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Let A1 be any spectrum in a class of finite spectra whose mod 2 cohomology is
isomorphic to a free module of rank one over the subalgebra A.1/ of the Steenrod al-
gebra. Let EC be the second Morava E–theory associated to a universal deformation
of the formal completion of the supersingular elliptic curve C W y2Cy D x3 defined
over F4 and G24 a maximal finite subgroup of the automorphism group SC of the
formal completion of C. We compute the homotopy groups of EhG24

C ^A1 by means
of the homotopy fixed-point spectral sequence.
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Introduction

A central problem in stable homotopy theory is to understand the homotopy groups
of the sphere spectrum localized at each prime p, ��.S0

.p/
/. A powerful tool for

computing the latter is the Adams and Adams–Novikov spectral sequences, which
allows one to compute ��.S0

.p/
/ at each stem �. Complementary to this method is the

chromatic approach to stable homotopy theory, which aims at analyzing the latter in
a large scale. In fact, the chromatic point of view offers a tool to analyze the global
structure of the stable homotopy category, and hence that of ��.S0

.p/
/, in a systematic

way by decomposing it into smaller pieces; see for example Ravenel [33] and Hovey
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and Strickland [25]. Fundamental building blocks in the theory are the K.n/–local
homotopy category, the Bousfield localization of the stable homotopy category at the
Morava K–theories, which are defined at all primes and all natural numbers n; the
prime is implicit in the notation of K.n/ and n is referred to as the chromatic level.

For this purpose, a general strategy is to study the homotopy type of the K.n/–
localization of various finite spectra. A central result of the theory is the work of
Devinatz and Hopkins [16], which expresses the K.n/–localization of a finite spectrum
X as the continuous homotopy fixed-point spectrum

LK.n/X 'EhGn
n ^X;

where Gn is the extended Morava stabilizer group, which is profinite, and En is the
nth Morava E–theory.

The study of chromatic level one was a great success: the homotopy groups of LK.1/S
0

have been completely computed at all primes and, at the prime 2, LK.1/S
0 detects

essentially the image of J, an infinite family of elements of ��.S0/. Chromatic level
two has also been thoroughly investigated at odd primes. It started with the computation
by Shimomura, Wang and Yabe [39; 36; 37; 38]. Later, Goerss, Henn, Mahowald and
Rezk [21] proposed a conceptual framework to organize the K.2/–local homotopy
category at the prime 3, in which the authors constructed a finite resolution of the K.2/–
local sphere using higher real K–theories. See work of Goerss, Henn, Karamanov and
Mahowald [20; 23; 19] for further investigations at nD 2 and p D 3 and Behrens [7]
for an exposition at p � 5.

The situation of chromatic level two at the prime 2 turns out to be much more com-
plicated and we are only beginning to understand it better. Considerable effort has
recently been made to understand the K.2/–local homotopy category at the prime 2

by the community. In [11], Bobkova and Goerss established a finite resolution of a
spectrum related to the K.2/–local sphere at the prime 2 analogous to that of [21],
which realized an algebraic resolution of S1

2
, a certain closed subgroup of the second

Morava stabilizer group, constructed by Beaudry [5].

One reason why the latter is hard to deal with lies largely in the fact that the cohomo-
logical properties of the group G2 are much more complicated at the prime 2. However,
one exciting feature of chromatic level 2 is its close relationship with the theory of
elliptic curves and modular forms, see Section 1. At chromatic level 2 and at the
prime 2, we can choose the Morava E–theory to be the Lubin–Tate theory associated
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to the formal group law of the elliptic curve C W y2Cy D x3 over F4. We denote by
EC and GC the corresponding Morava E–theory and Morava stabilizer group. One
of the main tools used to investigate the K.2/–local homotopy category is a finite
resolution. There is a certain subgroup S1

C
of GC ; let G24 be the automorphism group

of C and C6 be a cyclic subgroup of order 6 of G24 (see Section 1 for details).

Theorem 1 [11] There is a resolution of EhS1
C

C
, in the K.2/–local homotopy category

at the prime 2, of the form

EhS1
C

C
ı0
�! E0

ı1
�! E1

ı2
�! E2

ı3
�! E3;

where E0 DEhG24
C

, E1 D E2 DEhC6
C

and E3 D†
48EhG24

C
.

This resolution is commonly called the topological duality resolution. The spectrum
EhS1

C
C

is used to build the spectrum EhSC
C

, where SC is the Morava stabilizer group,
via a certain cofiber sequence

EhSC
C !EhS1

C
C

1��
��!EhS1

C
C ;

and EhSC
C

only differs from LK.2/S
0 by the Galois action, ie there is a homotopy

equivalence
LK.2/S

0
' .EhSC

C /hGal.F4=F2/:

Thus, this theorem offers a useful instrument to study the homotopy type of LK.2/X

for finite spectra X at the prime 2. In particular, it produces a spectral sequence,
known as the topological duality spectral sequence, abbreviated by TDSS, converging
to ��.EhS1

C
C
^X /:

(1) Ep;q
1
Š �q.Ep ^X /) �q�p.E

hS1
C

C ^X /:

By now, it should be clear that judicious choices of finite spectra become important.
Main players in this paper are finite spectra constructed by Davis and Mahowald [13].
Let A1 denote a class of finite spectra whose mod 2 cohomology is isomorphic,
as a module over the subalgebra A.1/ generated by Sq1 and Sq2 of the Steenrod
algebra A, to a free module of rank one on a class of degree 0. As shown in [13,
Theorem 1.4(i)], the class A1 contains four different homotopy types, which are
distinguished by the structure of their mod 2 cohomology as modules over the Steenrod
algebra. They are successively denoted by A1Œ00�, A1Œ01�, A1Œ10� and A1Œ11�; see
Definition 3.2.1. The spectra A1Œ01� and A1Œ10� are Spanier–Whitehead self-dual,
ie D.A1Œ01�/ ' †�6A1Œ01� and D.A1Œ10�/ ' †�6A1Œ10�; and the spectra A1Œ00�
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and A1Œ11� are Spanier–Whitehead dual to each other, ie D.A1Œ00�/ ' †�6A1Œ11�

(here D.�/ denotes the function spectra F.�;S0/). By an abuse of language, we
write A1 to refer to any of these four spectra and refer to any of them as a version
of A1. The spectrum A1 is constructed via three cofiber sequences starting from
the sphere spectrum. First, let V .0/ be the mod 2 Moore spectrum, ie the cofiber of
multiplication by 2 on the sphere. Next let Y be the cofiber of multiplication by �, the
first Hopf element, on V .0/. Davis and Mahowald show that Y admits v1–self-maps,
v1 W†

2Y ! Y. Then A1 is the cofiber of any of these v1–self-maps of Y.

Here, we study the homotopy fixed-point spectral sequence, abbreviated by HFPSS,
for EhG24

C
^A1, which constitutes an important part of the E1–term of the TDSS:

(2) H�.G24; .EC /�.A1//) ��.E
hG24
C ^A1/:

Here are qualitative versions of the main results of the paper; see Theorems 5.3.17 and
5.3.18 for more precise statements.

There are classes

�8
2 H0.G24; .EC /192/; N� 2 H4.G24; .EC /24/; � 2 H1.G24; .EC /4/:

Theorem 2 As a module over the ring F4Œ�
˙8; N�; ��=.� N�/, the E1–term of the HFPSS

for EhG24
C
^A1Œ01� and EhG24

C
^A1Œ10� is a direct sum of 46 explicitly known cyclic

modules.

Theorem 3 As a module over the ring F4Œ�
˙8; N�; ��=.� N�/, the E1–term of the HFPSS

for EhG24
C
^A1Œ00� and EhG24

C
^A1Œ11� is a direct sum of 48 explicitly known cyclic

modules.

One of the interests in working with A1 is that a sufficient understanding of the
homotopy type of LK.2/A1 might allow us to determine the Gross–Hopkins duality
formula for the K.2/–local homotopy category at the prime 2. In fact, the spectrum A1

can be considered as an analog of the Toda–Smith complex V .1/ at the prime 3 and,
as demonstrated in [19], computations of the homotopy groups of LK.2/V .1/ allow
one to characterize the Gross–Hopkins formula for the K.2/–local homotopy category
at the prime 3.

One of the key ingredients, to this end, is a comparison between tmf ^ A1 and
EhG24

C
^A1, where tmf denotes the connective spectrum of topological modular forms

localized at the prime 2. In fact, there is a homotopy equivalence (Theorem 5.1.1)

.�8/�1tmf^A1 ' .E
hG24
C /hGal.F4=F2/ ^A1;
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where �8 is the periodicity generator of ��tmf. Based on the latter, we first analyze the
homotopy groups of tmf^A1 by means of the Adams spectral sequence, abbreviated
by ASS, then invert �8 to get information about the homotopy groups of EhG24

C
^A1.

We note that, in [10], Bhattacharya, Egger and Mahowald also discuss the E2–term of the
ASS for tmf^A1. Our method is, however, different; the calculation is performed with a
use of the Davis–Mahowald spectral sequence. A key technical result, Proposition 3.3.7,
is the determination of a certain product in the E2–term, which depends on the module
structure of H�.A1/ over A— more precisely, on the action of Sq4 on H�.A1/. The
latter is different for different models of A1. In turn, this results in differences in the
N�–nilpotence order of elements of ��.tmf^A1/; here N� is an element of �20.S

0/.

Next, we summarize the contents of the paper. In Sections 1 and 2, we discuss some
background and tools used in our computation. We recall Lubin–Tate theories and
topological modular forms; in particular, we sketch a proof of the relationship between
topological modular forms and the homotopy fixed-point spectrum EhG24

C
. We give

a generalization of the Davis–Mahowald spectral sequence, which is an important
tool to analyze the cohomology of various Hopf algebras. In Section 3, we discuss
the Davis–Mahowald spectral sequence for A1 and obtain the E2–term of the Adams
spectral sequence for tmf^A1. In Section 4, we study some differentials in the latter
and then extract some suitable information about ��.tmf^A1/. In Section 5, we finally
study the homotopy fixed-point spectral sequence for EhG24

C
^A1. We emphasize that

there are two different outcomes for the E1–term of the homotopy fixed-point spectral
sequence, depending on the version of A1; see Theorems 5.3.17 and 5.3.18.

Conventions and notation Unless otherwise stated, all spectra are localized at the
prime 2. H�.X / and H�.X / denote the mod 2 cohomology and homology of the
spectrum X, respectively. Given a Hopf algebra A over a field k and M an A–comodule,
we will often abbreviate Ext�A.k;M / by Ext�A.M /. In general, we will write Cf for
the cofiber of a map f WX ! Y, except that we will write V .0/ for the Moore spectrum
which is the cofiber of the multiplication by 2 on the sphere.
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1 Recollection on chromatic homotopy theory

1.1 Lubin–Tate theories

We recall some generalities on the deformation theory of formal group laws and Goerss–
Hopkins–Miller theory. Let FGL be the category whose objects are pairs .k; �/, where
k is a perfect field of characteristic p and � is a formal group law over k, and morphisms
between .k; �/ and .k 0; � 0/ are pairs .i; �/, where i W k 0! k is a homomorphism of
fields and � W � Š�! i�� 0 is a morphism of formal group laws.

Let .k; �/ 2 FGL with � of height n. A deformation of .k; �/ to a complete local
ring R with maximal ideal m is a pair .F; �/, where F is a formal group law over R

and � W k ! R=m is a map of fields such that p�F D ��� with p the canonical
projection R! R=m. A ?–isomorphism � between two deformations to R is an
isomorphism between the underlying formal group laws which reduces to the identity
over R=m, ie �� x mod .m/. This defines a functor Def� , from the category Ringc;l ,
which associates to every complete local ring R the set of ?–isomorphism classes of
deformation of � over R. By Lubin–Tate deformation theory, Def� is corepresentable;
see [27, Theorem 3.1]. That is, there exists a complete local ring Ek;� together with a
deformation .z�; �/ over Ek;� which is a universal deformation of � , in the sense that
the map

HomRingc;l
.Ek;� ;R/! Def�.R/

sending f to .f �z�; Nf ı�/, where Nf is induced by f on the residue field. The ring Ek;�

is noncanonically isomorphic to W .k/ŒŒu1;u2; : : : ;un�1��, where W .k/ denotes the
ring of Witt vectors on k.

Consider the graded ring Ek;� Œu
˙1�, where jui j D 0 for 1 � i � n� 1 and juj D �2.

The formal group law uz�.u�1x;u�1y/ is a formal group law of degree �2 (ie the
coefficient of xiyj is in degree 2.i C j � 1/). Let M U be the complex cobordism
spectrum. A famous theorem of Quillen asserts that the coefficient rings M U� support
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the universal group law of degree �2. Thus, uz�.u�1x;u�1y/ is classified by a map
of graded rings M U�! Ek;� Œu

˙1�. Define a functor from the category of pointed
spaces to that of graded abelian groups,

X 7!M U�.X /˝MU� Ek;� Œu
˙1�:

The formal group uz�.u�1x;u�1y/ satisfies the Landweber exact functor criterion; see
[34, 6.9]. By the Landweber exact functor theorem, the above functor is a homology
functor. Thus, it is represented by a ring spectrum E.k; �/ with

.E.k; �//� ŠW .k/ŒŒu1;u2; : : : ;un�1��Œu
˙1�:

The latter is known as an nth Morava E–theory or Lubin–Tate theory.

The construction that associates to a formal group law .k; �/ the Morava E–theory
E.k; �/ defines a functor from FGL to Ho.Sp/, the stable homotopy category. Let us
denote by G.k; �/ the automorphism group of the pair .k; �/. We note that G.k; �/

is a profinite group; see [18, Section 7.2]. By functoriality, the group G.k; �/ acts
on E.k; �/. This action is, however, defined only up to homotopy. The Goerss–
Hopkins–Miller obstruction theory lifts this action to structured ring spectra.

Theorem 1.1.1 [22, Corollary 7.6] The spectrum E.k; �/ has a unique structure of
an E1–ring. Furthermore , G.k; �/ acts on E.k; �/ via E1–ring maps.

1.2 Topological modular forms

An astute choice of Morava E–theory or equivalently a choice of formal group law
of height 2 will make the calculation easier. Let C be the supersingular elliptic curve
over F4 given by the Weierstrass equation y2C y D x3. Denote by FC the formal
completion of C at the origin. The latter is a formal group law of height 2. We abbreviate
E.F4;FC / by EC and G.F4;FC / by GC . Let SC denote the automorphism group
of FC . Let Gal denote the Galois group of F4 over F2. There is a short exact sequence

1! SC !GC ! Gal! 1:

The image of SC in GC corresponds to the automorphisms of .F4;FC / fixing F4.
Since FC is defined over F2, Gal fixes FC , the above short exact sequence splits, ie
GC Š SC ÌGal. The automorphism group of C has order 24 and these are all defined
over F4; more precisely,

Aut.C /D AutF4
.C /Š SL2.Z=3/ŠQ8 ÌC3 DWG24;
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where Q8 is the quaternion group and C3 D h!i is a cyclic group of order 3; see [40,
Appendix A (Proposition 1.2 and Exercise A.1)]. A representation of Q8 is given by

Q8 Š hi; j j i
4
D 1; i2

D j 2; ij i�1
D j�1

i:

The latter has eight elements f1; i; j ; k;�1;�i;�j ;�kg, where �1 denotes i2 D j 2

and k the product ij. The group C3 acts on Q8 by permuting i , j and k:

!i!2
D j ; !j!2

D k:

The elements ! and i correspond to the automorphisms !.x;y/ D .�x; �2y/ and
i.x;y/D .xC 1;yCxC �2/, respectively.

Since C is already defined over F2, Gal acts on Aut.C /. Denote by G48 the semidirect
product G24 ÌGal. Moreover, the automorphism group Aut.C / of C maps injectively
to SC , and G48 maps injectively to GC . We view G24 and G48 as subgroups of SC

and GC , respectively.

The reasons for choosing the formal group law of the supersingular elliptic curve C are
two-fold. First, the geometric origin of G48 allows one to have an explicit description
of its action on ��.EC /; see [6] for more details. Thus, it allows us to adequately
compute the E2–term of various homotopy fixed-point spectral sequences. Second,
this choice of the Morava E–theory enables us to compare the associated homotopy
fixed-point spectrum with the spectrum of topological modular forms, hence providing
us with more tools to understand the former.

Next, we recall the construction of the spectrum of topological modular forms and
show its closed relationship with the homotopy fixed-point spectrum EhG24

C
. Let M

and M.3/ be the noncompact moduli stack of elliptic curves and elliptic curves with a
full level 3 structure over Z.2/, respectively. As functors of points on Z.2/–algebras,
the former are described as follows. If R is a Z.2/–algebra, then:

� M.spec.R// is the groupoid of .E;p WE! specR/, elliptic curves over spec.R/
and isomorphisms between them, ie an isomorphism between .E;p/ and .E0;p0/
consisting of two isomorphisms of schemes .f WE!E0;g WR!R/ such that
g ıp D p0 ıf.

� M.3/.spec.R// is the groupoid of .E;p; �/ consisting of an elliptic curve
.E;p/ over spec.R/ with an isomorphism of group schemes � W Z=3�Z=3!

EŒ3� over spec.R/, where EŒ3� is the subscheme of 3–torsion points of E and
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isomorphisms between them, ie .f;g/ W .E;p; �/! .E0;p0; �0/ is an isomor-
phism if .f;g/ W .E;p/! .E0;p0/ is an isomorphism of elliptic curves over
spec.R/ and f jEŒ3� ı� D �0.

Theorem 1.2.1 (Goerss, Hopkins and Miller; see Behrens [8, Theorem 1.1]) There
is an E1–ring spectra-valued sheaf Otop on the affine étale site Affét

M of M such that :

(1) The sheafification of �0Otop is the structure sheaf of M.

(2) If E W spec.R/!M is an étale morphism , then Otop.spec.R// is a spectrum
associated to the formal completion of E at its origin via the Landweber exact
functor theorem.

Remark 1.2.2 The spectra constructed by point (2) of this theorem are called elliptic
spectra. They are even periodic spectra R whose formal group law on �0.R/ is the
completion of an elliptic curve. These are E.2/–local; see [4, Lemma 4.2].

Let G WD GL2.Z=3/ denote the automorphism group of the constant group scheme
Z=3�Z=3 over Z.2/. Then G acts on M.3/ by precomposition with the level structure.
The obvious forgetful functor gives rise to a finite étale morphism of stacks (because 3

is invertible in Z.2/),

(3) M.3/!M:

Thus, one can evaluate Otop at M and M.3/. Define

TMFDOtop.M/ WD holim
U2Affét

M

Otop.U /; TMF.3/DOtop.M.3// WD holim
U2Affét

M.3/

Otop.U /:

These are known as nonperiodic versions of topological modular forms. The morphism
of (3) is a Galois cover with Galois group G, or a G–torsor. As a consequence of the
fact that Otop satisfies descent, one obtains that

(4) TMF' TMF.3/hG :

It is known that M.3/ is affine over the ring Z.2/Œ��, where � is a primitive third root
of unity; see [15, IV, Corollaire 2.9]. In particular, the only automorphism of an elliptic
curve with full level 3 structure is the identity. Furthermore, up to isomorphism of
elliptic curves with full level 3 structure, there is a unique supersingular elliptic curve
with a full level 3 structure over F4. This follows from the fact that there is a unique
supersingular elliptic curve over F4 up to isomorphism, and that the automorphism
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group of the supersingular elliptic curve .C;F4/ has order 48, which is equal to that
of G, the automorphism group of Z=3�Z=3. In other words, the fiber of the morphism
M.3/!M over the supersingular locus of M is isomorphic to spec.F4/; ie the square

spec.F4/ //

��

M.3/

��

spec.F4/==G48
//M

is a pullback of stacks, where the bottom is given by specifying a supersingular elliptic
curve, for example C, and spec.F4/==G48 is the quotient stack of spec.F4/ by G48,
which acts on spec.F4/ via the quotient G48! Gal.F4=F2/Š C2. Therefore, by the
construction of Otop, LK.2/Otop.M.3// is the Lubin–Tate theory associated to the pair
.F4;FC /; see [8, Section 4]. This means that there is a homotopy equivalence

(5) LK.2/TMF.3/ '�!EC :

Note that G can be identified with Aut.F4;C / D G48 so that the equivalence (5) is
equivariant with respect to the action of G on the source and of G48 on the target,
as follows. Suppose the map spec.F4/!M.3/ specifies the elliptic curve C and a
level 3 structure Z=3�2 �

�! C. Then, for any g 2 G, there is a unique �.g/ 2 G48

making the following diagram commute:

Z=3�2 �
// C

Z=3�2

g

OO

�
// C

�.g/

OO

Theorem 1.2.3 There is a homotopy equivalence

(6) LK.2/TMF'EhG48
C :

Proof Since an elliptic spectrum is E.2/–local, TMF.3/ is E.2/–local, being a ho-
motopy limit of E.2/–local spectra. Using the equivalence (4) and the fact that K.2/–
localization commutes with homotopy limits in the category of E.2/–local spectra (see
[25, Proposition 7.10(e)]), we obtain that

LK.2/TMFŠLK.2/.TMF.3/hG/Š .LK.2/TMF.3//hG
ŠEhG48

C :
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A connective model of TMF In [17], a connective ring spectrum tmf was constructed
together with a map of ring spectra tmf! TMF. There is an element �8 2 �192tmf
such that the latter map extends to a homotopy equivalence

(7) Œ.�8/�1�tmf' TMFI

see [17]. The (co)homology of tmf, as a module over the Steenrod algebra A (see
Section 2 for a recollection on the Steenrod algebra), was known by Hopkins and
Mahowald; see [28; 34, Theorem 21.5]:

Theorem 1.2.4 There is an isomorphism of modules over the Steenrod algebra ,

H�.tmf/ŠA==A.2/;

where A.2/ is the subalgebra of A generated by Sq1, Sq2 and Sq4. Equivalently, there
is an isomorphism of comodules over the dual A� of Steenrod algebra

H�.tmf/ŠA��A.2/� F2;

where A.2/� is the dual of A.2/.

2 The Davis–Mahowald spectral sequence

We introduce a generalization of the Davis–Mahowald spectral sequence, which is an
useful tool for analyzing Ext groups over various Hopf algebras. Initially, this spectral
sequence was used by Davis and Mahowald in [14] to compute Ext groups over the
subalgebra A.2/ of the Steenrod algebra.

2.1 Construction of the Davis–Mahowald spectral sequence

Let k be a field of characteristic 2. We will later specialize to the case k D F2, the field
of two elements. Let .A; �; �; �; �; �/ be a commutative Hopf algebra over k, with �,
�, �, � and � the coproduct, product, counit, unit and conjugation, respectively.

Definition 2.1.1 An exterior coaugmented comodule over A is an A–comodule M

together with a coaugmentation of A–comodules k!M having a chosen section s of
k–vector space, which satisfies that

(8) ..Id˝ s/ ı�M /2.V /D 0;

where �M denotes the comultiplication of M and V is the kernel of s.
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For M an exterior coaugmented A–comodule, let E.M / be the exterior algebra gener-
ated by the kernel of s.

Lemma 2.1.2 For M an exterior coaugmented A–comodule , E.M / is a comodule
algebra such that the natural inclusion M ,!E.M / is a map of A–comodules.

Proof Let V be the kernel of the section s. As k–algebras,

E.M /Š T .V /=hx˝x j x 2 V i;

where T .V / is the tensor algebra over V. T .V / has a unique structure as a comodule
algebra such that the inclusion M Š k ˚ V ,! T .V / is a map of A–comodules. It
suffices to show that, if I denotes the ideal hx˝x j x 2 V i, then �T .V /.I/�A˝ I.
Equivalently, one needs to show that �T .V /.x˝x/ 2A˝ I for x 2 V. Indeed, this is
a consequence of the commutativity of A and condition (8) of Definition 2.1.1

Let M be the cokernel of the coaugmentation k !M and P .M / the polynomial
algebra generated by M.

Lemma 2.1.3 P .M / is an A–comodule algebra such that the inclusion M ,! P .M /

is a map of A–comodules.

Proof As k–algebra,

P .M /Š T .M /=hx˝y �y˝x j x;y 2M i:

As the free algebra on M, T .M / has a unique structure as an A–comodule algebra
such that M ,! P .M / is a map of A–comodules. In order to conclude, it suffices to
show that �T .M /.x˝y�y˝x/ 2A˝hx˝y�y˝x j x;y 2M i. This follows, in
fact, from the commutativity of A.

We write E and P for E.M / and P .M /, if the underlying M is understood from
the context. We introduce a grading on E and P by letting M and M have degree 1,
respectively. Denote by Ei and E�i the subgroup constituting the elements of degree i

and of degree not exceeding i of E.M /, respectively. Define Pi and P�i similarly
for P. In the theory of Koszul duality, the polynomial algebra P is commonly referred
to as the Koszul dual of the exterior algebra E. We will refer to .P;E/ as the pair of
Koszul duals associated to the exterior coaugmented A–comodule M. Let us recall the
definition of the Koszul complex .E˝P; d/ associated to the pair .P;E/, as follows:
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(i) .E˝P /�1 D k.

(ii) .E˝P /m DE˝Pm for m� 0.

(iii) d W k D .E˝P /�1!E D .E˝P /0 is the unit of E.

(iv) d
�Qn

jD1 xij ˝ z
�
D
Pn

tD1

Q
j¤t xij ˝p.xit

/z, where xij 2E1, z 2 Pm and p

denotes the projection M !M.

Remark 2.1.4 In other words, d WE�n˝Pm!E�n�1˝PmC1 is the unique homo-
morphism making the diagram

(9)

E˝n
�1
˝P�m

.
P
� .Id
˝.n�1/˝p/ı�/˝Id

//

�˝Id
��

E
˝.n�1/
�1

˝P1˝Pm

�˝�

��

E�n˝Pm
d

// E�n�1˝PmC1

commute, where in the upper horizontal map the sum is taken over all cyclic permuta-
tions on n factors of E1 in the tensor product E˝n

1
.

Proposition 2.1.5 The complex .E˝P; d/ is an exact sequence of A–comodules.
Furthermore , .E˝P; d/ has a structure of a differential graded algebra induced from
the algebra structure of E and P.

Proof Let x1; : : : ;xn be a basis of E1. As a cochain complex over k, .E˝P; d/

is isomorphic to the tensor product of .E.xi/ ˝ kŒyi �; di/, where yi D p.xi/ for
1� i � n. Here, each .E.xi/˝ kŒyi �; di/ is the Koszul complex associated to the pair
.E.xi/; kŒyi �/. It is straightforward to see that the cochain complex .E.xi/˝kŒyi �; di/

is exact. Hence, .E˝P; d/ is exact by the Künneth theorem. This proves the first part.

Let us check that d is a map of A–comodules. In the diagram (9), the two vertical maps
are ones of A–comodules because E and P are A–comodule algebras. In addition,
they are surjective. It remains to check that the upper horizontal map is a map of
A–comodules. Or, equivalently, each map E˝n

�1
.Id˝.n�1/˝p/ı�
�����������! E

˝.n�1/
�1

˝ P1 is
a map of A–comodules, where � is a cyclic permutation on n elements. This is
true because � is a map of A–comodules as A is commutative and p is a map of
A–comodules by definition. The second part follows.

Finally, it is straightforward from the formula of d in (iv) that d satisfies the Leibniz
rule.
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Remark 2.1.6 Let ECA be the category whose objects are exterior coaugmented
comodules over A and morphisms are maps of comodules which commute with
both the coaugmentation and its section. Then, we see that the association M 7!

.E.M / ˝ P .M /; d/ is a functor from ECA to the category of differential graded
comodule algebras.

This proposition allows us to construct a spectral sequence of algebras converging to
ExtsA.k/; see [32, Theorem A1.3.2] for example.

Proposition 2.1.7 (1) There is a spectral sequence of algebras

(10) Es;t
1
D ExtsA.k;E˝Pt /) ExtsCt

A
.k; k/;

converging to ExtsA.k/, with dr WE
s;t
r !E

s�rC1;tCr
r .

(2) If N is an A–comodule , then there is a spectral sequence of modules over the
previous one , converging to ExtsA.N /,

Es;t
1
D ExtsA.k;E˝Pt ˝N /) ExtsCt

A
.k;N /:

Terminology We will call these spectral sequences the Davis–Mahowald spectral
sequences, or DMSSs for short, associated to the almost graded A–module algebra E.
The first grading s of the En–term is referred to as the cohomological grading or degree
and the second grading t is referred to as the Davis–Mahowald grading or degree (or
DM grading or degree for short).

With a view to carrying out explicit computations of products in Ext�A.k/ and the action
of Ext�A.k/ on Ext�A.M /, we recall a double complex from which the above spectral
sequence is derived.

For each t � 0, let .C s.A;E˝Pt /; dv/s�0 be the cobar complex whose cohomology
is Ext�A.E˝Pt /, ie

C s.A;E˝Pt /DA˝s
˝E˝Pt

and dv WA
˝s˝E˝Pt !A˝sC1˝E˝Pt is given by

dv.a1˝� � �˝as˝m/D1˝a1˝� � �˝as˝mC

sX
iD1

a1˝� � �˝ai�1˝�.ai/˝� � �˝as˝m

C a1˝ � � �˝ as˝�.m/;
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where ai 2A for 1� i � s and m 2E˝Pt . We will abbreviate a1˝� � �˝as˝m by
Œa1j � � � jasjm�. By an abuse of notation, we will denote by dv the differentials in the co-
bar complexes associated to E˝Pt for different t . The fact that d WE˝Pt!E˝PtC1

is a map of A–comodules implies that the maps dh D Id˝s
˝ d W C s.A;E˝Pt /!

C s.A;E˝PtC1/ assemble to give a map of cochain complexes

dh W .C
s.A;E˝Pt /; dv/s�0! .C s.A;E˝PtC1/; dv/s�0:

Finally, it is easily seen that the maps of cochain complexes assemble to form a double
complex .C s.A;E˝Pt /; dv; dh/s;t�0:

E
dh

//

dv
��

E˝P1

dh
//

dv
��

E˝P2

dh
//

dv
��

E˝P3

dh
//

dv
��

� � �

A˝E
dh

//

dv
��

A˝E˝P1

dh
//

dv
��

A˝E˝P2

dh
//

dv
��

A˝E˝P3

dh
//

dv
��

� � �

A˝2˝E
dh
//

dv
��

A˝2˝E˝P1

dh
//

dv
��

A˝2˝E˝P2

dh
//

dv
��

A˝2˝E˝P3

dh
//

dv
��

� � �

:::
:::

:::
:::

:::

We can see that the spectral sequence associated to the horizontal filtration has E1–
term isomorphic to .As ˝ k; dv/s�0, which identifies with the cobar complex of the
trivial A–comodule k. Thus this spectral sequence degenerates at the E2–term and the
E1DE2–term identifies with ExtsA.k/. Since there are no possible extension problems,
the cohomology of the total complex is isomorphic to ExtsA.k/. Now, the spectral
sequence associated to the vertical filtration has E1–term isomorphic to ExtsA.E˝Pt /.
This spectral sequence is exactly the one appearing in Proposition 2.1.7.

Remark 2.1.8 The differential d1 WExt0A.E˝Pt /!Ext0A.E˝PtC1/ is the restriction
of the derivation d of the Koszul complex on the A–primitives of E˝Pt .

2.2 Naturality of the Davis–Mahowald spectral sequence

We notice that the above construction is natural in pairs .A;M /, where A is a commu-
tative Hopf algebra and M is an exterior coaugmented left A–comodule. This allows us
to compare Davis–Mahowald spectral sequences associated to different pairs .A;M /.
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Definition 2.2.1 Let .A;M / and .B;N / be such that A and B are commutative Hopf
algebras and M and N are objects of ECA and ECB , respectively. A morphism between
.A;M / and .B;N / consists of f1 W A! B and f2 WM ! N, where f1 is a map of
Hopf algebras and f2 is a morphism in ECB with the B–comodule structure on M

being induced from f1.

Proposition 2.2.2 A morphism between .A;M / and .B;N / induces a map between
the associated Davis–Mahowald spectral sequences.

Proof By Remark 2.1.6, the map f2 WM !N induces a map of cochain complexes
of B–comodules E.M /˝P .M /!E.N /˝P .N /. Together with f1, one obtains
a map of double complexes .A˝s˝E.M /˝P .M /t /! .B˝s˝E.N /˝P .N /t /,
and hence a map of Davis–Mahowald spectral sequences.

Remark 2.2.3 Although we have only treated the ungraded situation so far, the
construction carries over verbatim to the graded one. More precisely, suppose that A

and E are graded algebras. We refer to this grading as the internal degree. We require
the structural maps in the A–comodule structure of E to preserve the internal degree.
Then we see that the Koszul dual P of E is internally graded and the Koszul complex
is a graded cochain complex with respect to the internal degree. It follows that the
associated DMSS is trigraded with the third grading associated to the internal degree
and the differentials preserve the internal degree.

Let us present examples which are of the main interest in this paper. Recall that the
Steenrod algebra A is generated by the Steenrod squares Sqi for i � 0, subject to the
Adem relations

Sqa Sqb
D

ba=2cX
iD0

�b�i�1

a�2i

�
SqaCb�i Sqi

for all a; b > 0 and a < 2b. Let A� denote the dual of the Steenrod algebra. In [29],
Milnor determines the Hopf algebra structure of A�. As a graded algebra, A� D
F2Œ�i j i � 1�, where �i is in degree j�i j D 2i � 1. The coproduct is given by

�.�k/D

kX
iD0

�2k�i

i ˝ �k�i ;

where �0 D 1. Let us denote by �i the conjugate of �i . Then

(11) �.�k/D
X

iCjDk

�i ˝ �
2i

j :
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A Hopf ideal of a Hopf algebra A is an ideal I such that �.I/� I ˝ACA˝ I. If I

is a Hopf ideal of A, then A=I inherits a structure of Hopf algebra from A such that
the natural projection A!A=I is a map of Hopf algebras.

Example 2.2.4 Let A.n/� be the quotient of A� by the Hopf ideal In generated by
.�2nC1

1
; �2n

2
; : : : ; �2

nC1
; �nC2; : : : /. As an algebra,

A.n/� D F2Œ�1; �2; : : : ; �nC1�=.�
2nC1

1 ; �2n

2 ; : : : ; �2
nC1/:

It is dual to the subalgebra A.n/ D hSq1;Sq2; : : : ;Sq2n

i of the Steenrod algebra A.
The canonical projection � WA.n/�!A.n� 1/� induced by the inclusion In � In�1

of Hopf ideals is a map of Hopf algebras, and hence induces on A.n/� a structure of a
right A.n�1/�–comodule algebra,

.id˝�/� WA.n/�!A.n/�˝A.n/�!A.n/�˝A.n� 1/�:

An easy computation shows that the group of primitives A.n/��A.n�1/� F2 of this
coaction is given by

A.n/��A.n�1/� F2 DE.�2n

1 ; �2n�1

2 ; : : : ; �nC1/;

which is abstractly isomorphic to EnDE.x1; : : : ;xnC1/, where xi stands for �2nC1�i

i .
Here and elsewhere in this paper, E.X / denotes the exterior algebra on the k–vector
space spanned by the set X. We see that the algebra E.x1;x2; : : : ;xnC1/ inherits a
left A.n/�–comodule algebra structure from A.n/�, namely,

�.xk/D

kX
iD0

�2nC1�k

i ˝xk�i for 1� k � nC 1;

where x0 D 1 by convention. In particular, the subcomodule

Mn D F2fx0g˚F2fx1; : : : ;xnC1g

is an exterior coaugmented A.n/�–comodule, because .�2nC1�k

k
/2 D 0 2A.n/�.

Example 2.2.5 Let B.n/� be the quotient of A� by the Hopf ideal Jn generated by
.�2n

1
; �2n

2
; �2n�1

3
; : : : ; �2

nC1
; �nC2; : : : /, so that

B.n/� D F2Œ�1; �2; : : : ; �nC1�=.�
2n

1 ; �2n

2 ; �2n�1

3 ; : : : ; �2
nC1/:

Similarly to Example 2.2.4, the projection B.n/�!A.n�1/� induced by the inclusion
of Hopf ideals Jn � In�1 defines a structure of a right A.�1/�–comodule algebra
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on B.n/�. A calculation shows that

B.n/��A.n�1/� F2 DE.�2n�1

2 ; �2n�2

3 ; : : : ; �nC1/;

which is abstractly isomorphic to Fn WDE.x2; : : : ;xnC1/. The notation is chosen to
be coherent with that of Example 2.2.4. We see that Fn inherits a structure of a left
B.n/�–comodule algebra from that of B.n/�, namely

�.xk/D

kX
iD0;i¤1

�2nC1�k

i ˝xk�i for 2� k � nC 1;

where x0 D 1. Since .�2nC1�k

k
/2 D 0 2 B.n/�,

Nn D F2fx0g˚F2fx2; : : : ;xnC1g

is an exterior coaugmented B.n/�–comodule.

Example 2.2.6 Recall that Mn is an exterior coaugmented A.n/�–comodule. Let R.n/

denote P .Mn/, the Koszul dual of En. In particular, it follows from Proposition 2.1.7
that, for any graded left A.n/�–comodule V, the DMSS converging to Ext�;�A.n/�

.F2;V /

has E1–term isomorphic to

Es;t;�
1
Š Exts;tA.n/�

.En˝R.n/� ˝V /;

where s is the cohomological grading, t is the internal grading and � is the Davis–
Mahowald grading, which, recall, arises from the homogenous degree of the graded
algebra R.n/. The change-of-rings isomorphism tells us that

Exts;tA.n/�
.En˝R.n/� ˝V /Š Exts;tA.n�1/�

.R.n/� ˝V /I

see [31, Appendix A1.3.13] for the change-of-rings isomorphism. This means that
the problem of computing Exts;tA.n/�

.�/ can be reduced to two steps: first computing
Exts;tA.n�1/�

.�/, then studying the corresponding Davis–Mahowald spectral sequence.
We will demonstrate the efficiency of this method by carrying out explicit computations
in the case nD 2.

Example 2.2.7 Similarly, for Nn, the exterior coaugmented B.n/�–comodule, let
S.n/ denote the Koszul dual of Fn. For any graded left B.n/�–comodule V, the DMSS
for ExtsC�;t

B.n/�
.V / has E1–term isomorphic to

Exts;t
B.n/�

.Fn˝S.n/� ˝V /Š Exts;tA.n�1/�
.S.n/� ˝V /;

again by the change-of-rings isomorphism.
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Comparison of DMSS There is a morphism between .A.n/�;Mn/ and .B.n/�;Nn/

given by the two projections

A.n/�! B.n/�; �i 7! �i ;

Mn!Nn; x1 7! 0; xi 7! xi for i D 0 and i � 2:

This induces a map of spectral sequences, for an A.n/�–comodule V,

Exts;tA.n/�
.En˝R.n/� ˝V /

��

// Exts;t
B.n/�

.Fn˝S.n/� ˝V /

��

ExtsC�;tA.n/�
.V / // ExtsC�;t

B.n/�
.V /

This comparison allows us to transfer some computations in the former SS to the
latter, which are simpler because all modules involved in the latter are smaller. This
observation will be made concrete in Section 3.

3 The Davis–Mahowald spectral sequence for the
A.2/�–comodule H�.A1/

The goal of this section is to describe the structure of Ext�;�A.2/�
.H�.A1// as a module

over Ext�;�A.2/�
.F2/. To achieve a part of this goal, we will study the DMSS

Exts;tA.2/�
.E2˝R.2/� ˝A1/) ExtsC�;tA.2/�

.H�.A1//

as a spectral sequence of modules over the spectral sequence of algebras

Exts;tA.2/�
.E2˝R.2/� /) ExtsC�;tA.2/�

.F2/:

We obtain then the structure of Ext�;�A.2/�
.H�.A1// as a graded abelian group and a

partial action of Ext�;�A.2/�
.F2/ on it. However, there is an important action of an

element of Ext�;�A.2/�
.F2/ on some elements of Ext�;�A.2/�

.H�.A1// that cannot be seen
at the E1–term of the DMSS. One way of understanding these exotic products is to
carry out computations at the level of double complexes: find representatives of the
cohomological classes in question in the double complexes from which the DMSS
is derived and carry out products at that level. It turns out that a brute-force attack
is messy. Instead, computations are simplified drastically by comparing the DMSS
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associated to .A.2/�;M2/ to that of .B.2/�;N2/:

Exts;tA.2/�
.En˝R.2/� ˝H�.A1//

��

// Exts;t
B.2/�

�
Fn˝S.2/� ˝H�.A.1//

�
��

ExtsC�;tA.2/�
.H�.A1// // ExtsC�;t

B.2/�
.H�.A1//

3.1 Recollections on the Davis–Mahowald spectral sequence for the
A.2/�–comodule F2

To fix notation, we recollect some information relevant for our purposes. This material
was originally treated in [14] and reviewed in unpublished course notes of Rognes [35].
As we will specialize to the case n D 2, we will simplify the notation by writing
R, R� , S and S� for R.2/, R.2/� , S.2/ and S.2/� from Examples 2.2.4 and 2.2.5,
respectively.

Recall that R is a homogenous graded polynomial algebra on three generators, say y1,
y2 and y3, and R� is its subspace of homogeneous elements of degree � for � � 0.
Let us first explicitly give the coaction of A.2/� on RD F2Œy1;y2;y3� with jy1j D 4,
jy2j D 6 and jy3j D 7. From Example 2.2.6, we have

�.y1/D 1˝y1; �.y2/D �
2
1˝y1C1˝y2; �.y3/D �2˝y1C�1˝y2C1˝y3:

By the change-of-rings theorem, the E1–term of the DMSS for Ext�;�A.2/�
.F2/ is iso-

morphic to Exts;tA.1/�

�L
��0 R�

�
. The coaction of A.1/� on R1 is induced from that

of A.2/� and hence is given by

�.y1/D 1˝y1; �.y2/D �
2
1˝y1C1˝y2; �.y3/D �2˝y1C�1˝y2C1˝y3:

In particular, y1, y2
2

and y4
3

are A.1/�–primitives of R. Let R0� denote the A.1/�–
subcomodule F2fy

i
1
y

j
2

yk
3
j i C j C k D �; k � 3g of R� . In particular, Ri DR0i for

1� i � 3.

Lemma 3.1.1 As an A.1/�–comodule , R� can be decomposed as

R� Š

M
i�� .mod 4/

i��

R0i ˝F2fy
��i
3 g:

Therefore , M
��0

R� D

�M
��0

R0�

�
˝F2Œy

4
3 �:
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Proof If one views F2fy
��i
3
g as a subvector space of R��i , then the product of R

produces an isomorphism of vector spacesM
i�� .mod 4/

i��

R0i ˝F2fy
��i
3 g Š�!R� :

Since y4
3

is an A.1/�–primitive of R� , this map is also a map of A.1/�–comodules.
The lemma follows.

Let us denote Ext�;�A.1/�
.R0� / by G� , so that

Ext�;�A.1/�
.R/Š

�M
��0

G�

�
˝F2Œv

4
2 �;

where v4
2
2Ext0;24

A.1/�
.R4/ is represented by y4

3
2R4. Determining the full multiplicative

structure of Ext�;�A.1/�.R/ is quite involved. Instead, we will work modulo .v4
2
/. This

will suffice for us to obtain a set of algebra generators of Ext�;�A.1/�
.R/. More precisely,

since the product R0� ˝R0� ! R�C� factors through R0�C� ˚ .R�C��4˝ F2fy
4
3
g/,

we obtain a map

G� ˝G� !G�C� ˚ .G�C��4˝F2fv
4
2g/:

We will analyze the map G� ˝G� !G�C� which is the composite

G� ˝G� !G�C� ˚ .G�C��4˝F2fv
4
2g/!G�C� ;

where the second map is the projection on the first factor.

In what follows, we compute Gi for i � 0 as modules over G0. For this, we decompose
R0i into smaller pieces, compute the Ext groups over A.1/� of these pieces, then
determine Gi via long exact sequences. Next, we study the pairings

G� ˝G� !G�C� ;

which allows us to determine a set of algebra generators of the E1–term. Finally, we
compute d1–differentials on this set of algebra generators. We do not intend to describe
completely Ext�;�A.2/�

.F2/ but only a subalgebra in which we are interested.

Since y1 is a primitive, multiplication by y1 induces injections of A.1/�–comodules

†4R0� !R0�C1:
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Lemma 3.1.2 There are short exact sequences of A.1/�–comodules

(a) 0!H�.†12C�/!R2!†8.A.1/��A.0/� F2/! 0, where � WS1!S0 is the
Hopf map and the map H�.†12C�/!R2 sends the generators of H12.†

12C�/

and H14.†
12C�/ to y2

2
and y2

3
, respectively;

(b) 0!†4R1!R2!†12V3! 0, where V3 D H�.S0[2 e1[� e2/.

Proof For part (a), the map †12H�.C�/!R2 described in the statement is a map of
A.1/�–comodules. Its quotient is isomorphic to F2fy

2
1
;y1y2;y1y3;y2y3g, with the

A.1/�–comodule structure given by

�.y2y3/D 1˝y2y3C �
2
1 ˝y1y3C �2˝y1y2C �2�

2
1 ˝y2

1 ;

�.y1y3/D 1˝y1y3C �1˝y1y2C �2˝y2
1 ;

�.y1y2/D 1˝y1y2C �
2
1 ˝y2

1 ;

�.y2
1/D 1˝y2

1 :

We can check that this module is isomorphic to †8.A.1/� �A.0/� F2/ as A.1/�–
comodules.

For part (b), the quotient of R2 by †4R1 is isomorphic to F2fy
2
2
;y2y3;y

2
3
g with

A.1/�–comodule structure given by

�.y2
2/D 1˝y2

2 ; �.y2y3/D �1˝y2
2 C 1˝y2y3; �.y2

3/D �
2
1 ˝y2

2 C 1˝y2
3 :

One can check that this quotient is isomorphic to †12V3.

Lemma 3.1.3 For every � � 3, there is a short exact sequence of A.1/�–comodules

0!†4R0��1
�y1
��!R0� !†6�V4! 0;

where V4 is H�.V .0/^C�/.

Remark 3.1.4 The spectrum V .0/^C� is homotopy equivalent to Y, introduced on
page 3858 (see Section 3.2 for a presentation of H�.Y /).

Proof The quotient of R0� by †4R0
��1

is isomorphic to

F2fy
�
2 ;y

��1
2 y3;y

��2
2 y2

3 ;y
��3
2 y3

3g;
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with A.1/�–comodule structure given by

�.y�2 /D 1˝y�2 ;

�.y��1
2 y3/D �1˝y�2 C 1˝y��1

2 y3;

�.y��2
2 y2

3/D �
2
1 ˝y�2 C 1˝y��2

2 y2
3 ;

�.y��3
2 y3

3/D �
3
1 ˝y�2 C �

2
1 ˝y��1

2 y3C �1˝y��2
2 y2

3 C 1˝y��3
2 y3

3 :

It can be easily seen that this quotient is isomorphic to †6�V4.

Remark 3.1.5 We describe above the comodule structure of R0� for the purpose
of making explicit calculations of the Ext groups. For the sake of visualization, we
present here the module structure of the duals R_

1
, R_

2
and R_

3
of R1, R2 and R3,

respectively, by their corresponding cell diagram. Let fai;j ;k j i C j C k D �g be the
dual basis to fyi

1
y

j
2

yk
3
j i C j C k D �g. In the following cell diagrams, the straight

lines represent Sq1 and the curved lines represent Sq2:

R_
1

: a100 a010 a001

R_
2

: a200 a110 a101 a020 a011 a002

R_
3

:
a300 a210 a201 a220 a111 a102

a030 a021 a012 a003

In the cell diagram of R_
3

, two curved lines from a220 to a102 and a030 means that
Sq2.a220/D a102C a030.

Remark 3.1.6 R_
1

is the cohomology of the dual question mark complex, a key
player in the K.1/–local homotopy theory; namely, its K.1/–localization represents
the exotic element of the K.1/–local Picard group; see also Proposition 3.1.13 for its
ko–homology, where ko is the connective real K–theory.

Next we describe the Ext groups of some A.1/�–comodules as basic steps towards
computing G� . These calculations are elementary and classical.

Proposition 3.1.7 There are classes h0 2 Ext1;1, h1 2 Ext1;2, v 2 Ext3;7 and v4
1
2

Ext4;12 such that there is an isomorphism of algebras

G0 WD Exts;tA.1/�
.F2/Š F2Œh0; h1; v; v

4
1 �=.h

3
1; h0h1; h1v; v

2
� h2

0v
4
1/:

See for example [32, Theorem 3.1.25], and Figure 1.
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0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4
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6

h0 h1

v
v4

1

Figure 1: Ext�;�A.1/�
.F2;F2/ in the range 0� t � s � 8.

Lemma 3.1.8 As a module over Exts;tA.1/�
.F2/, we have (see Figure 2):

(1) Exts;tA.1/�
.H�.V .0/// is generated by 12Ext0;0 and v1 2Ext1;3 with the relations

h01D v1D vv1 D 0 and h2
1
:1D h0v1.

(2) Exts;tA.1/�
.H�.C�// is generated by 1 2 Ext0;0, v1 2 Ext1;3, v2

1
2 Ext2;6 and

v3
1
2 Ext3;9 with h1aD 0 for a 2 f1; v1; v

2
1
; v3

1
g, v1D h0v

2
1

and vv1 D h0v
3
1

.

(3) Exts;tA.1/�
.H�.S0[2e1[�e2// is generated by 12Ext0;0, v12Ext1;3, a12Ext1;3,

v2
1
2 Ext2;6 and v3

1
2 Ext3;9 with h01D h11D h1v1 D h0a1 D va1 D h1v

2
1
D

vv2
1
D h1v

3
1
D vv3

1
D 0 and h0v

2
1
D h2

1
a1.

(4) Exts;tA.1/�
.H�.Y // is generated by f1; v1; v

2
1
; v3

1
g with h0aD h1aD vaD 0 for

a 2 f1; v1; v
2
1
; v3

1
g.

0 1 2 3 4 5

0

1

2

3

4

5

1

v1

0 1 2 3 4 5 6

0

1

2

3

4

1

v1

v2
1

v3
1

0 1 2 3 4 5 6

0

1

2

3

4

1

v1 a1

v2
1

v3
1

0 1 2 3 4 5 6

0

1

2

3

4

1

v1

v2
1

v3
1

Figure 2: Clockwise from top left: Exts;tA.1/�
.H�.V .0/// in the range 0� t�s�4

and Exts;tA.1/�
.H�.C�//, Exts;tA.1/�

.H�.S0[2 e1[� e2// and Exts;tA.1/�
.H�.Y // in

the range 0� t � s � 6.
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See [32, Theorem 3.1.27] for .1/ and .4/. The calculations for .2/ and .3/ are also
elementary, so we omit the detail.

Remark 3.1.9 We use the same notation 1, v1, v2
1

and v3
1

to denote certain generators
of the above groups. This is justified by the fact that these generators have close
relationships, which are described in the next lemma. The context will help avoid
confusion.

Remark 3.1.10 The above Ext calculations also give us the homotopy groups of
familiar spectra in A.1/–homotopy theory, namely those of ko (Proposition 3.1.7),
ko^V .0/ (Lemma 3.1.8(1)) and ko^C� ' ku (Lemma 3.1.8(2)).

Consider cell inclusions V .0/! Y and S0[2 e1[� e2! Y. The induced homomor-
phisms in Ext over A.1/� are described as follows:

Lemma 3.1.11 (i) The homomorphism Ext�;�A.1/�
.H�.V .0///! Ext�;�A.1/�

.H�.Y //
sends the classes 1 and v1 to the nontrivial classes of the same name.

(ii) The homomorphism Ext�;�A.1/�
.H�.S0[2e1[�e2//!Ext�;�A.1/�

.H�.Y // sends the
classes 1, v1, v2

1
and v3

1
to the nontrivial classes of the same name.

Proof For part (i), consider the short exact sequence of A.1/�–comodules

0! H�.V .0//! H�.Y /! H�.†2V .0//! 0:

For degree reasons, the classes 1 and v1 of Ext�;�A.1/�
.H�.V .0/// do not belong to the

image of the connecting homomorphism

Exts�1;t
A.1/�

.H�.†2V .0///! Exts;tA.1/�
.H�.V .0///:

Therefore, they are sent to nontrivial classes of the same name in Ext�;�A.1/�
.H�.Y //.

For part (ii), consider the short exact sequence of A.1/�–comodules

0! H�.S0
[2 e1

[� e2/! H�.Y /!†3F2! 0

and the resulting long exact sequence

Exts�1;t
A.1/�

.H�.†3F2//
@
�! Exts;tA.1/�

.H�.S0
[2 e1

[� e2//! Exts;tA.1/�
.H�.Y //:

For degree reasons, the classes 1, v2
1

and v3
1

of Exts;tA.1/�
.H�.S0[2 e1[� e2// are not

in the image of the connecting homomorphism, and thus are sent to 1, v2
1

and v3
1

in
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Ext�;�A.1/�
.H�.Y //, respectively. Next, for degree reasons, the classes h0v1 and h1a1

are sent to 0 2 Ext�;�A.1/�
.H�.Y //. The only way for this to happen is that the connecting

homomorphism sends †31 2 Ext0;3A.1/�
.F2;H�.†3F2// to the sum v1C a1. It follows

that v1 is not in the image of the connecting homomorphism, and therefore is sent to
v1 2 Ext1;3A.1/�

.H�.Y //

Lemma 3.1.12 H�.Y / has a structure of an A.1/�–comodule algebra. The resulting
structure of an algebra on Ext�;�A.1/�

.H�.Y // is that of a polynomial algebra on the
variable v1.

Proof It is not hard to see that H�.Y / is isomorphic to A.1/��E.1/� F2 as A.1/�–
comodules, where E.1/� is the Hopf quotient of A.1/� by the Hopf ideal .�1/, ie
E.1/� Š F2Œ�2�=.�

2
2
/. In particular, H�.Y / has the structure of an A.1/�–comodule

algebra. As a consequence, Ext�;�A.1/�
.H�.Y // is an algebra and is furthermore isomor-

phic to Ext�;�
E.1/�

.F2/ by the change-of-rings isomorphism. It is well known that the
latter is a polynomial algebra on one variable.

We now compute G� WD Ext�;�A.1/�
.R0� /, where, as a reminder, R0� is a subcomodule

of R� , the subcomodule of homogenous elements of degree � of RD F2Œy1;y2;y3�.
We denote by ˛s;t;� the nontrivial class of Exts;sCt

A.1/�
.R0� / whenever there is a unique

such one.

Proposition 3.1.13 As a module over G0, G1DExt�;�A.1/�
.R1/ is generated by ˛0;4;1 2

Ext0;4A.1/�
.R1/ and ˛1;8;1 2Ext1;9A.1/�

.R1/ with the relations h1˛0;4;1D 0 and v˛0;4;1D

h2
0
˛1;8;1.

Proof Consider the short exact sequence of A.1/�–comodules

0!†4F2!R1!†6H�.V .0//! 0:

The connecting homomorphism

@ W Exts;t�6
A.1/�

.V .0//! ExtsC1;t�4
A.1/�

.F2/

of the resulting long exact sequence sends 1 to h1 and v1 to 0. The latter follows
for degree reasons and the former from the map of short exact sequences of A.1/�–
comodules

0 // †4F2
// R1

// †6H�.V .0// // 0

0 // †4F2
//

OO

H�.†4C�/ //

OO

†6F2
//

OO

0
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and the naturality of the connecting homomorphism. It follows that G1 is v4
1

–periodic
on the following generators:

4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

The red part is the contribution of Ext�;�A.1/�
.†4F2/ and the black part the contribution

of Ext�;�A.1/�
.†6H�.V .0///.

What remains to be established is the multiplication by h0 on the generator of bi-
degree .s; t � s/ D .2; 8/. This is done by a similar consideration of the connecting
homomorphism associated to the short exact sequence of A.1/�–comodules

0!†4C�!R1!†7F2! 0:

Proposition 3.1.14 As a module over G0, Ext�;�A.1/�
.R2/DG2 is generated by ˛s;t;2 2

Exts;sCt , where .s; t/ 2 f.0; 8/; .0; 12/; .1; 14/; .2; 16/; .3; 18/g with

h1˛s;t;2 D 0; v˛0;8;2 D h3
0˛0;12;2;

v˛0;12;2 D h0˛2;16;2; v˛1;14;2 D h0˛3;18;2; v4
1˛0;8;2 D h2

0˛2;16;2:

Proof The short exact sequence in Lemma 3.1.2(a) gives rise to the long exact sequence

! Exts;t�12
A.1/�

.H�.C�//! Exts;tA.1/�
.R2/! Exts;t�8

A.0/�
.F2/! ExtsC1;t�12

A.1/�
.H�.C�//! :

Combining that Exts;tA.0/�
.F2/Š F2Œh0� and the description of Exts;tA.1/�

.H�.C�//, we
see that the connecting homomorphism is trivial for degree reasons; see Figure 3.

What remains is to establish the v4
1

–multiplication on the class ˛0;8;2 of bidegree
.0; 8/. Consider the long exact sequence associated to the short exact sequence in
Lemma 3.1.2(b),

(12) ! Exts�1;t
A.1/�

.†12V3/
@
�! Exts;tA.1/�

.†4R1/! Exts;tA.1/�
.R2/! :

One can check that the class †4˛0;4;1 2 Exts;tA.1/�
.†4R1/ is not in the image of @, and

so is sent to ˛0;8;2 2 Exts;tA.1/�
.R2/. For degree reasons, v4

1
†4˛0;4;1 is not in the image

of @; thus, v4
1
˛0;8;2 is nontrivial in G2.
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8 9 10 11 12 13 14 15 16 17 18 19
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6

Figure 3: G2. The red part is the contribution of Exts;tA.0/�
.F2;F2/ and the

black one of Exts;tA.1/�
.H�.C�//.

Remark 3.1.15 We can make a complete calculation of the connecting homomorphism
of (12), which results in the chart in Figure 4.

Lemma 3.1.16 As a module over G0, Ext�;�A.1/�
.R3/DG3 is generated by the elements

˛s;t;3 of Exts;sCt , where .s; t/2f.0; 12/; .0; 16/; .0; 18/; .1; 20/; .2; 22/; .3; 24/g, with
h1˛s;t;3 D 0, v˛0;12;3 D h3

0
˛0;16;3, v˛0;16;3 D h2

0
˛1;20;3, v˛0;18;3 D h0˛2;22;3,

v˛1;20;3 D h0˛3;24;3, v4
1
˛0;12;3 D h3

0
˛1;20;3 and v4

1
˛0;16;3 D h0˛3;24;3.

Proof The short exact sequence in Lemma 3.1.3 gives the long exact sequence

! Exts;tA.1/�
.†4R2/! Exts;tA.1/�

.R3/! Exts;tA.1/�
.†18V4/! ExtsC1;t

A.1/�
.†4R2/! :

For degree reasons, the connecting homomorphism is trivial; hence, we obtain the addi-
tive structure of G3 as in Figure 5. We need to establish the nontrivial h0–multiplication
on the generators f˛s;18C2s;3 j s � 0g. Taking the v4

1
–periodicity into account, we

reduce to showing this property for the generators of

˛0;18;3; ˛1;20;3; ˛2;22;3; ˛3;24;3:

8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

Figure 4: G2. The red part is the contribution of G1 and the black one of Ext�;�A.1/�
.V3/.
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12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Figure 5: G3. The red part is the contribution of G2 and the black one of Exts;tA.1/�
.V4/.

For this, we can check that there are the short exact sequences

0!†18H�.C�/!R3!R3=†
18H�.C�/! 0

and

0!†4R2!R3=†
18H�.C�/!†19H�.C�/! 0;

where, as a A.1/�–subcomodule of R3, †18H�.C�/ is equal to F2fy1y2
3
Cy3

2
;y2y2

3
g

and the map†4R2!R3=†
18C� is the composite†4R2

�y1
��!R3!R3=†

18H�.C�/.

As a consequence, Ext�;�A.1/�
.R3=†

18H�.C�// sits in a long exact sequence

! Exts�1;t
A.1/�

.†19H�.C�//
@
�! Exts;tA.1/�

.†4R2/! Exts;tA.1/�
.R3=†

18H�.C�//! :

Since @ is G0–linear, one only needs to compute @ on the two generators of

Ext0;19
A.1/�

.†19H�.C�// and Ext1;21
A.1/�

.F2; †
19H�.C�//:

Direct computations show that @ act nontrivially on these classes. It follows that @
is a monomorphism and so Exts;tA.1/�

.R3=†
18H�.C�// is v1–free on the generators

depicted in Figure 6.

12 13 14 15 16 17 18 19 20 21 22 23 24 25

0
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6

Figure 6: Exts;tA.1/�
.R3=†

18H�.C�//.

Algebraic & Geometric Topology, Volume 22 (2022)



3884 Viet-Cuong Pham
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Figure 7: G3. The red part is the contribution of Exts;tA.1/�
.R3=†

18H�.C�//
and the black one of Exts;tA.1/�

.†18H�.C�//.

It follows immediately from the exact sequence

0!†18H�.C�/!R3!R3=†
18H�.C�/! 0

that Ext�;�A.1/�
.R3/ is as depicted in Figure 7. In particular, missing h0–extensions are

established.

Theorem 3.1.17 As a module over G0, we have (see Figure 8):

(a) For every � � 2, Ext�;�A.1/�
.R0� / D G� is generated by ˛s;t;� 2 Exts;tCs

A.1/�
.R0� /,

where .s; t/ 2 f.0; 4�/; .0; 2j C 4�/; .k; 6� C 2k/ j 2� j � �; 1� k � 3g with
h1˛s;t;� D 0.

(b) For all pairs of triples .s1; t1; �1/ and .s2; t2; �2/ with �1 � 1 and �2 � 1, except
for .2; 9; 1/ and .3; 10; 1/,

˛s1;t1;�1
˛s2;t2;�2

D ˛s1Cs2;t1Ct2;�1C�2
:

Proof (a) The statement for � D 2 is Proposition 3.1.14. Let us prove the claim for
� � 3 by induction. The base case is Lemma 3.1.16.

0

1

2

3

4

5

6

4� 4�C4 4�C6 6�

...........

Figure 8: G� for � � 2. There is an infinite tower of multiplication by h0 in
every even t � s from 4� C 4 to 6� .
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Suppose the claim is true for some � � 3. The long exact sequence associated to the
short exact sequence in Lemma 3.1.3 reads

! Exts;tA.1/�
.R0�C1/! Exts;tA.1/�

.†6�C6V4/! ExtsC1;t
A.1/�

.†4R0� /! :

Combining the additive structure of Exts;tA.1/�
.†4R0� / and that

Exts;tA.1/�
.†6�C6V4/Š†

6�C6F2Œv1�;

we obtain the additive structure of G�C1 as described in the lemma because the
connecting homomorphism vanishes for degree reasons. To establish the nontrivial
h0–multiplication on the generators f˛s;2sC6�C6;�C1 j s � 0g, we use the following
identities:

(i) G�C1 3 ˛0;4;1˛s;6�C2s;� ¤ 0 for all � � 1.

(ii) ˛1;8;1˛s;2sC6��6;��1 D ˛sC1;2sC6�C2;� for all � � 2.

(iii) ˛0;12;2˛s;2sC6��6;��1 D ˛s;2sC6�C6;�C1 for all � � 3.

These identities are the content of part (b). For the sake of the presentation, we postpone
the proof of (b); this is legitimate because, as we will see, the proof of (b) only uses the
additive structure of the G� . Let us show how these identities allow us to conclude the
proof of (a). Indeed, the classes ˛s;2sC6��6;��1 exist (ie are nontrivial) for all � � 3

and s � 0. Therefore, we have that, for all � � 3,

h0˛s;2sC6�C6;�C1

D h0˛0;12;2˛s;2sC6��6;��1 .multiplying both sides of (iii) by h0/

D ˛0;4;1˛1;8;1˛s;2sC6��6;��1 .because of (i)/

D ˛0;4;1˛sC1;2sC2C6�;� .because of (ii)/

¤ 0 .because of (i)/:

(b) It follows from the long exact sequence in Ext associated to the short exact
sequences in Lemmas 3.1.2(b) and 3.1.3 that

˛0;4;1˛s;t;� D ˛s;tC4;�C1;

except for .s; t; �/ D .2; 9; 1/; .3; 10; 1/ (see Remark 3.1.15 and the proof of part
(a) of this proposition). It remains to prove that ˛s1;t1;�1

˛s2;t2;�2
is nontrivial for

.si ; ti ; �i/ 2 f.si ; 6�i C 2si ; �i/ j si D 0; 1; 2; 3g for i D 1; 2.
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Indeed, for every �; � � 1, there is a commutative diagram of A.1/�–comodules

R0� ˝R0�

��

�
//

��

R�C�
// R0�C�

��

H�.†6�X� /˝H�.†6�X� /

��

�
// H�.†6�C6�X�C� /

��

H�.†6�Y /˝H�.†6�Y /
�

// H�.†6�C6�Y /

Let us explain the maps in this diagram. The spectrum X� is V .0/;S0[2 e1[� e2 or Y

if � D 1; 2 or � > 2, respectively; and in each case the map R0� ! H�.†6�X� / is the
projection appearing in the proof of Proposition 3.1.13, Lemma 3.1.2 or Lemma 3.1.3,
respectively. The other vertical arrows are induced by the inclusions of X� into Y. The
bottom horizontal arrow is the multiplication on H�.Y /, described in Lemma 3.1.12,
and the middle one is induced by the latter. The second upper arrow is the projection
on the factor R0�C� of the decomposition in Lemma 3.1.1.

The induced homomorphisms in Ext over A.1/� of all vertical arrows are studied
in the proofs of Lemmas 3.1.13, 3.1.14, 3.1.17 and 3.1.11, which show that the
classes ˛s;t;� , where � � 1 and .s; t; �/ 2 f.s; 6� C 2s; �/ j s D 0; 1; 2; 3gg, are
sent nontrivially in a unique way to Exts;tA.1/�

.H�.Y //, and hence their products are
nontrivial by Lemma 3.1.12. This proves (b).

Remark 3.1.18 Let us summarize what has been done so far. First, Lemma 3.1.1
implies that

Ext�;�A.1/�
.R/Š

�M
i�0

Gi

�
˝F2Œv

4
2 �;

where v4
2
2 Ext4;28.F2;R4/ is represented by y4

3
. Next, Theorem 3.1.17 describes

completely the products between the Gi modulo the ideal generated by v4
2

. It is then
straightforward to verify that Ext�;�A.1/�

.R/ is generated by the classes of

(13) h0; h1; v; v
4
1 ; ˛0;4;1; ˛1;8;1; ˛0;12;2; ˛1;14;2; ˛3;18;2; ˛0;18;3; v

4
2 :

Let us describe the subalgebra of primitives.

Corollary 3.1.19 There is the isomorphism of graded algebras

Ext0;�A.1/�
.R/Š F2Œ˛0;4;1; ˛0;12;2; v

4
2 ; ˛0;18;3�=.˛

2
0;18;3 D ˛

3
0;12;2C˛

2
0;4;1v

4
2/:
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Proof The algebra Ext0;�A.1/�
.F2;R/ is naturally identified with a subalgebra of RD

F2Œy1;y2;y3�. Through this identification, ˛0;4;1, ˛0;12;2, v4
2

and ˛0;18;3 identify with
y1, y2

2
, y4

3
and y3

2
Cy1y2

3
, respectively. Thus the quotient in the statement is isomorphic

to the subalgebra of Ext0;�A.1/�
.F2;R/ generated by ˛0;4;1, ˛0;12;2, v4

2
and ˛0;18;3. On

the other hand, it follows from Remark 3.1.18 that ˛0;4;1, ˛0;12;2, v4
2

and ˛0;18;3

generate the whole subalgebra of primitives of Ext�;�A.1/�
.R/.

The differentials d1 Since the DMSS for F2 is a spectral sequence of algebras, all
d1–differentials can be determined on the set of algebra generators of (13).

Proposition 3.1.20 The differentials d1 in the DMSS for A1 is induced from

(1) d1.h0/D 0,

(2) d1.h1/D 0,

(3) d1.˛0;4;1/D 0,

(4) d1.˛1;14;2/D 0,

(5) d1.˛0;18;3/D 0,

(6) d1.v
4
1
/D 0,

(7) d1.˛0;12;2/D ˛
3
0;4;1

,

(8) d1.˛1;8;1/D h0˛
2
0;4;1

,

(9) d1.v/D h3
0
˛0;4;1,

(10) d1.˛3;18;2/D h3
0
˛0;18;3,

(11) d1.v
4
2
/D ˛0;4;1˛

2
0;12;2

.

Proof (1)–(2), (4) For degree reasons, there is no room for a nontrivial d1–differential
on h0, h1 or ˛1;14;2.

(3) It is easy to see that Ext1;4A.2/�
.F2;F2/ is nontrivial and that ˛0;4;1 is the only class

in the E1–term that can contribute to it. Therefore ˛0;4;1 is a permanent cycle.

(5) We see that h0˛0;18;3 D ˛0;4;1˛1;14;2. By the Leibniz rule, h0d1.˛0;18;3/ D 0.
As h0 acts injectively on G3, it follows that d1.˛0;18;3/D 0.

(6) Since h2
0
v4

1
D v2, we have h2

0
d1.v

4
1
/D 2vd1.v/D 0. This follows because d1.v

4
1
/

takes values in Ext4;8A.1/�
.F2;R1/ on which h0 acts injectively.

(7) We have that ˛0;12;2 is represented by the A.2/–primitive Œ1jy2
2
�CŒx1jy

2
1
�2E˝R2.

By Remark 2.1.8, d1.˛0;12;2/ is represented by d.Œ1jy2
2
�C Œx1jy

2
1
�/D Œ1jy3

1
�2E˝R3,

and hence is equal to ˛3
0;4;1

.
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(8) Because ˛0;4;1˛1;8;1 D h0˛0;12;2, the Leibniz rule implies that

˛0;4;1d1.˛1;8;1/D h0d1.˛0;12;2/D h0˛
3
0;4;1:

That ˛0;4;1 acts injectively on the E1–term implies that d1.˛1;8;1/D h0˛
2
0;4;1

.

(9) The relation ˛0;4;1v D h2
0
˛1;8;1 implies that

˛0;4;1d1.v/D h2
0d1.˛1;8;1/D h3

0˛
2
0;4;1:

As ˛0;4;1 acts injectively on the E1–term, we obtain that d1.v/D h3
0
˛0;4;1.

(10) The relation v˛1;14;2 D h0˛3;18;2 shows that

h0d1.˛3;18;2/D ˛1;14;2d1.v/D ˛1;14;2h3
0˛0;4;1 D h4

0˛0;18;3:

Therefore, d1.˛3;18;2/D h3
0
˛0;18;3.

(11) We check that v4
2

is represented by the A.2/–primitive Œ1jy4
3
�CŒx1jy

4
2
� in E˝R4.

By Remark 2.1.8, d1.v
4
2
/ is represented by Œ1jy1y4

2
�, and hence is equal to ˛0;4;1˛

2
0;12;2

.

Remark 3.1.21 It turns out that the DMSS collapses at the E2–term because there is
no room for higher differentials. In particular, the classes ˛1;14;2, ˛0;4;1, ˛2

0;12;2
, v8

2

and ˛0;18;3 survive the spectral sequence, converging to elements of Ext�;�A.2/�
.F2;F2/

in appropriate bidegrees. Following [24], those elements are denoted by ˛, h2, g, w2

and ˇ, respectively.

The differentials in Proposition 3.1.20 results in important information on Ext�;�A.2/�
.F2/,

and hence on ��.tmf/. Among other things, the differential (11) implies that, in
Ext�;�A.2/.F2/, there is the relation h2g D 0, and hence � N� D 0 in ��.tmf/, by sparse-
ness, where � and N� denote the elements in ��.tmf/ which are detected by h2 and g,
respectively. In fact, both � and N� have lifts in ��.S0/. Likewise, the differential (7)
implies that h3

2
D 0 in Ext�;�A.2/�

.F2/.

Furthermore, h2, g and w2; ˇ generate a subalgebra of Ext�;�A.2/�
.F2;F2/, which is iso-

morphic to F2Œh2;g; w2; ˇ�=.h
3
2
; h2g; ˇ4�g3/. The relation ˇ4Dg3 is a consequence

of the d1–differential (7). Indeed, the relation ˛2
0;18;3

D ˛3
0;12;2

C˛2
0;4;1

v4
2

implies the
relation ˇ4�g3� h4

2
w2 D 0 in Ext�;�A.2/�

.F2/. But ˛4
0;4;1

v8
2

gets hit by the differential

d1.v
8
2˛0;4;1˛0;12;2/D v

8
2˛0;4;1d1.˛0;12;2/D v

8
2˛

4
0;4;1:

Thus, the relation ˇ4 D g3C h4
2
w2 becomes ˇ4 D g3.
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3.2 The Davis–Mahowald spectral sequence for A1

The A.2/�–comodule structure of A1 In [13], Davis and Mahowald constructed
four finite spectra, whose mod 2 cohomology are isomorphic to a free module of
rank one over the subalgebra A.1/ D hSq1;Sq2

i of the Steenrod algebra A. Let us
review the construction of these spectra and their module structure over the subalgebra
A.2/ D hSq1;Sq2;Sq4

i of A. Recall that Y is V .0/^C�. The A–module structure
of H�.Y / is depicted in Figure 9. An element of Ext1;3A.1/.H

�.Y /;H�.Y // can be
represented by an A.1/–module M sitting in a short exact sequence of A.1/–modules

0! H�.†3Y /!M ! H�.Y /! 0:

It can be checked that M must be isomorphic either to H�.†3Y /˚H�.Y / or to A.1/
as an A.1/–module. This means that

(14) Ext1;3A.1/.H
�.Y /;H�.Y //Š F2:

The A.1/–module structure of A.1/ is depicted in Figure 10. One can ask whether
A.1/ admits a structure of A.2/–module. If such a structure exists, then, according
to the Adem relations Sq2 Sq1 Sq2

D Sq4 Sq1
CSq1 Sq4, there must be a nontrivial

action of Sq4 on the nontrivial class of degree 1. It is straightforward to verify that the
latter is the only constraint to putting an A.2/–module structure on A.1/. There are
also possibilities for Sq4 to act nontrivially on the classes of degree 0 and 2. These give
in total four different A.2/–module structures on A1. In other words, the inclusion of
Hopf algebras A.1/ ,!A.2/ induces a surjective homomorphism

Ext1;3A.2/.H
�.Y /;H�.Y //! Ext1;3A.1/.H

�.Y /;H�.Y //

whose kernel contains four elements. Therefore,

Ext1;3A.2/.H
�.Y /;H�.Y //Š F˚3

2
:

Next, one observes that restriction along A.2/�A induces an isomorphism

Ext1;3A .H�.Y /;H�.Y //Š Ext1;3A.2/.H
�.Y /;H�.Y //;

0 21 3

Figure 9: Diagram of H�.Y /. The straight lines represent Sq1 and the curved
lines represent Sq2, the numbers represent the degree of the cell.
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0 1

2 3

3 4

65

Figure 10: Diagram of A.1/.

because, for any A–module M sitting in a short exact sequence

0! H�.†3Y /!M ! H�.Y /! 0;

there cannot be any nontrivial Sqk for k � 8 on M. It is proved in [13] that the
four classes of Ext1;3A .H�.Y /;H�.Y // that are sent to the unique nontrivial class of
Ext1;3A.1/.H

�.Y /;H�.Y // are permanent cycles in the Adams spectral sequence and
converge to four v1–self-maps of Y, ie the maps †2Y ! Y inducing isomorphisms in
K.1/–homology theory. As a consequence, the cofibers of these v1–self-maps realize
the four different A–module structures on A.1/. We will write A1 to refer to any of
these four finite spectra.

Definition 3.2.1 [10] We define by A1Œi; j � for i; j 2 f0; 1g the version of A1 having
the nontrivial Sq4 on the generator of degree 0 (respectively 2) if and only if i D 1

(respectively j D 1). (See Figure 10.)

As F2–vector spaces,

(15) H�.A1Œij �/Š F2fa0; a1; a2; a3; Na3; a4; a5; a6g;

where a0, a1, a2, a4, a5 and a6 are duals to the generators of degree 0, 1, 2, 4, 5 and 6

of H�.A1Œij �/, respectively, and a3 and Na3 are duals to the images of the generator
of degree 0 by Sq3 and Sq3

CSq2 Sq1, respectively. By taking duals to the action of
A.2/ on H�.A1Œij �/, we obtain:

Proposition 3.2.2 The left coaction of A.2/� on H�.A1Œij �/ is given by

�.a1/D Œ1ja1�C Œ�1ja0�;

�.a2/D Œ1ja2�C Œ�
2
1 ja2�

�.a3/D Œ1ja3�C Œ�1ja2�C Œ�
2
1 ja1�C Œ�

3
1 ja0�;

�. Na3/D Œ1j Na3�C Œ�
2
1 ja1�C Œ�2ja0�;

�.a4/D Œ1ja4�C Œ�1j Na3�C Œ�
2
1 ja2�C Œ�

3
1 ja1�C Œ�2ja1�C Œ�2�1ja0�C˛i;j Œ�

4
1 ja0�;
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�.a5/D Œ1ja5�C Œ�
2
1 j Na3�C Œ�

2
1 ja3�C Œ�2ja2�C Œ�

4
1 ja1�C Œ�2�

2
1 ja0�;

�.a6/D Œ1ja6�C Œ�1ja5�C Œ�
2
1 ja4�C Œ�

3
1 j Na3�C Œ�

3
1 ja3�C Œ�2ja3�C Œ�2�1ja2�

Cˇi;j Œ�
4
1 ja2�C Œ�2�

2
1 ja1�C Œ�

5
1 ja1�C 
i;j Œ�

6
1 ja0�C Œ�2�

3
1 ja0�C�i;j Œ�

2
2 ja0�;

where
˛i;j D

�
0 if .i; j / 2 f.0; 0/; .0; 1/g;
1 if .i; j / 2 f.1; 0/; .1; 1/g;


i;j D 1C˛i;j ;

ˇi;j D

�
0 if .i; j / 2 f.0; 0/; .1; 0/g;
1 if .i; j / 2 f.0; 1/; .1; 1/g;

�i;j D ˛i;j Cˇi;j :

Proof The proof is a straightforward translation from A.2/–module structure to A.2/�–
comodule structure using the formula of the duals of the Milnor basis in [29].

DMSS for A1 In what follows, we will apply the shearing homomorphism to find
primitives representing certain cohomology classes; see [2, Theorem 3.1]. In general,
let C be a Hopf algebra with conjugation � and B be a Hopf algebra quotient of C.
Given a C –comodule M, consider the composite

C ˝M
id˝�
���! C ˝C ˝M

id˝�˝id
������! C ˝C ˝M

�˝id
���! C ˝M:

When restricting to C �B M, this composite factors through .C �B k/˝M, inducing
the shearing isomorphism of C –comodules

Sh W C �B M ! .C �B k/˝M;

where C coacts on C �B M via the left factor and on .C �B k/˝M diagonally.
Combined with the change-of-rings isomorphism, we have the isomorphisms

Ext�B.k;M /Š Ext�C .k;C �B M /Š Ext�C .k; .C �B k/˝M /:

In particular, via these isomorphisms, a class x 2 Ext0B.k;M / is sent to Sh.1˝x/.

Proposition 3.2.3 The E1–term of the Davis–Mahowald spectral sequence converging
to Exts;tA.2/�

.H�.A1// is given by

Es;�;�
1
Š

�
0 if s > 0;

R� if s D 0:

As a module over F2Œ˛0;4;1; ˛0;12;2; v
4
2
�, E�;�;�

1
is the free module of rank eight on the

generators

(16) 1; y3; y2
3 ; y3

3 ; y2; y2y3; y2y2
3 ; y2y3

3 :
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Proof Indeed, Es;�;t
1

is equal to Exts;tA.1/�
.R� ˝H�.A1// by definition. The coaction

of A.1/� on R� ˝ H�.A1/ is the usual diagonal coaction on tensor products. In
addition, H�.A1/ is isomorphic to A.1/� as A.1/�–comodules. By the change-of-rings
isomorphism,

(17) Exts;tA.1/�
.R� ˝H�.A1//Š Exts;tF2

.R� /ŠR� :

The first part of the proposition follows.

For the second part, the action of Exts;tA.1/�
.R/ on Es;t;�

1
,

Exts;tA.1/�
.R/˝Exts

0;t 0

A.1/�
.R˝H�.A1//! ExtsCs0;tCt 0

A.1/�
.R˝H�.A1//;

is induced by the multiplication on R,

R˝ .R˝H�.A1//!R˝H�.A1/:

Now let r 2 Ext0;�A.1/�
.R/ � R and s 2 R Š Ext0;�A.1/�

.R˝ H�.A1//. By applying
the shearing isomorphism, the class s is represented by a unique element of the
form s˝ a0C

P
si ˝ ai 2 R˝H�.A1/, where the ai are in positive degrees. The

action of r on s is then represented by rs ˝ a0 C
P

rsi ˝ ai , which represents
rs 2 R Š Ext0;�A.1/�

.R˝A1/ via (17). In other words, the action of Ext0;�A.1/�
.R/ on

Ext0;�A.1/�
.R˝H�.A1// is given by the multiplication of the polynomial algebra R. The

proof follows from the fact that ˛0;4;1; ˛0;12;2; v
4
2
2 Ext0;�A.1/�

.R/ are represented by
y1;y

2
2
;y4

3
2R, respectively.

Let us analyze the differentials in this spectral sequence. As the dr –differentials
decrease s–filtration by r � 1, ie dr W E

s;�;t
r ! Es�rC1;�Cr;t

r and Es;�;t
1
D 0 if s > 0,

the spectral sequence collapses at the E2–term and there are no extension problems.
Therefore,

E0;t;�
2
Š Ext�;tA.2/�

.H�.A1//:

We now turn our attention to the d1–differentials. As all elements of the E1–term are
in Ext0;�A.1/�

.R˝H�.A1//, we can apply the remark after Proposition 2.1.7. We have

determined the d1–differential on the classes ˛0;4;1, ˛0;12;2 and v4
2

in Proposition 3.1.20.
By the Leibniz rule, it remains to determine the d1–differential on the classes of (16).

Proposition 3.2.4 There are the d1–differentials

(1) d1.1/D 0,

(2) d1.y2/D 0,
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(3) d1.y3/D 0,

(4) d1.y2y3/D 0,

(5) d1.y2y2
3
/D 0,

(6) d1.y2y3
3
/D 0,

(7) d1.y
2
3
/D ˛2

0;4;1
y2,

(8) d1.y
3
3
/D ˛2

0;4;1
y2y3.

Proof Parts (1)–(4) follow from the sparseness of the E1–term.

(5) The only nontrivial d1–differential that y2y2
3

can support is

d1.y2y2
3/D ˛

2
0;4;1˛0;12;21:

However, by the Leibniz rule and Proposition 3.1.20(7),

d1.˛
2
0;4;1˛0;12;21/D ˛2

0;4;1d1.˛0;12;2/1D ˛
5
0;4;11¤ 0:

This means that ˛2
0;4;1

˛0;12;21 is not a d1–cycle, and so cannot be hit by a d1–
differential. Therefore, y2y2

3
is a d1–cycle.

(6) Similarly, a nontrivial d1–differential on y2y3
3

would be

d1.y2y3
3/D ˛

2
0;4;1˛0;12;2y3:

However,
d1.˛

2
0;4;1˛0;12;2y3/D ˛

5
0;4;1y3 ¤ 0

by the Leibniz rule. Thus, y2y3
3

is a d1–cycle.

(7)–(8) The class ˛0;4;1 in the DMSS for F2 represents h2, the unique nontrivial
class of Ext1;4A.2/�

.F2/. By sparseness and parts (2) and (4), y2 and y2y3 represent
nontrivial classes of Ext1;6A.1/�

.H�.A1// and Ext2;13
A.1/�

.H�.A1//, which we denote by
the same names in this proof. It suffices to prove that h2

2
y2 D 0 and h2

2
y2y3 D 0 in

Ext�;�A.2/�
.H�.A1// because the differentials in parts (7)–(8) are the only possibilities

for the latter to occur. We will proceed using juggling formulas for Massey products;
see [32, Appendix A1, Section 4]. The classes 1 and y3 being permanent cycles by
parts (1) and (3), they converge to classes in Ext0;0A.2/�

.H�.A1// and Ext1;6A.2/�
.H�.A1//,

respectively. By sparseness of the E1–term of the DMSS, h11D h1y3 D 0. Hence the
Massey product hh2; h1;y

i
3
i with i 2 f0; 1g can be formed. In Ext�;�A.2/�

.F2/, there is
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a well-known Massey product hh1; h2; h1i that has zero indeterminacy and is equal
to h2

2
. We have then that

h2
2yi

3 D hh1; h2; h1iy
i
3 D h1hh2; h1;y

i
3i:

By sparseness of the DMSS, ˛2
0;4;1

yi
3

survives the DMSS and so h2
2
yi

3
¤ 0. It follows

that hh2; h1;y
i
3
i does not contain zero and, by sparseness of the DMSS, must be equal

to y2yi
3
. The fact that h3

2
D 0 2 Ext3;12

A.2/�
.F2/— see Remark 3.1.21 — allows us to

apply the juggling formula

h2
2y2yi

3 D h2
2hh2; h1;y

i
3i D hh

2
2; h2; h1iy

i
3:

However, the Massey product hh2
2
; h2; h1i lives in the group Ext3;14

A.2/�
.F2/, which

vanishes by Theorem 3.1.17. This concludes the proof of parts (7)–(8).

E2–term of the Adams SS We describe Ext�;�A.2/�
.H�.A1// as a module over

F2Œh2;g; v
8
2 �=.h

3
2; h2g/� Ext�;�A.2/�

.F2/:

We recall that g is represented by ˛2
0;12;2

in the DMSS for F2. We will denote by eŒs; t �

for s; t 2N the unique nontrivial class belonging to Exts;sCt
A.2/�

.H�.A1//.

Theorem 3.2.5 As a module over F2Œh2;g; v
8
2
�=.h3

2
; h2g/, Ext�;�A.2/�

.H�.A1// is a
direct sum of cyclic modules generated by the following elements:

eŒ0; 0� eŒ1; 5� eŒ1; 6� eŒ2; 11� eŒ3; 15� eŒ3; 17� eŒ4; 21� eŒ4; 23�

1 y2 y3 y2y3 y3
2
Cy1y2

3
y2y2

3
y1y3

3
Cy3

2
y3 y2y3

3

.0/ .h2
2
/ .0/ .h2

2
/ .h2

2
/ .0/ .h2

2
/ .0/

eŒ6; 30� eŒ6; 32� eŒ7; 36� eŒ7; 38�

y6
2
Cy2

1
y4

3
y4

2
y2

3
Cy1y2y4

3
y6

2
y3Cy2

1
y5

3
y4

2
y3

3
Cy1y2y5

3

.h2/ .h2/ .h2/ .h2/

eŒ8; 42� eŒ9; 47� eŒ9; 48� eŒ10; 53�

y6
2
y2

3
Cy2

1
y6

3
Cy1y3

2
y4

3
y7

2
y2

3
Cy2

1
y2y6

3
y6

2
y3

3
Cy2

1
y7

3
Cy1y3

2
y5

3
y7

2
y3

3
Cy2

1
y2y7

3

.h2/ .h2/ .h2/ .h2/

The second row in the table indicates a representative in the DMSS and the third row
the annihilator ideal of the corresponding generator.
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Proof Let R denote F2Œh2;g; v
8
2
�=.h3

2
; h2g/ and A the set consisting of classes given

in the second row of the table in the theorem. For each a2A, let na be the h2–nilpotency
order of a, as given in the table. We will sketch the proof showing thatM

a2A

Rfag=.h
na

2
/D E2;

by first showing the inclusion of the left-hand side to the right-hand one, then showing
the equality by comparing their Poincaré series with respect to the topological degree,
which is the difference of the internal degree by the sum of the cohomological degree
and the DM degree.

Let K, C and I denote the kernel, coker and image of d1 WE1!E1, as a map of trigraded
F2–vector spaces. The E2–term of the DMSS is then isomorphic to the quotient K=I.
Since h3

2
and h2g are trivial in Ext�;�A.2/�

.F2/ (see Remark 3.1.21), Ext�;�A.2/�
.H�.A1// is

a module over F2Œh2;g; v
8
2
�=.h3

2
; h2g/. Moreover, using Propositions 3.1.20 and 3.2.4,

it is straightforward to check that:

(1) The classes of A are d1–cycles surviving to the E2–term together with the
corresponding nilpotency order of h2.

(2) For an permanent cycle x 2 E1, if x is not hit by a d1–differential, then neither
is v8

2
x.

(3) For an permanent cycle x 2 E1, if x is not divisible by ˛0;4;1, then ˛2
0;12;2

x is
not hit by a d1–differential.

It follows that
U WD

M
a2A

Rfag=.h
na

2
a/� E2

and that
V WD

M
a2A

Rfh
na

2
a; h2gag=.g.h

na

2
a/� h

na�1
2

.h2ga//� I:

Consider these groups as graded F2–vector spaces regarding their topological degree.
The Poincaré series associated to a graded F2–vector space M is denoted by �M .X /.
We have that

�U .X /� �E2
.X / and �V .X /� �I .X /;

and, since d1 decreases the topological degree by 1 and induces an isomorphism C Š I,
seen as nongraded F2–vector spaces,

�V .X /:X � �C .X /:
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Since
�E1.X /D �C .X /C�I .X /C�E2

.X /;

we obtain that
�U .X /C�V .X /C�V .X /:X � �E1

.X /:

On the other hand, an direct computation shows that the left-hand series is equal to
1=.1�X 3/.1�X 5/.1�X 6/, which is equal to the right-hand series (see Proposition
3.2.3). This allows us to conclude that

E2 D

M
a2A

Rfag=.h
na

2
a/:

Remark 3.2.6 The entire DMSS for A1 is quite messy. Nevertheless, we illustrate it
by showing the differentials d1 truncating the ˛0;4;1–tower of the first eight classes
of A in Figure 11 (see also Figure 13 for the E1–term of the DMSS or the E2–term of
the ASS). In formulas,

d1.y
2
2/D ˛

3
0;4;11; d1.y

2
3/D ˛

2
0;4;1y2;

d1.y
2
2y3/D ˛

2
0;4;1y3; d1.y

3
3/D ˛

2
0;4;1y2y3;

d1.y
2
2y2

3/D ˛
2
0;4;1.y

3
2 Cy1y2

3/; d1.y
3
2y2

3/D ˛
3
0;4;1y2y2

3 ;

d1.y
2
2y3

3/D ˛
2
0;4;1.y

3
2y3Cy1y3

3/; d1.y
3
2y3

3/D ˛
3
0;4;1y2y3

3 :

3.3 Two products

We now study the product of ˛ 2 Ext3;15
A.2/�

.F2/ and eŒ4; 23� 2 Ext4;27
A.2/�

.H�.A1//. This
is a key result, which is the input in the study of d2–differentials of the Adams
spectral sequence in the next section. Recall that ˛ is detected by ˛1;14;2 in the DMSS
converging to Ext�;�A.2/�

.F2/.This product is not detected in the DMSS because ˛ has
�–filtration 1 in the DMSS whereas all nontrivial groups in the E1–term of the DMSS
converging to Ext�;�A.2/�

.H�.A1// are in �–filtration 0. Therefore, we need first to find a
representative of ˛ in the total cochain complex of the double complex A.2/˝�� ˝E2˝R

and that of eŒ4; 23� in A.2/˝�� ˝E2˝R˝H�.A1/, then take the product at the level
of cochain complexes, and finally check if this product is a coboundary. It is tedious to
carry out this procedure because any representative of eŒ4; 23� contains many terms,
and so it is not easy to check if the product is a coboundary. Here, by a term of
A.2/˝�� ˝E2˝R� and A.2/˝�� ˝E2˝R�˝H�.A1/, we mean an element of the
basis formed by the tensor products of a basis of A.2/�, E2, R� and H�.A1/ chosen
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0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

02468

1

y
3

y
2

y
2 2

y
2
y

3
y

2 3

y
3 3

y
2
y

2 3
y

2 2
y

3
y

3 2

y
3 2
y

3y
2 2
y

2 3
y

2
y

3 3
y

4 3

y
3 2
y

2 3y
2 2
y

3 3
y

2
y

4 3
y

5 3

y
3 2
y

3 3 y
2 2
y

4 3

y
2
y

5 3
y

6 3

y
3 2
y

4 3 y
2 2
y

5 3

y
2
y

6 3
y

7 3

Figure 11: Black arrows represent the ˛0;4;1–tower of the classes fyi
2y

j
3 j 0� i � 3; 0� j � 7g,

which generates the E1–term as a module over F2Œ˛0;4;1; ˛
2
0;12;2; v

8
2 �. Red arrows represent

differential d1. Double arrows starting from one class mean that the differential d1 on that class
hits the some of the targets.
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to be the monomial basis and the basis of (15), respectively. We will use the same
convention when working with B.2/�, F2 and S� instead of A.2/�, E2 and R�. The
following two lemmas simplify computations.

Lemma 3.3.1 The product of ˛ and eŒ4; 23� is equal either to 0 or to geŒ3; 15�.

Proof This is because geŒ3; 15� is the only nontrivial class in the appropriate bidegree.

We recall from Section 2 that there is a map of pairs .A.2/�;M2/! .B.2/�;N2/ given
by

A.2/� D F2Œ�1; �2; �3�=.�
8
1 ; �

4
2 ; �

2
3/! B.2/� D F2Œ�1; �2; �3�=.�

4
1 ; �

4
2 ; �

2
3/;

�i 7! �i for i 2 f1; 2; 3g;

M2 D F2fx0;x1;x2;x3g !N2 D F2fx0;x2;x3g;

x1 7! 0;

xi 7! xi for i 2 f0; 2; 3g:

The induced map on the polynomial component of the associated pairs of Koszul duals
is given by

RD F2Œy1;y2;y3�! S D F2Œy2;y3�; y1 7! 0; y2 7! y2; y3 7! y3:

By an abuse of notation, we will denote by p these projection maps. The context will
make it clear which map is referred to.

Lemma 3.3.2 The map p� D Ext7;42
A.2/�

.H�.A1//! Ext7;42
B.2/�

.H�.A1// induced by the
projection A.2/�! B.2/� sends geŒ3; 15� to a nontrivial element.

Proof The projection A.2/� ! B.2/� induces a morphism of the DMSSs. The
morphism of the E1–terms reads

Exts;tA.2/�
.E2˝R˝H�.A1//! Exts;t

B.2/�
.F2˝S ˝H�.A1//:

By the change-of-rings isomorphism, this morphism identifies with the projection
p WR! S, which is surjective. The class geŒ3; 15� is detected by y4

2
.y3

2
Cy1y2

3
/ 2R7,

which maps to y7
2
2 S7 via p. By naturality, y7

2
is a permanent cycle in the target

DMSS. The only class in the E1–term which can support a differential hitting y7
2

is y6
3

,
which admits v4

2
y2

3
as a lift in the source DMSS. We have

d1.v
4
2y2

3/D d1.v
4
2/y

2
3 C v

4
2d1.y

2
3/D .˛0;4;1˛

2
0;12;2/y

2
3 C v

4
2.˛0;4;1y2/

D y1y4
2y2

3 Cy4
3y1y2:
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This uses the Leibniz rule and Propositions 3.1.20(11) and 3.2.4(7). By naturality,
the d1–differential in the target DMSS is p.y1y4

2
y2

3
Cy4

3
y1y2/, which is equal to 0.

Therefore, the image of geŒ3; 15� is nontrivial.

Lemma 3.3.3 The product of ˛ and eŒ4; 23� is nontrivial , and hence equal to geŒ3; 15�

if and only if the product of p�.˛/ and p�.eŒ4; 23�/ is nontrivial.

Proof The map p WA.2/�! B.2/� induces the commutative diagram

Ext3;15
A.2/�

.F2/˝Ext4;27
A.2/�

.H�.A1//

p�

��

// Ext7;42
A.2/�

.H�.A1//

p�

��

Ext3;15
B.2/�

.F2/˝Ext4;27
B.2/�

.H�.A1// // Ext7;42
B.2/�

.H�.A1//

where the horizontal maps are the respective multiplications. The result follows from
the fact that p�.geŒ3; 15�/ is nontrivial by Lemma 3.3.2.

Now let us compute the product of p�.˛/ and p�.eŒ4; 23�/.

Lemma 3.3.4 In the total cochain complexes of

B.2/˝�� ˝F2˝S and B.2/˝�� ˝F2˝S ˝H�.A1/;

respectively,

(i) p�.˛/ is represented by Œ�2j1jy2
2
�C Œ�3

1
j1jy2

2
�C Œ�1j1jy

2
3
� 2 B.2/˝F2˝S2;

(ii) p�.eŒ4; 23�/ is represented by

Œ1jy2y3
3 ja0�C Œ1jy

2
2y2

3 ja1�C Œ1jy
3
2y3ja2�C Œ1jy

4
2 ja3� 2 F2˝S4

˝H�.A1/:

Proof A direct computation shows that these elements are cocycles of the total
differentials, which are not coboundaries. One way to prove that they represent the
right classes is to prove that they lift to cocycles in the total cochain complexes of
A.2/˝�� ˝E2˝R and of A.2/˝�� ˝E2˝R˝H�.A1/, respectively.

It is easy to check that

Œ�2j1jy
2
2 �C Œ�

3
1 j1jy

2
2 �C Œ�1j1jy

2
3 �C Œ�2jx1jy

2
1 �C Œ�

3
1 jx1jy

2
1 �C Œ�1jx2jy

2
1 �C Œ1j1jy

2
1y3�

2 .A.2/�˝E2˝R2/˚ .E2˝R3/

is a lift for Œ�2j1jy2
1
�C Œ�3

1
j1jy2

1
�C Œ�1j1jy

2
2
�.
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For the other element, instead of finding a lift it suffices to show that p� induces an
isomorphism Ext4;27

A.2/�
.H�.A1//

Š�! Ext4;27
B.2/�

.H�.A1//, so that both are isomorphic
to F2. This can be proved by a similar argument to that used in the proof of Lemma 3.3.2.
Indeed, the nontrivial class of Ext4;27

A.2/�
.H�.A1// is detected by y2y3

3
in the DMSS.

Via p�, the latter is sent to y2y3
3

, which is the unique nontrivial element of the E1–term
of the target DMSS in the appropriate tridegree. For degree reasons, y2y3

3
is not hit

by any differential. Therefore, y2y3
3

survives the target DMSS and it follows that
Ext4;27

A.2/�
.H�.A1//

Š�! Ext4;27
B.2/�

.H�.A1//Š F2.

Set
M D Œ�2j1jy

2
2 �C Œ�

3
1 j1jy

2
2 �C Œ�1j1jy

2
3 �;

N D Œ1jy2y3
3 ja0�C Œ1jy

2
2y2

3 ja1�C Œ1jy
3
2y3ja2�C Œ1jy

4
2 ja3�:

We need to show that MN, which is a .dvCdh/–cocycle, represents a nontrivial class
in Ext7;42

B.2/�
.H�.A1//. First, MN is an element in B.2/�˝F2˝ S6˝H�.A1/ and

dv.MN /D 0. This means that MN represents a class in Ext1;42
B.2/�

.F2˝S6˝H�.A1//,
which is trivial because, by the change-of-rings theorem, Ext�;�

B.2/�
.F2;F2˝S˝H�.A1//

is isomorphic to S, which is concentrated only in cohomological degree 0. There must
be an element P 2F2˝S6˝H�.A1/ such that dv.P /DMN, and so dh.P / represents
the same class in Ext7;42

B.2/�
.H�.A1// as MN does.

The following technical lemma is essential in proving Proposition 3.3.7, the key result of
this section. We recall the values of �i;j introduced in Proposition 3.2.2: �1;0D�0;1D1

and �0;0 D �1;1 D 0.

Lemma 3.3.5 If we express P in the monomial basis of B.2/˝F2˝S6˝H�.A1/,
then P contains the term �i;j Œ1jx2jy

6
2
ja0�, ie

P D �i;j Œ1jx2jy
6
2 ja0�C � � � :

Proof The product MN contains the term Œ�2j1jy
6
2
ja3�. One can check that P must

contain the term Œ1jy6
2
ja6�, so that dv.P / contains the term Œ�2j1jy

6
2
ja3�. Using the

formula for the coaction of A.2/� on a6, one sees that dv.P / contains the term
�i;j Œ�

2
2
j1jy6

2
ja0�, which is not a term of MN. In order to compensate for this term, P

must contain the term �i;j Œ1jx2jy
6
2
ja0�.

Lemma 3.3.6 A .dhCdv/–cycle in F2˝S7˝A1 gives rise to a nontrivial class in
Ext7;42

B.2/�
.H�.A1// if and only if it contains the term Œ1jy7

2
ja0�.
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Proof It is shown in the proof of Lemma 3.3.2 that

Ext7;42
B.2/�

.H�.A1//Š F2

and that this group arises from

Ext0;42
B.2/

.F2˝S7
˝H�.A1//Š F2fy

7
2g � S7:

Therefore, by the shearing homomorphism, the only element in F2˝S7˝H�.A1/ that
represents the nontrivial class of Ext7;42

B.2/�
.H�.A1// must contain the term Œ1jy7

2
ja0�.

Proposition 3.3.7 The product ˛eŒ4; 23� is equal to �i;j geŒ3; 15�.

Proof Note ˛eŒ4; 23� is nontrivial if and only if dh.P / represents a nontrivial class
in Ext7;42

B.2/�
.H�.A1//. Lemma 3.3.5 shows that dh.P / contains the term �i;j Œ1jy

7
1
ja0�.

Hence, Lemma 3.3.6 concludes the proof.

The product between ˇ 2 Ext3;18
A.2/�

.F2/ and eŒ3; 15� 2 Ext3;18
A.2/�

.H�.A1// is easier be-
cause both have �–filtration 0 in the Davis–Mahowald spectral sequence.

Proposition 3.3.8 ˇeŒ3; 15�D eŒ6; 30�:

Proof The class ˇ is represented by y3
2
Cy1y2

3
in R3 and eŒ3; 15� is represented by

Œy3
2
Cy1y2

3
ja0� in R3˝A1. So the product ˇeŒ3; 15� is represented by Œy6

2
Cy2

1
y4

3
ja0�,

which represents eŒ6; 30� by Theorem 3.2.5.

4 Partial study of the Adams spectral sequence for tmf^A1

In this section, we establish some differentials in the ASS for tmf^A1 and a global
structure of ��.tmf^A1/. This is essential information, allowing us to run the homotopy
fixed-point spectral sequence in the next section.

Recall that the ASS for tmf^A1 which has E2–term isomorphic to Ext�;�A.2/�
.H�.A1//

is a spectral sequence of modules over that for tmf, whose E2–term is isomorphic to
Ext�;�A.2/�

.F2/. We first recollect some known properties of the ASS for tmf; see [24].
Recall that ˛;g; w2; ˇ 2 Ext�;�A.2/�

.F2/ are detected by ˛1;14;2, ˛2
0;12;2

, v8
2

and ˛0;18;3

in the DMSS.

Theorem 4.0.1 (i) The class g 2 Ext4;24
A.2/�

.F2/ is a permanent cycle detecting the
image of N� 2 �20.S

0/ via the Hurewicz map S0! tmf.
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(ii) There is the d2–differential in the Adams spectral sequence for tmf

d2.w2/D gˇ˛:

(iii) There is the d3–differential in the Adams spectral sequence for tmf

d3.w
2
2.v

4
2�//D g6:

(iv) The class �8 WD w4
2

survives the Adams spectral sequence.

Proposition 4.0.2 In the ASS for tmf^A1, there exists � 2 F2 such that the following
statements are equivalent :

(i) d2.w2eŒ4; 23�/D �g2eŒ6; 30�.

(ii) d2.w2eŒ9; 48�/D �g4eŒ3; 15�.

(iii) d2.w2eŒ10; 53�/D �g5eŒ0; 0�.

(iv) d2.w2eŒ7; 38�/D �g4eŒ1; 5�.

Proof We will prove that (i)D) (ii)D) (iii)D) (iv)D) (i). The charts of Figure 13
will make the proof easier to follow. First, we observe that all of the classes eŒ4; 23�,
eŒ7; 38�, eŒ9; 48� and eŒ10; 53� are permanent cycles, by sparseness.

(i)D) (ii) Suppose that

d2.w2eŒ4; 23�/D g2eŒ6; 30�:

Then
d2.g

2w2eŒ4; 23�/D g4eŒ6; 30�;

by g–linearity. It follows that there is no room for a nontrivial differential on w2
2
eŒ3; 15�.

In order words, w2
2
eŒ3; 15� is a permanent cycle. Because of Theorem 4.0.1(iii), a gk–

multiple of w2
2
eŒ3; 15� must be hit by a differential for some k less than 7. One can

check that the only possibility is that

d2.w
3
2eŒ9; 48�/D g4w2

2eŒ3; 15�:

Since w2
2

is a d2–cycle in the ASS for tmf, this differential implies that

d2.w2eŒ9; 48�/D g4eŒ3; 15�:

(ii)D) (iii) Suppose that

d2.w2eŒ9; 48�/D g4eŒ3; 15�:
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Then the class w2
2
eŒ0; 0� is a permanent cycle, by sparseness. Again, a gk–multiple of

w2
2
eŒ0; 0� for some k smaller than 7 must be hit by a differential. Inspection shows

that the classes w3
2
eŒ10; 53� and w4

2
eŒ1; 5� are the only ones that have the appropriate

bidegree to support such a differential. However, w4
2
eŒ1; 5� is a permanent cycle,

because w4
2

and eŒ1; 5� are permanent cycles in their respective ASS. Thus,

d2.w2eŒ10; 53�/D g5eŒ0; 0�:

(iii)D) (iv) Suppose that

d2.w2eŒ10; 53�/D g5eŒ0; 0�:

Then the class w2
2
eŒ1; 5� is a permanent cycle, as there is no room for a nontrivial

differential on it. Then gkw2
2
eŒ1; 5� must be hit by a differential for some k less than 7.

Inspection shows that the only possibility is that

d2.w
3
2eŒ7; 38�/D g4w2

2eŒ1; 5�:

As w2
2

is a d2–cycle, it follows that

d2.w2eŒ7; 38�/D g4eŒ1; 5�:

(iv)D) (i) Suppose that

d2.w2eŒ7; 38�/D g4eŒ1; 5�:

By g–linearity,
d2.gw2eŒ7; 38�/D g5eŒ1; 5�:

Then, by sparseness, w2
2
eŒ6; 30� is a permanent cycle. Then the class gkw2

2
eŒ6; 30� is

hit by a differential for some k less than 7. Inspection shows that the only possibility
is that

d2.w
3
2eŒ4; 23�/D g2w2

2eŒ6; 30�:

Therefore,
d2.w2eŒ4; 23�/D g2eŒ6; 30�;

by w2
2

–linearity.

Theorem 4.0.3 In the Adams spectral sequence for tmf^A1Œij �, there are the following
differentials d2:

(i) d2.w2eŒ4; 23�/D �i;j g2eŒ6; 30�.

(ii) d2.w2eŒ9; 48�/D �i;j g4eŒ3; 15�.

(iii) d2.w2eŒ10; 53�/D �i;j g5eŒ0; 0�.

(iv) d2.w2eŒ7; 38�/D �i;j g4eŒ1; 5�.
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148 149 150 151 152

25

26

27

28

29

30

gw2eŒ6; 32�

g5weŒ0; 0�

g5eŒ9; 48�

w3eŒ1; 5�

w2eŒ10; 53�

g4weŒ4; 21�

w3eŒ1; 6�

�2w3eŒ0; 0�

g3weŒ8; 42�

g6eŒ6; 30�

g2w2eŒ3; 15�

g4weŒ4; 23�

g7weŒ2; 11�

�w3eŒ1; 5�

gw2eŒ7; 36�

g6eŒ6; 32�

Figure 12: The Adams spectral sequence in the range 148� t � s � 152.

Proof By the Leibniz rule and Theorem 4.0.1(ii),

d2.w2eŒ4; 23�/D d2.w2/eŒ4; 23�D gˇ˛eŒ4; 23�D �i;j g2eŒ6; 30�;

where the last equality follows from Propositions 3.3.7 and 3.3.8. Thus, the theorem
follows from Proposition 4.0.2.

Remark 4.0.4 The homotopy group ��.tmf ^ A1/ is a module over ��.tmf/; in
particular, it is a module over ZŒ N��. Since N� is detected by g in the ASS, Theorem 4.0.3
expresses a connection between the module structure of H�.A1/ over the Steenrod
algebra and the nilpotence order of the action of N� on ��.tmf^A1/. This is essential
information in the determination of differentials in the HFPSS for EhG24

C
^A1.

Proposition 4.0.5 There are the d3–differentials in the Adams spectral sequence for
tmf^A1 (see Figure 12)

d3.w
2
2eŒ10; 53�/D g5eŒ9; 48� and d3.w

3
2eŒ1; 5�/D g5w2eŒ0; 0�:

Proof By sparseness of the ASS for tmf^A1 (see Figure 13), eŒ9; 48� and weŒ0; 0� are
permanent cycles. Then gleŒ9; 48� and gkweŒ0; 0� must be targets of some differentials
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Figure 13: Adams spectral sequence for A1 in the range 0� t � s � 48 (left)
and 48� t�s � 101 (right). The arrows in bold are differentials for the models
A1Œ10� and A1Œ01� and the dashed arrows for the models A1Œ00� and A1Œ11�.
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for some l and k less than 7. Inspection of the E2–term shows that either

d2.w
2
2eŒ10; 53�/D g5weŒ0; 0� and d4.w

3
2eŒ1; 5�/D g5eŒ9; 48�

or
d3.w

2
2eŒ10; 53�/D g5eŒ9; 48� and d3.w

3
2eŒ1; 5�/D g5w2eŒ0; 0�:

However, the former possibility is ruled out because of the Leibniz rule:

d2.w
2
2eŒ10; 53�/D d2.w

2
2/eŒ10; 53�D 2w2d2.w2/eŒ10; 53�D 0;

where the first equality follows from the fact that eŒ10; 53� is a permanent cycle, by
spareness.

Corollary 4.0.6 The Toda bracket h N�5; eŒ9; 48�; �i, where N� 2 ��.S0/, eŒ9; 48� 2

��.tmf^A1/ and � 2 Œtmf^A1; tmf^A1��, can be formed and contains only multiples
of N� in ��.tmf^A1/.

For references on the Toda bracket, see [41; 26].

Proof In the E4–term of the ASS, the Massey product hg5; eŒ9; 48�; �i has cohomo-
logical filtration 27 and is equal to zero with zero indeterminacy. On the other hand,
the corresponding Toda bracket can be formed with indeterminacy containing only
multiples of N�. We can check that all conditions of Moss’s convergence theorem [30,
Theorem 1.2] are met. It follows that the Toda bracket hg5; eŒ9; 48�; �i contains an
element detected in filtration 27 by 0, thus is a multiple of N�. Therefore, this Toda
bracket contains only multiples of N�.

Finally, we need to have control of the action of the class �8 Dw4
2
2 Ext32;224

A.2/�
.F2/ on

the E1–term of the ASS for tmf^A1. This will allow us to compare ��.tmf^A1/

with ��.EhG24
C
^A1/ (see Corollary 5.1.3) and hence to discuss higher differentials in

the HFPSS for EhG24
C
^A1.

Proposition 4.0.7 The class w4
2

acts freely on the E1–term of the ASS for tmf^A1.
As a consequence , the element �8 2 �192.tmf/ acts freely on the homotopy groups of
tmf^A1.

Proof Using the description of the E2–term of the ASS for tmf^A1 in Theorem 3.2.5
and an elementary bidegree inspection, we can see that, if a class y is in an appropriate
bidegree to support a differential hitting a class of the form w4

2
x for some class x, then
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y is divisible by w4
2

. Knowing that w4
2

is a permanent cycle in the ASS for tmf, we
conclude that, if a class x survives the Er –term, then the multiples of x by all powers
of w4

2
also survive that term. Therefore, the proposition follows by induction.

Proposition 4.0.8 For every element x 2 ��.tmf^A1/, the element �8x is divisible
by N� (resp. �) if and only if x is divisible by N� (resp. �).

Proof The argument is similar to that used in the proof of Proposition 4.0.7. A
bidegree inspection shows that, if a class y 2 Ext�;�A.2/�

.H�.A1// is in an appropriate
bidegree whose (exotic) product with g (resp. �) might detect �8x, then y is divisible
by w4

2
. We conclude the proof by using the fact that the class w4

2
acts freely on the

ASS for tmf^A1, by Proposition 4.0.7.

5 The homotopy fixed-point spectral sequence for EhG24

C
^A1

5.1 Preliminaries and recollection on cohomology of G24

Theorem 5.1.1 There is a homotopy equivalence

Œ.�8/�1�tmf^A1 ' .E
hG24
C /hGal

^A1;

where Gal denotes the Galois group Gal.F4=F2/.

Proof We have

Œ.�8/�1�tmf^A1 ' TMF^A1 .by (7)/

'L2.TMF/^A1 .TMF is E.2/–local/

'L2.TMF^A1/ .A1 is a finite complex/

'LK.2/.TMF/^A1

' .EhG24
C /hGal.F4=F2/ ^A1 .by (6)/:

The fourth equivalence is Lemma 7.2 of [25] applied to the K.2/–localization and A1,
which is a finite spectrum of type 2.

Corollary 5.1.2 There is a homotopy equivalence

GalC ^ Œ.�8/�1�tmf^A1 'EhG24
C ^A1:

Therefore ,

W .F4/˝Z2
.�8/�1.��.tmf^A1//Š ��.E

hG24
C ^A1/:

Proof This is a consequence of Theorem 5.1.1 and [11, Lemma 1.37].
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Let

(18) ‚ WW .F4/˝Z2
��.tmf^A1/! ��.E

hG24
C ^A1/

be given by precomposing the isomorphism of Corollary 5.1.2 with the natural homo-
morphism ��.tmf^A1/!��.Œ.�

8/�1�tmf^A1/. The following corollary recapitulates
the relationship between ��.tmf^A1/ and ��.EhG24

C
^A1/.

Corollary 5.1.3 The homomorphism ‚ is injective. Moreover , it remains injective
after quotienting out by the ideal of ��.S0/ generated by . N�; �/.

Proof This follows from Theorem 5.1.1 and Propositions 4.0.7 and 4.0.8.

We continue to recollect some necessary information about the HFPSS converging to
��.E

hG24
C

/:

(19) Hs.G24; .EC /t /) �t�s.E
hG24
C /:

The elements � 2 �1.S
0/, � 2 �3.S

0/ and N� 2 �20.S
0/ are sent nontrivially to

elements of the same name in ��.EhG24
C

/ via the Hurewicz map S0!EhG24
C

. As the
latter factors through the unit map of tmf, the element N�6 D 0 in ��.EhG24

C
/ because

N�6 D 0 in ��.tmf/ (see [3, Section 8.3, page 36]). These elements are detected by
� 2 H1.G24; .EC /2/, � 2 H1.G24; .EC /4/ and N� 2 H4.G24; .EC /24/, respectively.
Furthermore, there is a class � 2 H0.G24; .EC /24/ such that �8 is a permanent cycle
detecting the periodicity of EhG24

C
.

The HFPSS for EhG24
C
^A1 is a spectral sequence of modules over that of (19),

(20) Hs.G24; .EC /tA1/) �t�s.E
hG24
C ^A1/:

In Section 5.2, we will compute H�.G24; .EC /�A1/ as a module over a certain sub-
algebra of H�.G24; .EC /�/. Let � W .EC /�!F4Œu

˙1� be the quotient of .EC /� by the
maximal ideal .2;u1/. As the ideal .2;u1/ is preserved by the action of SC , the ring
F4Œu

˙1� inherits an action of SC , and so of its subgroup G24. We need the computation
of the ring structure of H�.G24;F4Œu

˙1�/, which is due to Hans-Werner Henn; see [6,
Appendix A].

Proposition 5.1.4 There are classes z 2 H4.G24;F4Œu
˙1�0/, a 2 H1.G24;F4Œu

˙1�2/,
b 2 H1.G24;F4Œu

˙1�4/ and v2 2 H0.G24; .F4Œu
˙1�/6/ such that there is an isomor-

phism of graded algebras

H�.G24;F4Œu
˙1�/Š F4Œv

˙1
2 ; z; a; b�=.ab; b3

D v2a3/:
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Proposition 5.1.5 The homomorphism of graded algebras

H�.G24;E
�
C�/!H.G24;F4Œu

˙1�/

induced by the projection .EC /�! F4Œu
˙1� sends � to a, � to b, N� to v4

2
z and � to v4

2
.

5.2 On the cohomology groups H�.G24; .EC /�.A1//

We first determine .EC /�.A1/ using the cofiber sequences through which A1 are
defined. The cofiber sequence †S0 �

�! S0! C� gives rise to a short exact sequence
of EC –homology,

0! .EC /�! .EC /�.C�/! .EC /�.S
2/! 0;

since .EC /� is concentrated in even degrees. Hence, as an .EC /�–module,

.EC /�.C�/ŠW .F4/ŒŒu1��Œu
˙1�fe0; e2g;

where e0 is the image of 1 2 .EC /0 and e2 is a lift of †21 2 .EC /2.S
2/. Next, the

long exact sequence in EC –homology associated to C�
2
�! C�! Y is the short exact

sequence of .EC /�ŒG24�–modules

0! .EC /�.C�/
�2
�! .EC /�.C�/! .EC /�.Y /! 0

since multiplication by 2 on .EC /�.C�/ŠW .F4/ŒŒu1��Œu
˙1�fe0; e2g is injective. There-

fore, as an E�–module,

.EC /�.Y /Š F4ŒŒu1��Œu
˙1�fe0; e2g:

Now A1 is the cofiber of a v1–self-map of Y, †2Y
v1
�! Y !A1. The following lemma

describes the induced homomorphism in EC –homology of these v1–self-maps:

Lemma 5.2.1 The image of the homomorphism .EC /�.v1/ is .u1u�1/.EC /�.Y /.
Therefore , as an .EC /�ŒG24�–module ,

.EC /�.A1/Š .EC /�.C�/=.2;u1/Š F4Œu
˙1�fe0; e2g:

Proof Let K.1/ be the first Morava K–theory at the prime 2 such that K.1/�ŠF2Œv
˙1
1
�,

where jv1j D 2, and let BP be the Brown–Peterson spectrum at the prime 2. There is a
map of ring spectra BP!K.1/ that classifies the complex orientation of K.1/. Recall
that the coefficient ring of BP is given by

BP� Š Z.2/Œv1; v2; : : : �;
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where jvi j D 2.2i � 1/; see [1, Part II]. The induced homomorphism of coefficient
rings sends v1 to v1. Let c W BP! EC be the map of ring spectra that classifies the
2–typification of the formal group law of EC . One can show that the 2–series of the
latter has leading term u1u�1x2 modulo 2; see [6, Proposition 6.1.1]. This implies that
the induced homomorphism c� WBP�! .EC /� sends v1 to u1u�1 modulo 2. Similarly
to the calculation of .EC /�.Y /,

BP�.Y /Š BP�=2fe0; e2g;

where e0 and e2 are chosen to be lifts of e0 and e2 via the map c� WBP�.Y /! .EC /�.Y /.
It is also straightforward that

K.1/�.Y /Š F2Œv
˙1
1 �fe0; e1; e2; e3g;

where jei j D i and e0 and e2 can be chosen to be the images of e0 and e2 via the
orientation map BP!K.1/: By definition, a v1–self-map of Y induces an isomorphism
of K.1/�–modules on K.1/–homology. This means in particular that

K.1/�.v1/

�
e0

e2

�
D

�
�1v1 �2

�3v
2
1
�4v1

��
e0

e2

�
;

where �1; �2; �3; �4 2 F2 satisfy �1�4 � �2�3 D 1. The map BP!K.1/ gives rise to
the commutative diagram

BP�.†2Y /
BP�.v1/

//

��

BP�.Y /

��

K.1/�.†
2Y /

K.1/�.v1/
// K.1/�.Y /

which forces, for degree reasons, that BP�.v1/ is given by

BP�.v1/

�
e0

e2

�
D

�
�1v1 �2

�3v
2
1
�4v1

��
e0

e2

�
:

By taking into account the fact that BP�.v1/ is a map of BP�BP–comodules, �2 must be
equal to 0, and hence �1D �4D 1. Using the orientation map c WBP!EC , .EC /�.v1/

is given by

.EC /�.v1/

�
e0

e2

�
D

�
v1 0

�3v
2
1
v1

��
e0

e2

�
:

In particular, the image of .EC /�.v1/ is the cyclic .EC /�submodule .v1/.EC /�.Y /.
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The cohomology group H�.G24;F4Œu
˙1�feig/ for i 2 f0; 2g is free of rank one as a

module over H�.G24;F4Œu
˙1�/. For i 2 f0; 2g, we choose the generators eŒ0; i � 2

H0.G24; .F4Œu
˙1�feig/i/ of these modules.

Lemma 5.2.2 (a) EC�.A1/ sits in the short exact sequence of G24–modules

0! F4Œu
˙1�fe0g !EC�.A1/! F4Œu

˙1�fe2g ! 0:

(b) The induced connecting homomorphism of the above short exact sequence ,

H�.G24;F4Œu
˙1�fe2g/

ı
�! H�C1.G24;F4Œu

˙1�fe0g/;

is H�.G24;F4Œu
˙1�/–linear and sends eŒ0; 2� to aeŒ0; 0� up to a unit of F4, where

a 2 H1.G24; .F4Œu
˙1�/2/.

Proof Part (a) is due to the fact that e0 is G24–invariant.

For part (b), since the ideal .2;u1/ of .EC /� is G24–invariant, by taking the quotient
by this ideal, we obtain the homomorphism of short exact sequences of G24–modules

0 // .EC /�fe0g
//

��

.EC /�.C�/ //

��

.EC /�fe2g
//

��

0

0 // F4Œu
˙1�fe0g

// .EC /�.A1/ // F4Œu
˙1�fe2g

// 0

Since the homomorphism Ext1;2BP�BP.BP�;BP�/ ! H1.G24; .EC /2/ sends � to the
class of the same name, the connecting homomorphism of the upper SES sends e2 2

H0.G24; .EC /2fe2g/ to �e0 2H1.G24; /. By naturality, the connecting homomorphism
of the lower SES sends e2 2 H0.G24;F4Œu

˙1�fe2g/ to ae0 2 H 1.G24;F4Œu
˙1�fe0g/

because �� W H1.G24; .EC /2/! H1.G24;F4Œu
˙1�/ sends � to a.

That ı is H�.G24;F4Œu
˙1�/–linear follows from the fact that the SES in (a) is a sequence

of F4Œu
˙1�ŒG24� and splits as a short exact sequence of F4Œu

˙1�–modules (see [12,
Section V.3]).

Using the description of H�.G24;F4Œu
˙1�/ and the long exact sequence associated

to the short exact sequence of Lemma 5.2.2, we obtain the following description of
H�.G24; .EC /�.A1//:

Proposition 5.2.3 As a module over H�.G24;F4Œu
˙�/, there is an isomorphism

H�.G24; .EC /�.A1//Š F4Œv
˙1
2 ; z; a; b�=.a; b3/feŒ0; 0�; eŒ1; 5�g;

where eŒ0;0�2H0.G24; .EC /0.A1// and eŒ1;5�2H1.G24; .EC /6.A1// (see Figure 14).
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Figure 14: Hs.G24; .EC /t .A1// depicted in the coordinate .s; t � s/.

The above proposition also gives the action of H�.G24; .EC /�/ on H�.G24; .EC /�A1/.
In fact, the action of EC� on EC�.A1/ factors through F4Œu

˙1� via EC�
�
�! F4Œu

˙1�.
As a consequence, the action of H�.G24;EC�/ on H�.G24;EC�.A1// factors through
the induced homomorphism in cohomology of G24. In particular, it follows from
Proposition 5.1.5 that the classes �, N� and � act on H�.G24;EC�.A1// as v4

2
, v4

2
z

and b do, respectively.

5.3 Differentials of the homotopy fixed-point spectral sequence
for EhG24

C
^A1

The HFPSS for EhG24
C
^A1 has the following features. The spectrum EC ^A1 is a

G24–EC –module in the sense that EC ^A1 is an EC –module and the structure maps
are G24–equivariant. This guarantees that the HFPSS for EhG24

C
^A1 is a module over

that for EhG24
C

. In particular, all differentials are N�–linear. This element plays a central
role here: the group G24 is a group with periodic cohomology (see [12, Chapter VI,
Theorem 9.5]) and the cohomological periodicity class z 2H 4.G24;Z/ is related to
N� 2 H4.G24; .EC /�/ via the equation

�z D N�:

Since � is invertible in H�.G24; .EC /�/, N� plays the same role for cohomology of
.EC /�ŒG24�–modules as z for cohomology of ZŒG24�–modules. This means that,
if M is an .EC /�ŒG24�, then multiplication by N� induces an homomorphism on
H s.G24;M / ! H sC4.G24;M /, which is a surjection for s � 0 and a bijection
for s > 0. We will define a cohomology class with this property a cohomological
periodicity class. These features of N� induce more constrains on the HFPSS.

Definition 5.3.1 Let R be a ring spectrum and G be a finite group acting on R by
maps of ring spectra. The pair .G;R/ is said to be regular if G is a group with periodic
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cohomology and there exists a cohomological periodicity class t 2 H�.G;R�/ which
is a permanent cycle in the HFPSS for RhG.

Proposition 5.3.2 Let .G;R/ be a regular pair as in Definition 5.3.1 and X be a G–R

spectrum. Suppose t 2 Hk.G;R�/ is a cohomological periodicity class which is a
permanent cycle in the HFPSS for RhG. Then the Er –term of the HFPSS for X hG has
the following properties:

(i) All classes of cohomological filtration at least k are divisible by t .

(ii) All classes of cohomological filtration at least r are t–free.

Proof We will prove by induction on r that the Er –term of the HFPSS for X hG has
the properties (i)–(ii). The E2–term is isomorphic to H�.G; ��.X //. We recall that
the natural map from the cohomology to the Tate cohomology � W Hs.G; ��.X //!

yHs.G; ��.X // is an epimorphism and is an isomorphism when s > 0; see Chapter VI
of [12]. Because G has periodic cohomology, we have

yH�.G; ��X /Š yH�.G; ��X /Œt�1�;

which means that the group yH�.G; ��X / is t–free and is divisible by t . Since
� WHs.G; ��X /! yHs.G; ��.X // is an isomorphism when s > 0, all classes of positive
cohomological degree of H�.G; ��X / are t–free.

Now suppose x is a class of Hs.G; ��X / with s � k. Then the class t�1�.x/ 2

yHs�k.G; ��X / has a preimage y 2 Hs�k.G; ��X / (because s� k � 0), ie

�.y/D t�1�.x/:

This implies that
�.ty/D t �.y/D �.x/;

and thus, since s > 0,
ty D x:

Thus, the E2–term has the properties (i)–(ii). Suppose that the Er –term satisfies (i)–(ii).
Let Œx� 2 ErC1 be a nontrivial class represented by x 2 Er . Suppose that x has its
cohomological filtration s � k. By the induction hypothesis, there exists y 2 Es�k;�

r

such that ty D x. We show that y is a dr –cycle. Because x is a dr –cycle, we have by
t–linearity that tdr .y/D dr .ty/D dr .x/D 0. However, the cohomological filtration
of dr .y/ is at least r , and so it is t–free by the induction hypothesis, and so dr .y/D 0.
Therefore, Œx� is divisible by t .
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Now we prove that ErC1 has the property (ii). Suppose that Œx� is t–torsion and has
cohomological filtration at least r C 1. Without loss of generality, we can assume that
t Œx�D 0. Then there exists y 2 Er such that dr .y/D tx. The cohomological filtration
of y is at least r C 1C k � r D k C 1, and hence y is divisible by t , ie there exists
z 2 Er such that tz D y, and then, by t–linearity,

tdr .z/D dr .tz/D dr .y/D tx:

However, dr .z/�x has cohomological filtration at least r C 1, so it must be t–free by
hypothesis (ii), and hence is equal to zero, ie Œx� is trivial in ErC1.

We conclude that the ErC1–term satisfies (i)–(ii), thus finishing the proof by induction.

The following corollary summarizes consequences on the structure of the HFPSS:

Corollary 5.3.3 Let .G;R/ be a regular pair and X be a G–R spectrum. Suppose
t 2 Hk.G;R�/ is a cohomological periodicity class which is a permanent cycle in the
HFPSS for RhG. Then we have , in the HFPSS for X hG :

(1) At the Er –term , t–torsion classes are permanent cycles.

(2) Any t–free tower is truncated by at most one other t–free tower by the same
differential. More precisely , if x is a class of cohomological filtration less
than k, then there exists at most one class y of cohomological filtration less
than k such that there exists a unique integer l and a unique integer r such that
dr .t

my/D tmClx for all nonnegative integers m. Moreover , all classes t ix for
i 2 f0; 1; : : : ;m� 1g survive the spectral sequence.

(3) Suppose some power of t is hit by a differential in the HFPSS for RhG. Then
any t–free tower consisting of permanent cycles is truncated by a unique t–free
tower. Moreover , the HFPSS has a horizontal vanishing line.

(4) Every element of ��.X hG/ that is detected in filtration at least k is divisible
by Nt , where Nt is an element of ��.RhG/ detected by t .

Proof Part (1) follows from Proposition 5.3.2(ii) because t–torsion classes in the
Er –term have cohomological degree less than r . Part (2) follows from parts (i)–(ii) of
Proposition 5.3.2 because a t–tower can be hit by a differential only if it is t–free and
then it becomes t–torsion in the next term. Part (3) follows from (2) and the fact that the
HFPSS for X is a module over that for R. Part (4) follows from Proposition 5.3.2(i).
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Remark 5.3.4 This situation turns out to be common once the group in question is a
group with periodic cohomology. For example, all finite subgroups of GC have these
properties.

We return to the HFPSS for EhG24
C
^A1. We will call the set fN�lx j l 2Ng associated

to a class x in some page of the HFPSS the N�–family of that class.

The following proposition gives us the horizontal vanishing line of the HFPSS for
EhG24

C
^A1:

Proposition 5.3.5 The HFPSS for EhG24
C

^ A1 has a horizontal vanishing line of
height 23, ie Es;t

24
D 0 if s > 23. As a consequence , it collapses at the E24–term.

Proof As N�6 D 0 in ��.EhG24
C

/, the class N�6 must be hit by a differential which is
of length at most 23. This is because N�6 has cohomological filtration 24 and all even
differentials are trivial. Hence N�6 is trivial in the E24–term of the HFPSS for EhG24

C
.

Next, because the E24–term of the HFPSS for EhG24
C

^ A1 is a module over that
for EhG24

C
, the class N�6 acts trivially on the E24–term of the HFPSS for EhG24

C
^A1.

Since all classes which are not a multiple of N� have cohomological filtration at most 3,
the HFPSS has the horizontal vanishing line of height 23.

Proposition 5.3.6 The following classes are permanent cycles:

eŒ0; 0�; eŒ1; 5�; eŒ0; 6�; eŒ1; 11�; eŒ1; 15�; eŒ1; 17�; eŒ1; 21�; eŒ1; 23�:

Proof Firstly, the class eŒ0; 0� is a permanent cycle because it detects the inclusion
S0!A1 into the bottom cell of A1. Next, we recapitulate, in the following table, the
associated graded object with respect to the induced Adams filtration on the groups
��.tmf^A1/=. N�/ in the following stems (see Figure 13):

dim 6 15 17 21 23
value F2˚F2 F2 F2 F2 F2˚F2

By Corollary 5.1.3, the groups ��.EhG24
C
^A1/=. N�/ in these dimensions must have

order twice as big as the respective groups. Inspection in the E2–term of the HFPSS
through dimensions from 0 to 23 and in cohomological filtration less than 4 show that
the classes eŒ0; 6�, eŒ1; 15�, eŒ1; 21� and eŒ1; 23� are permanent cycles.

Note that the groups �0.tmf^A1/ and �6.tmf^A1/ are annihilated by �. This means
that eŒ0; 0� and eŒ0; 6� detect two elements which are annihilated by �. It follows that
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the Toda brackets h�; �; eŒ0; 0�i and h�; �; eŒ0; 6�i can be formed with indeterminacy
��2.E

hG24
C
^A1/ and ��8.E

hG24
C
^A1/. By juggling,

�h�; �; eŒ0; 0�i D h�; �; �ieŒ0; 0�D �2eŒ0; 0�;

�h�; �; eŒ0; 6�i D h�; �; �ieŒ0; 6�D �2eŒ0; 6�:

Observe that �2eŒ0; 0� and �2eŒ0; 6� are nontrivial and are detected in cohomological
filtration 2. Consequently, both h�; �; eŒ0; 0�i and h�; �; eŒ0; 6�i do not contain zero and
are represented by classes in cohomological filtration at most 1. By sparseness, eŒ1; 5�

and eŒ1; 11� are permanent cycles detecting h�; �; eŒ0; 0�i and h�; �; eŒ0; 6�i, respectively.

The unique nontrivial element of �11.tmf^A1/=. N�/ is annihilated by �2. This implies
that the class �2eŒ1; 11� is the target of some differential. Since �17.E

hG24
C
^A1/=. N�/

has order at least equal to 4, the class eŒ1; 17� must be a permanent cycle representing
the only element in stem 17 of ��.EhG24

C
^A1/=. N�/.

Remark 5.3.7 As a memo-technique, we will attach to the above classes the names
that retain better their homotopical meaning. The class eŒ0; 0� is the image of the
generator of �0.S

0/, so it can also be named 1. Next, in ��.C�/, if x denotes the
generator of �0.C�/Š Z, then the Toda bracket h�; �;xi has the indeterminacy group
��2.C�/, which is divisible by 2. Thus, h�; �;xi is well-defined modulo 2. Via the cell
inclusion C�!A1, h�; �;xi is sent to h�; �; 1i which is well-defined. Historically, a
choice of representative of h�; �;xi 2 �5.C�/ is denoted by w. Thus, eŒ1; 5�D h�; �; 1i

can be named w. The class eŒ0; 6� is represented by v2 in the E2–term. The other
classes are products of these in the E2–term of the HFPSS. Explicitly,

eŒ0; 0�D 1; eŒ1; 5�D w; eŒ0; 6�D v2; eŒ1; 11�D v2w;

eŒ1; 15�D �v2
2 ; eŒ1; 17�D v2

2w; eŒ1; 21�D �v3
2 ; eŒ1; 23�D v3

2w:

d3–differentials

Proposition 5.3.8 As a module over F4Œ�
˙1; N�; ��=.�3/, the term E2 D E3 is free on

the generators

(21) eŒ0; 0�; eŒ1; 5�; eŒ0; 6�; eŒ1; 11�; eŒ0; 12�; eŒ1; 17�; eŒ0; 18�; eŒ1; 23�:

Proposition 5.3.9 The d3–differential in the HFPSS for EhG24
C
^A1 is trivial on all

of the generators of (21) with the exception of (see Figure 15)

(1) d3.eŒ0; 12�/D �2eŒ1; 5�,

(2) d3.eŒ0; 18�/D �2eŒ1; 11�.

Algebraic & Geometric Topology, Volume 22 (2022)



On homotopy groups of E
hG24

C
^A1 3917

0 4 8 12 16 20 24
0

1

2

3

4

Figure 15: Differentials d3.

Proof That eŒ0; 0�, eŒ1; 5�, eŒ0; 6�, eŒ1; 11�, eŒ1; 17� and eŒ1; 23� are d3–cycles follows
from Proposition 5.3.6. For the two other classes, the proof of Proposition 5.3.6 implies
that the elements‚.eŒ1; 5�/ and‚.eŒ2; 11�/, where‚ is the comparison homomorphism
from ��.tmf^A1/ and ��.EhG24

C
^A1/ in (18), are detected by eŒ1; 5� and eŒ1; 11�,

respectively. Moreover, the elements eŒ1; 5� and eŒ2; 11� are annihilated by �2 in
��.tmf^A1/. It follows that, in the HFPSS, the classes �2eŒ1; 5� and �2eŒ1; 11� must
be hit by some differentials. The only possibilities are d3.eŒ0; 12�/ D �2eŒ1; 5� and
d3.eŒ0; 18�/D �2eŒ1; 11�.

Corollary 5.3.10 As a module over F4Œ�
˙1; N�; ��=.�3/, the term E4 D E5 is a direct

sum of cyclic modules generated by the classes

(22) eŒ0; 0�; eŒ1; 5�; eŒ0; 6�; eŒ1; 11�; eŒ1; 15�; eŒ1; 17�; eŒ1; 21�; eŒ1; 23�

with the relations

(23) �2eŒ1; 5�D �2eŒ1; 11�D �2eŒ1; 15�D �2eŒ1; 21�D 0:

Proof This is straightforward from Proposition 5.3.9 and from the fact that �, N� and �
are d3–cycles in the HFPSS for EhG24

C
.

24 28 32 36 40 44 48 52
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8

Figure 16: Differentials d5.
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d5–differentials We need the d5–differential, in the HFPSS for EhG24
C

, d5.�/D N��

(see [3, Section 8.3]), depicted in Figure 16.

Proposition 5.3.11 As a module over F4Œ.�
8/˙1; N�; ��=. N��/, E6 D E7 is a direct sum

of cyclic modules generated by the following classes for i 2 0; 2; 4; 6 with the respective
annihilator ideal :

generator �ieŒ0; 0� �ieŒ1; 5� �ieŒ0; 6� �ieŒ1; 11�

ideal .�3/ .�2/ .�3/ .�2/

generator �ieŒ1; 15� �ieŒ1; 17� �ieŒ1; 21� �ieŒ1; 23�

ideal .�2/ .�3/ .�2/ .�3/

generator �ieŒ2; 30� �ieŒ2; 32� �ieŒ2; 36� �ieŒ2; 38�

ideal .�/ .�/ .�/ .�/

generator �ieŒ2; 42� �ieŒ3; 47� �ieŒ2; 48� �ieŒ3; 53�

ideal .�/ .�/ .�/ .�/

Proof If x is a class in the E5–term of the HFPSS for A1, then, by the module structure
of the latter over the HFPSS for S0 and the Leibniz rule, for all k 2 Z,

d5.�
2kx/D d5.�

2k/xC�2kd5.x/D 2�kd5.�
k/xC�2kd5.x/D�

2kd5.x/:

This says in particular that the E6–term is �2–periodic. Next, if x is a d5–cycle
and is annihilated by �i , then d5.�x/ D N��x and d5.��

i�1x/ D 0. Together with
the fact that all of the generators of (22) are permanent cycles (Proposition 5.3.6),
it is straightforward to verify that the classes together with their annihilation ideal
given in the statement of the proposition generate the E6–term as a module over
F4Œ.�

8/˙1; N�; ��=. N��/.

Remark 5.3.12 Since �8 is a permanent cycle in the HFPSS for EhG24
C

, the HFPSS
for EhG24

C
^A1 is linear with respect to �8. Note that all N�–free generators in the

E7–term are of the form .�8/kx where k 2 Z and x is one of the generators listed in
Proposition 5.3.11 (see Figure 17). Then, by Corollary 5.3.3, these free N�–families
pair up so that each nonpermanent N�–family truncates one and only one permanent
N�–family. By�8–linearity, among these 64 generators, only half of them are permanent
cycles and the others support a differential. It reduces the problem into two steps: first
identify all permanent N�–families, then identify by which N�–family they are truncated.
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Figure 17: The E7–term for s � 8 and t � s � 54.

Proposition 5.3.13 The generators

eŒ2; 30�; eŒ2; 32�; eŒ2; 36�; eŒ2; 38�; eŒ2; 42�; eŒ3; 47�; eŒ2; 48�; eŒ3; 53�

are permanent cycles.

Proof We give the proof for eŒ2; 30� and the other generators are proven in a similar
manner. In the E6–term, the Massey product h N�; �; �2eŒ0; 0�i can be formed. Since
d5.�/D N�� and �3eŒ0; 0�D 0 2 E5, we see that

eŒ2; 30�D��2eŒ0; 0� 2 hN�; �; �2eŒ0; 0�i:

The indeterminacy consists of N�E�2;8
6
CE0;26

6
�2eŒ0; 0�, where E�2;8

6
is in the E6–term

of the HFPSS for EhG24
C
^A1 and E0;26

6
for EhG24

C
. The latter are zero groups; hence,

the indeterminacy is zero. Thus,

h N�; �; �2eŒ0; 0�i D eŒ2; 30�:

At the level of the homotopy groups of ��.EhG24
C

^ A1/ one can form the corre-
sponding Toda bracket h N�; �; �2eŒ0; 0�i because � N� D 0 in ��.EhG24

C
/ and inspection

in ��.tmf ^A1/ tells us that �3eŒ0; 0� D 0. Furthermore, all hypotheses of Moss’s
convergence theorem are verified. Therefore, eŒ2; 30� is a permanent cycle representing
the Toda bracket heŒ0; 0�; �3; N�i. For the sake of completeness, we record the Toda
bracket expressions for the other elements:

h N�; �; �eŒ1; 5�i D eŒ2; 32�;

h N�; �; �eŒ1; 11�i D eŒ2; 38�;

h N�; �; �2eŒ1; 17�i D eŒ3; 47�;

h N�; �; �2eŒ0; 6�i D eŒ2; 36�;

h N�; �; �eŒ1; 15�i D eŒ2; 42�;

h N�; �; �eŒ1; 21�i D eŒ2; 48�;

h N�; �; �2eŒ2; 23�i D eŒ3; 53�:

We have already identified 16 out of 32 permanent cycles. The next 16 ones are not
the same for different versions of A1. The difference reflects the different behavior of
the d2–differential in the ASS for different models of A1 (see Theorem 4.0.3).
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Proposition 5.3.14 In the HFPSSs for all four versions of A1, the following 12

generators are permanent cycles:

�2eŒ0; 0�; �2eŒ1; 5�; �2eŒ0; 6�; �2eŒ1; 11�; �2eŒ1; 15�; �2eŒ1; 17�;

�2eŒ1; 21�; �2eŒ2; 30�; �2eŒ2; 32�; �2eŒ2; 36�; �2eŒ2; 42�; �2eŒ3; 47�:

The remaining four permanent cycles for A1Œ00� and A1Œ11� are

�2eŒ1; 23�; �2eŒ2; 38�; �2eŒ2; 48�; �2eŒ3; 53�;

whereas the remaining four permanent cycles for A1Œ10� and A1Œ01� are

�4eŒ1; 15�; �4eŒ0; 0�; �4eŒ1; 5�; �4eŒ2; 30�:

Proof The associated graded object of the groups ��.tmf^A1/=. N�; �/, with respect
to the Adams filtration, in the following stems are given in the following table:

stem 48 53 54 59 63 65 69 78 80 84 90 95
value F2˚F2 F2˚F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2

In view of Corollaries 5.1.3 and 5.3.3, inspection in the E7–term shows that the following
12 classes are permanent cycles in the HFPSSs for all four versions of A1:

�2eŒ0; 0�; �2eŒ1; 5�; �2eŒ0; 6�; �2eŒ1; 11�; �2eŒ1; 15�; �2eŒ1; 17�;

�2eŒ1; 21�; �2eŒ2; 30�; �2eŒ2; 32�; �2eŒ2; 36�; ; �2eŒ2; 42�; �2eŒ3; 47�:

Next, in the ASS for tmf^A1Œ00� and tmf^A1Œ11�, there is no differential until stem 96.
Again, inspection in the E2–term (see Figure 13) shows that

�71.tmf^A1Œ00�/=. N�; �/D �71.tmf^A1Œ11�/=. N�; �/Š F2;

�86.tmf^A1Œ00�/=. N�; �/D �86.tmf^A1Œ11�/=. N�; �/Š F2:

It follows that the classes �2eŒ1; 23� and �2eŒ2; 38� are permanent cycles in the HFPSS
for EhG24

C
^A1Œ00� and EhG24

C
^A1Œ11�.

On the other hand, in the ASS for tmf^A1Œ10� and tmf^A1Œ01�, Theorem 4.0.3 and g–
linearity imply that d2.g

2w2eŒ4; 23�/D g4eŒ6; 30� and d2.g
2w2eŒ7; 38�/D g6eŒ1; 5�.

Hence, w2
2
eŒ3; 15� and w2

2
eŒ6; 30� survive to the E1–term, by sparseness. It then

follows that �4eŒ1; 15� and �4eŒ2; 30� are permanent cycles in the HFPSS for A1Œ10�

and A1Œ01�.

For A1Œ00� and A1Œ11�, the classes w2eŒ9; 48� and w2eŒ10; 53� do not support differ-
entials, by Theorem 4.0.3, and hence persist to the E1–term, by sparseness. Neither
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N� nor � divides these classes. Lastly, both w2eŒ9; 48� and w2eŒ10; 53� are annihilated
by �. The only classes in the HFPSS that match those properties are �2eŒ2; 48� and
�2eŒ3; 53�, respectively. Thus, the latter are the last two of the 32 permanent cycles in
the HFPSS for A1Œ00� and A1Œ11�.

For A1Œ10� and A1Œ01�, the classes w2eŒ9; 48� and w2eŒ10; 53� support nontrivial d2–
differentials. Thus w2

2
eŒ0; 0� and w2

2
eŒ1; 5� survive to the E1–term. For degree reasons,

both w2
2
eŒ0; 0� and w2

2
eŒ1; 5� are not divisible either by N� or by �, and moreover

their multiples by � are not divisible by N�. In the HFPSS for EhG24
C

^A1Œ10� and
EhG24

C
^A1Œ10�, �4eŒ0; 0� and �4eŒ1; 5� are the only classes verifying the respective

properties, and hence are permanent cycles.

Remark 5.3.15 Having determined all permanent N�–families, we consider differentials.
We recall, from Remark 5.3.12, that each permanent N�–family is truncated by one and
only one nonpermanent N�–family. We can proceed as follows: take a permanent cycle,
say x; then locate all nonpermanent classes that can support a differential killing N�nx

for some n� 6. Precisely, one of the following situations will happen:

(1) There is no ambiguity, ie there is only one generator that can support a differential
killing N�nx for some n� 6, so this differential occurs.

(2) There are two generators that can support a differential killing multiples of x by
different powers of N�. In order to decide, we inspect the N�–exponent of x using
the ASS.

(3) There are two generators that can support a differential killing the multiple of x

by the same power of N�. In this case, inspection on the N�–exponent of x does not
help. We will treat each of the particularity case by case. Some Toda brackets
will be involved to resolve these cases.

A permanent cycle is said to be of type 1, 2 and 3, respectively, if its N�–family is as in
the situation (1), (2) and (3) above, respectively. The HFPSSs for different versions of
A1 do not behave in the same manner. It turns out the HFPSSs for the versions A1Œ10�

and A1Œ01� behave in the same way and A1Œ00� and A1Œ11� in the same way. We will
treat the HFPSS for A1Œ10� and A1Œ01� in detail and then point out the changes needed
for A1Œ00� and A1Œ11�.

Higher differentials for A1Œ01� and A1Œ10� The reader is invited to follow the
discussion of the differentials using Figures 18 to 20.
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Figure 18: HFPSS for A1Œ10� and A1Œ01� from E7–term with 0� t � s � 48

(left) and 48� t � s � 96 (right).
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Figure 19: HFPSS for A1Œ10� and A1Œ01� from E7–term with 96� t � s � 144.
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Figure 20: HFPSS for A1Œ10� and A1Œ01� from E7–term with 144� t � s � 197.
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Proposition 5.3.16 (A) There are the d9–differentials

.1/ d9.�
2eŒ1; 23�/D N�2eŒ2; 30�; .2/ d9.�

6eŒ1; 23�/D N�2�4eŒ2; 30�:

(B) There are the d15–differentials

.1/

.2/

d15.�
2eŒ2; 38�/D N�4eŒ1; 5�;

d15.�
2eŒ2; 48�/D N�4eŒ1; 15�;

.3/

.4/

d15.�
6eŒ2; 38�/D N�4�4eŒ1; 5�;

d15.�
6eŒ2; 48�/D N�4�4eŒ1; 15�:

(C) There are the d17–differentials

.1/

.2/

.3/

.4/

.5/

.6/

.7/

d17.�
2eŒ3; 53�/D N�5eŒ0; 0�;

d17.�
4eŒ0; 6�/D N�4eŒ1; 21�;

d17.�
4eŒ1; 17�/D N�4eŒ2; 32�;

d17.�
4eŒ1; 21�/D N�4eŒ2; 36�;

d17.�
4eŒ2; 32�/D N�4eŒ3; 47�;

d17.�
6eŒ0; 6�/D N�4�2eŒ1; 21�;

d17.�
6eŒ1; 17�/D N�4�2eŒ2; 32�;

.8/

.9/

.10/

.11/

.12/

.13/

.14/

d17.�
6eŒ1; 21�/D N�4�2eŒ2; 36�;

d17.�
6eŒ2; 32�/D N�4�2eŒ3; 47�;

d17.�
6eŒ3; 53�/D N�5�4eŒ0; 0�;

d17.�
4eŒ1; 23�/D N�4eŒ2; 38�;

d17.�
4eŒ2; 38�/D N�4eŒ3; 53�;

d17.�
6eŒ0; 0�/D N�4�2eŒ1; 15�;

d17.�
6eŒ1; 15�/D N�4�2eŒ2; 30�:

(D) There are the d19–differentials

.1/

.2/

.3/

d19.�
4eŒ1; 11�/D N�5eŒ0; 6�;

d19.�
4eŒ3; 47�/D N�5eŒ2; 42�;

d19.�
6eŒ1; 11�/D N�5�2eŒ0; 6�;

.4/

.5/

.6/

d19.�
6eŒ3; 47�/D N�5�2eŒ2; 42�;

d19.�
6eŒ1; 5�/D N�5�2eŒ0; 0�;

d19.�
4eŒ3; 53�/D N�5eŒ2; 48�:

(E) There are the d23–differentials

.1/

.2/

.3/

d23.�
4eŒ2; 36�/D N�6eŒ1; 11�;

d23.�
4eŒ2; 42�/D N�6eŒ1; 17�;

d23.�
4eŒ2; 48�/D N�6eŒ1; 23�;

.4/

.5/

.6/

d23.�
6eŒ2; 36�/D N�6�2eŒ1; 11�;

d23.�
6eŒ2; 42�/D N�6�2eŒ1; 17�;

d23.�
6eŒ2; 30�/D N�6�2eŒ1; 5�:

Proof (A) The classes eŒ2; 30� and �4eŒ2; 30� are of type 1 and the only possibilities
are

d9.�
2eŒ1; 23�/D N�2eŒ2; 30� and d9.�

6eŒ1; 23�/D N�2�4eŒ2; 30�;

respectively.

(B) All of the classes eŒ1; 5�, eŒ1; 15�, �4eŒ1; 5� and �4eŒ1; 15� are of type 1 and their
N�–family is truncated as indicated in the proposition.
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(C)(1)–(10) All classes

eŒ0; 0�; eŒ1; 21�; eŒ2; 32�; eŒ2; 36�; eŒ3; 47�;

�2eŒ1; 21�; �2eŒ2; 32�; �2eŒ2; 36�; �2eŒ3; 47�; �4eŒ0; 0�

are of type 1.

(C)(11) The class eŒ2; 38� is of type 2. The differentials that can truncate its N�–family
are

d17.�
4eŒ1; 23�/D N�4eŒ2; 38� and d25.�

6eŒ1; 15�/D N�6eŒ2; 38�:

The latter cannot happen because the spectral sequence collapses at the E24–term.
Therefore,

d17.�
4eŒ1; 23�/D N�4eŒ2; 38�:

(C)(12) The class eŒ3; 53� is of type 2. Its N�–family can be truncated by

d17.�
4eŒ2; 38�/D N�4eŒ3; 53� or d25.�

6eŒ2; 30�/D N�6eŒ3; 53�:

As above, there cannot be any d25–differential in the spectral sequence. Hence,

d17.�
4eŒ2; 38�/D N�4eŒ3; 53�:

(C)(13) The class �2eŒ1; 15� is of type 3. In its N�–family, only N�4�2eŒ1; 15� can be a
target of differentials,

d17.�
6eŒ0; 0�/D N�4�2eŒ1; 15� and d15.�

4eŒ2; 48�/D N�4�2eŒ1; 15�:

However, if
d15.�

4eŒ2; 48�/D N�4�2eŒ1; 15�;

then the only class that can truncate the N�–family of eŒ1; 23� is �6eŒ0; 0� and by a
d25–differential

d25.�
6eŒ0; 0�/D N�6eŒ1; 23�:

This contradicts the fact that the spectral sequence collapses at the E24–term. Thus,

d17.�
6eŒ0; 0�/D N�4�2eŒ1; 15�:

(C)(14) �2eŒ2; 30� is of type 2. Its N�–family can be truncated by a d9–differential
on �4eŒ1; 23� or by a d17–differential on �6eŒ1; 15�. However, the former possibility
cannot occur because of part .11/. Therefore,

d17.�
6eŒ1; 15�/D N�4�2eŒ2; 30�:
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(D)(1)–(4) All of the classes

eŒ0; 6�; eŒ2; 42�; �2eŒ0; 6�; �2eŒ2; 42�

are of type 1.

(D)(5) The class �2eŒ0; 0� is of type 3 and its N�–family can be truncated by either

d17.�
4eŒ3; 53�/D N�5�2eŒ0; 0� or d19.�

6eŒ1; 5�/D N�5�2eŒ0; 0�:

Suppose that the former happened. This would leave us with the differential

d21.�
6eŒ1; 5�/D N�5eŒ2; 48�:

It would imply the Massey product in the E22–term

h N�5; eŒ2; 48�; �i D ��6eŒ1; 5�

with zero indeterminacy in the E22–term. We see that the Toda bracket h N�5; eŒ2; 48�; �i

could then be formed because

N�4eŒ2; 48�D �eŒ2; 48�D 0 2 ��.E
hG24
C ^A1/:

We check that all conditions of Moss’s convergence theorem [30, Theorem 1.2] are
met, and so the Toda bracket h N�5; eŒ2; 48�; �i would contain an element represented by
��6eŒ1; 5�. This contradicts Corollary 4.0.6. This contradiction proves that

d19.�
6eŒ1; 5�/D N�5�2eŒ0; 0�:

(D)(6) The class eŒ2; 48� is of type 2 and its N�–family is truncated by either

d19.�
4eŒ3; 53�/D N�5eŒ2; 48� or d21.�

6eŒ1; 5�/D N�5eŒ2; 48�:

However, part (D)(5) rules out the latter.

(E)(1)–(5) All of the classes

eŒ1; 11�; eŒ1; 17�; eŒ1; 23�; �2eŒ1; 11�; �2eŒ1; 17�

are of type 1.

(E)(6) The class �2eŒ1; 5� is of type 2. The two possibilities are

d15.�
4eŒ2; 38�/D N�4�2eŒ1; 5� and d23.�

6eŒ2; 30�/D N�6�2eŒ1; 5�:

However, part (C)(12) rules out the former because the class �4eŒ2; 38� must pair up
with the class eŒ3; 38�, by the differential

d17.�
4eŒ2; 38�/D N�4eŒ3; 53�:
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The above differentials from d9 to d23, together with the N�– and �8–linearity exhaust
all differentials. In Theorems 5.3.17 and 5.3.18, we write et�s for the permanent cycle
eŒs; t � s� in bidegree .s; t/ listed in Proposition 5.3.11, for the sake of presentation.

Theorem 5.3.17 As a module over F4Œ�
˙8; N�; ��=. N��/, the E1–term of the HFPSS

for EhG24
C
^A1 for A1DA1Œ10� and A1Œ01� is a direct sum of cyclic modules generated

by the following elements and with the respective annihilator ideal :

.0; 0/ .1; 5/ .0; 6/ .1; 11/ .1; 15/ .1; 17/ .1; 21/ .1; 23/
e0 e5 e6 e11 e15 e17 e21 e23

. N�5; �3/ . N�4; �2/ . N�5; �3/ . N�6; �2/ . N�4; �2/ . N�6; �3/ . N�4; �2/ . N�6; �3/

.2; 30/ .2; 32/ .2; 36/ .2; 38/ .2; 42/ .3; 47/ .2; 48/ .3; 53/
e30 e32 e36 e38 e42 e47 e48 e53

. N�2; �/ . N�4; �/ . N�4; �/ . N�4; �/ . N�5; �/ . N�4; �/ . N�5; �/ . N�4; �/

.0; 48/ .1; 53/ .0; 54/ .1; 59/ .1; 63/ .1; 65/ .1; 69/ .2; 74/

�2e0 �2e5 �2e6 �2e11 �2e15 �2e17 �2e21 �2�e23

. N�5; �3/ . N�6; �2/ . N�5; �3/ . N�6; �2/ . N�4; �2/ . N�6; �3/ . N�4; �2/ . N�; �2/

.2; 78/ .2; 80/ .2; 84/ .2; 90/ .3; 95/ .0; 96/ .1; 101/ .1; 105/

�2e30 �2e32 �2e36 �2e42 �2e47 �4e0 �4e5 �4�e6

. N�4; �/ . N�4; �/ . N�4; �/ . N�5; �/ . N�4; �/ . N�5; �3/ . N�4; �2/ . N�; �2/

.2; 110/ .1; 111/ .2; 116/ .2; 120/ .2; 122/ .2; 126/ .1; 147/ .2; 152/

�4�e11 �4e15 �4�e17 �4�e21 �4�e23 .�4e30/ �6�e0 �6�e5

. N�; �/ . N�4; �2/ . N�; �2/ . N�; �/ . N�; �2/ . N�2; �/ . N�; �2/ . N�; �/

.1; 153/ .2; 158/ .2; 162/ .2; 164/ .2; 168/ .2; 170/

�6�e6 �6�e11 �6�e15 �6�e17 �6�e21 �6�e23

. N�; �2/ . N�; �/ . N�; �/ . N�; �2/ . N�; �/ . N�; �2/

The case of A1Œ00� and A1Œ11� The analysis of the HFPSS for A1Œ00� and A1Œ11�

can be done in the same manner as for A1Œ10� and A1Œ01�. All differentials are identical
except for eight ones. These differences reflect the different behavior between the ASS
for A1Œ10� and A1Œ01� and that for A1Œ11� and A1Œ00�. Below are all the changes whose
justifications are based on similar considerations as in the proof of Proposition 5.3.16;
see Figures 21 to 23:

� d17.�
4eŒ1; 15�/D N�4eŒ2; 30� instead of d9.�

2eŒ1; 23�/D N�2eŒ2; 30�.

� d17.�
6eŒ1; 23�/D N�4�2eŒ2; 38� instead of d9.�

6eŒ1; 23�/D N�2�4eŒ2; 30�.
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� d17.�
4eŒ0; 0�/D N�4eŒ1; 15� instead of d15.�

2eŒ2; 48�/D N�4eŒ1; 15�.

� d17.�
6eŒ2; 38�/D N�4�2eŒ3; 53� instead of d15.�

6eŒ2; 38�/D N�4�2eŒ1; 5�.

� d19.�
4eŒ1; 5�/D N�5eŒ0; 0� instead of d17.�

2eŒ3; 53�/D N�5eŒ0; 0�.

� d19.�
6eŒ3; 53�/D N�5�2eŒ2; 48� instead of d17.�

6eŒ3; 53�/D N�5�4eŒ0; 0�.

� d23.�
6eŒ2; 48�/D N�6�2eŒ1; 23� instead of d15.�

6eŒ2; 48�/D N�4�4eŒ1; 15�.

� d23.�
4eŒ2; 30�/D N�6eŒ1; 5� instead of d15.�

2eŒ2; 38�/D N�4eŒ1; 5�.

Theorem 5.3.18 As a module over F4Œ�
˙8; N�; ��=. N��/, the E1–term of the HFPSS

for EhG24
C
^A1 for A1DA1Œ00� and A1Œ11� is a direct sum of cyclic modules generated

by the following elements and with the respective annihilator ideals:

.0; 0/ .1; 5/ .0; 6/ .1; 11/ .1; 15/ .1; 17/ .1; 21/ .1; 23/
e0 e5 e6 e11 e15 e17 e21 e23

. N�5; �3/ . N�6; �2/ . N�5; �3/ . N�6; �2/ . N�4; �2/ . N�6; �3/ . N�4; �2/ . N�6; �3/

.2; 30/ .2; 32/ .2; 36/ .2; 38/ .2; 42/ .3; 47/ .2; 48/ .3; 53/
e30 e32 e36 e38 e42 e47 e48 e53

. N�4; �/ . N�4; �/ . N�4; �/ . N�4; �/ . N�5; �/ . N�4; �/ . N�5; �/ . N�4; �/

.0; 48/ .1; 53/ .0; 54/ .1; 59/ .1; 63/ .1; 65/ .1; 69/ .1; 71/

�2e0 �2e5 �2e6 �2e11 �2e15 �2e17 �2e21 �2e23

. N�5; �3/ . N�6; �2/ . N�5; �3/ . N�6; �2/ . N�4; �2/ . N�6; �3/ . N�4; �2/ . N�6; �3/

.2; 78/ .2; 80/ .2; 84/ .2; 86/ .2; 90/ .3; 95/ .2; 96/ .3; 101/

�2e30 �2e32 �2e36 �2e38 �2e42 �2e47 �2e48 �2e53

. N�4; �/ . N�4; �/ . N�4; �/ . N�4; �/ . N�5; �/ . N�4; �/ . N�5; �/ . N�4; �/

.1; 99/ .2; 104/ .1; 105/ .2; 110/ .2; 114/ .2; 116/ .2; 120/ .2; 122/

�4�e0 �4�e5 �4�e6 �4�e11 �4�e15 �4�e17 �4�e21 �4�e23

. N�; �2/ . N�; �/ . N�; �2/ . N�; �/ . N�; �/ . N�; �2/ . N�; �/ . N�; �2/

.1; 147/ .2; 152/ .1; 153/ .2; 158/ .2; 162/ .2; 164/ .2; 168/ .2; 170/

�6�e0 �6�e5 �6�e6 �6�e11 �6�e15 �6�e17 �6�e21 �6�e23

. N�; �2/ . N�; �/ . N�; �2/ . N�; �/ . N�; �/ . N�; �2/ . N�; �/ . N�; �2/

Remark 5.3.19 We emphasize that the relations given in Theorems 5.3.17 and 5.3.18
are only the relations in the E1–term. In fact, we can see by sparseness that the
annihilator exponents of N� are still true in ��.EhG24

C
^A1/. In contrast, there are exotic

extensions by �, ie multiplications by � that are not detected in the E1–term. These
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can be determined by two different methods: by using the Tate spectral sequence as in
[9, Section 2.3] or by computing the Gross–Hopkins dual of EhG24

C
^A1; however, we

do not discuss this point here.

Using the structure of the E1–term, we can read off the action of the ideal . N�; �/ on
��.E

hG24
C
^A1/. From this, we obtain the following corollary:

Theorem 5.3.20 (a) The map

‚0 WW .F4/˝Z2
�k.tmf^A1/=. N�; �/! �k.E

hG24
C ^A1/=. N�; �/;

induced by ‚ in (18), is an isomorphism for k � 0, independent of the version
of A1.

(b) The map

‚ WW .F4/˝Z2
�k.tmf^A1/! �k.E

hG24
C ^A1/

is also an isomorphism for k � 0, independent of the version of A1.

(c) Multiplication by �8 induces isomorphisms

�k.tmf^A1/! �kC192.tmf^A1/;

�k.tmf^A1/=. N�; �/! �kC192.tmf^A1/=. N�; �/

for k � 0.

Proof For part (a), Corollary 5.1.3 asserts that ‚0 is injective. To show that the latter
is surjective, it suffices to show that its source and target have the same order. The
order of the target can be seen from Theorems 5.3.17 and 5.3.18; in particular, it has
order 0 or 4 in all stems, except for the stems 48 and 53 modulo 192, in which it has
order 8. The remaining part of the proof is an inspection of the ASS for tmf^A1,
together with the fact that ‚ is injective, by Corollary 5.1.3, and is linear with respect
to N� and �, to show that W ˝Z2

��.tmf^A1/ has the same order as ��.EhG24
C
^A1/,

in nonnegative stems. Because of the dependence of the structure of ��.EhG24
C
^A1/

on the version of A1, we consider them separately; we only give a detailed treatment
for A1Œ00� and A1Œ11� and claim that the treatment for A1Œ01� and A1Œ10� is completely
similar. For the remaining part of the proof, A1 will be A1Œ00� or A1Œ11�.

By sparseness and Theorem 4.0.3(i), all classes wl
2
eŒi; j � for l D 0; 1 and eŒi; j �, the

classes in the table of Theorem 3.2.5, survive to the E1–term of the ASS for tmf^A1.
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Figure 21: HFPSS for A1Œ00� and A1Œ11� from E7–term with 0� t � s � 48

(left) and 48� t � s � 96 (right).
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Figure 22: HFPSS for A1Œ00� and A1Œ11� from E7–term with 96� t � s � 144.
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Figure 23: HFPSS for A1Œ00� and A1Œ11� from E7–term with 144� t � s � 197.
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Moreover, for degree reasons, these classes must converge to nontrivial elements of
��.tmf^A1/=. N�; �/ in the appropriate stems. Therefore, W ˝Z2

��.tmf^A1/=. N�; �/

has the same order as ��.EhG24
C
^A1/ up to stem 96 and in stem 101.

All of the classes

w2
2eŒ0; 0�; w2

2eŒ1; 5�; w2
2eŒ1; 6�; w2

2eŒ2; 11�;

w2
2eŒ3; 15�; w2

2eŒ3; 17�; w2
2eŒ4; 21�; w2

2eŒ4; 23�

are d2–cycles in the ASS and the d3–differentials on them can only hit g–multiple
classes. Thus, by �–linearity and the fact that g� D 0 in Ext5;28

A.2/�
.F2/, the classes

�w2
2eŒ0; 0�; �w2

2eŒ1; 5�; �w2
2eŒ1; 6�; �w2

2eŒ2; 11�;

�w2
2eŒ3; 15�; �w2

2eŒ3; 17�; �w2
2eŒ4; 21�; �w2

2eŒ4; 23�

are d3–cycles and hence survive to the E1–term, by sparseness. As above, these classes
must converge to nontrivial elements of ��.tmf^A1/=. N�; �/ in the appropriate stems.
It follows that W ˝Z2

��.tmf^A1/=. N�; �/ has the same order as ��.EhG24
C
^A1/ for

stems from 96 to 144.

Consider the classes

(24)
�w3

2eŒ0; 0�; �w3
2eŒ1; 5�; �w3

2eŒ1; 6�; �w3
2eŒ2; 11�;

�w3
2eŒ3; 15�; �w3

2eŒ3; 17�; �w3
2eŒ4; 21�; �w3

2eŒ4; 23�:

As above, these classes survive to the E4–term of the ASS for tmf^A1. By sparse-
ness, �w3

2
eŒ4; 23� survives to the E1–term and converges to a nontrivial element

of �170.tmf ^ A1/=. N�; �/. By sparseness, the other classes can only support d4–
differentials hitting the classes

g7eŒ1; 6�; g7eŒ2; 11�; g6eŒ6; 32�; g7eŒ3; 17�; g7eŒ4; 21�; g7eŒ4; 23�; g6eŒ9; 47�;

respectively. However, the class

gkeŒi; j � for .i; j / 2 f.1; 6/; .2; 11/; .6; 32/; .3; 17/; .4; 21/; .4; 23/; .9; 47/g

is killed by a differential for a certain integer k less than 7, and hence g7eŒi; j � for
these .i; j / is killed by a differential on a certain g–multiple class. This means that

�w3
2eŒ0; 0�; �w3

2eŒ1; 5�; �w3
2eŒ2; 11�; �w3

2eŒ3; 15�; �w3
2eŒ3; 17�

survive to the E1–term, hence, as above, to nontrivial elements of ��.tmf^A1/=. N�; �/.
Next, the map ‚ sends eŒ6; 32� and eŒ9; 47� to eŒ2; 32� and eŒ3; 47�, respectively. The
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latter are both annihilated by N�4, so that g4eŒ6; 32� and g4eŒ9; 47� are hit by certain dif-
ferentials in the ASS; hence, g6eŒ6; 32� and g6eŒ9; 47� are hit by differentials supported
on g–multiple classes. As above, this implies that �w3

2
eŒ1; 6� and �w3

2
eŒ4; 23� survive

to nontrivial elements of ��.tmf^A1/=. N�; �/. In total, we have proved that all classes
of (24) converge to nontrivial elements of ��.tmf ^ A1/=. N�; �/; as a consequence,
W ˝Z2

��.tmf^A1/=. N�; �/ has the same order as ��.EhG24
C
^A1/=. N�; �/ in stems

from 144 to 192.

Together with the fact that ��.EhG24
C
^A1/=. N�; �/ is �8–periodic, we conclude that

‚0 is a surjection, and hence is an isomorphism.

For part (b), there is a commutative diagram

W .F4/˝Z2
��.tmf^A1/

‚
//

��

��.E
hG24
C
^A1/

��

W .F4/˝Z2
��.tmf^A1/=. N�; �/

‚0
// ��.E

hG24
C
^A1/=. N�; �/

Part (b) then follows from part (a) and the fact that ��.tmf^A1/ is bounded below.

Part (c) follows from parts (a)–(b) and the fact that �8 is invertible in ��.EhG24
C

/.

Figures 18 to 20 represent the HFPSS for EhG24
C
^A1Œ10� and EhG24

C
^A1Œ01� from the

E7–term on. Each black dot � represents a class generating a group F4 which survives
to the E1–term. Each circle ı represent a class which either is hit by a differential or
supports a differential higher than d5. We only represent the differentials on generators
listed in Proposition 5.3.11 but not those generated by N�–linearity.

Figures 21 to 23 represent the HFPSS for EhG24
C
^A1Œ00� and EhG24

C
^A1Œ11� from the

E7–term on. Each black dot � represents a class generating a group F4 which survives
to the E1–term. Each circle ı represent a class which either is hit by a differential or
supports a differential higher than d5. We only represent the differentials on generators
listed in Proposition 5.3.11 but not those generated by N�–linearity.
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