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Abstract

Protein–protein interactions (PPIs) play a crucial role in numerous molecular pro-

cesses. Despite many efforts, mechanisms governing molecular recognition between

interacting proteins remain poorly understood and it is particularly challenging to pre-

dict from sequence whether two proteins can interact. Here we present a new

method to tackle this challenge using intrinsically disordered regions (IDRs). IDRs are

protein segments that are functional despite lacking a single invariant three-

dimensional structure. The prevalence of IDRs in eukaryotic proteins suggests that

IDRs are critical for interactions. To test this hypothesis, we predicted PPIs using IDR

sequences in candidate proteins in humans. Moreover, we divide the PPI prediction

problem into two specific subproblems and adapt appropriate training and test strat-

egies based on problem type. Our findings underline the importance of defining

clearly the problem type and show that sequences encoding IDRs can aid in predict-

ing specific features of the protein interaction network of intrinsically disordered pro-

teins. Our findings further suggest that accounting for IDRs in future analyses should

accelerate efforts to elucidate the eukaryotic PPI network.
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1 | INTRODUCTION

For a long time, interactions among proteins were seen as interactions

among almost rigid bodies. However, many proteins contain regions

lacking a single invariant structure and which are highly flexible. Such

regions are termed intrinsically disordered regions (IDRs) and a protein

containing one or more IDRs is an intrinsically disordered protein

(IDP). As a consequence of their conformational flexibility, IDPs can

have a multitude of binding modes by acquiring different conforma-

tions based on the shape of the target protein. For example, a single

IDP can fold upon binding to targets through a mechanism called

disorder to order transition.1 Chen et al. (2021)2 review methods for

predicting the site in an IDP which is responsible for interaction with

another protein. It has also been hypothesized that different modes of

interaction behaviors of IDPs can be encoded by the sequence fea-

tures of IDRs. For example, an IDR can select interaction partners that

have similar IDR sequences while not targeting other IDRs with more

distinct sequences.3 Two IDPs with multiple binding sites can also

directly interact with each other in a dynamic equilibrium.4

In spite of IDRs playing important roles in a wide variety of cellu-

lar functions and target selection, how IDPs interact with each other

remains to be elucidated. While there already exist computational
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methods predicting protein–protein interactions (PPIs) from sequence

(see Casadio et al., 2022;5 Ganapathiraju & Dunham, 20216 for

review), few efforts have been made to capture the IDP-specific inter-

actions. Also, interactions between IDPs are highly underrepresented

in structure-based docking analysis due to their lack of well-defined

structures. Many of the known structure-based PPI prediction algo-

rithms5 rely on interactions using the structures in the Protein Data

Bank7 which are not suitable for the interaction dynamics of IDPs. On

the other hand, most of the sequence-based PPI prediction algorithms

do not make a distinction between IDPs and structured proteins. Yet,

IDRs are frequently characterized by their low-complexity amino acid

composition, such that it appears reasonable to assume that sequence

derived features will enable a machine learning classifier to predict

interacting IDPs from their sequences. Thus, current approaches do

not reflect the intrinsic disorder-based binding modes and IDPs still

present a challenge for PPI prediction. Therefore, we want to investi-

gate whether IDR sequences can help in predicting interactions in the

human IDP-specific interaction network.

PPI prediction is a case of a pair-input prediction problem. This

class of problems is particularly difficult in that both the exact for-

mulation of the prediction task, as well as the appropriate testing

procedures are tricky.8 In terms of the exact formulation of the prob-

lem, Park and Marcotte distinguish whether, from the two proteins

for which we want to predict if they interact, both, one, or neither

have been part of the training set. Clearly, prediction success is likely

to differ according to these classes. Furthermore, there are numer-

ous pitfalls in the choice of negative sets, in balancing positive and

negative sets, and due to the hub structure of biological networks.9

In this situation, Ganapathiraju and Dunham recently re-

implemented many PPI prediction tools from the literature and,

unsurprisingly, found that their performance is overstated in the

original publications.6

Here, we propose to break down the general question of predict-

ing PPIs into two more specific problems. The asymmetric problem is

defined as the problem of predicting new interactors for a protein that

has, usually together with some known interactors, been part of the

training set. The symmetric problem is the problem of predicting

whether two proteins, neither of which was part of the training set,

interact. We trained a random forest (RF) model for the asymmetric

problem. For the symmetric problem, we still use random forests but,

in a way, so as to enforce that the classification result is independent

of the order in which the two proteins are provided. We focus on

studying the interactions between IDPs and examine the advantage

which the IDR information provides towards predicting interactions.

Our study reveals that IDR sequences aid in differentiating

between interacting and non-interacting proteins compared to entire

and non-IDR sequences in corresponding IDPs for both of the prob-

lem types. Our prediction method for the asymmetric problem

improves over IDPpi which, to the best of our knowledge, is the only

machine learning algorithm developed specifically to predict protein

interactions that involve IDPs.10 We provide evidence that the sym-

metric prediction problem is not a trivial problem and good accuracy

is not easily achieved which again underlines the importance of

distinguishing these two problem types. Our design of the algorithms

allows users to predict the interactions of two given IDPs as well as

listing the best candidate target proteins for a given single IDP.

2 | METHODS

2.1 | Dataset preparation

Positive interactions between IDPs have been curated from Perovic

et al., 2018.10 They developed “IDPpi” to predict binary interactions

that involve IDPs. They collected IDPs from the DisProt database11

and extracted the interactions involving at least one IDP from the

HIPPIE12 interaction database. Similar sequences have been removed

using CD-Hit.13 The dataset consisted of 19 837 interactions of 5989

human proteins. Protein sequences of IDPs in the dataset were

retrieved from UniProt.14 In this study, we focus on interactions

between two IDPs. To this end, we identified IDR regions in each

sequence and extracted interactions between proteins with IDRs lon-

ger than 15 amino acids from the curated IDPpi network. The final

IDP-IDP interaction network we work with consists of a total of 5535

interactions between proteins with at least one IDR of at least

15 amino acids.

2.2 | Training and test data, negative sampling

For the selection of test and training interactions, nodes of the final

PPI network (proteins) are partitioned randomly into training (90%)

and test nodes (10%) (Figure 1). After the nodes were partitioned, we

went through the neighbors of each training node in the network. If

the neighbor of a training node is a training node as well, the edge

between two training nodes is considered a training positive

interaction.

It has become common practice to assume that a pair of proteins

for which we do not know of an interaction actually does not

interact,15 that is, such a pair constitutes a negative example. Of

course, the number of negative pairs will by far outnumber the posi-

tive pairs such that one needs to subsample them in order to create a

balance between positive and negative pairs. Exactly how one sub-

samples a negative training set has a large impact on performance

evaluation of the machine learning models. In particular, hub proteins

in the training positive dataset can dominate the network and create a

bias towards hub proteins in the training process. To avoid this, we

follow the recommendation of Westhead et al., 20109 and perform a

balanced sampling. This approach aims at creating a negative set

where the nodes have equal degrees as in the positive set. The proce-

dure has been implemented in the BRS-nonint program and it ran-

domly subsamples a negative training dataset from the noninteracting

pairs, such that the degree of each protein in the positive training

dataset equals the one in the negative training dataset. Note that this

method is recommended for subsampling the negative training set but

not for the negative test set.15
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For the selection of a positive test set, edges involving the test

nodes are taken as an initial positive test set. For the selection of the

negative test set, first we removed negative training interactions from

the set of all negative PPIs. Then we distinguish two cases reflecting

the two different questions asked in the asymmetric and the symmet-

ric problem. For the asymmetric problem, the aim is to have a test set

consisting of interactions between one known and one unknown pro-

tein. Consequently, we extracted the interactions that share only one

node with the training nodes from the initial positive test set.

For the symmetric problem, the aim is to test on interactions

between two unseen proteins. Hence, we extracted interactions such

that none of the components in the pair are present in the training

set, that is, both come from the test set. With this distinction in the

design of the test sets according to problem type, we aim at delineat-

ing the most appropriate validation scheme for the respective classi-

fier. We consider this a particularly challenging test scenario since we

do not test on queries which the classifier has seen before. Finally, we

randomly subsampled a negative test set such that the positive to

negative test set ratio is 1:1.

2.3 | Definition of features

Our classifier is based on sequence derived features with different

versions tested for different subsequences of a protein sequence.

For each protein, IDR sequences are annotated using PONDR®-

VSL2.16 After filtering out the proteins with all disordered subre-

gions shorter than 15 amino acids, identified IDR sequences were

concatenated into one sequence for each protein. In order to assess

the predictive performance of IDR sequences, we also compare

using (i) the entire protein sequence, or (ii) the non-IDR part of the

sequences. For the non-IDR sequences that are shorter than

15 amino acids, we randomly selected a start position in the entire

protein and chose a stretch of subsequence of corresponding IDR

length.

An amino acid sequence can be represented as a feature vector

consisting of numerical features. In this study, we used the same fea-

tures utilized by Perovic et al., 2018.12 They used Pseudo-amino acid

composition (PAAC)17 and dipeptide composition (DC) to extract fea-

tures from the sequences. Additional features like Moreau-Broto

autocorrelation (AC),18 Quasi-sequence-order (QSO)19 and composi-

tion20 were calculated using protr package.21

Autocorrelation features are helpful in representing protein

sequences without completely losing their sequence-order informa-

tion. The AC is another autocorrelation feature that was originally

proposed to predict membrane protein types. It calculates the product

of feature values encoding each peptide separated by a distance and

averages these values across the peptide sequence. For the calcula-

tion of product of feature values, we used disorder related feature

measures as proposed by Perovic et al., 201810 and additional feature

values such as hydrophobicity, average flexibility indices, polarizability

and the amino acid free energy of solution in water.
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pairs

remaining 10%

Test proteins

Pairs where
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pairs of test proteins
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F IGURE 1 Workflow of the sampling process. First, proteins in the dataset are randomly split into test and training proteins. Interactions
between training proteins are taken as a positive training set, whereas balanced sampling is applied to generate a negative training set. For the
test sets, first we extracted all the interactions and noninteractions involving at least one test protein, then we separated the test pairs from each
other depending on the problem type. Symmetric test pairs are test pairs involving one test and one training pair, whereas asymmetric test pairs
are interactions between two test proteins.
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Similar to autocorrelation features, QSO also consider the effects

of sequence order calculates physicochemical distances between resi-

dues based on two physicochemical 20 � 20 distance matrices:

Schneider-Wrede22 and Grantham physicochemical distance matrix.23

These distance matrices are computed based on the residue proper-

ties of hydrophobicity, hydrophilicity, polarity, and side-chain

volumes.

Finally, we computed composition which is a mapping based

method which maps every amino acid to a particular property and cal-

culates the percentage of amino acids with a particular property in a

sequence. These properties include hydrophobicity, normalized Van

der Waals Volume, polarity, polarizability and charge. In this way, a

total 541-dimensional feature vector is used to represent a protein

sequence (Table 1).

2.4 | Model, training, and performance evaluation

A particular difficulty in a pair-input problem is how to fuse the fea-

ture vectors of the two proteins into a single feature vector. For the

asymmetric problem we subtract the feature vector of the unknown

protein from the feature vector of the known protein. The hope is

that this will reflect potential interactions between two proteins. After

subtracting the feature vectors, we train a RF model for each input

sequence type (Figure 2).

TABLE 1 Features considered in the feature extraction step

Feature Feature type Dimension

Pseudo amino acid composition Distance-based 25

Normalized Moreau-Broto

autocorrelation

Distance-based 45

Quasi-sequence-order Distance-based 50

Composition Mapping-based 21

Dipeptide composition Sequence-based 400

yes no

Do I know any protein in the pair ?

Protein F

Protein A Protein B CnietorP DnietorP

PPI

Feature extraction
from IDR

sequences

prediction
model

Protein A

Protein E

fixed order based on the known node

Asymmetric Question

-

Symmetric Question

?

?
unordered pair

Do protein C and D interact with each other ?Is protein B target of protein A ?

Input
protein pairs

F IGURE 2 Workflow of our
method. Given a set of protein
sequences, we first extract features
from the corresponding IDR
sequences. Following this, we identify
the problem type and use appropriate
training models to predict the
interaction between proteins.
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In the symmetric problem, we predict the interactions between

two unknown proteins and therefore it is not possible to fix the order

of the input pairs. This led us to enforce symmetry in the design of

the predictor such that the prediction outcome of both orderings of

the two input proteins would be the same. To this end, we combine

two machine learning models. First the two prediction outcomes of

both orderings were computed using the asymmetric RF model that

uses subtraction as feature fusion technique. Then, we additionally

trained a second RF model using absolute subtraction as an operator.

Together, this provides us with three votes, one each for the two

input orders to the asymmetric classifier and a third one from the clas-

sifier with absolute difference as input. Finally, we combine the out-

comes of the three predictors by a majority vote. Together, we call

this the ensemble model.

Two parameters of the asymmetric RF model namely min_sam-

ples_split (the minimum number of samples required to split an inter-

nal node) and max_depth (the maximum depth of the tree) were

optimized. Optimization was done based on one random 90:10 split

by obtaining the minimal gap between training and test accuracy

through a grid search in a parameter space. After optimizing these

two parameters we again randomly partitioned the nodes of the

curated PPI network to obtain 10 different training and test sets.

We evaluated the performance of both the asymmetric and sym-

metric model on test sets specific to problem types (see Figure 1). The

area under the ROC curve (AUC) scores of all tests were averaged to

obtain the overall performance of the predictors. To measure the per-

formance of the model, we used the AUC, accuracy, F score, precision

and recall scores.

2.5 | Comparison with other methods

Firstly, we compared our method to IDPpi10 which is a sequence

based RF model that predicts interactions of IDPs. Like many other

methods, IDPpi uses features derived from the amino acid sequence,

and it concatenates feature vectors generated from the entire

sequences of the two proteins. IDPpi follows the discipline suggested

by Park and Marcotte (2011)15 in using balanced sampling for training

and random sampling from negatives for testing.

In the original paper, IDPpi achieved AUC score of 0.745. The

authors also reported that IDPpi performs better than the prediction

algorithms reported in (Martin et al., 2005),24 (Guo et al., 2008),25 and

(Shen et al., 2007)26 such that we did not ourselves evaluate those

methods again.

We also wanted to compare our method to the recently pub-

lished state-of-the-art approach D-SCRIPT27 which is a deep learn-

ing method developed for predicting PPIs. It can be trained using

only protein sequences and uses 150 convolutional layers in total to

predict the interaction between the input proteins. D-SCRIPT was

trained originally on 38 345 human proteins and reached an AUC

score of 0.833 on the human PPI network. It allows users to choose

a dataset to train the model from scratch or provides a pre-trained

human model. We evaluated the performance of the pre-trained

model as well as training the model from scratch. We had to

decrease the number of convolutional layers in the model from

150 to 15 in order to stay within our limits on the available memory

which is 1 terabyte.

Many of the sequence-based approaches suffer from the unclear

prediction questions. For example, many of the PPI prediction tools

including IDPpi10 and DeepPPI28 produce results which depend on

the order in which two input proteins were provided. This is due to

concatenation feature vectors of protein pairs in the training process

which is keeping the order information and therefore not a symmetric

operation. This creates asymmetrical results and therefore leads to

misinterpretation of the results, thus making it difficult for the users

to choose the prediction algorithm that is suited to the particular

problem they have. Given that there is no known protein in the test

pairs for the symmetrical problem, in our design of a classifier for the

symmetric problem we will try to avoid the dependence of the input

order in which the proteins are supplied to the classifier.

In addition, methods that use the random sampling approach for

the selection of negative training set including D-SCRIPT and

DeepPPI, can lead to a bias in their reported accuracies.9

3 | RESULTS

Instead of predicting whether two IDPs, irrespective of whether we

have seen either or both in the training set, interact, we introduce two

different machine learning problems. The asymmetric problem asks

whether a protein that was in the training set interacts with a query

protein. The symmetric problem asks whether two proteins, neither of

which was in the training set, interact. We have designed two

machine learning procedures for these tasks (Figure 2). Our methods

extract IDR sequences from the given proteins and capture the physi-

cochemical properties of the corresponding IDR sequences via a large

set of sequence derived features. Since we are particularly interested

in the contribution of IDRs towards PPI, we will also study the effect

of focusing the physicochemical properties on the IDR regions. Corre-

sponding to the two problems we also designed two setups for

testing.

3.1 | The asymmetric model: Interaction partners
for a known protein

After testing a number of machine learning algorithms, we decided on

a RF classifier. The RF method gave good results, is simple, and the

parameters can be chosen so as to avoid overtraining. From the IDPs,

the IDR regions of minimally 15 amino acids were extracted and, for

each of the two proteins, those regions were concatenated. Then a

vector of 541 statistical and physicochemical characteristics was com-

puted for these concatenated IDR sequences as described in

Methods, and the vector for the unknown protein was subtracted

from the vector for the known protein. The RF classifier was trained

on those vectors representing the difference between features.
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In order to create independent test sets that reflect our asymmet-

ric problem, we split our network randomly (90%:10%) into training

and test sets. We repeated this process 10 times and, in each split,

making sure that test pairs share only one protein with the training

set. Sampling from the negative set was done as described in

Methods. The performance of the RF classifier was evaluated on

these 10 independent test sets. The proposed RF model reached an

average 10-fold cross validation AUC score of 0.70 (Figure 3). Thus,

using IDR sequences alone it is indeed possible to predict interactions

between a known IDP and an unknown IDP with about the accuracy

that the best alternative methods would achieve.

3.2 | IDRs are better predictors of interaction than
entire or non-IDR sequences in the asymmetric
problem

The program IDPpi as the other machine learning algorithm based on

disordered proteins does not distinguish between disordered and

ordered segments of the protein sequence. Instead, IDPpi uses the

entire protein sequence to compute the feature vector for a protein.

Above, we showed the predictive performance of our algorithm based

on IDR sequences. Thus, the question arises whether the focus on

IDRs aids the prediction of interactions. To answer this, we compare

the performance of IDRs to two alternatives: (1) Computing the fea-

ture vectors from the entire sequence; and (2) computing the feature

vector from the non-IDR part of the sequence as described in

Methods. For both options we trained a RF model. One would expect

that an entire protein sequence would contain more information than

an IDR sequence, which in turn would be more informative than its

parts, be it the IDRs or the non-IDR part. Contrary to this intuition,

Figure 4A shows that the average ROC curve for the IDR-based clas-

sifier dominates the other two ROC curves. Since this is based on our

10 independent test sets, Figure 4B shows boxplots over the 10 indi-

vidual AUC-values for each option, with the IDR based one signifi-

cantly better than the other two, which are not significantly different

from each other in terms of their AUC. We conclude that IDRs are

particularly informative with respect to protein–protein interaction

among IDPs.

Since the IDPs appear to provide crucial information towards

interaction prediction, the question arises whether the most predic-

tive features in the RF classifier trained on the IDR sequences are

related to disorder in proteins. We therefore ranked the features

according to their importance for the RF classifier under the Python

scikit-learn package29 (Figure 4C). At the top of the list there is the

frequency of positively charged residues (Lys, Arg) which has been

observed to play a key role in disorder.30,31 Position 4 is occupied by

the frequency of the dipeptide Ser-Pro and the frequency of Pro is on

position 6, in line with the general description of IDRs.32

3.3 | Prediction performance on the symmetric
problem is low

The symmetric problem tries to predict whether two IDPs unknown to

the classifier interact. Recall (see Methods) that for the symmetric classi-

fier we implemented a majority vote among the two asymmetric classi-

fiers and a third classifier, where we use the absolute difference of the

feature vectors, and which thus is symmetric in the input. We wanted to

assess the performance of the IDR, entire and non-IDR sequences using

a more stringent criterion. We again generated 10 new independent test

sets without overlap with the corresponding training sets. Input order

plays no role for this type of problem. We evaluated the performances

by feeding entire, non-IDR or IDR sequences to train symmetric models

and testing the models using 10-fold CV.

Based on the averaged 10-fold CV AUC scores, the best perform-

ing model was the symmetric model trained on IDR sequences which

reached a mean AUC score of 0.54 (Figure 5). Although this finding is

consistent with the performance of the IDRs for the asymmetric prob-

lem, this is still only marginally better than random classification per-

formance. Although the algorithm we propose for the symmetric

problem is the result of many tests and experiments we did, we can-

not exclude that our algorithm is the cause of the failure. Neverthe-

less, this failure indicates that the symmetric problem is indeed very

hard, which in turn underlines the importance of distinguishing the

two problem types.

3.4 | State of the art methods for comparison

We proceed to compare the asymmetric and symmetric model to two

existing approaches for sequence-based PPI prediction. IDPpi concat-

enates the feature vectors of the two input IDPs, which is not a sym-

metric operation. Indeed, the program returns different results

depending on the order in which the proteins are provided. Therefore,

IDPpi can serve as a competitor to our asymmetric predictor, but we

F IGURE 3 ROC AUC scores of the 10-fold cross validation of
IDR sequences in the asymmetric model.
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cannot apply it on the symmetric problem and we only assessed the

performance of IDPpi on the test cases for the asymmetric problem.

The other alternative method we tested is D-SCRIPT, which we

needed to adapt as described in Methods. D-SCRIPT is applicable for

both problem types. We trained both IDPpi and D-SCRIPT using the

entire protein sequences as expected by these programs. Finally, we

evaluated the models using our test sets for both of the problem

types.

Results are shown in Table 2. Generally, under the stringent,

problem-type specific test scenarios that we use, IDPpi and D-SCRIPT

yield inferior performance compared to our two classifiers. For the

asymmetric model, the difference in performance is quite remarkable.

This is also shown in Figure 6, where the average ROC curves of the

10-fold cross-validation for the asymmetric problem are displayed. In

the symmetric case, neither our method nor D-SCRIPT perform well,

with a particularly low recall for D-SCRIPT. We need to qualify this

comparison, though, since the original D-SCRIPT uses a large PPI net-

work for training and has more hidden layers, which might put the

version that we were able to run at a disadvantage. However, for the

symmetric problem, the pre-trained D-SCRIPT model is marginally

better than our model but still fails to solve this problem type.

3.5 | Case study for asymmetric model: Predicting
the interactors of RB1

To illustrate the performance of our asymmetric model, we wanted to

predict interactors of the retinoblastoma protein RB1 in an

(A) (B)

(C)

F IGURE 4 Performance of asymmetric model on three type of input sequences: IDR sequences (red), entire sequences (green) and non-IDR
sequences (blue) (A) Mean ROC AUC scores of the asymmetric models on IDR sequences, entire sequences and non-IDR sequences based on
10-fold cross-validation. (B) Boxplots over the AUC-values reached by each model on 10 folds in the asymmetric problem. The white circle in the
boxplot represents the mean AUC scores. Asterisks above figure bars indicate statistical significance. One asterisk (*) indicates p value smaller
than 0.1 (p < .1). Two asterisks (**) indicate p value smaller than .05 (p < .05). “ns” indicates not significant (p > .05) difference. (C) Feature
importance of asymmetric model on the best performing model based on IDR sequences.
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independent sequence set that has not been used in developing our

model at all. RB1 is an important tumor suppressor protein and plays a

critical role in the cell cycle. Based on disorder prediction by PONDR®

VSL2, RB1 has five distinct IDRs.16 It was reported that these disor-

dered regions contain conserved phosphorylation sites, which prevent

interaction with its target protein.33,34 It is known that RB1 interacts

with proteins with diverse IDR content, for example, its target protein

E2F3 is largely disordered whereas CDK4 consists of only one disor-

dered region based on PONDR® VSL2 predictions.16,35

We wanted to test a number of likely interacting proteins for

RB1 to see how many of them would be predicted correctly by our

algorithm. To this end, we retrieved a further five interactors of

RB1 from the STRING database,35 The STRING database had not

been used for our model and these proteins did not enter the train-

ing procedure. We also selected five more interactors of RB1 from

the training set used in our model as “positive controls”. Together,
this resulted in 10 interactors of RB1 which were input into our

asymmetric model. Seven of the ten interactors of RB1 were cor-

rectly predicted by the asymmetric model (Figure 7). Of the five

positive controls, four were identified correctly as interactors. This

suggests that the model is not overtrained and has not simply mem-

orized the sequences it had seen. Three out of the five sequences

that had not been part of the training were correctly predicted as

interactors.

4 | DISCUSSION AND CONCLUSION

Disordered regions are assumed to play a key role in mediating inter-

actions among proteins. In our endeavor to design a predictor for PPI

for IDPs we were faced with the intricacies of this problem as a spe-

cial case of a pair-input prediction problem. We therefore developed

two different machine learning algorithms to address two different

PPI prediction problems: the asymmetric problem and the symmetric

problem. For the asymmetric problem, where one of the proteins had

been seen before by the classifier, we developed a method to predict

disordered protein partners of known proteins present in our dataset.

For the symmetric problem, we developed a method to predict novel

PPIs. The methods work differently, firstly to account for the available

information, and secondly because one expects a classifier for the

F IGURE 5 Mean ROC AUC scores of the symmetric models on
the three type of input sequences based on 10-fold cross-validation.

TABLE 2 Comparison between our proposed method based on IDR sequences and other state-of-the-art-methods according to accuracy,
precision, recall, F1-score and area under the ROC curve (AUC)

Problem type Asymmetric problem Symmetric problem

Methods IDR sequences D-SCRIPT D-SCRIPT pretrained IDPpi IDR sequences D-SCRIPT D-SCRIPT pretrained

AUC 0.70 0.55 0.64 0.52 0.54 0.50 0.57

Accuracy 0.61 0.52 0.54 0.51 0.54 0.50 0.51

Recall 0.74 0.11 0.06 0.48 0.52 0.10 0.03

Precision 0.57 0.24 0.78 0.49 0.54 0.08 0.53

F1-Score 0.65 0.08 0.10 0.48 0.53 0.07 0.05

F IGURE 6 Prediction performance comparison of different
classifiers using ROC curves in predicting IDP specific protein–protein
interactions for the asymmetric problem. Shown in the plot are the
ROC curves for IDPpi, D-SCRIPT, D-SCRIPT (pre-trained) and IDR
sequences.
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symmetric problem to be symmetric in terms of the two input

proteins.

We also sought to determine if amino acid sequences of IDRs

provide an advantage over other sequence regions for predicting the

interactions between IDPs. To address this question, we utilized IDR

sequences to predict human IDP-IDP interactions. Furthermore, we

extracted entire and non-IDR subsequences to develop controls and

compare the performance of IDR sequences to control models. We

conclude that the disordered regions are particularly informative for

prediction of interaction among IDPs.

An essential part of our approach is the design of suitable training

and, in particular, testing procedures for the respective problem type.

For the asymmetric problem, our designed model based on IDR

sequences achieved the best performance (AUC 0.70) on the evalua-

tions on 10 independent test sets. We compared our asymmetric

model to two state-of-the-art PPI prediction models and demon-

strated that our IDR-based asymmetric model performs better than

the already existing models. Note, however, that this was measured

with our testing procedure, which we think of as appropriate for the

question and rigorous, but other testing procedures yield other quality

measurements. This likely explains some of the differences in reported

performances among published methods.

For the symmetric problem, our measurements of method perfor-

mance indicate that there is no method that would be particularly suc-

cessful on this problem. We believe that the rigorous testing

according to the C3 group (defined as “Neither protein in the test pair

is found in the training set”) as introduced by Park and Marcotte

(2012) makes the inherent difficulty of the symmetric problem appar-

ent. Again, we do concede that other methods report better perfor-

mance, albeit with other testing scenarios. This is also in line with the

results by Dunham and colleagues6 who reported that most of the PPI

tools perform much lower than originally reported. In their work they

even show that randomly chosen feature values may, under common

testing scenarios, appear to produce more accurate results than

proper prediction results.

The problem we are dealing with here is related to the search for

molecular recognition features (MoRFs) which can enhance PPIs.36

Importantly, MoRFs undergo transitions from disordered to ordered

states upon binding to their interaction partners, thus they have been

thought to promote binding. Currently, there are several MoRF pre-

dictors that can identify these regions using different predictive

models.37 Our method differs from protein-binding site predictors,

which are mainly developed to find binding sites within a single disor-

dered protein sequence. We would expect that identification of MoRF

regions could in the future aid also in predicting binary interaction

between disordered proteins.

To the best of our knowledge, our study presents the first effort

that not only respects the problem class in design and sampling of

positive and negative testing and training sets, but that also puts for-

ward two different classifiers for the asymmetric and the symmetric

problem. This has advanced our ability to predict new interactors for

known proteins, and has shed some light on the inherent difficulty in

predicting entirely new interactions. Our results also support the para-

digm that IDR sequences are particularly informative when it comes

to predicting interactions among proteins.

Given our experience that the asymmetric problem is easier to

handle than the symmetric one, for the future one has the choice

whether to improve the asymmetric model, or to make an effort

towards solving the symmetric problem type.

AUTHOR CONTRIBUTIONS

Gözde Kibar: Writing – original draft; conceptualization; investigation;

software; methodology; visualization; formal analysis; data curation.

Martin Vingron: Writing – review and editing; conceptualization;

funding acquisition; methodology; resources; supervision; writing –

original draft.

RB1

CDK6

HIF1A

TFDP1

CCDN1

SP1

E2F3

PAX5

XPA

CDK4

SEPT4

Predicted interactions from STRING

Predicted interactions from training dataset

F IGURE 7 Case study for true
positive predictions of RB1. Blue
nodes show predicted positive
interactions from training data. Green
nodes show the correctly predicted
positive interactions from the new
interaction set. Dashed nodes are the
interactors not identified by our
method.

988 KIBAR and VINGRON

 10970134, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26486 by M

PI 308 M
olecular G

enetics, W
iley O

nline L
ibrary on [19/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ACKNOWLEDGMENTS

This work was supported by the IMPRS-CBSC doctoral programme.

GK was partly funded by grant Bildung und Forschung (BMBF) - iGen-

Var FKZ 031L0169A. Open Access funding enabled and organized by

Projekt DEAL.

CONFLICT OF INTEREST STATEMENT

The authors declare no competing interests.

PEER REVIEW

The peer review history for this article is available at https://www.

webofscience.com/api/gateway/wos/peer-review/10.1002/prot.

26486.

DATA AVAILABILITY STATEMENT

Our asymmetric model is available at Github at https://github.com/

gozdekibar/IDR_PPI_prediction. User instructions can be found in the

README document. Test and training data used by this study for

both of the models are also available in the repository.

REFERENCES

1. Fuxreiter M. Classifying the binding modes of disordered proteins. Int

J Mol Sci. 2020;21(22):8615. doi:10.3390/ijms21228615

2. Chen R, Li X, Yang Y, Song X, Wang C, Qiao D. Prediction of protein-

protein interaction sites in intrinsically disordered proteins. Front Mol

Biosci. 2022;9:9. doi:10.3389/fmolb.2022.985022

3. Chong S, Mir M. Towards decoding the sequence-based grammar

governing the functions of intrinsically disordered protein

regions. J Mol Biol. 2021;433(12):166724. doi:10.1016/j.jmb.

2020.11.023

4. Wang W, Wang D. Extreme fuzziness: direct interactions between

two IDPs. Biomolecules. 2019;9(3):81. doi:10.3390/biom9030081

5. Casadio R, Martelli PL, Savojardo C. Machine learning solutions for

predicting protein–protein interactions. WIREs computational molecu-

lar. Science. 2022;12(6):e1618. doi:10.1002/wcms.1618

6. Dunham B, Ganapathiraju MK. Benchmark evaluation of protein–
protein interaction prediction algorithms. Molecules. 2021;27(1):41.

doi:10.3390/molecules27010041

7. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank.

Nucleic Acids Res. 2000;28(1):235-242. doi:10.1093/nar/28.1.235

8. Park Y, Marcotte EM. Flaws in evaluation schemes for pair-input com-

putational predictions. Nat Methods. 2012;9(12):1134-1136. doi:10.

1038/nmeth.2259

9. Yu J, Guo M, Needham CJ, Huang Y, Cai L, Westhead DR. Simple

sequence-based kernels do not predict protein-protein interactions.

Bioinformatics. 2010;26(20):2610-2614. doi:10.1093/bioinformatics/

btq483

10. Perovic V, Sumonja N, Marsh LA, et al. IDPpi: protein-protein interac-

tion analyses of human intrinsically disordered proteins. Scientific

Reports. 2018;8(1):1-10. doi:10.1038/s41598-018-28815-x
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