bowtie2 (Langmead and Salzberg,

2012) allowing maximum insert sizes of 2000 bp, with the–no-mixed and–no-discordant parameters added. Reads with a mapping

quality (MAPQ) below 30 were removed. Duplicates were removed with PicardTools, and the reads mapping to the blacklist regions

and mitochondrial DNA were also removed.

ChIP-Seq peaks were called in each replicate, versus a control sample, using macs2 (Zhang et al., 2008) with a qvalue cutoff

of 0.05.

Enrichment of motifs and ChIP-Seq peaks

Peakswere considered differentially accessible if they had aBH-adjusted p < 0.05.We calculated fold enrichment of various genomic

features in these peaks (described below) versus a background set of peaks. q-values were estimated using q-value R package

[https://github.com/jdstorey/qvalue].

Motifs and annotation tracks

PWM’s formotifs were downloaded from the 2018 release of JASPAR (Khan et al., 2018).We used FIMO (Grant et al., 2011) to identify

motifs in mm10, and applied the default threshold of 10�4. We also included the following genomic features from the UCSC Genome

Browser [http://genome.ucsc.edu]: the ORegAnno database (Lesurf et al., 2016), conserved regions annotated by the PHAST pack-

age (Siepel et al., 2005), and repeat regions annotated by RepeatMasker [http://www.repeatmasker.org].

GREAT pathways and genes

Loci were associated with genes and pathways using GREAT (McLean et al., 2010), submitted with the rGREAT R package [https://

github.com/jokergoo/rGREAT]. We retrieved pathways found in the MSigDB Immunologic Signatures, MSigDB Pathways, and GO

Biological Processes databases.

Brief review of GSMM definitions
We provide a brief review of key concepts, for a comprehensive review of genome-scale metabolic modeling see Bauer and Thiele

(2018), Bordbar et al. (2014), Heirendt et al. (2019), Lewis et al. (2012), O’Brien et al. (2015), Orth et al. (2010) and Palsson (2015).

Stoichiometric matrix (S)

A stoichiometric matrix S describes the set of possible metabolic reactions in the system. Its rows correspond to metabolites, col-

umns to reactions, and entries hold the stoichiometric coefficients of the reactions available to the cells.
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Metabolic flux (v)

Ametabolic flux is the instantaneous rate in which a chemical reaction occurs, andmeasured in units of mol X gDW-1 X hr-1, with gDW

denoting gram dry weight. Let x be metabolite concentrations in the system (as a function of time t), and v be the metabolic fluxes

(also called flux distribution). Then:

S $ v =
dx

dt
Compass belongs to the family of static FBA algorithms (Orth et
 al., 2010), which assumes metabolic steady-state, i.e.

S $ v = 0
Equivalently, we limit the space of feasible flux distributions to ke
rðSÞ.
Genome-scale metabolic model (GSMM)

Compass leverages prior knowledge about the metabolic network of the cells in question in the form of a Genome-Scale Metabolic

Model (GSMM), which includes the following components (Heirendt et al., 2019; Monk et al., 2014; O’Brien et al., 2015; Pals-

son, 2015):

d A stoichiometric matrix S

d Reactions are partitioned into cellular compartments representing membrane-enclosed space in which a biochemical reaction

may take place, for example the cytosol, Golgi, or mitochondria.

d Metabolites are represented separately for each compartment. For example, cytosolic citrate and mitochondrial citrate corre-

spond to two rows in S.

d Reactionsmay contain non-zero coefficients for metabolites located in different compartment to represent physiological trans-

portation of metabolites across membranes. These reactions are called Transport reactions.

d The extracellular space is represented as an additional compartment.

d Reactions may have exactly one non-zero coefficient if the corresponding metabolite is located in the extracellular space.

These reactions are called exchange reactions and used to import metabolites into or export them from the system. It is stan-

dard convention to assign �1 as the non-zero coefficient of exchange reactions.

d Upper and lower bounds on fluxes through the reactions corresponding to columns of S.

d Lower bounds of exchange reactions limit metabolite uptake and used to simulate constraints on nutrient availability. Note

these are the lower, and not upper, bounds because the exchange coefficient is �1.

d A set if genes coding enzymes that catalyze reactions in the network

d Gene-to-reaction associations:

d Every reaction is associated with a boolean expression over gene literals and the fn; ^g operators.

d Every gene is assigned a truth value based on its presence or absence in the cell’s genome. A genemay be absent, for example,

in a knockout genotype.

d The boolean expressions code the dependency of reactions on their catalyzing proteins. Usually, an OR relationship corre-

sponds to isozymes, namely two enzymes capable of catalyzing the same reaction, and AND relationship corresponds to

enzyme complexes.
The Compass algorithm in detail
Notation

In the following sections we denote:

d n: number of cells (or RNA libraries).

d m: number of metabolic reactions in the GSMM.

d C: the set of cells in the data. (|C| = n).

d R: the set of metabolic reactions in the GSMM. (|R| = m).

d rev(r): the reverse unidirectional reaction of reaction r, which has the same stoichiometry but proceeds in the opposite direction.

d g: number of genes in a given transcriptome dataset.

d S: the stoichiometric matrix defined in the GSMM, where rows represent metabolites, columns represent reactions, and entries

are stoichiometric coefficients for the reactions comprising the metabolic network. Reactions for uptake and secretion of a

metabolite are encoded as having only a coefficient of 1 and �1 in the metabolite’s row entry, respectively, and 0 otherwise.

For a matrixM = (mi,j) and a function f:R➝Rwe use f (M) to denote (where the intention is obvious from the context) the respective

point-wise transformation, namely f (M): = (f (mi,j)).

Transcriptome-agnostic preparatory step

For a given GSMM (here, Recon2), we run once a preparatory step that does not depend on transcriptome data and cache the results

(Algorithm 1).
e7 Cell 184, 4168–4185.e1–e11, August 5, 2021



ll
Article
center102108000Constraint (i) constrains the system to steady state (Varma and Palsson, 1994). Constraint (ii) is interpreted asci:

ai% vi% bi and encodes directionality and capacity limits for reactions, including uptake and secretion limits. Constraint (iii) ensures

that when evaluating themaximum flux for each reaction, its reverse reaction carries no flux to avoid the creation of a futile cycle. This

does not prevent futile cycles longer than 2 edges, which can be avoided only by more time-consuming computations (Schellen-

berger et al., 2011).
Note that the GSMMmay contain blocked reactions (vopt = 0) that can be excluded from the next steps to speed the computation.

From gene expression to reaction expression

By reaction expression, we denote a matrix {R(G)}m 3 n that is conceptually similar to the gene expression matrixGg 3 n. The columns

are the same RNA libraries (e.g., cells) as in {G}, but rows represent single metabolic reactions rather than transcripts. An entry Rr,j in

the matrix R(G) is a quantitative proxy for the activity of reaction r in cell j. We omit the dependence on gene expression matrix and

denote simply R when G is obvious from the context.

The reaction expression matrix is created by using the boolean gene-to-reaction mapping included in the GSMM, similar to the

approach taken by (Becker and Palsson, 2008; Shlomi et al., 2008) Let G = xi,j and consider a particular reaction r in a particular

cell j. If a single gene with linear-scale expression x is associated with r, then the reaction’s expression will be Rr,j = log2(x + 1). If

no genes are associated with r then Rr,j = 0.

If the reaction is associated with more than one gene, then this association is expressed as a boolean relationship. For example,

two genes which encode different subunits of a reaction’s enzyme are associated using an AND relationship as both are required to

be expressed for the reaction to be catalyzed. Alternately, if multiple enzymes can catalyze a reaction, the genes involved in each will

be associated via an OR relationship. For reactions associated with multiple genes in this manner, the boolean expression is eval-

uated by taking the sum or the mean of linear-scale expression values x when genes are associated via an OR or AND relationship,

respectively. This way, the full gene(s)-to-reaction associations is evaluated to arrive at a single summary expression value for each

reaction in the GSMM.

Information sharing between single cells (smoothing)

To mitigate the sparseness and stochasticity of single-cell measurements, Compass allows for a degree of information-sharing be-

tween cells with similar transcriptional profiles. Given a gene expression G, we compute k-nearest neighbors (kNN) graph based

Euclidean distances in reduced dimension, obtained by taking the top 20 principal components of G. The PCA is computed over

all the genes in G, not only metabolic ones.

Let R(G) = {ri,j} and

wi;j =

8><
>:

1

k
; if cell j is in the k � nearest� neighborhood of cell i;

o; otherwise
Then RN (G) = {rN } where
i,j

rNi;j =
X
c˛C

wj;cri;c

Main algorithm

Compass transforms a gene expression matrix {G}g 3 n, where rows represent genes and columns represent RNA libraries (usually,

single cells, although bulk RNA can also be used as discussed below) into amatrix {C}m 3 n of scores where rows represent metabolic
Cell 184, 4168–4185.e1–e11, August 5, 2021 e8



ll
Article
reactions, columns are the same RNA libraries as in the gene expression, and an entry quantifies a proxy for potential reaction ac-

tivity. More precisely, the entry quantifies the propensity of the cell to use that reaction.

The algorithm is summarized in (Algorithm 2). First, we convert the gene expression matrix Gg 3 n into a reaction expressionmatrix

Rm 3 n which is parallel to the gene expression matrix, but with rows representing single metabolic reactions rather than transcripts.

We convert R into a penalty matrix Pm 3 n by point-wise inversion. Whereas R represents gene expression support that a reaction is

functional in the cell, P represents the lack thereof (which will be used in a linear program below). The computation of R and P occurs

also for the neighborhood of each cell for to smooth results and mitigate single-cell technical noise. Then, we solve a linear program

for every reaction r in every cell i to find theminimal resistance of cell i to carry maximal flux through r. Last, we scale the scores, which

also entails negating them such that that larger scores will represent larger potential activities (instead of larger penalties, hence

smaller potential activity). The final scores indicative of a cell’s propensity to use a certain reaction. We interpret it as a proxy for

the potential activity of the reaction in that cell.

In step 10 of Algorithm 2, a high penalty yr,c indicates that cell c is unlikely, judged by transcriptomic evidence, to use reaction r.

Cells whose transcriptome are overall more alignedwith an ability to carry flux through a reaction will be assigned a lower penalty yr,c.

With regards to the correctness of the step, recall that that the GSMM is unidirectional and therefore ci. vi > 0.
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Meta-reactions

Rows in the Craw matrix that correspond to reactions that are topologically close in the metabolic network can be highly correlated.

We therefore hierarchically cluster Craw rows by Spearman distance. We call the resulting clusters meta-reactions and each repre-

sents a set of closely correlated metabolic reactions. Note that the division into meta-reactions is data-driven and does not rely on

canonical metabolic pathway definitions. Therefore, the division is dataset-dependent— for example, two reactionsmight be closely

correlated and clustered in the same meta-reaction in one cell type, but not in another.

After computing the hierarchical clusters over rows of Craw, we merged leaves in which Spearman similarity (namely 1 � r, with r

being the Spearman correlation) by averaging the respective rows. In the present work, we used r = 0.98.We denote the row-merged

matrix {Cmeta�raw}mXn.

Scaling raw compass scores

center88265000By definition, all entries in Cmeta�raw are non-negative. We scale it in Algorithm 3 (the min in the second step denotes

matrix-wide minimal entry)

Algorithm generalization

One of the intuitions behind Compass is that the statistical power afforded by the number of observations (cells) in
single-cell RNA-Seq allows increasing dimensionality by comput
ing a new feature set based on the gene expression data and the

GSMM. Here, we used an intuitive set of objective functions — for each reaction in the network, we defined one objective function

which is to maximize the flux it carries (recall that the network is unidirectional and therefore all reactions carry non-negative fluxes).

This allows intuitive interpretation of the Compass scores as quantitative proxies to reaction activities. However, the algorithm can be

generalized by using an arbitrary set of linear objective functions that pertain to cellular metabolism.

Scalability

For prohibitively large datasets, the number of cells (observations) can be reduced by partitioning the cells into small clusters and

treating the average of each cluster as an observation in downstream analysis. Two implementations of this approach aremicropools

(DeTomaso et al., 2019) implemented in the VISION R package (https://github.com/YosefLab/VISION), and meta-cells (Baran et al.,

2019) (https://tanaylab.github.io/metacell). No pooling was necessary for the analysis presented in this manuscript (i.e., the results

are on a single cell level). If cell clusters are large enough, one may choose to skip the information-sharing procedure, which is equiv-

alent to setting the parameter l = 0 in Algorithm 2.

In addition, the number of reactions in the GSMM can be reduced as well by not executing Algorithm 2 on blocked reactions (Sec-

tion 1.3) non-core reactions (Section 1.11.2), or reactions outside a predetermined set of metabolic pathways that are of interest. We

note that we do not suggest excluding non-blocked reactions from the network altogether (which would result in neglecting their ef-

fects on reactions that are of interest), but rather only excluding them from the R(G) matrices in Algorithm 2.

Metabolic network

We used the Recon2 GSMM (Thiele et al., 2013) which we transformed into a unidirectional network by replacing bidirectional reac-

tions with the respective pair of unidirectional reactions. Consequently, flux values are always non-negative.

In silico growth medium

The results of flux balance analysis significantly depend on the nutrients made available to the GSMM, referred to as the in silico

growth medium. Since exact medium composition is mostly unknown even for common in vitro protocols and in vivo models, we

chose a rich in silico medium where all nutrients for which a transporter exits are made available in an unlimiting quantity.

Gene expression input

Themain input is gene expression matrixG in which rows correspond to genes and columns to RNA libraries. We assume thatG is (i)

already normalized to remove batch and other nuisance effects; (ii) scaled to CPMs or TPMs. In the present work we used TPMs; and

(iii) in linear (i.e., not log) scale.

Metabolic genes

Throughout this work, metabolic genes are defined as the set of genes annotated in Recon2. Note that Compass uses only the

expression of metabolic genes and ignores other transcripts.

Running Compass on bulk (i.e., non-single-cell) inputs

The current manuscript presents the algorithm in the context of single cells, where Compass leverages the statistical power afforded

by the large number of observations (cells). Nevertheless, there is no inherent limitation preventing one from applying Compass to

study bulk (i.e., non-single-cell) transcriptomic data. In this case, we recommend disabling the information-sharing feature by setting

lambda = 0 in Algorithm 2. There is also no limitation preventing one from applying Compass to non-RNA-Seq transcriptomic data,

such as microarrays.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis of non-sequencing data
Unless otherwise specified, the tests performed were two-tail Welch t tests using Prism software. P values were adjusted with the

Bonferroni method for multiple comparisons where appropriate. P value less than 0.05 is considered significant (p < 0.05 = *; p <

0.01 = **; p < 0.001 = ***) unless otherwise indicated.
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Supplemental figures

Figure S1. Algorithm overview, related to Figure 1

(A) Cumulative distribution function (CDF) of number of reactions per meta-reaction. (B-C) Random noise ε was added to the input gene expression matrix with

two transcription noise models (‘‘symmetric’’ and ‘‘regular’’) as described in the STAR Methods. (B) Left column: expression for every gene was scaled to [0,1]

range. Two-dimensional density was computed over the of original and noised expression per gene is shown; right column: similarly, compass scores for every

reaction were scaled to [0,1] and 2d density for raw and noised scores is shown. (C) Total probability mass under the 2d density surface was computed for (d0) the

main diagonal; (d1) the two diagonals above and below the main diagonal; (d2) similarly, the two diagonals above and below the d1 diagonals.
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(legend on next page)
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Figure S2. Compass-based exploration of metabolic heterogeneity within the Th17 compartment, related to Figure 2

(A-E) PCA of Compass space restricted to core meta-reactions, see main text. (A) PC1 scores plotted against PC2 and PC3 scores. (B) Enrichment of metabolic

pathways in the positive or negative directions of top principal components. Enrichment is computed with GSEA (Subramanian et al., 2005) over single reactions

(rather than genes, as in the common applications). Colors are -log10(BH-adjusted p), truncated at 4, with p being the GSEA p value. Pathways correspond to

Recon2 subsystems. (C) PC1 scores plotted against computational signatures of cellular metabolic activity and Th17 differentiation time course (STARMethods).

(D) Spearman correlation of top PCs with known pro-pathogenic (magenta) and pro-regulatory (green) marker genes, none of which is metabolic. Only significant

correlations (BH-adjusted p < 0.1) are shown in color. (E) Spearman correlation of computational transcriptome signatures with the top principal components.

Only significant correlations (BH-adjusted p < 0.1) are shown in color and non-significant correlation coefficients are greyed out. See STARMethods for signature

computation. (F) Same analysis as shown in Figure 2C, but showing all reactions (and not just ones belonging to certain pathways, as in the main figure). (G) We

computed a pro-pathogenic score for each reaction by taking the ratio of pro-pathogenic and pro-regulatory markers with which it correlates and anti-correlates,

respectively (BH-adjusted p < 0.1 for a Spearman correlation) out of the 23 marker genes (listed in Figure 2D and STAR Methods). Similarly, we computed pro-

regulatory reaction scores. Only core reactions are shown. (H) Same analysis as shown in Figure 2E, only at the gene expression level (and not reaction level

based on Compass scores). Genes are grouped by KEGG pathways (and may be annotated as belonging to more than one pathway).
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Figure S3. Differential usage of glycolysis and fatty acid oxidation by pathogenic and non-pathogenic Th17 cells, related to Figure 3

(A) Parallel of main Figures 3C showing also 3h after freshmedia pulse. (B) The glycolysis pathway, as shown inmain Figure 4A, highlighting its junction with serine

biosynthesis.
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Figure S4. Prediction and metabolic validation of the polyamine pathway as a candidate in regulating Th17 cell function, related to Figure 4

(A) Metabolomics analysis of the polyamine pathway as in Figure 1H. Cell lysates as well as media from Th17n and Th17p differentiation cultures are shown. (B-C)

Carbon tracing in the polyamine pathway. Th17n and Th17p cells were differentiated as described (STARMethods), lifted to rest at 68 hours and pulsed with C13

labeled Arginine (B) or Citrulline (C) followed by LC/MS analysis at time points indicated.
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Figure S5. Chemical and genetic interference with the polyamine pathway suppress canonical Th17 cell cytokines, related to Figure 5

(A) The effect of DFMO on cellular polyamine concentration is measured by an enzymatic assay. Th17p, Th17n and iTregs are differentiated in the presence of

DFMO and harvested at 96 hours for analysis. (B-E) IL-2 neutralization does not regulate the effect of ODC1 inhibition. 10ug/ml of anti-IL-2 antibody or isotype

control were added at the time of Th17n or Th17p cell differentiation with control or DFMO. Cells were analyzed by B,D, flow cytometry and C,E, supernatant were

analyzed for cytokine secretion. Welch t test significance is denoted. (F) Protein and phospho-protein analysis by flow cytometry for Th17n and Th17p cells

treated with control of DFMO. (G) The effect of DFMO on enzymes in the polyamine pathway as measured by qPCR. Th17p and Th17n cells were differentiated in

the presence of control or DFMO and harvested at 48h for RNA extraction and qPCR analysis. (H) The effect of genetic perturbation of ODC1 on cytokine

production from Th17p (upper panels) and Th17n cells (lower panels). Supernatant from Th17p and Th17n differentiation culture was harvested at 96 hours and

analyzed by legendplex for cytokine concentration.
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Figure S6. DFMO treatment promotes Treg-like transcriptome and epigenome, related to Figure 6

(A) Log2 fold changes for a comparison between DFMO-treated and vehicle-treated Th17n cells (x axis), and Th17n versus iTreg cells (both vehicle-treated; y axis)

are based on the same data described in manuscript Figures 6A–6C. Dots represent genes, which are divided into 5 groups based on differential expression in

untreated cells (STAR Methods). Dashed lines correspond to the logFC threshold used in differential expression calling log2(1.5) (STAR Methods). Differentially

expressed genes by either of the comparisons shown in the axes are opaque and transparent otherwise. (B) Volcano plots showing affected chromatin modifiers

by DFMO treatment in Th17n, Th17p and iTreg cells. (C) Number of differentially expressed (DE) peaks between DFMO and vehicle-treated cells as a function of

the significance threshold. Upper panel, log2FC used as threshold; Lower panel, BH-adjusted P used as threshold. (D) Similar analysis to Figure 6F, only using

Th17 background instead of Treg. I.e., dots represent fold enrichment of peaks more accessible in DFMO-treated (blue) or untreated (gray) Th17n cells against a

background of Th17 peaks as described in the manuscript (i.e., this analysis considers only peaks that were differentially more accessible in untreated Th17

compared to untreated iTreg, corresponding to the orange curve in Figure 6D). (E-F) Cells were cultured under Th17n or iTreg condition with DFMO or solvent

control (water) as in Figure 6 and harvested at 68h for RNA-Seq. Treg and Th17 programswere defined as in Figure 6H (STARMethods). E, Histogram showing the

effects of JMJD3 conditional knockout (cKO) in control versus DFMO-treated Treg cells. F, Histogram showing the effects of DFMO inWT versus JMJD3fl/flCD4cre

in Th17n and Treg cells.
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Figure S7. Targeting ODC1 and SAT1 alleviate EAE, related to Figure 7

Cells were isolated from CNS or inguinal lymph node (iLN) of WT or SAT1fl/flCD4cre mice on day 15 post EAE induction (similar experiments as in Figure 4F). (A)

Intracellular cytokines were measured by flow cytometry after 4-hour PMA/ionomycine stimulation ex vivo in the presence of brefaldin and monensin. (B)

Transcription factors were analyzed directly ex vivo by intracellular staining.
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