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Machine-learning potentials provide computationally efficient and accurate approximations of the Born-Oppenheimer
potential energy surface. This potential determines many materials properties and simulation techniques usually re-
quire its gradients, in particular forces and stress for molecular dynamics, and heat flux for thermal transport prop-
erties. Recently developed potentials feature high body order and can include equivariant semi-local interactions
through message-passing mechanisms. Due to their complex functional forms, they rely on automatic differentiation
(AD), overcoming the need for manual implementations or finite-difference schemes to evaluate gradients. This study
demonstrates a unified AD approach to obtain forces, stress, and heat flux for such potentials, and provides a model-
independent implementation. The method is tested on the Lennard-Jones potential, and then applied to predict cohesive
properties and thermal conductivity of tin selenide using an equivariant message-passing neural network potential.

I. INTRODUCTION

Molecular dynamics (MD) simulations enable computa-
tional prediction of thermodynamic quantities for a wide
range of quantum systems, and constitute a cornerstone of
modern computational science1. In MD, systems are simu-
lated by propagating Newton’s equations of motion – poten-
tially modified to model statistical ensembles – numerically
in time, based on the forces acting on each atom due to their
movement on the Born-Oppenheimer potential-energy surface
(PES). Therefore, the quality of the underlying PES is impor-
tant for the predictive ability of this method. First-principles
electronic structure methods such as density-functional the-
ory (DFT) can be used to perform high-accuracy MD simu-
lations2, provided the exchange-correlation approximation is
reliable3. Such approaches are, however, restricted by high
computational cost, severely limiting accessible size and time
scales. Computationally efficient approximations to the un-
derlying PES are therefore required for the atomistic simula-
tion of larger systems: Forcefields (FFs) are built on analyt-
ical functional forms that are often based on physical bond-
ing principles, parametrized to reproduce quantities of inter-
est for a given material4. They are computationally cheap, but
parametrizations for novel materials are not always available,
and their flexibility is limited by their fixed functional form.
Machine-learning potentials (MLPs)5–11, where a potential is
inferred based on a small set of reference calculations, aim
to retain near first-principles accuracy while remaining linear
scaling with the number of atoms. While MLPs are limited,
in principle, to modeling the physical mechanisms present in
the training data, they have nevertheless emerged as an im-
portant tool for MD12–16, often combined with active learning
schemes17–21. Modern MLPs can include semi-local interac-
tions through message-passing (MP) mechanisms22, internal
equivariant representations23, and body-order expansions24,
which enable the efficient construction of flexible many-body

interactions. In such complex architectures, the manual imple-
mentation of derivatives is often unfeasible. Finite-difference
approaches require tuning of additional parameters, as well
as repeated energy evaluations. Automatic differentiation
(AD)25,26 presents an intriguing alternative: If the computa-
tion of the potential energy U is implemented in a suitable
framework, derivatives such as the forcesF or the stressσ can
be computed with the same asymptotic computational cost as
computing the energy. This is accomplished by decomposing
the underlying ‘forward’ computation into elementary opera-
tions with analytically tractable derivatives, computing local
gradients for a given input, and then combining the resulting
values using the chain rule.

This work provides a systematic discussion of the use of
AD to compute forces, stress, and heat flux for MLPs. While
the calculation of forces with AD is common practice27–30,
stress and heat flux are not yet commonly available for many
MLPs. Both quantities have been the focus of much previ-
ous work due to the difficulty of defining and implementing
them for many-body potentials and periodic boundary con-
ditions31–42. Introducing an abstract definition of MLPs as
functions of a graph representation of atomistic systems, uni-
fied formulations of stress and heat flux are given, which can
be implemented generally for any such graph-based machine-
learning potential (GLP). An example implementation using
jax43 is provided in the glp package44. To validate the
approach, different formulations of stress and heat flux are
compared for the Lennard-Jones potential45, where analyti-
cal derivatives are readily available for comparison, as well as
a state-of-the art message-passing neural network (MPNN),
SO3KRATES46. Having established the correctness of the pro-
posed implementation, the ability of SO3KRATES to reproduce
first-principles cohesive properties and thermal conductivity
of tin selenide (SnSe) is studied.
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II. AUTOMATIC DIFFERENTIATION

Automatic differentiation (AD) is a technique to ob-
tain derivatives of functions implemented as computer pro-
grams.25,26 It is distinct from numerical differentiation, where
finite-difference schemes are employed, and symbolic differ-
entiation, where analytical derivatives are obtained manually
or via computer algebra systems, and then implemented ex-
plicitly. Instead, AD relies on the observation that complex
computations can often be split up into elementary steps, for
which derivatives are readily implemented. If one can track
those derivatives during the computation of the forward, or
‘primal’, function, the chain rule allows to obtain derivatives.

For this work, two properties of AD are particularly rel-
evant: It allows the computation of derivatives with respect
to quantities that are explicitly used in the forward compu-
tation, and it can do so at the same asymptotic computa-
tional cost as the forward function. In particular, AD can
obtain two quantities efficiently: Given a differentiable func-
tion u : RN → RM , the Jacobian of u is defined as the M×N
matrix ∂ui(x)/∂x j. AD can then obtain Jacobian-vector and
vector-Jacobian products, i.e., the multiplication and summa-
tion of factors over either the input or the output dimension.
This corresponds to propagating derivatives from the inputs
forwards, leading to forward-mode AD, or from the end re-
sult backwards, leading to reverse-mode AD. As many popu-
lar AD frameworks are primarily implemented to work with
neural networks, where scalar loss functions must be differ-
entiated with respect to many parameters, reverse-mode AD,
also called ‘backpropagation’,47 is more generally available.
More recent frameworks implement both approaches, for in-
stance jax43 which is used in the present work. AD can also
be leveraged to compute contractions of higher-order deriva-
tive operators48.

III. CONSTRUCTING GRAPH MLPS

This work considers periodic systems,49 consisting of N
atoms with atomic numbers Zi placed in a simulation cell
which is infinitely periodically tiled in space. We define

Rsc := {ri : i = 1...N } positions in simulation cell
Z := {Zi : i = 1...N } atomic numbers
B := {ba : a = 1,2,3} basis or lattice vectors

rin := ri +∑a naba (replica) position

Rall := {rin : ri ∈ Rsc,n ∈ Z3 } all (bulk) positions
ri j := r j−ri atom-pair vector

∣∣rMIC
i j
∣∣ := min

n∈Z3

∣∣r j +∑
a

naba−ri
∣∣ minimum image convention

In this setting, a MLP is a function that maps the struc-
ture represented by its positions, lattice vectors, and atomic
numbers, (Rsc,B,Z), to a set of atomic potential energies
U := {Ui : i = 1 ...N }, which yield the total potential energy
U = ∑i=1 Ui. Since AD relies on the forward computation to

calculate derivatives, it is sensitive to the exact implementa-
tion of this mapping. Care must therefore be taken to construct
the MLP such that required derivatives are available.

This work considers MLPs that scale linearly with N.
Therefore, the number of atoms contributing to a given Ui
must be bounded, which is achieved by introducing a cutoff
radius rc, restricting interactions to finite-sized atomic neigh-
borhoods N(i) = {r j :

∣∣ri j
∣∣≤ rc,r j ∈ Rall }. To ensure trans-

lational invariance, MLPs do not rely on neighbor positions
directly, but rather on atom-pair vectors centered on i, from
which atom-pair vectors between neighboring atoms can be
constructed, for instance to determine angles.

The resulting structure can be seen as a graph G. The ver-
tices V of this graph are identified with atoms, labeled with
their respective atomic numbers, and connected by edges E
that are labeled with atom-pair vectors if placed closer than
rc. Starting from G, MLPs can be constructed in different
ways: Local MLPs compute a suitable representation50 of
each neighborhood, and predict Ui from that representation
using a learned function, such as a neural network or a ker-
nel machine. Such models are conceptually simple, but can-
not account for effects that extend beyond rc. Recently, semi-
local models such as MPNNs22,29,51–58 have been introduced
to tackle this shortcoming without compromising asymptotic
runtime. In such models, effective longer-range interactions
are built up iteratively by allowing adjacent neighborhoods to
interact repeatedly. We introduce the parameter M, the in-
teraction depth, to quantify how many such iterations are in-
cluded. After M interactions, the energy at any given site can
depend implicitly on positions within M hops on the graph,
which we denote by NM(i), leading to an effective cutoff ra-
dius reff

c = M rc. However, since interactions are confined to
neighborhoods at each iteration, the asymptotic linear scal-
ing is not impacted. Local MLPs are formally included as
semi-local models with M=1, allowing a unified treatment
for both. We term this class of potentials, which act on sets
of neighborhoods and use atom-pair vectors as input, graph-
based machine-learning potentials (GLPs). By construction,
this framework does not include global interactions.

We consider two strategies to construct GLPs: The ‘stan-
dard’ way, which includes periodic boundary conditions via
the edges in the graph, and an ‘unfolded’ formulation, where
periodicity is explicitly included via replica positions.

In the standard architecture, vertices in G are identified with
atoms in the simulation cell, using the minimum image con-
vention (MIC) to include periodicity. Edges Ei j exist between
two atoms i and j in Rsc if they interact:

Estd
i j = {rMIC

i j :
∣∣rMIC

i j
∣∣≤ rc } . (1)

We denote the the graph constructed in this manner as Gstd

and the set of edges Estd.
Alternatively, we can first determine the total set of posi-

tions Runf ⊂Rall that can interact with atoms in the simulation
cell, creating an ‘unfolded’ system extracted from the bulk,
consisting of Rsc and all replicas with up to reff

c distance from
the cell boundary. This construction can be performed effi-
ciently, and adds only a number of positions that is propor-
tional to the surface of the simulation cell, therefore becoming
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increasingly negligible as N increases at constant density42.
We proceed by constructing a correspondingly modified graph
Gunf, and compute potential energies for vertices correspond-
ing to atoms in the simulation cell only. By construction, since
the same atom-pair vectors appear in the graph, this approach
then reproduces the potential energy of the standard method.

IV. DERIVATIVES

Having constructed the forward function for a given GLP,
we can compute derivatives with respect to its inputs using
AD. In this section, we discuss how forces, stress, and heat
flux can be computed in this manner, and demonstrate the re-
lationship between different formulations.

A. Forces

For MD, the most relevant quantities are the forces

Fi =−
∂U
∂ri

(2)

acting on the atoms in the simulation cell. Since Rsc are an
explicit input, they can be computed directly with AD: U is a
scalar, and this therefore is a trivial Jacobian-vector product,
which can be computed with the same asymptotic cost as U .

An interesting situation arises if pairwise forces are desired.
Strictly speaking, in a many-body MLP, where interactions
cannot be decomposed into pairwise contributions, such quan-
tities are not well-defined and Newton’s third law is replaced
by conservation of momentum, which requires ∑N

i=1Fi = 0.
Nevertheless, pairwise forces with an antisymmetric structure
can be defined by exploiting the construction of GLPs in terms
of atom-pair vectors. In the standard formulation, U is a func-
tion of all edges,

U =U({ri j : i j ∈ Estd }) . (3)

Hence, by the chain rule,

Fi = ∑
j∈N(i)

∂U
∂ri j
− ∂U

∂r ji
(4)

=: ∑
j∈N(i)

Fi j . (5)

The pairwise forces such defined exhibit anti-symmetry, and
therefore fulfil Newton’s third law. For M=1, the local case,
this definition reduces to a more standard form37

Fi j =
∂Ui

∂ri j
− ∂U j

∂r ji
. (6)

However, for general GLPs with M>1, this definition includes
a sum over all Uk that are influenced by a given edge

Fi j = ∑
k∈NM(i)

∂Uk

∂ri j
− ∂Uk

∂r ji
, (7)

subverting expectations connecting local potential energies to
pairwise forces. We note that this seeming contradiction is a
consequence of the combination of the peculiar construction
of GLPs and AD: In principle, it is always possible to de-
fine extended neighborhoods up to reff

c , obtaining Ui purely as
a function of atom-pair vector originating from i. However,
to construct derivatives with respect to these atom-pair vec-
tors with AD, these extended neighborhoods have to be con-
structed and included explicitly, therefore negating the com-
putational efficiency gains of a GLP architecture.

B. Stress

The definition of the (potential) stress is59

σ =
1
V

∂U
∂ε
∣∣
ε=0 , (8)

with U denoting the potential energy after a strain transforma-
tion with the the 3×3 symmetric tensor ε

r→ (1+ε) ·r , (9)

acting on Rall. While computing this derivative for arbitrary
potentials and periodic systems has required ‘much effort’31

in the past33,60, it is straightforward with AD.
The simplest approach, followed for instance by

schnetpack61,62 and nequip54,63, is to inject the strain
transformation explicitly into the construction of the GLP.
This can be done at different points: One can transform Rsc
and B before constructing G, directly transform atom-pair
vectors, or transform all contributing positions Runf. Al-
ternatively, as the inner derivative of inputs with respect to
ε is simply the input, the derivative of U with respect to
inputs can be obtained with AD, and the stress computed
analytically from the results. This avoids modifying the
forward computation of U entirely.

These approaches yield, with ⊗ denoting an outer product,

Vσ =
∂U(Rsc,B)

∂ε
(10)

=
∂U(E)

∂ε
(11)

=
∂U(Runf)

∂ε
(12)

= ∑
i∈Rsc

r j⊗
∂U
∂ri

+ ∑
b∈B
b⊗ ∂U

∂b
(13)

= ∑
i j∈E

ri j⊗
∂U
∂ri j

(14)

= ∑
i∈Runf

ri⊗
∂U
∂ri

, (15)

recovering previous formulations given by Louwerse and
Baerends31 and Thompson33. As seen in Tables I and III, all
such forms of the stress are equivalent, provided the strain
transformation is applied consistently to all used inputs.64
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In all cases, as U is differentiated with respect to its inputs,
asymptotic cost remains linear.

A more complex situation arises if strain derivatives of
atomic energies, i.e., atomic stresses

σi :=
1
V

∂Ui

∂ε
i ∈ Rsc (16)

are required. Their calculation requires either one backward
pass per Ui, or one forward pass for each entry in ε. If only
reverse-mode AD is available, its evaluation therefore scales
quadratically with N. Linear scaling is retained with for-
ward mode. For GLPs with M=1, linear scaling in reverse
mode can be recovered by using Eq. (14): Every edge can
be uniquely assigned to one Ui, and therefore the derivatives
can be used to construct atomic stresses. For M>1, this is not
possible; similar to the observations of the previous section,
atomic stresses take a semi-local form.

C. Heat Flux

Finally, we discuss the heat flux, which is required
to compute thermal conductivities with the Green-Kubo
(GK) method65–67. It describes how energy flows between
atoms, and has been the focus of a large body of previous
work32,35,37,40–42,60.

The fundamental definition of the heat flux for MLPs was
originally derived by Hardy68 for periodic quantum systems.
It reads42

Jfull = ∑
i∈Rsc
j∈Rall

(
r ji

(
∂Ui

∂r j
·v j

))
+ ∑

i∈Rsc

Eivi (17)

=: Jpot +Jconv , (18)

where vi denote velocities, mi masses, and Ei =Ui+1/2miv
2
i

is the total energy per atom. Intuitively, the ‘potential’ term
Jpot describes how the total instantaneous change in Ui can
be attributed to interactions with other atoms, with energy
flowing between them, while the second, ‘convective’, term
Jconv describes energy being carried the individual atoms. In
the present setting, Jconv can be computed directly, as Ei are
available. Jpot, however, presents a challenge in an AD frame-
work: In principle, Jpot could be computed directly, obtaining
the required partial derivatives with AD. However, as Jpot is
neither a Jacobian-vector nor a vector-Jacobian product, this
requires repeated evaluations over the input or output dimen-
sion. Even when restricting j ∈Rsc, which can be achieved by
introducing the MIC for r ji (see Supp. Mat. for details),

JMIC
pot = ∑

i, j∈Rsc

(
rMIC

ji

(
∂Ui

∂r j
·v j

))
, (19)

computational cost of a direct implementation with AD scales
quadratically with N, rendering the system sizes and simu-
lation times required for the GK method inaccessible42. We
therefore consider approaches that restore linear scaling in the
following.

For M=1, edges can be uniquely assigned to atomic energy
contributions as discussed for atomic stresses in Sec. IV B. In
this case

∂U
∂ri j

= ∑
k∈Rsc

∂Uk

∂ri j
=

∂Ui

∂ri j
=

∂Ui

∂r j
, (20)

so that

JM=1
pot = ∑

i j∈E

(
r ji

(
∂U
∂ri j
·v j

))
, (21)

which requires a single evaluation of reverse-mode AD.
We note that the terms appearing in front of v j also appear

in the stress in Eq. (14). However, for a given j, the pre-
factor cannot be identified with the atomic stress as defined
in Eq. (16) – the atomic energy being differentiated is not U j,
but Ui. The indices can only be exchanged for additive pair-
wise potentials; this inequivalence was recently corrected in
the LAMMPS code40.

This approach is not applicable for M>1, since the relation
in Eq. (20) no longer holds, and the mapping between stress
contributions and heat flux contributions becomes invalid. By
using the unfolded construction, however, linear scaling can
be restored regardless42. Introducing auxiliary positions raux

i ,
which are numerically identical to the positions ri, but not
used to compute U , and defining the energy barycenter B =
∑i∈Rsc r

aux
i Ui, the heat flux can be written as

JM≥1
pot = ∑

j∈Runf

∂B
∂r j
·v j− ∑

j∈Runf

(
r j

(
∂U
∂r j
·v j

))
. (22)

The first term requires three reverse-mode evaluations, or one
forward-mode evaluation, the latter a single backward- or
forward-mode evaluation. Since the overhead introduced by
explicitly constructing Runf scales as N2/3, overall linear scal-
ing is restored, albeit with a pre-factor due to the higher num-
ber of positions to be considered.

To summarize, we have introduced two forms of the heat
flux that can be implemented efficiently with AD: Equa-
tion (21), which applies to GLPs with M=1, and Eq. (22),
which applies for M≥1, but introduces some additional over-
head. Both are equivalent to the general, quadratically-
scaling, form given in Eq. (17), as seen in Tables II and IV.

V. EXPERIMENTS

A. Lennard-Jones Argon

The stress formulas in Eqs. (10) to (15) and heat flux for-
mulas Eqs. (19), (21) and (22) have been implemented in the
glp package44 using jax43. As a first step, we numerically
verify this implementation.

To this end, the Lennard-Jones potential45 is employed,
where analytical derivatives including those required for the
heat flux are readily available, and implementations are in-
cluded in many packages, for example the Atomic Simulation
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Single Double
Equation MAE (eV) MAPE (%) MAE (eV) MAPE (%)

Fin. diff. 7.70 ·10−4 1.04 ·10−1 1.13 ·10−6 1.18 ·10−4

10 1.19 ·10−5 1.79 ·10−3 3.15 ·10−6 3.69 ·10−4

11 8.25 ·10−6 1.27 ·10−3 3.15 ·10−6 3.69 ·10−4

12 9.17 ·10−6 1.36 ·10−3 3.15 ·10−6 3.69 ·10−4

13 1.18 ·10−5 1.79 ·10−3 3.15 ·10−6 3.69 ·10−4

14 8.22 ·10−6 1.27 ·10−3 3.15 ·10−6 3.69 ·10−4

15 9.16 ·10−6 1.37 ·10−3 3.15 ·10−6 3.69 ·10−4

TABLE I. Error in stress for Lennard-Jones argon, comparing dif-
ferent formulations, as well as finite differences, to analytical deriva-
tives. Results are shown for both single and double precision arith-
metic, and for σ ·V in place of σ.

Single Double
Eq. MAE (eVÅ/fs) MAPE (%) MAE (eVÅ/fs) MAPE (%)

19 2.81 ·10−9 1.71 ·10−2 1.47 ·10−10 6.81 ·10−4

21 2.84 ·10−9 1.67 ·10−2 1.47 ·10−10 6.81 ·10−4

22 2.44 ·10−9 1.54 ·10−2 1.47 ·10−10 6.81 ·10−4

TABLE II. Error in heat flux for Lennard-Jones argon, comparing
different formulations to analytical derivatives. Results are shown
for both single and double precision arithmetic.

Environment (ASE)69. In the GLP framework, the Lennard-
Jones potential can be seen as an extreme case of a M=1 GLP,
where Ui is composed of a sum of pair terms:

Ui =
1
2 ∑

j∈N(i)
4ε

(
σ12

r12
i j
− σ6

r6
i j

)
. (23)

For this experiment, parameters approximating elemen-
tal argon are used70. 100 randomly displaced and distorted
geometries, based on the 512-atom 8× 8× 8 supercell of
the face-centered cubic primitive cell with lattice parameter
3.72Å and angle 60° are used. Random velocities to evaluate
a finite heat flux are sampled from the Boltzmann distribution
corresponding to 10 K. Additional computational details are
discussed in the Supp. Mat.

Table I compares the stress formulations in Eqs. (10) to (15)
with finite differences. We report ‘best-case’ results for finite
differences, choosing the stepsize that minimises the error. In
the table, the mean absolute error (MAE) and mean absolute
percentage error (MAPE) with respect to the analytical ground
truth are reported. All given formulations are found to be
equivalent. In single precision arithmetic, the AD-based im-
plementations slightly outperform finite differences, in double
precision, errors are similar.

For the heat flux, finite difference approaches are not fea-
sible. Therefore, only AD-based implementations are shown
in Table II. In the case of the Lennard-Jones potential, where
M=1, Eqs. (19), (21) and (22) are found to be identical.

Single Double
Equation MAE (eV) MAPE (%) MAE (eV) MAPE (%)

10 1.58 ·10−2 4.40 ·10−2 1.45 ·10−4 2.32 ·10−4

11 1.58 ·10−2 4.38 ·10−2 1.45 ·10−4 2.32 ·10−4

12 1.57 ·10−2 4.33 ·10−2 1.45 ·10−4 2.32 ·10−4

13 1.58 ·10−2 4.40 ·10−2 1.45 ·10−4 2.32 ·10−4

14 1.58 ·10−2 4.38 ·10−2 1.45 ·10−4 2.32 ·10−4

15 1.57 ·10−2 4.33 ·10−2 1.45 ·10−4 2.32 ·10−4

TABLE III. Error in stress for tin selenide, comparing different for-
mulations to finite differences, for SO3KRATES with M=2. Results
are shown for both single and double precision arithmetic, and for
σ ·V in place of σ. Results for other M, which are similar to the one
shown here, can be found in the Supp. Mat.

Single Double
Eq. M MAE (eVÅ/fs) MAPE (%) MAE (eVÅ/fs) MAPE (%)

21 1 5.78 ·10−9 9.74 ·10−4 1.09 ·10−17 1.73 ·10−12

22 1 8.75 ·10−8 2.65 ·10−2 1.69 ·10−16 4.31 ·10−11

21 2 3.73 ·10−3 5.84 ·102 3.73 ·10−3 5.84 ·102

22 2 9.36 ·10−8 1.00 ·10−2 1.54 ·10−16 1.60 ·10−11

21 3 1.01 ·10−3 3.27 ·102 1.01 ·10−3 3.25 ·102

22 3 9.74 ·10−8 3.04 ·10−2 1.65 ·10−16 2.91 ·10−11

TABLE IV. Error in heat flux for tin selenide, comparing dif-
ferent formulations to the baseline implementation in Eq. (19) for
SO3KRATES models with differing numbers of interaction steps M.
Results are shown for both single and double precision arithmetic.

VI. TIN SELENIDE WITH SO3KRATES

To investigate stress and heat flux in a practical setting,
we now study tin selenide (SnSe) using the state-of-the-art
SO3KRATES GLP46. In contrast to other equivariant MLPs,
for instantce NEQUIP54, SO3KRATES replaces shared equiv-
ariant feature representations by separated branches for in-
variant and equivariant information, whose information ex-
change is handled using an equivariant self-attention mech-
anism. By doing so, one can achieve data efficiency and ex-
trapolation quality competitive to state-of-the-art GLPs at re-
duced time and memory complexity. As non-local interac-
tions are not modeled in the GLP framework introduced in
this work, global interactions are disabled in the SO3KRATES
models used at present.

For these experiments, SO3KRATES models with M=1,2,3
were trained on approximately 3000 reference calculations,
comprising a number of thermalization trajectories at differ-
ent volumes at 300 K. These calculations were perfomed as
part of a large-scale ab initio Green-Kubo (aiGK) benchmark
study by Knoop et al.71,72. Additional details on the MLP
training can be found in the Supp. Mat.
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DFT M=1 M=2 M=3
B0 (eV/Å3) 0.230 0.236 0.229 0.223
Bp (eV/Å6) 5.576 2.830 4.815 7.118
V0 (Å3) 26.429 26.489 26.322 26.388

Error B0 (%) – 2.58 −0.47 −3.14
Error Bp (%) – −49.25 −13.64 27.66
Error V0 (%) – 0.22 −0.40 −0.16

TABLE V. Cohesive properties of SnSe for PBEsol-DFT, and
SO3KRATES with different numbers of interaction steps M obtained
via the Vinet EOS. Best values are highlighted. Values are in good
agreement with existing literature77.

1. Implementation of stress and heat flux

While no analytical derivatives are available for
SO3KRATES, the implementation of the stress can be
verified with finite differences, and the heat flux can be
checked for consistency between different implementations.
Similar to Sec. V A, we use 100 randomly displaced and
distorted 4×8×8 supercells of the 0 K primitive cell of SnSe
for this experiment, sampling velocities from the Boltzmann
distribution at 10 K to evaluate a finite heat flux.

Table III compares the stress implementations in Eqs. (10)
to (15) with finite differences, confirming the equivalence of
all implemented formulations.

Table IV compares the heat flux formulations in Eq. (21)
and Eq. (22) with the baseline in Eq. (19), implementing
the quadratically-scaling ‘Hardy’ heat flux with the MIC. For
M=1, all formulations are precisely equivalent. For M>1, the
semi-local case, only Eq. (22) is equivalent to the ‘Hardy’ heat
flux; Eq. (21) does not apply and consequently is not equiva-
lent, displaying large deviations.

2. Equation of state and pressure

To assess the capability of SO3KRATES to predict
stress- and pressure-related materials properties, we calculate
energy-volume and pressure-volume curves for SnSe to ob-
tain an equation of state (EOS) of the Vinet form73,74. The
experiment is performed for unit cells that were homoge-
neously strained up to ±2 % starting from the fully relaxed
geometry, and relaxing the internal degrees of freedom af-
terwards. The energy vs. volume curves for SO3KRATES
with M=1,2,3 interaction steps are shown in Fig. 1 in com-
parison to the DFT reference using the PBEsol exchange-
correlation functional with ‘light’ default basis sets in FHI-
aims75,76. SO3KRATES with three interaction steps (M=3)
yields the best visual agreement for the energy-volume curve
in Fig. 1, and the best equilibrium volume. To quantify the
agreement, we evaluate the Vinet EOS and extract the cohe-
sive properties equilibrium volume V0, isothermal Bulk mod-
ulus B0, and its pressure derivative B′0 (functional forms are
given in the Supp. Mat.). Results are listed in Table V. For
SO3KRATES with three interaction steps (M=3), the predicted
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FIG. 1. EOS (energy vs. volume) computed with PBEsol-DFT
(black dots) compared to SO3KRATES with different numbers of in-
teraction steps M. The connecting lines have been obtained by fitting
the Vinet EOS. Inset: Zoom into the region of volumes that were
covered during the training indicated by the gray shading.
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FIG. 2. Comparison of EOS obtained by fitting energy-volume
(red dashed) and pressure-volume (black solid) data. The results are
in perfect agreement.

volume deviates by −0.16 % from the DFT reference, and the
deviation of the bulk modulus is −3.14 %. A larger error is
seen for the pressure derivative of the bulk modulus, B′0, which
deviates by 27.7 %, indicating worse agreement further away
from the training region. Overall, the agreement between DFT
and SO3KRATES when predicting cohesive properties can be
considered satisfactory. The energy-volume predictions are
very good, and transfer even to volumes that are larger or
smaller then the ones seen during training.

Finally we check the internal consistency of energy and
stress predictions with SO3KRATES by fitting energy-volume
and pressure-volume curves and verify that they yield identi-
cal parameters for the EOS. Results are shown in Fig. 2. As
seen there, results are in perfect agreement, which verifies that
stress and resulting pressure are consistent with the underly-
ing energy function as expressed in Eq. (8).
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Source Method κ (W/mK) κx κy κz

This work SO3KRATES, M=1 0.99±0.10 0.53±0.03 1.31±0.13 1.12±0.12
" SO3KRATES, M=2 1.13±0.07 0.48±0.04 1.59±0.07 1.20±0.07
" SO3KRATES, M=3 1.13±0.10 0.56±0.05 1.56±0.15 1.32±0.16

Brorsson et al.78 FCP 1.12 0.57 1.46 1.32
Liu et al.79 MLP 0.86±0.13 0.57±0.05 1.25±0.24 0.76±0.08
Knoop et al.71 DFT (extrapolated) 1.40±0.39 – – –
Review by Wei et al.80 Experiments 0.45 to 1.9 – – –

TABLE VI. Thermal conductivity κ of tin selenide at 300 K.

3. Thermal Conductivity

Finally, we proceed to GK calculations, following the ap-
proach outlined in our previous work42,81. Finding that sim-
ulation cells with N=864 atoms and a simulation duration
of t0=1ns yield converged results (see Supp. Mat.), we run
11 MD simulations using the glp package and SO3KRATES,
computing J at every step.

Table VI shows the result: For M=2,3, SO3KRATES in ex-
cellent agreement with the work by Brorsson et al.78, which
uses a force constant potential (FCP). A larger difference
is observed with the work by Liu et al.79, who, however,
use the PBE exchange-correlation functional, as opposed to
PBEsol, which was used for the present work. The ob-
served thermal conductivity is consistent with experiments, as
well as the size-extrapolated DFT result of Knoop et al.71.
The anisotropy of κ in SnSe is captured as well. Over-
all, SO3KRATES with more than one interaction step is able
to capture the converged thermal conductivity of SnSe, us-
ing only training data from the thermalization step of a full
aiGK workflow; long-running equilibrium ab initio MD sim-
ulations, the bottleneck of the GK method, have been avoided.

VII. CONCLUSION

We demonstrated that the stress and heat flux can be com-
puted efficiently with AD for potentials based on a graph of
atom-pair vectors, which we termed GLPs, and provided ex-
ample implementations in the glp package44. Numerical ex-
periments for Lennard-Jones argon and tin selenide with the
SO3KRATES GLP, verified that these quantities are computed
correctly and consistently. The equivariant SO3KRATES GLP
was shown to predict cohesive properties and thermal conduc-
tivity of SnSe in good agreement with DFT, other MLPs, and
experiments, confirming the practical relevance of computa-
tional access to stress and heat flux.

This work enables the use of a large class of recently de-
veloped MLPs, those which can be described in the GLP
framework, in computational materials science, and in par-
ticular for the calculation of thermal conductivities using the
GK method. For GLPs implemented with jax, the glp pack-
age is provided to enable the calculation of stress and heat flux
without requiring further implementation efforts.

DATA AND CODE AVAILABILITY

The data and code that support the findings of this
study are available at doi:10.5281/zenodo.7852530 and at
https://github.com/sirmarcel/glp-archive. The glp pack-
age is available at https://github.com/sirmarcel/glp. The
SO3KRATES model is implemented in mlff, available
at https://github.com/thorben-frank/mlff. Further infor-
mation can be found in the Supp. Mat. and at
https://marcel.science/glp.
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I. HEAT FLUX WITH MINIMUM IMAGE CONVENTION

We assume that reff
c is chosen such that each atom i can

interact with at most one replica of each other atom j, i.e., reff
c

does not exceed half the smallest distance between opposing
faces of the simulation cell. In that case, the partial derivative
in Eq. 17 of the manuscript can be computed with respect to
the equivalent position in the simulation cell. However, the
atom-pair vector r ji must still connect ri in the simulation cell
with the respective position r j, which may be a replica. This
can be ensured by adopting the minimum image convention
(MIC), yielding

JMIC
pot := ∑

i, j∈Rsc

(
rMIC

ji

(
∂Ui

∂r j
·v j

))
(1)

While this form of the heat flux requires no replica positions,
it is also unsuitable for the efficient implementation with auto-
matic differentiation (AD): As different factors are multiplied
with each entry of the Jacobian ∂Ui/∂r j, the evaluation of
this heat flux requires the computation of the explicit full Ja-
cobian, leading to quadratic scaling.

However, as it requires no modification in the implemen-
tation of a given potential, and can be implemented directly,
albeit inefficiently, with AD, we use JMIC

pot as baseline for the
development of more specialized approaches.

II. LENNARD-JONES ARGON

A. Implementation

The Lennard-Jones potential used in this work is based on
the ‘smooth’ implementation in ase1, where the standard pair
potential is multiplied with a cutoff function

fc(r) =





1 for r < ro
(r2

c−r2)2(r2
c+2r2−3r2

o)
(r2

c−r2
o)

3 for ro ≤ r ≤ rc

0 for r > rc ,

(2)

ensuring that energies and forces decay continuously to zero
as atoms approach rc.

This was implemented in glp, and energy predictions were
verified to ensure that glp and ase yield identical results.

B. Test of stress and heat flux

In order to verify the approach described in this work, and
to test the glp framework, stress and heat flux were com-
pared with the implementation in ase, where derivatives are
computed analytically. The experiment consists of computing
these properties for 100 randomly perturbed simulation cells
of Lennard-Jones argon, starting from an 8× 8× 8 supercell
of the face-centred cubic primitive cell with lattice parameter
3.72Å and angle 60°.

Positions are then modified with perturbations drawn from
a normal distribution with σ=0.01Å; a random strain with
each component drawn from a uniform distribution over
[−1%,1%] is also applied. Velocities, required for the heat
flux, are drawn from a Boltzmann distribution corresponding
to 10 K. For the heat flux, only Jpot is computed, as Jconv is
identical for all implementations.

III. TIN SELENIDE

A. Implementation of test and heat flux

For this experiment, the relaxed 0 K primitive cell of SnSe,
obtained from the work by Knoop et al.2, was extended to
a 4 × 8 × 8 supercell, ensuring that reff

c does not exceed
half length of the smallest lattice vector. Otherwise, the ex-
periment proceeded identically to the one described in Sec-
tion II B.

Tables I and II contain comparisons of the glp stress with
finite differences for M=1 and M=3. Results are similar to
the M=2 case.

B. Evaluating the potential

This section presents additional results with SO3KRATES
and SnSe, which were used to assess the quality of the
machine-learning potentials (MLPs) used in the work.

Figure 1 shows the phonon band structure for SO3KRATES
with different M compared with the density-functional theory
(DFT) reference. Agreement between DFT and SO3KRATES
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Single Double
Equation MAE (eV) MAPE (%) MAE (eV) MAPE (%)

10 1.42 ·10−2 4.33 ·10−2 1.24 ·10−4 2.29 ·10−4

11 1.42 ·10−2 4.32 ·10−2 1.24 ·10−4 2.29 ·10−4

12 1.42 ·10−2 4.29 ·10−2 1.24 ·10−4 2.29 ·10−4

13 1.42 ·10−2 4.33 ·10−2 1.24 ·10−4 2.29 ·10−4

14 1.42 ·10−2 4.32 ·10−2 1.24 ·10−4 2.29 ·10−4

15 1.42 ·10−2 4.29 ·10−2 1.24 ·10−4 2.29 ·10−4

TABLE I. Error in stress for tin selenide, comparing different for-
mulations to finite differences, for SO3KRATES with M=1. Results
are shown for both single and double precision arithmetic, and for
σ ·V in place of σ.

Single Double
Equation MAE (eV) MAPE (%) MAE (eV) MAPE (%)

10 2.07 ·10−2 4.86 ·10−2 1.91 ·10−4 3.71 ·10−4

11 2.07 ·10−2 4.87 ·10−2 1.91 ·10−4 3.71 ·10−4

12 2.06 ·10−2 4.86 ·10−2 1.91 ·10−4 3.71 ·10−4

13 2.07 ·10−2 4.86 ·10−2 1.91 ·10−4 3.71 ·10−4

14 2.07 ·10−2 4.87 ·10−2 1.91 ·10−4 3.71 ·10−4

15 2.06 ·10−2 4.86 ·10−2 1.91 ·10−4 3.71 ·10−4

TABLE II. Error in stress for tin selenide, comparing different for-
mulations to finite differences, for SO3KRATES with M=3. Results
are shown for both single and double precision arithmetic, and for
σ ·V in place of σ.

increases systematically with M; satisfactory agreement is ob-
tained from M=2 onwards.

The vibrational density of states can be seen in Fig. 2. Over-
all features are captured for all values of M. Performance is
slightly improved for M=2,3, which behave similarly.

In line with observations in the main text, M=2 can be
considered sufficient to model vibrational properties. While
slight improvements are obtained with M=3, the impact on
thermal conductivity is negligible. Energy-volume curves, on
the other hand, are improved by M=3.

C. Green-Kubo workflow and convergence

As the Green-Kubo (GK) method is formally valid in the
thermodynamic limit, the convergence of κ with respect to
simulation size and duration must be considered. Additional
considerations arise from the use for noise reduction in the
resulting heat flux autocorrelation function (HFACF). In this
work, following previous work3,4 a lowpass filter with fre-
quency 1 THz is applied to the integrated HFACF, which is
then differentiated via finite differences to yield a smooth
HFACF from which the integration cutoff can be determined
as the first zero crossing. No further noise reduction is per-
formed; no gauge terms are removed and the full heat flux
J = Jpot +Jconv is computed at all timesteps.

Eleven trajectories with timestep ∆t = 4fs are used through-
out, initialised from snapshots from a 0.2 ns NV T thermal-
ization trajectory using the Langevin thermostat implemented

G X S Y GZ U R T

Z
—
Y

T
—
U

X
—
S R

Wave vector

0

1

2

3

4

5

6

F
re
q
u
en
cy

(T
H
z)

0 10
Density of states

FHI-aims M=1 M=2 M=3

FIG. 1. Phonon band structure and density of states for tin selenide
for SO3KRATES models with M=1,2,3 compared with FHI-aims.
Results are reported for a supercell with 256 atoms.
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FIG. 2. Vibrational density of states for tin selenide at 300 K
for SO3KRATES models with M=1,2,3 compared with FHI-aims.
Results are reported for a trajectory with 30 ps duration in a supercell
with 256 atoms, started from identical initial configurations. Vertical
lines indicate prominent peaks in the FHI-aims result.

in ase1. The primitive cell at 300 K from the work by
Knoop et al.2 was used, creating n×2n×2n supercells to ob-
tain simulation cells at different N = 32n3.

Figure 3 displays the convergence of κ with respect to sim-
ulation cell size N and simulation duration t0, for SO3KRATES
with M=2. No significant increases in κ are observed for
simulation cell sizes above N=864 and simulation durations
above t0=2ns. We therefore choose (864,2ns) as ‘produc-
tion’ settings for this work.
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FIG. 3. κ for tin selenide at 300 K for different choices of sim-
ulation cell size N and simulation duration t0 for SO3KRATES with
M=2. Error bars indicate the standard error across trajectories. N
is shown as N1/3, which is proportional to the length scale of the
simulation cell. For each choice of N, t0 from 0.1 ns to 4.0 ns are
shown with a horizontal offset. ‘Production’ settings (864,2ns) are
indicated; the associated standard error is shown as a shaded band.

D. Model and training

Here we use the SO3KRATES message-passing neural net-
work (MPNN), which is implemented in the mlff package5.
The number of interaction steps M is varied from M = 1 up to
M = 3, whereas we fix the cutoff radius to rc = 5Å, the em-
bedding dimension to F = 132 and the maximal degree in the
equivariant branch to lmax = 3. Non-local corrections are not
used. After M message-passing updates the final embeddings
are put through a two layered feed-forward neural network
(FFNN) with SILU (sigmoid linear unit) non-linearity to ob-
tain per-atom energies. The total potential energy is given as
the sum of the per-atom energies.

The model is trained by minimizing a joint loss of the po-
tential energy and per-atom forces with loss weightings of
0.01 and 0.99, respectively using the ADAM optimizer6. In
total 3000 reference structures of tin selenide are used for
training, of which 600 are reserved for validation. The train-
ing is stopped after 2500 epochs, with a batch size of 10. After
each epoch, the performance of the current model is evaluated
on the validation data and the best-performing model is saved
for production. The initial learning is set to 10−3 and is re-
duced every 100k steps using exponential learning rate decay
with a decay factor of 0.7. No early stopping is employed.
Training times on a single NVIDIA A100 40GB GPU range
from 2h54min for M = 1 up to 6h46min for M = 3.

IV. EQUATION OF STATE (EOS)

To describe cohesive properties, we use the Vinet equation
of state7–10 for pressure p as function of volume V :

p(V ) =
3B0

X2 (1−X)eη(1−X) , (3)

with

X =

[
V
V0

] 1
3

and η =
3
2
(
B′0−1

)
, (4)

where V0 is the volume at vanishing pressure, B0 the bulk
modulus and B′0 its volume derivative. The respective energy
function that fulfills p =−dE/dV is given by11

E(X) = E0 +
2B0V0(

B′0−1
)2

(
2−
(
5+3B′0(X−1)−3X

)
eη(1−X)

)
.

(5)

These functions are fitted to the computed values for E or p
and V to obtain V0, B0, B′0, and the minimal energy E0 in the
case of Eq. (5).
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