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a b s t r a c t

Natural and artificial audition can in principle acquire different solutions to a given problem. The
constraints of the task, however, can nudge the cognitive science and engineering of audition to
qualitatively converge, suggesting that a closer mutual examination would potentially enrich artificial
hearing systems and process models of the mind and brain. Speech recognition — an area ripe for such
exploration — is inherently robust in humans to a number transformations at various spectrotemporal
granularities. To what extent are these robustness profiles accounted for by high-performing neural
network systems? We bring together experiments in speech recognition under a single synthesis
framework to evaluate state-of-the-art neural networks as stimulus-computable, optimized observers.
In a series of experiments, we (1) clarify how influential speech manipulations in the literature
relate to each other and to natural speech, (2) show the granularities at which machines exhibit
out-of-distribution robustness, reproducing classical perceptual phenomena in humans, (3) identify
the specific conditions where model predictions of human performance differ, and (4) demonstrate a
crucial failure of all artificial systems to perceptually recover where humans do, suggesting alternative
directions for theory and model building. These findings encourage a tighter synergy between the
cognitive science and engineering of audition.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Audition systems — artificial and biological — can in principle
cquire qualitatively different solutions to the same ecological
roblem. For instance, redundancy at the input or lack thereof,
elative to the structure and complexity of the problem, can
ncourage systems towards divergent or convergent evolution.
hether performance-optimized engineering solutions and bio-

ogical perception converge for a particular problem determines,
n part, the extent to which artificial auditory systems can play a
ole as process models of the mind and brain (Ma & Peters, 2020).

Although neural networks for audio have achieved remarkable
erformance in tasks such as speech recognition, most of the links
o computational cognitive science have come from vision, with
udition being comparatively neglected (Cichy & Kaiser, 2019).
udition as a field has its own set of unique challenges: explain-
ng and building systems that must integrate sound information
t various spectrotemporal scales to accomplish even the most
asic recognition task (Poeppel & Assaneo, 2020; Poeppel, Idsardi,

∗ Corresponding author.
E-mail address: fedeadolfi@bristol.ac.uk (F. Adolfi).
ttps://doi.org/10.1016/j.neunet.2023.02.032
893-6080/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
& van Wassenhove, 2008). Nevertheless, research into audition
can avoid pitfalls in model evaluation by looking at emerging
critiques of neural networks for vision (Bowers et al., 2022)
and adopting a more qualitative and diverse approach (Navarro,
2019). We therefore set out to characterize the solutions acquired
by machine hearing systems as compared to humans, drawing
bridges across influential research lines in auditory cognitive
science and engineering.

An area of audition where the two disciplines once worked
in close allegiance is speech recognition. The engineering of
machine hearing has produced a zoo of task-optimized architec-
tures — convolutional (Veysov, 2020), recurrent (Amodei et al.,
2015; Hannun et al., 2014), and more recently, transformer-
based (Baevski, Zhou, Mohamed, & Auli, 2020; Schneider, Baevski,
Collobert, & Auli, 2019) — achieving performance levels im-
pressive enough (on benchmark tasks) to afford numerous real-
world applications. The cognitive science of audition provides a
complementary perspective from biological hearing. A research
program based on multi-scale perturbations to natural signals —
going back to the 1950s (Miller & Licklider, 1950), active through
decades (Saberi & Perrott, 1999; Shannon, Zeng, Kamath, Wygon-
ski, & Ekelid, 1995; Smith, Delgutte, & Oxenham, 2002), and still
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Human speech (A) is recorded and represented as a 1-dimensional signal
in the time domain (B), which is optionally converted to a spectrogram-like
representation in the time–frequency domain (C). It is subsequently segmented
in parallel at various spectrotemporal scales (D). The resulting slices become the
input to a transformation (E) — which may involve shuffling, reversing, masking,
silencing, chimerizing, mosaicizing, time warping, or repackaging. Finally, the
outputs are sequenced and the resulting time-domain signals are presented to
both humans and optimized observer models (F).

thriving (Gotoh, Tohyama, & Houtgast, 2017; Ueda, Nakajima,
Ellermeier, & Kattner, 2017), has provided detailed descriptions of
performance patterns in humans. The question is whether these
engineering and scientific insights converge, and to what extent
they can more explicitly inform each other.

Speech recognition in humans is inherently resistant to a num-
ber of perturbations at various granularities, exhibiting a form of
out-of-distribution robustness analogous to how biological (but
typically not artificial) vision generalizes to contour images and
other transformations (Evans, Malhotra, & Bowers, 2021). This
has been uncovered by a large set of experiments which process
natural speech in a selective manner at multiple spectrotemporal
scales (e.g., Saberi & Perrott, 1999; Shannon et al., 1995; Smith
et al., 2002). The results are suggestive of the properties of mid-
level stages of audition that drive any downstream task such
as prediction and categorization. Are these robustness profiles
accounted for by modern neural network systems?

We make explicit the synthesis space implied by these exper-
iments, bringing them together under a single framework (Fig. 1)
that allows us to simulate behavior exhaustively in search for
human–machine alignment. By this we mean that each classical
experiment implicitly defines a space of possible simulations
given by the experimental parameters (e.g., the temporal scale
at which perturbations are performed). We combine and vary
these in order to cover more ground than what was the case
in the original experiments. In this way we can give the qual-
itatively human-like performance patterns a chance to emerge
in the results without limiting their manifestation to the narrow
parameter range of past studies.

The broader rationale is that insights about a perceptual sys-
tem and its input signal (in this case, speech) can be gleaned by
observing the transformations and spectrotemporal granularities
for which systems show perturbation-robust behavior. Systems
200
will show performance curves reflecting whether (a) they rely
on perturbation-invariant transformations at various granulari-
ties, and (b) information evolving at these scales is present and
relevant for the downstream task. These in turn depend on the
relevant signal cues being unique such that all solutions, artificial
or biological, tend towards exploiting it. With this framework in
place, we perform multi-scale audio analysis and synthesis, eval-
uate state-of-the-art neural networks as stimulus-computable
optimized observers, and compare the simulated predictions to
human performance.

This paper is organized as follows. First, we clarify how the
different audio manipulations in the literature relate to each
other by describing their effects in a common space: the sparsity
statistics of the input. This allows us to link the distribution
of experimental stimuli in human cognitive science to that of
training and testing examples for artificial systems. Synthetic
and natural speech fill this space and show regions where hu-
man and machine performance is robust outside the training
distribution. Second, in a series of experiments we find that,
while several classical perceptual phenomena are well-predicted
by high-performing, speech-to-text neural network architectures,
more destructive perturbations reveal differences amongst mod-
els and between these and humans. Finally, we demonstrate
a systematic failure of all artificial systems to perceptually re-
cover where humans do, which is suggestive of alternative direc-
tions for theorizing, computational cognitive modeling, and, more
speculatively, improvement of engineering solutions.

2. Results

We characterize the input space and report performance on
speech recognition, measured by the word error rate (WER), for
multiple experiments with trained neural networks including
convolutional, recurrent and transformer models (see Methods
for details). Our experimental framework (Fig. 1) systematizes
and integrates classical speech perturbations. These re-synthesis
procedures split the signal into segments and apply a transfor-
mation within each segment, such as shuffling, reversing, masking,
silencing, chimerizing, mosaicizing, time warping, or repackaging
(see Fig. 2 for example spectrograms of natural and perturbed
signals, and Methods section for details). Then the segments
are concatenated together and the resulting perturbed speech is
presented to machines. The performance of the models under dif-
ferent perturbations is therefore evaluated and plotted separately
at various scales and perturbation parameter values.

The rationale for choosing these perturbations, which are not
variants of natural speech, is that (i) they represent a cohesive
family of manipulations to the speech signal with well-known
human performance profiles; (ii) they represent a unique oppor-
tunity to test for out-of-distribution robustness/generalization, as
humans are robust to these perturbations at specific timescales
without having been trained explicitly; and (iii) they each al-
low informative interpretations of the results in terms of (a)
the specific invariances learned by neural networks and (b) the
timescales at which these invariances operate. For instance, if a
trained model’s performance is unaffected by a specific perturba-
tion at time scale X (e.g., 250 ms) which destroys the structure
of feature Y (e.g., phase spectrum) but preserves that of feature Z
(e.g., magnitude spectrum), then we can infer that the transfor-
mation learned by the model is likely invariant in this particular
sense.

To avoid pervasive problems (Bowers et al., 2022; Dujmović,
Bowers, Adolfi, & Malhotra, 2022; Guest & Martin, 2023) with
monolithic, quantitative assessments of predictive accuracy (e.g., a
single brain activity prediction score), in this work we focus
instead on the qualitative fit (Bowers et al., 2022; Navarro, 2019)
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Fig. 2. Spectrogram and waveform representations of natural and resynthesized speech for all perturbations of a single 3-second utterance: ‘‘computational complexity
heory". To illustrate the effect of various perturbations on the signal, we show moderate perturbation magnitudes: shuffling is done at a 2 ms timescale; reversing
t 150 ms; masking and silencing are done at 300 ms; chimerizing is done with 30 bands and targeting the envelopes for reversal at 100 ms; mosaicizing is done
ith 60 bands and a frequency window of 6 bands and time window of 100 ms; time warping is applied with a warp factor of 0.5 (stretching); repackaging is done
ith a warp factor of 3.0 (compressing), a time window of 250 ms and an insertion of silence of 167 ms. Refer to the main text and Methods section for details on
he audio perturbations and resynthesis procedures.
etween machines and humans. That is, we first identify the
anonical performance curve exhibited by humans in response
o parametric speech perturbations, and then we search for this
attern by systematic visual inspection in the performance profile
f neural networks across many combinations of experimental
arameters, including the original one used in human studies. For
nstance, if humans exhibit a U-shaped performance curve as a
erturbation parameter value is increased, we search for such a
urve in the performance profile of neural network models. In all
ases, we plot the results on axes chosen to match the classical
xperiments we build on, to facilitate comparisons. The main
201
results summarizing the findings of our more comprehensive
evaluation are presented here succinctly and later discussed more
comprehensively.

2.1. Input statistics: sparsity and out-of-distribution robustness

Since it is natural to think of the family of experiments con-
ducted here as affecting the distribution of signal energy (in time
and frequency) in proportion to the magnitude of the synthesis
parameters (see below and Fig. 1), we accordingly use sparsity
as a summary statistic. We do this with descriptive aims, as it
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llows us to (a) visualize an interpretable, low-dimensional rep-
esentation of the input, (b) unify synthesis procedures tradition-
lly considered separate, and (c) reason about out-of-distribution
obustness. To examine how the different speech synthesis tech-
iques relate to each other, we quantify and summarize their
ffect on the distribution over the input space: we compute the
parsity (Hurley & Rickard, 2009) of natural and experimental
ignals in the time and frequency domains. A high sparsity rep-
esentation of a signal contains a small number of its coefficients
under some encoding) accounting for most of the signal’s en-
rgy. We observe that this measure is reliably modulated by
ur synthesis procedures and experimental parameters, which
akes it a useful summary representation of the resulting input
tatistics. We visualize the joint distributions of both synthetic
nd natural speech samples and find that the family of manipu-
ations approximately fills the space (see Fig. 3 for a schematic
ummary). Natural speech sits roughly at the center, with the
xtremes in this space representing regions of canonical non-
peech signals like noise, clicks, simple tones, and beeps. The
agnitude of the experimental manipulations relates to how
uch synthetic samples are pushed away from natural speech in
arious directions. In the next sections we will present similar
raphs alongside the main results, for each experiment sepa-
ately, to aid in the description of the data. As we detail in the
xperiments below, we observe that top performance (80–100%)
n perturbed synthetic speech includes limited regions outside
he natural distribution where both humans and machines exhibit
nherent robustness (see Figs. 4–7 right-hand panels for individ-
al experiment distributions). In sum, the family of perturbations
onsidered here are naturally described as spanning the space of
parsity, and can parametrically drive speech stimuli outside the
raining distribution, where machines and humans exhibit some
eneralization.

.2. Convergent robustness: artificial systems exhibit humanlike
ulti-scale invariances to classical perturbations

We find that machines display qualitatively similar perfor-
ance patterns to humans in classical experiments where the

emporal and spectral granularities, and the perturbations them-
elves, are manipulated (Figs. 4–5). We summarize the findings
ext.
Shuffling destroys information to a greater extent than, for

nstance, reversal of the time-domain samples, as it affects the
ocal spectrum. The manipulation pushes speech towards a region
f reduced spectral, and, eventually, temporal sparsity (Fig. 4B).
onsequently, humans show a more dramatic decline with in-
reasing temporal extent (Gotoh et al., 2017). We observe the
ame effect in machines (Fig. 4A). Performance declines steadily
ith increasing window size until speech is rendered unrecog-
izable at around the 2-ms timescale. All models show this basic
attern and cutoff, although with varying rates of decline.
Reversal, which affects the temporal order but preserves the

local magnitude spectrum — leaving the sparsity statistics largely
untouched (Fig. 4D), produces a complicated performance con-
tour in humans (Gotoh et al., 2017). Perfect performance for
window sizes between 5 and 50 ms, and even partial intelligibility
for those exceeding 100 ms is readily achieved by humans even
though speech sounds carry defining features evolving rapidly
within the reversal window. We find that this timescale-specific
resistance to reversal (Saberi & Perrott, 1999) is closely traced
— with increasing precision as more accurate estimates are ob-
tained (Ueda et al., 2017) — by automatic speech recognition
systems (Fig. 4C).

Time warping alters the duration of the signal without af-
fecting the spectral content. Similar to size in vision, a system
202
Fig. 3. Schematic of how natural and experimental distributions fill the input
space defined by sparsity in time and frequency. The natural speech distribution
is shown in grayscale hexagons located at the center. A subset of the processed
audio samples are shown in color according to 4 example experiments (color
code on the top right). Each dot represents a speech utterance that has been
perturbed according to an example resynthesis procedure (here shuffling [or-
nge], masking [purple], silencing [violet] and mosaicizing [red]; see main text and
ethods for details). The perturbed signal is run through the sparsity analysis,
btaining one value for time sparsity and another for frequency sparsity. Hue
nd size indicates the magnitude of the perturbation according to its respective
arameter set (e.g., window length). Marginal distributions are ‘filled’ such that
he proportion of samples for different experiments is reflected at each point. It
an be seen that audio transformations systematically push samples away from
he training set. Canonical signals (noise, tone, beep, click) are annotated at the
xtremes for reference. The sparsity plots for each perturbation are reported
ater individually.

onfronted with a time warped sound needs to handle an ‘object’
hat has been rescaled. Humans can cope with stretched or com-
ressed speech with decreasing performance up to a factor of 3–4,
ith a faster decline for compression (Fu et al., 2001). Stretching
nd compression manifest in the input space as translation in
he time-domain sparsity axis in opposite directions (Fig. 4F).
e find that neural network performance follows the U-shaped

urve found in humans and exhibits the characteristic asymmetry
s well (Fig. 4E). Performance is worst when the warp factor
s either 4.0 (compression) or 0.25 (stretching) and it shows a
teeper ascent when decreasing compression than when decreas-
ng stretching. The best performance is achieved, as expected,
hen the warp factor is 1.0 (no compression or stretching, i.e., the
atural signal).
Mosaic sounds are analogous to pixelated images and there-

ore better suited than reversed speech to probe the resolution
he system needs for downstream tasks (Nakajima et al., 2018).
alues within bins in the time–frequency canvas are pooled such
hat the representation is ‘pixelated’. The size of the bins is
anipulated to affect the available resolution. This corresponds

o a decrease in sparsity that scales with the spectrotemporal
in size (Fig. 5B). When the temporal resolution of the auditory
ystem is probed in this way at multiple scales, we find that, as
een in humans, a systematic advantage emerges over the locally
eversed counterpart in ANNs (Fig. 5A).

Chimaeric sounds factor the signal into the product of sub-
and envelopes and temporal fine structure to combine one and
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Fig. 4. Machines and humans are resistant to (A) shuffling, (C) reversal, and (E) time warping, at comparable granularities, exhibiting qualitatively similar patterns of
out-of-distribution robustness (insets adapted from Fu, Galvin, & Wang, 2001; Gotoh et al., 2017 have x/y-axis ranges comparable to the corresponding main graphs;
inset on panel E shows performance for normal hearing listeners [filled shapes] and cochlear implant users [blank shapes]). Color coding of models is indicated in
panel A. We plot performance (WER) as a function of perturbation timescale (window length in ms) for shuffling and reversal, and as a function of warp factor
for time warping (left-hand panels). The effect of the manipulations on the input distributions (right-hand panels) is visualized with hues and sizes representing
synthesis parameters (B: window length, D: window length, F: warp factor, respectively; dashed contour shows region of 85%–100% model performance).
the other component extracted from different sounds. Although
the importance of the envelopes has been emphasized (Shannon
et al., 1995), recent experiments suggest that this may only
be part of the mechanism, with the fine structure having a
unique contribution to speech intelligibility (Teng et al., 2019).
Speech-noise chimeras can be constructed such that task-related
information is present in the envelopes or the fine structure
only (Smith et al., 2002). We observe that fine-structure speech
shows up as less sparse in the time-domain due to the removal
of envelope information, and its frequency-domain sparsity is
modulated by the number of bands (Fig. 5E). Both humans and
machines show a characteristic sensitivity to the number of bands
used for synthesis: performance over the entire range is boosted
or attenuated depending on whether information is present in
the envelopes or the fine structure (Fig. 5C). An additional effect
203
concerns the perceptual advantage of locally reversed speech
at the level of sub-band envelopes over both the time-domain
waveform reversal and the speech-noise chimera with reversed
envelopes (Teng et al., 2019). We find that models, too, exhibit
this uniform advantage (Fig. 5D). Performance is best when the
reversal timescale is roughly less than 50 ms and then rapidly
declines and plateaus after the 100-ms timescale where speech
is unrecognizable. Following this general trend, the speech-noise
chimeras produce the least resilient performance.

2.3. Divergent robustness: multi-scale interruptions reveal differen-
tial humanlikeness among machines

Speech interruptions perturb a fraction of the windows at a
given timescale with either silence or a noise mask. With this



F. Adolfi, J.S. Bowers and D. Poeppel Neural Networks 162 (2023) 199–211
Fig. 5. Mosaicized and chimerized speech reveal relatively similar reliance on subband envelopes and fine structure across timescales in humans and machines. We
plot performance (WER; left-hand panels) as a function of either window length or number of bands (shade indicates 95% CI summarizing similar performance across
all models; all insets show human performance with x/y-axis ranges comparable to the corresponding main graphs). Speech mosaics (A) with different temporal bin
widths (increasing spectral widths shown in lighter shades of red) elicit a uniform advantage relative to multiple-timescale reversal (inset adapted from Nakajima,
Matsuda, Ueda, & Remijn, 2018 shows performance for mosaic speech in squares and locally time-reversed speech in triangles, the latter exhibiting a steeper decline).
Speech-noise chimeras (C) reveal human-like performance modulations as a function of the number of bands used for synthesis and whether speech information is
present in the envelopes or the fine structure (inset adapted from Smith et al., 2002 shows increasing performance for envelope in circles and decreasing performance
for fine structure in triangles; solid lines represent the relevant speech-noise chimeras). A further time reversal manipulation selectively on the subband envelopes
(D; shades of red represent number of bands), preserving speech fine structure, shows a systematic relation to time-domain reversal, as seen in humans (inset
adapted from Teng, Cogan, & Poeppel, 2019 shows performance on time-domain reversal [dotted line] declines earlier than envelope reversal [solid line]). The effect
of the manipulations on the input distributions is visualized with hues and sizes representing synthesis parameters (B: window length, E: number of bands; dashed
contour shows region of 85%–100% model performance).
manipulation, the system is presented with ‘glimpses’ of the
input signal. The redundancies in the speech signal are such
that at various interruption frequencies, for example between 10
and 100 ms window size, humans show good performance even
though a substantial fraction of the input has been perturbed or
eliminated (Miller & Licklider, 1950). Mask interruptions corrupt
a fraction of the signal by adding noise. This shifts the speech
samples mainly towards regions of decreasing spectral sparsity
(Fig. 6B). Interruptions of silence, on the other hand, zero out a
fraction of the signal, effectively removing all the information in
it. As a consequence, speech samples become increasingly tempo-
rally sparse (Fig. 6D). We find that models exhibit idiosyncratic
performance patterns across timescales such that they pairwise
agree to different extents depending on the perturbation window
size. Humans, as well as some of the models we tested, exhibit
a perceptual profile where obstructions (mask or silence) at large
timescales produce moderately bad performance, later recover
almost completely at intermediate timescales, they achieve their
worst performance at moderately short timescales, and finally
slightly improve at the smallest timescales. As the masking
window size decreases from 1000 ms to 100 ms some models’
performance declines to their worst and then quickly recover
such that they achieve their best at around 50 ms and shorter
timescales. On the other hand, a recent transformer architecture
with a waveform front end, pretrained using self-supervision,
204
shows an overall better qualitative match to human performance,
although quantitative differences are still apparent in all cases
(Fig. 6A,C).

2.4. Nonrobustness: machines fail to exhibit humanlike performance
profiles in response to repackaging

Repackaging combines different aspects of the previous audio
manipulations — time warping, multiple-timescale windowing,
and insertions of silence — to reallocate, as opposed to remove
or corrupt, speech information in time. Repackaged speech there-
fore can be made more temporally sparse (Fig. 7B) without los-
ing information. As we have shown above, the performance of
both humans and machines degrades with increasing temporal
compression. Here we focus further on a key finding: when
perceiving compressed speech humans benefit from repackag-
ing (Ghitza & Greenberg, 2009). Insertions of silence, roughly
up to the amount necessary to compensate for the compression,
recovers performance dramatically — an effect that has been
replicated and further characterized numerous times (Bosker &
Ghitza, 2018; Ghitza, 2012, 2014; Ghitza & Greenberg, 2009;
Penn, Ayasse, Wingfield, & Ghitza, 2018; Ramus, Carrion-Castillo,
& Lachat, 2021). We find that, across the entire space of exper-
imental parameters, machines fail to show any such recovery
(Fig. 7A). The canonical performance profile in humans shows
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Fig. 6. Multiple-timescale masking and silencing reveals heterogeneity in model predictions (all insets show human performance with x/y-axis ranges comparable
to the corresponding main graphs). We plot performance (WER; left-hand panels) as a function of perturbation timescale (window length in ms). (A) Masking
experiment (inset adapted from Miller & Licklider, 1950 shows human performance for various signal-to-noise ratios). Individual model performance is shown for
a fraction of 0.5 and SNR of −9 db. (C) Silencing experiment (inset adapted from Miller & Licklider, 1950 shows human performance contours for various silence
ractions). Individual model performance (color coding on panel A) is shown for a fraction of 0.5 for succinctness. In both experiments, the transformer architecture
ith waveform input qualitatively shows the most human-like perceptual behavior. The effect of the manipulations on the input distributions (right-hand panels) is
isualized with hues and sizes representing synthesis parameters (B: window length, mask fraction, D: window length, silence fraction, respectively; dashed contour
hows region of 85%–100% model performance).
Fig. 7. None of the architectures predict recovery of performance with repackaging as seen in humans (A; inset adapted from Ghitza & Greenberg, 2009 shows
the canonical U-shaped human performance pattern, with x/y-axis ranges comparable to the main graph; solid lines with circle markers represent the relevant
manipulation with insertions of silence. We plot performance (WER; left-hand panel) on compressed speech (by a factor of 2) as a function of audio:silence ratio
parameterizing the insertion of silence. Note here the y-axis is reversed, with lower error towards the origin). Although there is some robustness to compression
outside the natural distribution, performance worsens steadily as the insertion length increases. The effect of compressed audio with insertions of silence on sparsity
is visualized with hues and sizes representing synthesis parameters (B; dashed contour shows region of 85%–100% model performance).
the worst performance when the signal is compressed by a fac-
tor approaching 3 and no silence is inserted. As the amount of
silence inserted compensates for the extent lost due to temporal
205
compression, the performance improves. After that, it declines,
producing a characteristic U shape. The systems tested here, on
the other hand, show bad performance with heavily compressed
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peech which simply worsens with increasing insertions of si-
ence and shows no inflection when the insertion length precisely
ompensates for the temporal compression.

. Discussion

In this paper we considered the possibility that engineering
olutions to artificial audition might qualitatively converge, in
ore ways than merely performance level, with those imple-
ented in human brains. If the task is too simple, then it is
onceivable that many qualitatively different solutions can in
rinciple be possible. In this case, convergence of performance
etween humans and engineered systems would not be surpris-
ng. On the other hand, convergence of algorithmic solutions
ould be. If the constraints on the task become more nuanced,
owever, then any system learning to solve the task would be
orced into a narrower space of possible algorithmic solutions. In
his latter case, similar performance levels might be suggestive
f similar algorithmic solutions. Here we set out to investigate
hether this might be the current scenario regarding human
peech perception and neural networks for automatic speech
ecognition.

In a set of studies we had high-performing speech-to-text neu-
al networks perform theoretically-driven tasks while sweeping
hrough the parameter space of foundational speech experiments.
e additionally explored how the audio perturbations in each

xperiment relate to their unpurturbed counterparts and to
anonical audio signals. We found that a subset of multi-
cale perturbations including reversal, shuffling, time warping,
himerizing and mosacizing yield performance curves and effects
hat are similar amongst models and to some extent aligned
ith those of humans. More destructive perturbations such as
asking and silencing reveal performance patterns where models
iffer from each other and from humans. The most informa-
ive outcome we observed comes from the repackaging exper-
ment, whereby all models resemble each other closely while
ystematically failing to capture human performance. This find-
ng highlights a set of possible endogenous mechanisms cur-
ently absent from state-of-the-art neural network models. We
ocus here on the broad qualitative trends that are informative
or theory and model development as we discuss the implica-
ions for the reverse-engineering and (more speculatively) the
orward-engineering of hearing.

We found that several classical phenomena in speech per-
eption are well-predicted by high-performing models. These
omprise the performance curves across scales in response to re-
ersed (Saberi & Perrott, 1999), shuffled (Gotoh et al., 2017), time-
arped (Fu et al., 2001), mosacized (Nakajima et al., 2018), and
himerized (Smith et al., 2002) speech. Humans and machines
erform well in these non-ecological conditions at qualitatively
imilar scales, and this emerges simply as a result of training
n the downstream task of recognition. This need not have been
he case, for example, if different solutions to the problem are
ossible (e.g., equally predictive cues) and systems have vari-
us inductive biases that push towards them differently. Overall,
hese similarities could be interpreted as a form of shared out-of-
istribution robustness: neither humans nor machines need any
pecific training to achieve it. These effects do not correspond
o the perturbations having no measurable effect whatsoever,
s they are known to lie well above the detection threshold;
timuli appear unnatural even to untrained listeners and the
esults generally agree with foundational studies (e.g., Shannon
t al., 1995). Broad agreement between different architectures for
ultiple-spectrotemporal-scale manipulations, as we have found,
ould tentatively suggest that the problem of speech recogni-
ion offers enough constraints such that humans and artificial
206
systems naturally converge in high-performance regimes. This
is the prevailing view behind studies predicting brain activity
using these kinds of models (e.g., Millet & King, 2021): that high-
performing networks settle on hyperparameter regions which,
although chosen for engineering reasons, turn out to be human-
like in some relevant way (e.g., having similar receptive field
sizes).

However, we observe some marked differences emerging
among artificial systems and between these and humans when
the signal is perturbed more aggressively. These comprise the
masking and silencing manipulations (Miller & Licklider, 1950),
where the performance profiles vary more widely. The pertur-
bations we deploy are not natural but they have been designed
to probe attributes of perception that the developing auditory
system must acquire as it is confronted with natural signals, such
as resilience to temporal distortions due to reverberation and
various forms of masking. The possible reasons for differences
between the models themselves are of secondary importance
here as we are specifically concerned with their ability or not
to capture qualitative human behavioral patterns. Although there
might be a way to reconcile these diverse performance patterns
by altering minor parameters in the architectures, our work
together with a parallel effort using different methods (Weerts,
Rosen, Clopath, & Goodman, 2021) highlights a more fundamental
difficulty of these architectures to perform well in the pres-
ence of noise. Weerts et al. (2021) compared 3 artificial systems
with human performance using a test battery of psychometric
experiments (e.g., spectral invariance, peak and center clipping,
spectral and temporal modulations, target periodicity, competing
talker backgrounds, and masker modulations and periodicity) to
measure the importance of various auditory cues in sentence- or
word-based speech recognition. They find that systems display
similarities and differences in terms of what features they are
tuned to (e.g., spectral vs. temporal modulations, and the use
of temporal fine structure). As in our work, the self-supervised
CNN-Transformer model exhibited a relatively greater similarity
to humans, which follows a recent trend in vision (Tuli, Dasgupta,
Grant, & Griffiths, 2021).

Both these similarities and differences have alternative inter-
pretations. With regards to the dissimilarities, it could be argued
that the performance patterns point to differently tuned param-
eters of similar mechanisms (e.g., different effective receptive
field sizes of architecturally similar systems), or alternatively,
to more important mechanistic differences. With regards to the
similarities, the results could be a consequence of how informa-
tion is distributed in the input signal (i.e., where in the signal
and envelope spectra information is carried), and as such, not
provide compelling evidence that these models processed sig-
nals in a human-like way. By visual analogy, if image content
was consistently concentrated in certain locations in the can-
vas, perturbations applied systematically and selectively across
the canvas would affect similarly any systems that make use
of such information (i.e., produce similarly complicated perfor-
mance curves). This certainly tells us about the way task-related
information is distributed in the signal and that high-performing
problem solutions are constrained to the set that exploit such
information, but it does not provide much mechanistic insight
otherwise. On the other hand, these similarities may reflect im-
portant aspects of convergence between human and machine
solutions. Therefore, although this class of findings is informative
in many ways, the outcomes do not point unambiguously to
mechanistic differences and similarities.

The repackaging experiments, however, yield consistent and
unambiguous failures that allow stronger conclusions to be
drawn. The perception of temporally repackaged speech (Ghitza,
2012; Ghitza & Greenberg, 2009) is a scenario where the sim-
ilarity between neural network models and their substantial
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eviation from human performance is remarkably consistent.
ur repackaging experiments demonstrate a systematic failure
f all models to recover perceptual performance in the spe-
ific conditions that humans naturally do: when the windowed
ompression of speech is compensated by insertions of silence.
his consistent pattern emerges across diverse models, demon-
trating its robustness against substantial architectural variation.
ur simulations cover the whole set of experimental parameter
ombinations such that we can rule out the presence of the effect
ven in cases where it would show up in a parameter region
way from where experiments in humans have been specifically
onducted (e.g., for different compression ratios or window sizes).
The human behavioral profile in response to repackaged

peech (Ghitza & Greenberg, 2009; Ramus et al., 2021) can be in-
erpreted in landmark-based (e.g., ‘acoustic edges’) and
scillation-based (e.g., theta rhythms) frameworks. On the former
iew (e.g., Hamilton, Oganian, Hall, & Chang, 2021; Oganian &
hang, 2019) acoustic cues in the signal envelope increasingly
esemble the original as compression is compensated by inser-
ions of silence. On the latter view (Ghitza, 2012, 2014; Ghitza
Greenberg, 2009), which has been the subject of further de-

elopments regarding neural implementation (Giraud & Poeppel,
012; Poeppel & Assaneo, 2020; Teng & Poeppel, 2019; Teng,
ian, Doelling and Poeppel, 2017), insertions of silence enable
n alignment with endogenous time constraints embodied by
eural oscillations at specific time scales. A related conceptual
ramework, which is compatible with both the acoustic landmark
nd oscillation-based accounts, explains the effect in terms of
oncurrent multiple-timescale processing (Poeppel, 2003; Poep-
el et al., 2008; Teng, Tian, & Poeppel, 2016; Teng, Tian, Rowland
nd Poeppel, 2017): the auditory system would elaborate the
nput signal simultaneously at 2 timescales (roughly, 25–50 and
50–250 ms), and therefore an inherent compensatory strategy
hen the local information is distorted (e.g., compressed) is to
erform the task based on the global information that remains
vailable (e.g., due to insertions of silence). The important point
or present purposes is that all these accounts of repackaged
peech involve endogenous mechanisms (e.g., neural excitability
ycles) currently absent from state-of-the-art neural network
odels, with each theoretical proposal attributing model failures

o these architectural shortcomings. These might be crucial for a
etter account of human audition, and could provide inductive
iases for machines that might enable robustness in various real-
orld auditory environments. A promising direction, therefore,

s incorporating oscillations into the main mechanisms of com-
utational models (e.g., Effenberger, Carvalho, Dubinin, & Singer,
022; Kaushik & Martin, 2022; ten Oever & Martin, 2021), or
therwise introducing commitments to dynamic temporal struc-
ure (e.g., using spiking neural networks; Stimberg, Brette, &
oodman, 2019) beyond excitability cycles.
A further line of reasoning about the dissimilarities observed

n repackaging experiments has to do with the computational
omplexity of the processes involved (van Rooij & Wareham,
007). Repackaging manipulations have been interpreted as tap-
ing into segmentation (Ghitza, 2014; Ghitza & Greenberg, 2009)
a subcomputation that has been widely assumed to be compu-

ationally hard in a fundamental way (surveyed briefly in Adolfi,
areham, & van Rooij, 2022a; e.g., Cutler, 1994; Friston et al.,
021; Poeppel, 2003). On this view, any system faced with a prob-
em that involves segmentation as a sub-problem (e.g., speech
ecognition) would be forced to acquire the (possibly unique) so-
ution that, through exploiting ecological constraints, renders the
roblem efficiently computable in the restricted case. However,
ontrary to common intuitions, it is possible that segmentation is
fficiently computable in the absence of such constraints (Adolfi,
areham, & van Rooij, 2022b). Since it is conceivable segmenta-

ion is not a computational bottleneck in this sense, its intrinsic
207
complexity might not be a driving force in pushing different
artificial or biological systems to acquire similar solutions to
problems involving this subcomputation. This constitutes, from a
theoretical and formal standpoint, a complementary explanation
for the qualitative divergence between humans and machines
observed in our results.

3.1. Closing remarks

Our work and recent independent efforts (Weerts et al., 2021)
suggest that, despite some predictive accuracy in neuroimaging
studies (Kell, Yamins, Shook, Norman-Haignere, & McDermott,
2018; Millet & King, 2021; Tuckute, Feather, Boebinger, & Mc-
Dermott, 2022; but see Thompson, Bengio, & Schoenwiesner,
2019), automatic speech recognition systems and humans diverge
substantially in various perceptual domains. Our results further
suggest that, far from being simply quantitative (e.g., receptive
field sizes), these shortcomings are likely qualitative (e.g., lack
of flexibility in task performance through exploiting alternative
spectrotemporal scales) and would not be solved by such strate-
gies as introducing different training regimens or increasing the
models’ capacity. They would require possibly substantial archi-
tectural modifications for meaningful effects such as repackag-
ing to emerge. The qualitative differences we identify point to
possible architectural constraints and improvements, and sug-
gest which regions of experimental space (i.e., which effects)
are useful for further model development and comparison. Since
repackaging is where all models systematically resemble each
other and clearly fail in capturing human behavior, this effect
offers alternative directions for theorizing, computational cogni-
tive modeling, and, more speculatively, potential improvement of
engineering solutions.

To develop a deeper understanding of how the models them-
selves can be made independently more robust, one could im-
plement data augmentation schemes with the perturbations we
deployed here. It is conceivable that these could act as proxies
for the natural distortions humans encounter in the wild, and
therefore help close performance gaps where it is desired for
engineering purposes. A related line of research could pursue
the comparison of frontend–backbone combinations to evalu-
ate whether particular pairings are effective in some systematic
manner in combination with such data augmentation schemes.

More generally, our approach and results showcase how a
more active synergy between the cognitive science and engineer-
ing of hearing could be mutually beneficial. Historically, there
was a close relationship between work in the cognitive sciences,
broadly construed, and engineering. Researchers were mindful of
both behavioral and neural data in the context of building models
(e.g., Ghitza, 1986; Bell Laboratories). Perhaps as a consequence
of exclusively quantitative, benchmark-driven development and
the recent disproportionate focus on prediction at the expense
of explanation (see Bowers et al. (2022), for a review of how
this played out in vision), this productive alliance has somewhat
diminished in its depth and scope, but the potential gains from
a possible reconnection and realignment between disciplines are
considerable.

4. Methods

4.1. Framework

Generalizing from the particular studies examining audition
at multiple scales, we build a unified evaluation environment
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entered around selective transformations at different spectro-
emporal granularities1 and their influence on perceptual per-
ormance (Fig. 1). We deliberately shift the focus away from
uantitative measures of fit and towards a qualitative assessment
see Navarro, 2019, for details on the rationale). Contrary to prob-
ematic practices centered on predictive accuracy that have led
o misleading conclusions (see Bowers et al., 2022 for a thorough
eview), we focus on assessing whether artificial systems — here
reated as stimulus-computable, optimized observer models —
ualitatively capture a whole family of idiosyncratic performance
atterns in human speech perception that point to the kinds of
olutions systems have acquired. Our framework situates existing
xperiments in humans as a subset of the possible simulations,
llowing us to exhaustively search for qualitative signatures of
uman-like performance even when these show up away from
he precise original location in experimental space (we show a
epresentative summary of our results throughout).

.2. Audio synthesis

ultiscale windowing
Common to all conditions is the windowing of the signal

eparately at multiple spectral and/or temporal scales. We used
rectangular window function to cut the original speech into

rames and faded the concatenated frames to avoid discontinu-
ties (although these turn out to not affect the results). Transfor-
ations with known properties (see below) are applied either

n the time domain directly or in the time–frequency domain,
o each window (i.e., chunk of the signal). The window size is
general parameter that determines the scale selectivity of the
anipulations described below. The timescales depend on the ex-
eriment and range from a few milliseconds to over one second.
he performance of the models under different perturbations is
hen evaluated separately at various scales.

eversal
The signal is locally reversed in time (Gotoh et al., 2017; Saberi
Perrott, 1999), resulting in frame-wise time-reversed speech.

his affects the order of the samples but preserves the local
verage magnitude spectrum. The performance curve is estimated
t 58 timescales on a logarithmic scale ranging from 0.125 to
200 ms.

huffling
Audio samples are locally shuffled such that the temporal

rder within a given window is lost, consequently destroying
emporal order at the corresponding scale. This random permu-
ation is more aggressive than reversal in the sense that it does
ffect the local magnitude spectrum (Gotoh et al., 2017). The
erformance curve is estimated at 58 timescales on a logarithmic
cale ranging from 0.125 to 1200 ms.

ime warping
Signals are temporally compressed or stretched in the time–

requency domain, effectively making speech faster or slower,
uch that the pitch is unaffected (Park et al., 2019). The modified
hort-time Fourier transform is then inverted to obtain the final
ime-domain, time-warped signal (Perraudin, Balazs, & Snder-
aard, 2013). The average magnitude spectrum is approximately
nvariant whereas the local spectrum is equivariant when com-
ared between equivalent timescales (Fu et al., 2001; Ghitza &
reenberg, 2009). The performance curve is estimated at 40 pa-
ameter values on a logarithmic scale ranging from compression
y a factor of 4 to stretching by a factor of 4.

1 Code implementing the analyses and resynthesis methods described here
s available at https://tinyurl.com/2e5echc8.
208
Chimerism
Signals are factored into their envelope and fine structure

parts, allowing the resynthesis of chimeras which combine the
slow amplitude modulations of one sound with the rapid carriers
of another (Smith et al., 2002). Here we combine these features
from speech and Gaussian noise. To extract the two components,
signals are passed through a bank of band-pass filters mod-
eled after the human cochlea, yielding a spectrogram-like rep-
resentation in the time–frequency domain called cochleagram. A
cochleagram is then a time–frequency decomposition of a sound
which shares features of human cochlear processing (Glasberg
& Moore, 1990). Using the filter outputs, the analytical signal is
computed via the Hilbert transform. Its magnitude is the envelope
part, and dividing it out from the analytic signal leaves only the
fine structure. The spectral acuity of the synthesis procedure can
be varied with the number of bands used to cover the bandwidth
of the signal. Multiple timescale manipulations, such as reversal,
are directed to either the envelope or fine structure prior to as-
sembling the sound chimera (Teng et al., 2019). The performance
curve is estimated at 32 timescales on a logarithmic scale ranging
from 10 to 1200 ms.

Mosaicism
Speech signals can be mosaicized in the time and frequency

coordinates, by manipulating the coarse-graining of the time–
frequency bins. Similar to a pixelated image, a mosaicized sound
will convey a signal whose spectrotemporal resolution has
been altered systematically. The procedure is done on the
envelope-fine-structure representation before inverting back to
the waveform. Two parameters affect the spectral and temporal
granularity of the manipulation: the window length in time and
in frequency. This yields a grid in the time–frequency domain.
The envelope in each cell is averaged and the ‘pixelated’ cochlear
envelopes are used to modulate the fine structure of Gaussian
noise. Finally the signal is resynthesized by adding together the
modulated sub-bands (Nakajima et al., 2018). The performance
curve is estimated at 32 timescales on a logarithmic scale ranging
from 10 to 1200 ms.

Interruptions
A fraction of the within-window signal, which is parametri-

cally varied, is corrupted either with Gaussian noise at different
signal-to-noise ratios or by setting the samples to zero (Miller
& Licklider, 1950). Sparsity is increased or decreased while pre-
serving the original configuration of the unmasked fraction of the
signal. The performance curve is estimated at 30 timescales on a
logarithmic scale ranging from 2 to 2000 ms.

Repackaging
A repackaged signal locally redistributes the original chunks

of samples in time (Ghitza & Greenberg, 2009; Ramus et al.,
2021). Within each window, the signal is temporally compressed
without affecting its pitch (see above) and a period of silence is
concatenated. The time-compressed signal can alternatively be
thought of as a baseline before adding the insertions of silence.
Two parameters control the sparsity of the resulting signal: the
amount of compression and the length of the inserted silence.
Other parameters that mitigate discontinuities, such as additive
noise and amplitude ramps, do not affect the results. For a signal
that has been compressed by a factor of 2, inserting silence of
length equal to 1/2 of the window size will locally redistribute the
original signal in time while keeping the overall duration intact.
The performance curve (explored at multiple compression ratios
and window sizes but shown to match human experiments) is
estimated at 10 audio-to-silence duration ratios ranging from 0.5
to 2.0 on a logarithmic scale.

https://tinyurl.com/2e5echc8
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Table 1
Algorithmic models.

Model Architecture Input

Deepspeech LSTM Spect.
Wav2vec 2.0 1DConv-TF. Wave
Fairseq-s2t 2DConv-TF. Spect.
Silero Sep-2DConv. Spect.

4.3. Neural network models

We evaluate a set of state-of-the-art speech recognition
ystems with diverse architectures and input types (Table 1;
vailable through the cited references below). These include fully-
rained convolutional, recurrent, and transformer-based, with
ront ends that interface with either waveform or spectrogram
nputs. Their accuracy under natural (unperturbed) conditions is
igh (∼80% correct, under word error rate) and comparable (see
.g., Fig. 4E when the warp factor equals 1, i.e., no perturbation).
Deepspeech is based on a recurrent neural network architec-

ture that works on the MFCC features of a normalized
spectrogram representation (Hannun et al., 2014). This type of
Long-short-term-memory (LSTM) architecture emerged as a so-
lution to the problem of modeling large temporal scale depen-
dencies. The input is transformed by convolutional, recurrent
and finally linear layers projecting into classes representing a
vocabulary of English characters. It was trained on the Librispeech
orpus (Panayotov, Chen, Povey, & Khudanpur, 2015) using a CTC
oss (Graves, Fernández, Gomez, & Schmidhuber, 2006).

Silero works on a short-time Fourier transform of the wave-
form, obtaining a tailored spectrogram-like representation that
is further transformed using a cascade of separable convolu-
tions (Veysov, 2020). It was trained using a CTC loss (Graves et al.,
2006) on the Librispeech corpus, with alphabet letters as modeling
nits.
The Fairseq-S2T model is transformer-based and its front end

nterfaces with log-mel filterbank features (Wang et al., 2020).
t is an encoder–decoder model with 2 convolutional layers fol-
owed by a transformer architecture of 12 multi-level encoder
locks. The input is a log-mel spectrogram of 80 mel-spaced
requency bins normalized by de-meaning and division by the
tandard deviation. This architecture is trained on the Librispeech
orpus using a cross-entropy loss and a unigram vocabulary.
Wav2vec2 is a convolutional- and transformer-based architec-

ture (Baevski et al., 2020; Schneider et al., 2019). As opposed
to the previous architectures, it works directly on the waveform
representation of the signal and it was pretrained using self-
supervision. In this case, the relevant features are extracted by
the convolutional backbone, which performs convolution over
the time dimension. The temporal relationships are subsequently
modeled using the transformer’s attention mechanism. The input
to the model is a sound waveform of unit variance and zero
mean. It is trained via a contrastive loss where the input is
masked in latent space and the model needs to distinguish it from
distractors. To encourage the model to use samples equally often,
a diversity loss is used in addition. The fine tuning for speech
recognition is done by minimizing a CTC loss (Graves et al., 2006)
with a vocabulary of 32 classes of English characters. The model
was trained on the Librispeech corpus.

.4. Evaluation

We measure the number of substitutions S, deletions D, inser-
tions I , and correct words C , and use them to compute the word
209
error rate (WER) reflecting the overall performance of models on
speech recognition, as follows:

WER =
S + D + I
S + D + C

(1)

A lower score indicates fewer errors overall and therefore
better performance. Since Nref = S+D+C is the number of words
in the ground truth labels and it appears in the denominator, the
WER can reach values greater than 1.0.

We evaluate all models on the Librispeech test set (Panay-
tov et al., 2015), which none of the models have seen during
raining, manipulated and resynthesized for each experiment ac-
ording to our synthesis procedures. In all cases we plot average
erformance scores across this large set of utterances; with neg-
igible variability. We use English language speech, as the effects
e focus on in humans appear to be independent of language
e.g., Gotoh et al. (2017)).

.5. Input statistics

parsity
The input samples in the natural and synthetic versions of

he evaluation set are characterized by their sparsity in time and
requency. We compute the Gini coefficient G on an encoding of
ignal a x⃗ of length n (time or frequency representation), which
exhibits a number of desirable properties as a measure of signal
sparsity (Hurley & Rickard, 2009).

G =

n∑
i

n∑
j

|xi − xj|
2n2x̄ (2)

We characterize the joint distributions of sparsity in the time and
frequency domain from the point of view of audition systems,
which process sounds sequentially over restricted timescales.
Specifically, we compute a time-windowed Gini, Gw , at vari-
us window lengths w, resulting in a multiple-timescale dy-

namic sparsity measure. We focus on the 220 ms timescale which
roughly aligns with both human cognitive science results (Poep-
pel, 2003) and receptive field sizes of neural network models. The
result for a given timescale is summarized by statistics on the Gini
coefficients across n signal slices of length w:

Ĝw = f ({G(xi)}ni ) (3)

where f (.) may be the mean (our case), standard deviation, etc.
We obtain in this way both a time sparsity and a frequency
sparsity measure for each speech utterance, for all natural and
perturbed test signals. Since G is sensitive to the experimental
manipulations, this allows us to summarize and visualize a low-
dimensional, interpretable description of the distributions at the
input of the systems (e.g., Evans et al., 2021).
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