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ABSTRACT
Machine-learning potentials provide computationally efficient and accurate approximations of the Born–Oppenheimer potential energy sur-
face. This potential determines many materials properties and simulation techniques usually require its gradients, in particular forces and
stress for molecular dynamics, and heat flux for thermal transport properties. Recently developed potentials feature high body order and can
include equivariant semi-local interactions through message-passing mechanisms. Due to their complex functional forms, they rely on auto-
matic differentiation (AD), overcoming the need for manual implementations or finite-difference schemes to evaluate gradients. This study
discusses how to use AD to efficiently obtain forces, stress, and heat flux for such potentials, and provides a model-independent implemen-
tation. The method is tested on the Lennard-Jones potential, and then applied to predict cohesive properties and thermal conductivity of tin
selenide using an equivariant message-passing neural network potential.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155760

I. INTRODUCTION

Molecular dynamics (MD) simulations enable computational
prediction of thermodynamic quantities for a wide range of quan-
tum systems, and constitute a cornerstone of modern computational
science.1 In MD, systems are simulated by propagating Newton’s
equations of motion – potentially modified to model statistical
ensembles – numerically in time, based on the forces acting on each
atom due to their movement on the Born–Oppenheimer potential-
energy surface (PES). Therefore, the quality of the underlying PES is
important for the predictive ability of this method. First-principles
electronic structure methods such as density-functional theory
(DFT) can be used to perform high-accuracy ab initio molecular
dynamics (aiMD) simulations,2 provided the exchange-correlation
approximation is reliable.3 Such approaches are, however, restricted
by high computational cost, severely limiting accessible size and time
scales. Computationally efficient approximations to the underlying
PES are therefore required for the atomistic simulation of larger
systems: Forcefields (FFs) are built on analytical functional forms
that are often based on physical bonding principles, parametrized

to reproduce quantities of interest for a given material.4 They
are computationally cheap, but parametrizations for novel mate-
rials are not always available, and their flexibility is limited by
their fixed functional form. Machine-learning interatomic potentials
(MLIPs),5–11 where a potential is inferred based on a small set of
reference calculations, aim to retain near first-principles accuracy
while remaining linear scaling with the number of atoms. While
MLIPs are limited, in principle, to modeling the physical mecha-
nisms present in the training data, they have nevertheless emerged
as an important tool for MD,12–16 often combined with active learn-
ing schemes.17–21 Modern MLIPs can include semi-local interactions
through message-passing (MP) mechanisms,22 internal equivariant
representations,23 and body-order expansions,24 which enable the
efficient construction of flexible many-body interactions. In such
complex architectures, the manual implementation of derivatives
is often unfeasible. Finite-difference approaches require tuning of
additional parameters, as well as repeated energy evaluations. Auto-
matic differentiation (AD)25,26 presents an intriguing alternative:
If the computation of the potential energy U is implemented in a
suitable framework, derivatives such as the forces F or the stress
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σ can be computed with the same asymptotic computational cost
as computing the energy. This is accomplished by decomposing
the underlying “forward” computation into elementary operations
with analytically tractable derivatives, computing local gradients for
a given input, and then combining the resulting values using the
chain rule.

This work provides a systematic discussion of and an intro-
duction to the use of AD to compute forces, stress, and heat flux
for MLIPs. While the calculation of forces with AD is common
practice,27–30 stress and heat flux are not yet commonly available for
many MLIPs. Both quantities have been the focus of much previ-
ous work due to the difficulty of defining and implementing them
for many-body potentials and periodic boundary conditions.31–42

Introducing an abstract definition of MLIPs as functions of a graph
representation of atomistic systems, unified formulations of stress
and heat flux are given, which can be implemented generally for
any such graph-based machine-learning potential (GLP). An exam-
ple implementation using jax43 is provided in the glp package.44 To
validate the approach, different formulations of stress and heat flux
are compared for the Lennard-Jones potential,45 where analytical
derivatives are readily available for comparison, as well as a state-
of-the art message-passing neural network (MPNN), SO3KRATES.46

Having established the correctness of the proposed implementa-
tion, the ability of SO3KRATES to reproduce first-principles cohe-
sive properties and thermal conductivity of tin selenide (SnSe)
is studied.

II. AUTOMATIC DIFFERENTIATION
Automatic differentiation (AD) is a technique to obtain deriva-

tives of functions implemented as computer programs.25,26 It is dis-
tinct from numerical differentiation, where finite-difference schemes
are employed, and symbolic differentiation, where analytical deriva-
tives are obtained manually or via computer algebra systems, and
then implemented explicitly. Instead, AD relies on the observation
that complex computations can often be split up into elementary
steps, for which derivatives are readily implemented. If one can
track those derivatives during the computation of the forward, or
“primal,” function, the chain rule allows to obtain derivatives.

For this work, two properties of AD are particularly relevant: It
allows the computation of derivatives with respect to quantities that
are explicitly used in the forward computation, and it can do so at
the same asymptotic computational cost as the forward function. In
particular, AD can obtain two quantities efficiently: Given a differ-
entiable function u : RN → RM , the Jacobian of u is defined as the
M ×N matrix ∂ui(x)/∂xj. AD can then obtain Jacobian-vector and
vector-Jacobian products, i.e., the multiplication and summation of
factors over either the input or the output dimension. This corre-
sponds to propagating derivatives from the inputs forwards, leading
to forward-mode AD, or from the end result backwards, leading to
reverse-mode AD. As many popular AD frameworks are primar-
ily implemented to work with neural networks, where scalar loss
functions must be differentiated with respect to many parameters,
reverse-mode AD, also called “backpropagation,”47 is more gener-
ally available. More recent frameworks implement both approaches,
for instance jax43 which is used in the present work. AD can also
be leveraged to compute contractions of higher-order derivative
operators.48

III. CONSTRUCTING GRAPH MLIPS
This work considers periodic systems,49 consisting of N atoms

with atomic numbers Zi placed in a simulation cell which is infinitely
periodically tiled in space. We define

Rsc := { ri : i = 1 . . .N } positions in simulation cell

Z := {Zi : i = 1 . . .N } atomic numbers

B := { ba : a = 1, 2, 3 } basis or lattice vectors

rin := ri +∑a naba (replica) position

Rall := { rin : ri ∈ Rsc, n ∈ Z3 } all (bulk)positions

rij := rj − ri atom−pair vector

∣rMIC
ij ∣ := min

n∈Z3
∣rj +∑

a
naba − ri∣ minimum image convention

In this setting, a MLIP is a function that maps the structure
represented by its positions, lattice vectors, and atomic numbers,
(Rsc, B, Z), to a set of atomic potential energies U ∶= {U i : i = 1,
. . . , N}. Each U i is a many-body function of positions; in general,
we do not assume that a further decomposition into body-ordered
contributions is available. The total potential energy is then obtained
by summing over atomic contributions: U = ∑N

i=1 Ui. Since AD relies
on the forward computation to calculate derivatives, it is sensitive to
the exact implementation of this mapping. Care must be taken to
construct the MLIP such that required derivatives are available.

This work considers MLIPs that scale linearly with N. There-
fore, the number of atoms contributing to a given U i must
be bounded, which is achieved by introducing a cutoff radius
rc, restricting interactions to finite-sized atomic neighborhoods
N(i) = { r j : ∣rij∣ ≤ rc, r j ∈ Rall }. To ensure translational invariance,
MLIPs do not rely on neighbor positions directly, but rather on
atom-pair vectors centered on i, from which atom-pair vectors
between neighboring atoms can be constructed, for instance to
determine angles.

The resulting structure can be seen as a graph G. The vertices
V of this graph are identified with atoms, labeled with their respec-
tive atomic numbers, and connected by edges E that are labeled
with atom-pair vectors if placed closer than rc. Starting from G,
MLIPs can be constructed in different ways: Local MLIPs compute
a suitable representation50 of each neighborhood, and predict U i
from that representation using a learned function, such as a neural
network or a kernel machine. Such models are conceptually sim-
ple, but cannot account for effects that extend beyond rc. Recently,
semi-local models such as MPNNs22,29,51–58 have been introduced to
tackle this shortcoming without compromising asymptotic runtime.
In such models, effective longer-range interactions are built up iter-
atively by allowing adjacent neighborhoods to interact repeatedly.
We introduce the parameter M, the interaction depth, to quantify
how many such iterations are included. After M interactions, the
energy at any given site can depend implicitly on positions within
M hops on the graph, which we denote by NM(i), leading to an
effective cutoff radius reff

c =M rc. Atomic potential energy contri-
butions can therefore depend on positions up to a distance of reff

c .
Since interactions are confined to neighborhoods at each iteration,
the computational cost of semi-local models nevertheless remains
linear in N and M.
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FIG. 1. Standard (left) and unfolded (right) implementation of a periodic system. The left figure shows a simulation cell (solid boundary, black circles), as well as the replicas
implicitly considered through the use of the minimum image convention (dashed boundaries, red circles). For selected atoms, the cutoff radius rc (solid circle) and the effective
cutoff radius reff

c (dashed circle) after two steps of message passing is shown. The right figures shows the corresponding unfolded simulation cell, where all positions that can
interact with atoms in the simulation cell have been explicitly included (solid boundaries, black circles).

We term this class of potentials, which act on sets of neighbor-
hoods and use atom-pair vectors as input, graph-based machine-
learning potentials (GLPs). Models with M = 1 are termed local,
those with M > 1 semi-local. By construction, this framework does
not include global interactions: GLPs are still local at thermody-
namic scales. Nevertheless, the distinction between local and semi-
local models is useful for the purpose of classifying the functional
dependence of atomic potential energy contributions, which in turn
determines the derivatives available via AD: In a local model, U i is
a function only of atom-pair vectors within its neighborhood, and
derivatives of U with respect to a given rij therefore uniquely map
to one U i. This is not the case for semi-local models and will be
discussed further in Sec. IV.

We consider two strategies to construct GLPs: The “standard”
way, which includes periodic boundary conditions via the edges
in the graph, and an “unfolded” formulation, where periodicity is
explicitly included via replica positions. Both concepts are illustrated
in Fig. 1.

In the standard architecture, vertices in G are identified with
atoms in the simulation cell, using the minimum image convention
(MIC) to include periodicity. Edges Eij exist between two atoms i and
j in Rsc if they interact:

Estd
ij = { rMIC

ij : ∣rMIC
ij ∣ ≤ rc }. (1)

We denote the graph constructed in this manner as Gstd and the set
of edges Estd.

Alternatively, we can first determine the total set of positions
Runf ⊂ Rall that can interact with atoms in the simulation cell, cre-
ating an unfolded system extracted from the bulk, consisting of Rsc

and all replicas with up to reff
c distance from the cell boundary. This

construction can be performed efficiently, and adds only a number

of positions that is proportional to the surface of the simulation cell,
therefore becoming increasingly negligible as N increases at constant
density.42 However, the number of positions increases cubically with
M, and this construction is therefore practical only for small M (see
supplementary material).

We proceed by constructing a correspondingly modified graph
Gunf, and compute potential energies for vertices corresponding
to atoms in the simulation cell only. By construction, since the
same atom-pair vectors appear in the graph, this approach then
reproduces the potential energy of the standard method. A similar
construction appears in spatial decomposition approaches for multi-
device parallelization, discussed for instance in Ref. 59: To contain
the calculation of interactions in one device, all interacting positions
outside a given domain must be considered as “ghost atoms.” The
number of ghost atoms corresponds to the number of additional
atoms due to the unfolding. As this approach becomes unfeasible
for large values of reff

c , alternative schemes must be considered, for
instance propagating message-passing updates, and later gradient
information, between devices.

IV. DERIVATIVES
Having constructed the forward function for a given GLP, we

can compute derivatives with respect to its inputs using AD. In this
section, we discuss how forces, stress, and heat flux can be computed
in this manner, and demonstrate the relationship between different
formulations.

A. Forces
For MD, the most relevant quantities are the forces
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Fi = −
∂U
∂ri

(2)

acting on the atoms in the simulation cell. Since Rsc are an explicit
input, they can be computed directly with AD: U is a scalar, and
this therefore is a trivial Jacobian-vector product, which can be
computed with the same asymptotic cost as U.

An interesting situation arises if pairwise forces are desired.
Strictly speaking, in a many-body MLIP, where interactions can-
not be decomposed into pairwise contributions, such quantities are
not well-defined and Newton’s third law is replaced by conservation
of momentum, which requires ∑N

i=1 Fi = 0. Nevertheless, pairwise
forces with an antisymmetric structure can be defined by exploit-
ing the construction of GLPs in terms of atom-pair vectors. In the
standard formulation, U is a function of all edges,

U = U({ rij : ij ∈ Estd }). (3)

Hence, by the chain rule,

Fi = ∑
j∈N(i)

∂U
∂rij
− ∂U
∂rji

(4)

=: ∑
j∈N(i)

Fij. (5)

The pairwise forces such defined exhibit anti-symmetry, and there-
fore fulfil Newton’s third law. For M = 1, the local case, this
definition reduces to a more standard form37

Fij =
∂Ui

∂rij
− ∂Uj

∂rji
. (6)

However, for general GLPs with M > 1, this definition includes a
sum over all Uk that are influenced by a given edge

Fij = ∑
k∈NM

(i)

∂Uk

∂rij
− ∂Uk

∂rji
, (7)

subverting expectations connecting local potential energies to pair-
wise forces. We note that this seeming contradiction is a conse-
quence of the combination of the peculiar construction of GLPs and
AD: In principle, it is always possible to define extended neighbor-
hoods up to reff

c , obtaining U i purely as a function of atom-pair
vector originating from i. However, to construct derivatives with
respect to these atom-pair vectors with AD, these extended neigh-
borhoods have to be constructed and included explicitly, therefore
negating the computational efficiency gains of a GLP architecture.

B. Stress
The definition of the (potential) stress is60

σ = 1
V

∂U
∂ϵ
∣ϵ=0, (8)

with U denoting the potential energy after a strain transformation
with the 3 × 3 symmetric tensor ϵ

r → (𝟙 + ϵ) ⋅ r, (9)

acting on Rall.

One approach, followed for instance by schnetpack,28,61

schnetpack 2.0,30 and nequip,54,62 is to inject the strain trans-
formation explicitly into the construction of the GLP. This can be
done at different points: One can transform Rsc and B before con-
structing G, directly transform atom-pair vectors, or transform all
contributing positions Runf. Alternatively, as the inner derivative of
inputs with respect to ϵ is simply the input, the derivative of U with
respect to inputs can be obtained with AD, and the stress can then
be computed analytically from the results. This avoids modifying the
forward computation of U entirely.

These approaches yield, with ⊗ denoting an outer product,

Vσ = ∂U(Rsc, B)
∂ϵ

(10)

= ∂U(E)
∂ϵ

(11)

= ∂U(Runf)
∂ϵ

(12)

= ∑
i∈Rsc

ri ⊗
∂U
∂ri
+∑

b∈B
b⊗ ∂U

∂b
(13)

=∑
ij∈E

rij ⊗
∂U
∂rij

(14)

= ∑
i∈Runf

ri ⊗
∂U
∂ri

, (15)

recovering previous formulations.31,33 Louwerse and Baerends31

considered the calculation of the stress for periodic systems, high-
lighting that contributions from replica positions must be consid-
ered, either by computing the elementary definition in Eq. (10) or the
inclusion of the second term in Eq. (13). Both options are considered
“much effort” in that work. Thompson et al.33 discuss an alternative
approach based on explicitly including replica positions, obtaining a
result similar to the unfolded construction used for Eq. (15).

All these forms of the stress are equivalent and can be imple-
mented directly with AD, obtaining numerically identical results as
seen in Tables I and IV. In all cases, as the scalar U is differentiated
with respect to its inputs, asymptotic cost remains linear.

However, as AD computes algorithmic derivatives, which
reflect the particular implementation of the energy function exactly,
care must be taken to ensure that the strain transformation in Eq. (9)
is applied consistently. For example, obtaining a correct stress with
Eqs. (10) and (13), where derivatives are obtained before the con-
struction of the input graph, requires that the implementation of the
MIC used matches the definition in Sec. III. If the MIC is imple-
mented using fractional coordinates,63 this can be challenging. In
such cases, it may be preferable to rely on approaches that compute
derivatives on the basis of the graph input, such as Eqs. (11) and
(14). This method is adopted, for instance, by jax-md.27 Many other
MLIP packages use offsets to implement the MIC, and can there-
fore use Eq. (10), for instance schnetpack,61 schnetpack 2.0,30

nequip,62 and mace.64 The matgl package,65 on the other hand,
uses Eq. (14), avoiding the introduction of a strain transformation.
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TABLE I. Error in stress for Lennard-Jones argon, comparing different formulations,
as well as finite differences, to analytical derivatives. Results are shown for both single
and double precision arithmetic, and for σ ⋅ V in place of σ. Errors per component
can be found in the supplementary material.

Equations

Single Double

MAE (eV) MAPE (%) MAE (eV) MAPE (%)

Fin.diff. 7.70 × 10−4 1.04 × 10−1 1.13 × 10−6 1.18 × 10−4

(10) 1.19 × 10−5 1.79 × 10−3 3.15 × 10−6 3.69 × 10−4

(11) 8.25 × 10−6 1.27 × 10−3 3.15 × 10−6 3.69 × 10−4

(12) 9.17 × 10−6 1.36 × 10−3 3.15 × 10−6 3.69 × 10−4

(13) 1.18 × 10−5 1.79 × 10−3 3.15 × 10−6 3.69 × 10−4

(14) 8.22 × 10−6 1.27 × 10−3 3.15 × 10−6 3.69 × 10−4

(15) 9.16 × 10−6 1.37 × 10−3 3.15 × 10−6 3.69 × 10−4

Additional difficulty arises if strain derivatives of atomic
energies, i.e., atomic stresses

σi := 1
V

∂Ui

∂ϵ
i ∈ Rsc (16)

are required. Their calculation requires either one backward pass per
U i, or one forward pass for each entry in ϵ. If only reverse-mode
AD is available, its evaluation therefore scales quadratically with N.
Linear scaling is retained with forward mode. For GLPs with M = 1,
linear scaling in reverse mode can be recovered by using Eq. (14):
Every edge can be uniquely assigned to one U i, and therefore the
derivatives can be used to construct atomic stresses. For M > 1, this
is not possible; similar to the observations of Sec. IV A, atomic
stresses take a semi-local form.

C. Heat flux
Finally, we discuss the heat flux, which is required to compute

thermal conductivities with the Green–Kubo (GK) method.66–68 It
describes how energy flows between atoms, and has been the focus
of a large body of previous work.32,35,37,40–42,69

The fundamental definition of the heat flux for MLIPs was
originally derived by Hardy70 for periodic quantum systems. It
reads42

Jfull = ∑
i∈Rsc
j∈Rall

(rji(
∂Ui

∂rj
⋅ vj)) +∑

i∈Rsc

Eivi (17)

=: Jpot + Jconv, (18)

where vi denote velocities, mi masses, and Ei = Ui + 1/2miv2
i is the

total energy per atom. Intuitively, the “potential” term Jpot describes
how the total instantaneous change in U i can be attributed to inter-
actions with other atoms, with energy flowing between them, while
the second, “convective,” term Jconv describes energy being carried
by individual atoms. In the present setting, Jconv can be computed
directly, as Ei are available. Jpot, however, presents a challenge in
an AD framework: In principle, Jpot could be computed directly,
obtaining the required partial derivatives with AD. However, as
Jpot is neither a Jacobian-vector nor a vector-Jacobian product, this

requires repeated evaluations over the input or output dimension.
Even when restricting j ∈ Rsc, which can be achieved by introducing
the MIC for rji (see supplementary material for details),

JMIC
pot = ∑

i,j∈Rsc

(rMIC
ji (

∂Ui

∂rj
⋅ vj)), (19)

computational cost of a direct implementation with AD scales
quadratically with N, rendering the system sizes and simulation
times required for the GK method inaccessible.42 Based on previous
work,42 we therefore survey approaches that restore linear scaling in
the following.

For M = 1, edges can be uniquely assigned to atomic energy
contributions as discussed for atomic stresses in Sec. IV B. In this
case

∂U
∂rij
= ∑

k∈Rsc

∂Uk

∂rij
= ∂Ui

∂rij
= ∂Ui

∂rj
, (20)

so that

JM=1
pot =∑

ij∈E
(rji(

∂U
∂rij
⋅ vj)), (21)

which requires a single evaluation of reverse-mode AD.
We note that the terms appearing in front of vj also appear in

the stress in Eq. (14). However, for a given j, the pre-factor can-
not be identified with the atomic stress as defined in Eq. (16) – the
atomic energy being differentiated is not U j, but U i. The indices
can only be exchanged for additive pairwise potentials; this inequiv-
alence was recently corrected in the large-scale atomic/molecular
massively parallel simulator (LAMMPS) code.40

This approach is not applicable for M > 1, since the relation
in Eq. (20) no longer holds, and the mapping between stress con-
tributions and heat flux contributions becomes invalid. Therefore,
Eq. (19) must be used, incurring quadratic computational cost.

To restore linear scaling, one must find a way to rewrite Eq. (19)
in terms of either Jacobian-vector or vector-Jacobian products by
executing the sum over i before taking the derivative with respect to
j. The use of the MIC for the rMIC

ji prefactors prevents this: An index-
dependent offset appears in rMIC

ji = ri − r j +∑a n ji
a ba. Adopting the

unfolded construction avoids this issue, as replica positions are now
included explicitly. The heat flux can then be split into two terms,
which can be rewritten in a form suitable for AD.42

Introducing auxiliary positions raux
i , which are numerically

identical to the positions ri, but not used to compute U, and defining
the energy barycenter B = ∑i ∈Rsc

raux
i Ui, the heat flux becomes

JM≥1
pot = ∑

j∈Runf

∂B
∂rj
⋅ vj − ∑

j∈Runf

(rj(
∂U
∂rj
⋅ vj)). (22)

The first term requires three reverse-mode evaluations, or one
forward-mode evaluation. Correspondingly, the second term
requires one reverse-mode, or three forward-mode, evaluations.
Since the overhead introduced by explicitly constructing Runf scales
as N2/3, overall linear scaling is restored, albeit with a pre-factor due
to the higher number of positions to be considered.

To summarize, we have introduced two forms of the heat flux
that can be implemented efficiently with AD: Eq. (21), which applies
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TABLE II. Error in heat flux for Lennard-Jones argon, comparing different formula-
tions to analytical derivatives. Results are shown for both single and double precision
arithmetic.

Single Double

Equations
MAE

(eV Å/fs)
MAPE

(%)
MAE

(eV Å/fs)
MAPE

(%)

(19) 2.81 × 10−9 1.71 × 10−2 1.47 × 10−10 6.81 × 10−4

(21) 2.84 × 10−9 1.67 × 10−2 1.47 × 10−10 6.81 × 10−4

(22) 2.44 × 10−9 1.54 × 10−2 1.47 × 10−10 6.81 × 10−4

to GLPs with M = 1, and Eq. (22), which applies for M ≥ 1, but intro-
duces some additional overhead. Both are equivalent to the general,
quadratically-scaling, form given in Eq. (17), as seen in Tables II and
VI.

V. EXPERIMENTS
A. Lennard-Jones argon

The stress formulas in Eqs. (10)–(15) and heat flux formu-
las Eqs. (19), (21), and (22) have been implemented in the glp
package44 using jax.43 As a first step, we numerically verify this
implementation.

To this end, the Lennard-Jones potential45 is employed, where
analytical derivatives including those required for the heat flux are
readily available, and implementations are included in many pack-
ages, for example the atomic simulation environment (ASE).71 In
the GLP framework, the Lennard-Jones potential can be seen as an
extreme case of a M = 1 GLP, where U i is composed of a sum of pair
terms:

Ui =
1
2 ∑j∈N(i)

4ε(σ12

r12
ij
− σ6

r6
ij
). (23)

For this experiment, parameters approximating elemental
argon are used.72 100 randomly displaced and distorted geometries,

based on the 512-atom 8 × 8 × 8 supercell of the face-centered
cubic primitive cell with lattice parameter 3.72 Å and angle 60○ are
used. Random velocities to evaluate a finite heat flux are sampled
from the Boltzmann distribution corresponding to 10 K. Addi-
tional computational details are discussed in the supplementary
material.

Table I compares the stress formulations in Eqs. (10)–(15)
with finite differences. We report “best-case” results for finite dif-
ferences, choosing the stepsize that minimizes the error. In the
table, the mean absolute error (MAE) and mean absolute per-
centage error (MAPE) with respect to the analytical ground truth
are reported. All given formulations are found to be equiva-
lent. In single precision arithmetic, the AD-based implementa-
tions outperform finite differences, in double precision, errors are
similar.

For the heat flux, finite difference approaches are not feasible.
Therefore, only AD-based implementations are shown in Table II.
In the case of the Lennard-Jones potential, where M = 1, Eqs. (19),
(21), and (22) are found to be identical.

Having confirmed the numerical correctness of the presented
implementations, we then proceed with a benchmark of the com-
putation time of Eqs. (10)–(15). Here, we construct cubic supercells
of varying sizes, generating 1000 randomly displaced samples; addi-
tional details are given in the supplementary material. The results,
computed on one Nvidia V100 graphics processing unit (GPU), are
given in Table III: Overall, computation times per atom are simi-
lar for AD-based approaches. Computation time per atom decreases
with system size, as calculations are parallelized on the GPU. In this
case, stress formulations based on the unfolded construction are on
par with other approaches, indicating that in this setting, compu-
tational cost is dominated by graph construction, rather than the
evaluation of the potential itself. For more complex potentials, as
seen in Sec. VI, this is not the case, and the introduction of additional
positions yields significant computational cost. The best perfor-
mance in single precision is obtained for Eq. (14), which avoids the
use of a strain transformation, and re-uses gradients computed for
the forces. For double precision, Eq. (15) is optimal, which avoids
the use of the MIC or a strain transformation, and also re-uses
gradients.

TABLE III. Time per atom to compute stress with finite differences and different AD-based formulations for Lennard-Jones
argon. Results are shown for both single and double precision, and for different simulation cell sizes N.

Single Double

Time per atom (s) Time per atom (s)

Equations N = 864 N = 2048 N = 4000 N = 864 N = 2048 N = 4000

F.d. 3.1 × 10−5 1.6 × 10−5 9.9 × 10−6 3.8 × 10−5 2.1 × 10−5 1.4 × 10−5

(10) 1.0 × 10−6 7.1 × 10−7 6.0 × 10−7 1.8 × 10−6 1.3 × 10−6 1.1 × 10−6

(11) 7.7 × 10−7 5.1 × 10−7 4.5 × 10−7 1.3 × 10−6 9.8 × 10−7 8.0 × 10−7

(12) 9.2 × 10−7 5.4 × 10−7 3.7 × 10−7 1.1 × 10−6 6.7 × 10−7 4.9 × 10−7

(13) 9.4 × 10−7 6.7 × 10−7 5.8 × 10−7 1.6 × 10−6 1.3 × 10−6 1.0 × 10−6

(14) 7.2 × 10−7 4.5 × 10−7 3.6 × 10−7 1.2 × 10−6 9.0 × 10−7 7.1 × 10−7

(15) 8.9 × 10−7 5.3 × 10−7 3.7 × 10−7 1.0 × 10−6 6.5 × 10−7 4.6 × 10−7
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VI. TIN SELENIDE WITH SO3KRATES
To investigate stress and heat flux in a practical setting, we

now study tin selenide (SnSe) using the state-of-the-art SO3KRATES
GLP.46 In contrast to other equivariant MLIPs, for instance
NEQUIP,54 SO3KRATES replaces shared equivariant feature represen-
tations by separated branches for invariant and equivariant infor-
mation, whose information exchange is handled using an equivari-
ant self-attention mechanism. By doing so, one can achieve data
efficiency and extrapolation quality competitive to state-of-the-art
GLPs at reduced time and memory complexity. As non-local inter-
actions are not modeled in the GLP framework introduced in this
work, global interactions are disabled in the SO3KRATES models
used at present.

The training data for this task is obtained from a large-scale
ab initio Green–Kubo (aiGK) benchmark study by Knoop et al.,73,74

and consists of four aiMD trajectories in the NVT ensemble at
300 K and different volumes, from which a total of 3000 timesteps
are used. These simulations were performed as the first steps of
the aiGK workflow, first determining the equilibrium volume at
300 K and then generating thermalized starting geometries for the
long-running NVE simulations required for the GK method. For
this experiment, we repurpose these thermalization trajectories as
training data, aiming to replace the subsequent, computationally

expensive, aiMD with MLIP-accelerated MD. Additional details on
the MLIP training can be found in the supplementary material.

A. Implementation of stress and heat flux
While no analytical derivatives are available for SO3KRATES,

the implementation of the stress can be verified with finite differ-
ences, and the heat flux can be checked for consistency between

TABLE IV. Error in stress for tin selenide, comparing different formulations to finite
differences, for SO3KRATES with M = 2. Results are shown for both single and double
precision arithmetic, and for σ ⋅ V in place of σ. Results for other M, which are similar
to the one shown here, can be found in the supplementary material.

Equations

Single Double

MAE (eV) MAPE (%) MAE (eV) MAPE (%)

(10) 1.58 × 10−2 4.40 × 10−2 1.45 × 10−4 2.32 × 10−4

(11) 1.58 × 10−2 4.38 × 10−2 1.45 × 10−4 2.32 × 10−4

(12) 1.57 × 10−2 4.33 × 10−2 1.45 × 10−4 2.32 × 10−4

(13) 1.58 × 10−2 4.40 × 10−2 1.45 × 10−4 2.32 × 10−4

(14) 1.58 × 10−2 4.38 × 10−2 1.45 × 10−4 2.32 × 10−4

(15) 1.57 × 10−2 4.33 × 10−2 1.45 × 10−4 2.32 × 10−4

TABLE V. Time per atom to compute stress with finite differences and different AD-based formulations, for tin selenide and
SO3KRATES with M = 2. Results are shown for both single and double precision, and for different simulation cell sizes N.

Single Double

Time per atom (s) Time per atom (s)

Equations N = 864 N = 2048 N = 4000 N = 864 N = 2048 N = 4000

F.d. 1.2 × 10−4 9.5 × 10−5 8.8 × 10−5 2.2 × 10−4 1.9 × 10−4 1.8 × 10−4

(10) 8.2 × 10−6 7.1 × 10−6 6.9 × 10−6 1.6 × 10−5 1.5 × 10−5 1.5 × 10−5

(11) 8.0 × 10−6 7.0 × 10−6 6.9 × 10−6 1.6 × 10−5 1.5 × 10−5 1.5 × 10−5

(12) 3.5 × 10−5 2.5 × 10−5 2.0 × 10−5 8.4 × 10−5 5.7 × 10−5 4.6 × 10−5

(13) 8.0 × 10−6 7.1 × 10−6 6.9 × 10−6 1.6 × 10−5 1.5 × 10−5 1.5 × 10−5

(14) 8.0 × 10−6 7.0 × 10−6 6.8 × 10−6 1.6 × 10−5 1.5 × 10−5 1.5 × 10−5

(15) 3.5 × 10−5 2.5 × 10−5 2.0 × 10−5 8.4 × 10−5 5.7 × 10−5 4.6 × 10−5

TABLE VI. Error in heat flux for tin selenide, comparing different formulations to the baseline implementation in Eq. (19) for
SO3KRATES models with differing numbers of interaction steps M. Results are shown for both single and double precision
arithmetic.

Single Double

Equations M MAE (eV Å/fs) MAPE (%) MAE (eV Å/fs) MAPE (%)

(21) 1 5.78 × 10−9 9.74 × 10−4 1.09 × 10−17 1.73 × 10−12

(22) 1 8.75 × 10−8 2.65 × 10−2 1.69 × 10−16 4.31 × 10−11

(21) 2 3.73 × 10−3 5.84 × 102 3.73 × 10−3 5.84 × 102

(22) 2 9.36 × 10−8 1.00 × 10−2 1.54 × 10−16 1.60 × 10−11

(21) 3 1.01 × 10−3 3.27 × 102 1.01 × 10−3 3.25 × 102

(22) 3 9.74 × 10−8 3.04 × 10−2 1.65 × 10−16 2.91 × 10−11
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different implementations. Similar to Sec. V A, we use 100 randomly
displaced and distorted 4 × 8 × 8 supercells of the 0 K primitive cell
of SnSe for this experiment, sampling velocities from the Boltzmann
distribution at 10 K to evaluate a finite heat flux.

Table IV compares the stress implementations in Eqs. (10)–(15)
with finite differences, confirming the equivalence of all imple-
mented formulations. Table V shows the computation times for the
stress, for SO3KRATES with M = 2; additional tables for M = 1, 3 can
be found in the supplementary material. In contrast to the results
for the Lennard-Jones potential, all AD-based approaches using
the standard construction display similar performance, while the
unfolded formulations, Eqs. (12) and (15), are significantly slower
to compute, with the additional computational cost proportional to
the number of unfolded positions. We conclude that in this setting,
using a state-of-the-art MLIP, the computational cost of evaluat-
ing the potential dominates implementation differences in the stress,
and all standard methods can be used.

Table VI compares the heat flux formulations in Eqs. (21) and
(22) with the baseline in Eq. (19), implementing the quadratically-
scaling “Hardy” heat flux with the MIC. For M = 1, all formulations
are precisely equivalent. For M > 1, the semi-local case, only Eq. (22)
is equivalent to the “Hardy” heat flux; Eq. (21) does not apply and
consequently is not equivalent, displaying large deviations.

B. Equation of state and pressure
To assess the capability of SO3KRATES to predict stress- and

pressure-related materials properties, we calculate energy-volume
and pressure-volume curves for SnSe to obtain an equation of state
(EOS) of the Vinet form.75,76 The experiment is performed for unit
cells that were homogeneously strained up to ±2% starting from
the fully relaxed geometry, and relaxing the internal degrees of free-
dom afterwards. The energy vs volume curves for SO3KRATES with
M = 1, 2, 3 interaction steps are shown in Fig. 2 in comparison to
the DFT reference using the PBEsol exchange-correlation functional

FIG. 2. EOS (energy vs volume) computed with PBEsol-DFT (black dots) com-
pared to SO3KRATES with different numbers of interaction steps M. The connecting
lines have been obtained by fitting the Vinet EOS. Inset: Zoom into the region of
volumes that were covered during the training indicated by the gray shading.

TABLE VII. Cohesive properties of SnSe for PBEsol-DFT, and SO3KRATES with dif-
ferent numbers of interaction steps M obtained via the Vinet EOS. Best values are
highlighted. Values are in good agreement with existing literature.79

DFT M = 1 M = 2 M = 3

B0 (eV/Å 3) 0.230 0.236 0.229 0.223
B′0 (eV/Å 6) 5.576 2.830 4.815 7.118
V0 (Å 3) 26.429 26.489 26.322 26.388
Error B0 (%) ⋅ ⋅ ⋅ 2.58 −0.47 −3.14
Error B′0 (%) ⋅ ⋅ ⋅ −49.25 −13.64 27.66
Error V0 (%) ⋅ ⋅ ⋅ 0.22 −0.40 −0.16

with “light” default basis sets in FHI-aims.77,78 SO3KRATES with
three interaction steps (M = 3) yields the best visual agreement for
the energy-volume curve in Fig. 2, and the best equilibrium vol-
ume. To quantify the agreement, we evaluate the Vinet EOS and
extract the cohesive properties equilibrium volume V0, isothermal
Bulk modulus B0, and its volume derivative B′0 (functional forms are
given in the supplementary material). Results are listed in Table VII.
For SO3KRATES with three interaction steps (M = 3), the predicted
volume deviates by −16% from the DFT reference, and the deviation
of the bulk modulus is −3.14%. A larger error is seen for the volume
derivative of the bulk modulus, B′0, which deviates by 27.7%, indicat-
ing worse agreement further away from the training region. Overall,
the agreement between DFT and SO3KRATES when predicting cohe-
sive properties can be considered satisfactory. The energy-volume
predictions are very good, and transfer even to volumes that are
larger or smaller then the ones seen during training.

Finally we check the internal consistency of energy and stress
predictions with SO3KRATES by fitting energy-volume and pressure-
volume curves and verify that they yield identical parameters for
the EOS. Results are shown in Fig. 3. As seen there, results are in
perfect agreement, which verifies that stress and resulting pressure
are consistent with the underlying energy function as expressed in
Eq. (8).

C. Thermal conductivity
Finally, we proceed to GK calculations, following the approach

outlined in our previous work.42,83 Finding that simulation cells

FIG. 3. Comparison of EOS obtained by fitting energy-volume (red dashed) and
pressure-volume (black solid) data. The results are in perfect agreement.
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TABLE VIII. Thermal conductivity κ of tin selenide at 300 K.

Source Method κ (W/mK) κx κy κz

This work
SO3KRATES, M = 1 0.99 ± 0.10 0.53 ± 0.03 1.31 ± 0.13 1.12 ± 0.12
SO3KRATES, M = 2 1.13 ± 0.07 0.48 ± 0.04 1.59 ± 0.07 1.20 ± 0.07
SO3KRATES, M = 3 1.13 ± 0.10 0.56 ± 0.05 1.56 ± 0.15 1.32 ± 0.16

Brorsson et al.80 FCP 1.12 0.57 1.46 1.32
Liu et al.81 MLIP 0.86 ± 0.13 0.57 ± 0.05 1.25 ± 0.24 0.76 ± 0.08
Knoop et al.73 DFT (extrapolated) 1.40 ± 0.39 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Review by Wei et al.82 Experiments 0.45–1.9 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

with N = 864 atoms and a simulation duration of t0 = 1 ns yield
converged results (see supplementary material), we run 11 MD sim-
ulations using the glp package and SO3KRATES, computing J at
every step.

Table VIII shows the result: For M = 2, 3, SO3KRATES in
excellent agreement with the work by Brorsson et al.,80 which
uses a force constant potential (FCP). A larger difference is
observed with the work by Liu et al.,81 who, however, use the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional,
as opposed to PBEsol, which was used for the present work. The
observed thermal conductivity is consistent with experiments, as
well as the size-extrapolated DFT result of Knoop et al.73 The
anisotropy of κ in SnSe is captured as well.

Overall, we find that SO3KRATES with more than one inter-
action step is able to predict the converged thermal conductivity
of SnSe, using training data only from the thermalization step of
a full aiGK workflow. With this approach, long-running equilib-
rium aiMD simulations, the bottleneck of the GK method, have been
avoided.

VII. CONCLUSION
We explained how and demonstrated that the stress and heat

flux can be computed efficiently with AD for potentials based on a
graph of atom-pair vectors, which we termed GLPs, and provided
example implementations in the glp package.44 In order to provide
this functionality, glp also implements the necessary infrastructure
to generate input graphs from structures, as well as the ability to
compute forces. With this, it can be used as a lightweight driver for
MD. An example implementation of the velocity Verlet integrator84

is therefore also provided. This functionality is extended in the gkx
package,85 which implements the GK method using GLP.

Numerical experiments for Lennard-Jones argon and tin
selenide with the SO3KRATES GLP, verified that these quantities
are computed correctly, efficiently, and consistently. The equiv-
ariant SO3KRATES GLP was shown to predict cohesive properties
and thermal conductivity of SnSe in good agreement with DFT,
other MLIPs, and experiments, confirming the practical relevance
of computational access to stress and heat flux.

This work enables the use of a large class of recently devel-
oped MLIPs, those which can be described in the GLP framework,
in computational materials science, and in particular for the calcu-
lation of thermal conductivities using the GK method. For GLPs
implemented with jax, the glp package is provided to enable

the calculation of stress and heat flux without requiring further
implementation efforts.

SUPPLEMENTARY MATERIAL

The supplementary material contains (1) an explanation of
Eq. (19), (2) additional details and results for the numerical exper-
iments in Sec. V, (3) information about the GK workflow and
convergence, and (4) explicit forms for the equation of state.
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