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Abstract

Computational feasibility is a widespread concern that guides the framing and modeling of natural
and artificial intelligence. The specification of cognitive system capacities is often shaped by unex-
amined intuitive assumptions about the search space and complexity of a subcomputation. However, a
mistaken intuition might make such initial conceptualizations misleading for what empirical questions
appear relevant later on. We undertake here computational-level modeling and complexity analyses of
segmentation — a widely hypothesized subcomputation that plays a requisite role in explanations of
capacities across domains, such as speech recognition, music cognition, active sensing, event memory,
action parsing, and statistical learning — as a case study to show how crucial it is to formally assess
these assumptions. We mathematically prove two sets of results regarding computational hardness and
search space size that may run counter to intuition, and position their implications with respect to
existing views on the subcapacity.
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…In [an input stream], however, as presented to a [cognizer],
such explicit segmentation cues are rarely to be found;
little pauses after every single [bit] might make things clearer,
but the input is continuous - a running stream [all around].
This implies that part of [cognizing] involves an operation
whereby input is segmented, to be processed [bit] by [bit],
for we cannot hold in memory each total [segmentation],
as most [such things] we come across [require a novel split].
— Cutler (1994)

1. Introduction

Cognitive scientists routinely invoke subcapacities in decompositional efforts to reverse-
engineer fully fledged capacities of minds, brains, and machines (Cummins, 2000; Egan,
2017; Miłkowski, 2013). For instance, speech processing is presumed to decompose into,
among other things, segmentation and decoding, and action understanding into parsing, pre-
dicting, and goal inference. These subcomputations are thought to tackle certain problems
that the cognitive system faces to behave appropriately in the world.1

Problems that originally show up in one domain (e.g., speech processing) are subsequently
encountered in other domains (e.g., action understanding), and so the conceptual apparatus
naturally carries over. For example, cognitive scientists may come to view the problem of
segmenting speech as analogous to the problem of parsing actions. Researchers can then
transfer ideas across the domains, adopting and adapting similar subcomputations in their
explanations of the different capacities. What is passed along, however, will include latent
(and possibly mistaken) notions about the computational properties of these problems as well.
For instance, if a cognitive scientist believes that the search space of speech segmentation is
large (i.e., combinatorially complex) and that this makes the problem hard, then by analogy,
the same could be inferred about the parsing problem in action understanding.

Once such initial framing of a cognitive (sub)capacity is adopted, it completely shapes the
kinds of empirical questions that appear relevant and, in so doing, determines the course of
research programs across disciplines and cognitive domains. Crucially, the assumptions that
gave rise to the initial framing are seldom examined formally, and since they are taken for
granted as background commitments, empirical tests are not designed to bear on them. These
foundational oversights can sidetrack researchers into directions that will be largely immune
to empirical corrective feedback later on.

To illustrate how crucial it is to formally assess the validity of intuitive assumptions about
problem properties, and what can go astray if one fails to do so, we undertake here a formal
examination of an example subcapacity. Our case study is Segmentation.2 This subcapacity
figures ubiquitously in explanations of real-world cognitive capacities, such as speech recog-
nition, music perception, active sensing, event memory, temporal attention, action process-
ing, and statistical learning. We focus on two classes of assumptions about its computational
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properties: (1) the search space is excessively complex and (2) this makes the segmenta-
tion problem intrinsically hard. To formally assess the theoretical viability of these assumed
properties, we develop a formalization of the (intuitive) segmentation problem at the compu-
tational level (cf. Bechtel & Shagrir, 2015; Marr, 1982), and we submit it to a mathematical
analysis to assess the size of its search space, its computational hardness, and its possible
sources of complexity using tools from computational complexity theory (Arora & Barak,
2009; Garey & Johnson, 1979; van Rooij, Blokpoel, Kwisthout, & Wareham, 2019).

The remainder of the paper is structured as follows. First, we introduce the problem of seg-
mentation as it is conceptualized in the literature across cognitive domains. Next, we develop
a formalization that abstracts from such specifications. We then survey and synthesize the
core intuitive assumptions about the computational properties of the problem. Finally, we
present proofs that speak to the validity of these assumptions, and discuss the implications
for research on segmentation and subcomputations more broadly. As our results may run
counter to intuition, we end with a word of caution regarding the general nonintuitiveness of
the computational properties of hypothesized cognitive problems.

2. Conceptualization of segmentation

In order to rigorously examine computational assumptions, we need a mathematical
formalization of the general problem that can be submitted to further analyses. This
computational-level model, in turn, should capture key aspects of the theorized cognitive
capacity. To that end, in this section we synthesize conceptualizations of the segmentation
problem as it appears in various cognitive domains.

2.1. Informal definitions: Segmentation as a fundamental subcomputation

“How the brain processes sequences is a central question in cognitive science and neuro-
science” (Jin, Lu, & Ding, 2020). A substantial amount of information available to the cogni-
tive system is “continuous, dynamic and unsegmented” (Zacks et al., 2001). This implies that
many cognitive processes must involve an operation whereby input is segmented (cf. Cutler,
1994), and hence, it also arises naturally in machine tasks, such as language translation (e.g.,
Kolokolova & Nizamee, 2014). The purpose of the segmentation process is, then, “to generate
elementary units of the appropriate temporal granularity for subsequent processing” (Giraud
& Poeppel, 2012). Succinctly, “[t]he central nervous system appears to ‘chunk’ time” (Poep-
pel, 2003), and “[this subcomputation] plays a fundamental role in the way we perceive and
remember information in daily life” (Geerligs, van Gerven & Güçlü, 2021).

Several subfields of the cognitive and brain sciences have proposed segmentation as a
key subcomputation. Active listening (cf. active sensing) casts it as “the selection of inter-
nal actions, corresponding to the placement of […] boundaries” (Friston et al., 2021), “to
sample the environment” (Poeppel & Assaneo, 2020). Event cognition similarly defines it
as “the process of identifying event boundaries […], a concomitant component of normal
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event perception” (Zacks et al., 2001). In episodic memory, it is “the process by which peo-
ple parse the continuous stream of experience into events and sub-events [for] the forma-
tion of experience units” (Jeunehomme & D’Argembeau, 2018). Central to music percep-
tion, it features as determining the “perceptual boundaries of temporal gestalts” (Tenney &
Polansky, 1980) and “entails the parsing into chunks” (Farbood, Rowland, Marcus, Ghitza, &
Poeppel, 2015; Tillmann, 2012). The speech recognition literature describes it as the core pro-
cess of “segmenting the continuous speech stream into units for further perceptual and linguis-
tic analyses” (Teng, Cogan, & Poeppel, 2019), where it “allows the listener to transform [the]
signal into segmented, discrete units, which form the input for subsequent decoding steps”
(Poeppel & Assaneo, 2020). In action processing, “[o]ne initial step that aids in drawing
[inferences regarding other people’s goals and intentions based on observable action] is rec-
ognizing where action units begin and end within a stream of physically continuous motion”
(Meyer, Baldwin, & Sage, 2011). Therefore, “[a] fundamental problem observers must solve
[…] is segmentation […] Identifying distinct acts within the dynamic flow of motion is a basic
requirement for engaging in further appropriate processing” (Baldwin, Andersson, Saffran, &
Meyer, 2008).

Such ubiquitousness across domains has been suggestive that the capacity “appeals to
general principles the brain may use to solve a variety of problems” (Friston et al., 2021;
Himberger, Chien, & Honey, 2018). “[M]any sequence-chunking tasks share common com-
putational principles. [For example,] to find and encode the chunk boundaries” (Jin et al.,
2020). Segmentation as a subcomputation appears across processing hierarchies as well, even
when the world is relatively static: “[it] exists at multiple layers within a given problem”
(Wyble & Bowman, 2019). The downstream operations on segments that partially determine
optimal segmentation play similar roles but otherwise vary with cognitive domain and mod-
eling framework.

Segmentation, concisely, is then a fundamental subcomputation whose requisite role across
cognitive domains and processing hierarchies is to determine, given a sequence represen-
tation, the optimal boundary placement with respect to a downstream computation over
segments.

3. Formalization of segmentation

A succinct, yet informal, definition of segmentation can be stated by verbally specifying
the inputs and outputs of the conjectured subcomputation.
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SEGMENTATION (INFORMAL)
Input: A sequence and a downstream process that, for any given segment of the
sequence, can evaluate its quality relative to domain-specific criteria.
Output: The best3 segmentation of the sequence with respect to criteria relevant for the
downstream process.

With this sketch in mind (see Fig. 1 for a schematic), we develop the formal definition of
the computational-level model.

Cognitive system

Capacity

Sequence domains

Subcapacities (decomposition)

Segmentation Downstream process

Fig. 1. Segmentation is a core subcomputation in domains including sound, speech, music, action, and event
processing (bottom). Segmentation itself can be situated in a functionally decomposed capacity such that domain-
specific downstream processes inform which possible segmentations of a given sequence S are best (top). Refer to
the main text for definitions of S, P, F , and pi.

We envision an input sequence S = (s1, s2, . . . , sn) that captures the idea of a time-ordered
representation the cognitive system must work with. Its origin could be sensory encoding
at the periphery or deeper, more elaborate processes alike (e.g., an encoding of the acoustic
envelope of speech or music, or a compressed representation of a visual scene). As instances
of the segmentation problem appear throughout processing hierarchies, their inputs vary in
origin and nature. We model the sequence with according generality. Next, we pin down
the notion of a downstream cognitive process that computes over segments p ∈ P (e.g., a
decoder that maps speech segments to phonemes, or a module that maps scene segments to
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action meanings). Our formalization is agnostic as to what these domain-specific processes,
and the theoretical frameworks used to model them, might be. We aim for generality and
simply model, with a function F : P �→ Z

+ (over a possibly infinite domain) available at
the input, the idea that the process is capable of guiding the placement of boundaries. This
is achieved by reporting back some (discretized) aspect of its performance F (p) ∈ Z

+ (e.g.,
label probability, likelihood with respect to a generative model, depending on framework).
The desired output — a useful segmentation scheme — is modeled as a collection P of disjoint
segments jointly making up the input sequence, whose overall appropriateness V (P) with
respect to the downstream process is optimal. These modeling choices yield the following
formalization.4

SEGMENTATION (FORMAL)
Input: a finite sequence S = (s1, s2, . . . , sN ) of length N ∈ N, with si ∈ Z and a scoring
function F : P �→ Z

+ that maps contiguous subsequences p = (si, si+1, . . . , si+q) to a
positive value F (p).
Output: a segmentation of S into contiguous subsequences, P = ((s1, s2, . . .),
. . . , (. . . , sN−1, sN )), where segments are disjoint, ∀pi, p j ∈ P : pi ∩ p j = ∅, and span
the original sequence,

⋃|P|
i=1 pi = S, such that its overall value V (P) = ∑

p∈P F (p) is
maximum.5

4. Assumptions about segmentation

So the picture that emerges is that [features] as exhibited
in [various forms of the input] can effectively predict
those procedures which, assuming that their use is not inhibited,
allow us to declare the segmentation problem licked.
— Cutler (1994).

To determine the course of our analyses, we survey views on the computational properties
of the segmentation problem. We illustrate with examples and synthesize core intuitions.

4.1. Problem properties: Segmentation as a computational challenge

4.1.1. Hardness and complexity
Segmentation problems have been widely assumed to be computationally challenging. This

is evidenced in explicit statements and in the “solutions” researchers propose after taking
onboard certain beliefs about hardness. To illustrate: “Speech recognition is not a simple
problem. The auditory system must parse a continuous signal into discrete words” (Fris-
ton et al., 2021). “It is hard for a brain, and very hard for a computer” (Poeppel, 2003).
“[S]egmentation requires inference over the intractably large discrete combinatorial space of
partitions” (Franklin, Norman, Ranganath, Zacks, and Gershman 2020).
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4.1.2. Sources of complexity
As is evident in researchers’ descriptions, the hardness is attributed to the (presumed) com-

binatorial explosion involved in the number of possible segmentation schemes — the size
of the problem search space is informally taken as the source of computational complexity.
Again, to illustrate: “Where should these candidate boundaries be placed? In an extreme case,
we could place boundaries at every combination of time points […] but that would be compu-
tationally inefficient given that we can reduce the scope of possibilities” (Friston et al., 2021).
“The problem would be enormously complicated by the presence of so many candidates […]”
Brent (1999).

4.1.3. Solutions for complexity
Arguably as a consequence of coupling these intuitions with additional assumptions, the

effectiveness of certain solutions has been taken for granted. “From the computational per-
spective, the aim of research in segmentation […] is to identify mechanisms [that] reduce
these computational burdens by reducing the number of candidate[s]” (Brent, 1999). This
position has motivated the search for bottom-up segmentation cues or top-down biases (e.g.,
priors) that would achieve, among other things, such a narrowing down (e.g., Cutler, 1994;
Friston et al., 2021; Teng et al., 2019). “We suggest a different role [of cues] in which they
are part of the [segmentation] (rather than decoding) process” (Ghitza, 2012). For instance,
researchers may observe environmental (Ding et al., 2017) and neural (Teng, Tian, Rowland,
& Poeppel, 2017; Teng, Tian, Doelling, & Poeppel, 2017) regularities suggestive of segment-
size constrained segmentation processes (Poeppel & Assaneo, 2020; Poeppel, 2003).

4.2. Core assumptions

This survey reveals a core set of intuition-based assumptions about the computational prop-
erties of segmentation:

• Real-world sequences (e.g., speech, music, scenes, and actions) and internal repre-
sentations alike (e.g., memories of experiences) are “complex, continuous, dynamic
flows.”

• Cognitive systems need to make use of discrete representations of segments that are
appropriate (size- and content-wise) for downstream tasks.

• The problem is “hard” — the obstacle being that there are “too many” possible seg-
mentations of a given sequence.

• Cognitive systems must reduce the possibilities somehow, for example, via bottom-up
cues and/or top-down biases.

5. Computational complexity of segmentation

It is generally nonobvious what problems are genuinely (as opposed to merely apparently)
hard, which refinements will render a model tractable, or which restrictions will effectively
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reduce a search space. Intuitions about computational properties of problems are frequently
mistaken, hence need to be validated against formal analyses (van Rooij, Evans, Müller,
Gedge, & Wareham, 2008). We do so here through the lens of theoretical computer science.
This section presents a complexity analysis in two parts according to the assumed properties
they examine: search space size and problem hardness.

5.1. Search space of segmentation

We analyze the search space size as a possible source of hardness by envisioning a simple
brute-force algorithm. If the number of candidate solutions grows polynomially (i.e., upper-
bounded by Nc, where N is the sequence length and c is some constant), then such an algo-
rithm would be tractable. It follows that the outcome of this thought experiment hangs entirely
on what is revealed by the combinatorial structure of the search space. We describe the afore-
mentioned growth through combinatorial analysis; first for the unconstrained problem and
then including various theoretically motivated constraints.

5.1.1. Unbounded parts
When the size q of the segments is not constrained other than by the length N of the

sequence, that is, q ∈ [1, N], all boundary placements are possible. Notice there is a bijection
between binary strings of length N − 1 and boundary placements in sequences of length N
(Fig. 2). Since the number of possible binary strings of length k is given by 2k , the number of
possible segmentations that use unbounded parts grows as 2N−1 (i.e., exponentially).

0 1 0 0 0 1 0 0

Fig. 2. Binary strings encode boundary placements. A sequence of length N (top) admits N − 1 choices of the
presence/absence of boundaries (bottom). An example choice of boundaries is shown.
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5.1.2. Segmentation as integer composition
In order to incorporate various constraints in combinatorial analyses, we draw an analogy

between segmentation and integer compositions (Fig. 3). This enables us to take an analytic
combinatorics approach (Flajolet & Sedgewick, 2009) to the latter and leverage the results to
infer properties of the former.

Definition 1 (Integer composition). A composition of an integer N is an ordered list C =
(p1, p2, . . . , pk ) of positive integer parts pi ∈ N

+, such that N = ∑
p∈C p.

7

2 32

Fig. 3. Segmentation as integer composition. An integer (top), arbitrary parts, and their composition (bottom) stand
for a sequence, segments, and a possible segmentation, respectively.

To obtain the growth rate for various restricted cases, we derive generating functions for
each, whose coefficients count the number of compositions, and analyze them based on the
following lemma.6

Lemma 1 (Growth rate of the coefficients of a rational function). Let S(x) = ∑
n≥0 snxn =

P(x)
Q(x) be a rational function with Q(0) 	= 0 and assume P(x) and Q(x) do not have any roots

in common. The general form of the coefficients is [xN ]S(x) = AN�(N ), where AN is the
exponential and �(N ) is the subexponential growth factor. Then, the exponential growth rate
A of the sequence of coefficients (sn) is equal to | 1

α
|, where α is the root of Q(x) of smallest

modulus (for proof, see Bóna, 2016, Theorem 7.10).

5.1.3. Lower-bounded parts
We consider integer compositions involving parts pi ∈ [a, N], with 1 < a < N . This cor-

responds to segmentations whose segment sizes are bounded from below.

Theorem 1. The number of [a, N]-restricted integer compositions of N grows exponentially
with N.

Proof (sketch). Through combinatorial arguments, it is possible to construct the generating
function

GLB(x) := xa

1 − x − xa

It can be shown, using the intermediate value theorem, that there always exists a root α of
Q(x) = 1 − x − xa satisfying 0 < α < 1, for any a constrained as above. By Lemma 1, the
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general form of the coefficients [xN ]GLB(x) has an exponential growth factor AN , for some
A > 1. �

5.1.4. Upper-bounded parts
We now consider integer compositions involving parts pi ∈ [1, b], with 1 < b < N . This in

turn corresponds to segmentations whose segment sizes are bounded from above.

Theorem 2. The number of [1, b]-restricted integer compositions of N grows exponentially
with N.

Proof (sketch). Through combinatorial arguments, it is possible to construct the generating
function

GUB(x) := 1 − x

1 − 2x + xb+1

It can be shown, using the intermediate value theorem, that there always exists a root α of
Q(x) = 1 − 2x + xb+1 in the interval (0, 3

4 ], for any b constrained as above. By Lemma 1, the
general form of the coefficients [xN ]GUB(x) has an exponential growth factor AN , for some
A > 1. �

5.1.5. Doubly bounded parts
Finally, we consider compositions involving parts pi ∈ [a, b], with 1 < a < b < N . That

is, in analogy to segmentations whose segment sizes are bounded both from above and below.

Theorem 3. The number of [a, b]-restricted integer compositions of N grows exponentially
with N.

Proof (sketch). Through combinatorial arguments, we construct the generating function

GDB(x) := xa − xb+1

1 − x − xa + xb+1

It can be shown, using the intermediate value theorem, that there always exists a root α of
Q(x) = 1 − x − xa + xb+1 satisfying 0 < α < 1, for any a, b as above. By Lemma 1, the
general form of the coefficients [xN ]GDB(x) has an exponential growth factor AN , for some
A > 1. �
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Taken together, the results proven in this section show that, contrary to common intuition,
the vast number of possibilities implied by the segmentation problem is not easily tempered
by bounding the size of the segments.

5.2. Hardness of segmentation

We showed that intuitive constraints do not render brute-force segmentation tractable. One
may be tempted to conclude that this demonstrates the conjectured hardness of the segmenta-
tion problem. However, in this section, we present a theorem that contradicts this conclusion.
The proof builds on the technique of (polynomial-time) reduction (Arora & Barak, 2009;
Garey & Johnson, 1979; Karp, 1972; van Rooij et al., 2019).

Definition 2 (Polynomial-time reducibility). Let A and B be computational problems. We say
A is polynomial-time reducible to B if there exists an algorithm (called reduction) to tractably
transform instances of A into instances of B such that solutions for B can be easily transformed
into solutions for A. This implies that if a tractable algorithm for B exists, it could be used to
solve A tractably.

We present such a reduction from SEGMENTATION to a problem in graph theory. Along the way,
we will introduce an alternative way of thinking about segmentation at the computational and
algorithmic levels.

Theorem 4. SEGMENTATION is tractable (polynomial-time computable) in the absence of
constraints.

Proof. We will show that, given an arbitrary instance of the segmentation problem, we can
tractably construct an instance (with the correct associated output) of a target problem which
is itself tractably computable. To begin, we introduce a class of graphs which we use as a
stepping stone.

Definition 3 (Interval graph). An interval graph is an undirected graph G = (V, E ) built
from a collection of intervals {pi} = {{x|ai < x < bi}, . . .}, here x, ai, bi ∈ Z, by creating one
vertex vi ∈ V for each interval pi and an edge {vi, v j} whenever the corresponding intervals
have a nonempty intersection: E = {{vi, v j} ∈ V × V |pi ∩ p j 	= ∅}.

Consider an instance of SEGMENTATION. Given an input sequence, it is possible to construct
an interval graph that satisfies Def. 3. Algorithm 1 demonstrates the procedure.
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Remark 1. Algorithm 1 involves systematically generating all legal segments, computing and
negating their weights, checking their pairwise overlap, and using this to construct a graph.
We call this object a segment graph.

Consider the time complexity of Algorithm 1. The elementary instructions are the weight
computation (line 8), appending (lines 9, 10, and 16), and set intersection (line 15); all of
which are polynomial-time computable (F is assumed to be). We focus now on the number of
implied iterations. The loops defined in lines 5 and 6 yield N + (N − 1) + · · · + 1 iterations
(the number of possible segments), given by a polynomial:

|PN | =
N∑

k=1

k = N (N + 1)

2

The loops defined in lines 13 and 14 yield a number of iterations equal to the number of
segment pairs (pi, p j ) ∈ P∗

N , given by the binomial coefficient
(n

k

)
with n = |PN | and k = 2,
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which grows as a quadratic in |PN | (i.e. 4th-degree polynomial in N),

|P∗
N | =

(|PN |
2

)
∼ O(N4)

This algorithmic analysis demonstrates that BUILDSEGMENTGRAPH (Algorithm 1) is
polynomial-time computable.

Consider next the correctness of Algorithm 1. We will show that a segment graph encodes
the properties of candidate solutions to an instance of SEGMENTATION. For this, we need the
following definitions.

Definition 4 (Independent sets and maximality). Let G = (V, E ) denote a graph. We call
a vertex set V ∗ ⊆ V an independent set if there exist no two vertices u, v ∈ V ∗ such that
(u, v) ∈ E . Such a set is said to be maximal if there exists no vertex v ∈ V that can be added
to V ∗ without breaking the independence.

Definition 5 (Dominating sets and minimality). Let G = (V, E ) denote a graph. We call a
vertex set V ∗ ⊆ V a dominating set if for all v ∈ V , either v ∈ V ∗ or there is an edge (v, u) ∈ E
for some u ∈ V ∗. Such a set is said to be minimal if there exists no vertex v ∈ V ∗ that can be
removed without breaking the dominance.

By construction, a legal segmentation is guaranteed to be represented within the segment
graph as a subset of vertices with two properties:

• maximal independence: vertices are pairwise nonadjacent because segments in a seg-
mentation should be disjoint; since the segments should span the sequence, adding any
vertex breaks independence.

• minimal dominance: vertices in the graph are either in the subset or adjacent to one
of its elements because once a segment subset spans the sequence, any other segment
is guaranteed to overlap; since the segments should be disjoint, removing any vertex
breaks dominance.

Remark 2. How segment graphs make the structure of the original sequence problem trans-
parent is illustrated in Fig. 4.

A general feature of dominance and independence on arbitrary graphs is useful:

Lemma 2. An independent vertex set in a graph is a dominating set if and only if it is a
maximal independent set. Any such set is necessarily also a minimal dominating set. (cf.
Berge, 1962; Goddard and Henning, 2013).

It follows from the above and Lemma 2 that if a vertex subset in a segment graph is inde-
pendent and dominant, then it is a candidate solution (i.e., valid segmentation). A feasible
solution has, additionally, minimum weight among candidates: it is a minimum-weight inde-
pendent dominating set. With this, we introduce the formal graph problem we reduce to.
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Fig. 4. Segment graph encoding (left) of a sequence of length 4. Nodes correspond to possible segments and edges
represent pairwise overlap in the sequence. Possible segments are grouped according to length and overlap (mid-
dle). Candidate solutions are vertex subsets in the segment graph (right). Three example segmentations are color
coded. (An animation of the BUILDSEGMENTGRAPH procedure may be found online in the Supporting Information
section).

Definition 6. MINIMUM-WEIGHT INDEPENDENT DOMINATING SET

Input: A vertex-weighted graph G = (V, E ). For each v ∈ V , we have a weight W (v) ∈ Z.
Output: An independent dominating set V ∗ ⊆ V such that Q(V ∗) = ∑

v∈V ∗ W (v) is
minimum.

So far, we have established that, given an instance Iseq of SEGMENTATION, we can construct,
in polynomial time by Algorithm 1, call it A(.), a corresponding instance Igraph = A(Iseq)
of MINIMUM-WEIGHT INDEPENDENT DOMINATING SET. This demonstrates the validity of the
reduction and we now finally consider the tractability of the problems.

Though the problem of finding minimum-weight independent dominating sets is NP-hard
in general and remains so in several special cases (Garey & Johnson, 1979; Liu, Poon, & Lin,
2015), the following input restriction is relevant.

Lemma 3. MINIMUM-WEIGHT INDEPENDENT DOMINATING SET is polynomial-time computable
provided the input graph is an interval graph (for proof, see Chang, 1998, Theorem 2.4).

Recall that the restriction required by Lemma 3 is guaranteed by our reduction. Hence, we
conclude SEGMENTATION is tractably computable, which completes the proof. �

Note that the proof of Theorem 4 does not feature bounds on segment size. This result
shows that, under plausible assumptions, the problem can be efficiently solved in the absence
of such constraints. Our combinatorial and complexity analyses, therefore, suggest the need to
rethink the specific conditions where such theoretically motivated constraints might hold, if at
all. We discuss these implications next and situate our contributions in the broader landscape.

6. Discussion

Computational feasibility is a widespread concern that motivates choices in the framing
and modeling of natural and artificial intelligence. While implicit or informal assumptions
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abound, the reality may turn out to be counterintuitive as they are examined formally. Here,
we undertook a formal examination of the existing computational assumptions about Seg-
mentation. Using complexity-theoretic tools, we mathematically proved two sets of results
that run counter to commonly held assumptions: (1) the search space is large but placing intu-
itive constraints does not alleviate the issue; and (2) a computational model that formalizes
a cross-domain conceptualization of segmentation is tractably computable in the absence of
widely adopted constraints to address the assumed hardness. In other words, to solve the seg-
mentation problem, cognitive systems must find a needle in a vast but orderly haystack – the
latter has enough structure that there exist efficient strategies for doing so in spite of its size.

Beyond our proofs, we set the groundwork for further refinements of segmentation the-
ory and its computational analyses: (1) we contributed a formalization of the computation
that satisfies a domain-agnostic specification; (2) we illustrated the relationship between seg-
mentation and integer compositions, which makes the search space amenable to asymptotic
analyses; and (3) we built a bridge from segmentation as originally defined on sequences to
the mathematics of graphs, which opens up alternative formalisms to model the problem and
to think about it algorithmically. A desirable consequence of translating problems between
formal domains is that structure which was originally hidden from view may become visible.
For instance, as a side-effect of encoding instances of the segmentation problem as segment
graphs (Fig. 4; Algorithm 1), the growth of the number of possible segments is made explicit
(i.e., a polynomial function of the input size). More generally, once segmentation is conceptu-
alized as a graph problem, this opens up the area of parallel graph algorithms (e.g., Balayogan
& Pandu Rangan, 1995; Bertossi & Bonuccelli, 1987) as a fruitful source of hypotheses for
algorithmic-level explanations.

Our results challenge existing intuitions about hardness of the segmentation problem and
its sources of complexity, and by extension question the motivation of proposed solutions
and their associated empirical research foci. For instance, concerns about search space size
and what mitigates it may be misplaced. The space of possible segments is not exponen-
tial to begin with; the space of segmentations is. However, the bounds on segment size
we examined here are not a source of complexity: that is, even when introducing the pre-
sumed constraints, either individually or combined, the space remains infeasibly large (i.e.,
exponential). Left unexamined, this may still appear to support the conjectured hardness of
the problem. But our tractability proof challenges this intuitive conclusion. It demonstrates
that no assumptions about bottom-up segmentation cues or top-down biases on segment
properties are necessary to make the formal problem tractable. These proofs run counter
to the computational efficiency concerns that partially motivate segmentation theories. For
instance, proposals that argue from minimal units of representation (cf. Pöppel, 1997), tem-
poral integration limits of neuronal populations (cf. Overath, McDermott, Zarate, & Poep-
pel, 2015), intrinsic oscillatory timescales (cf. Ghitza, 2012; Wolff et al., 2022), bottom-
up segmentation cues (e.g., Giraud & Poeppel, 2012), and top-down biases on candidate
search (e.g., Friston et al., 2021), each to some extent build on the supposition of prob-
lem hardness, search space size, and various sources of complexity. Computational learn-
ing and simulations further lend some indirect support to the idea that segmentation might
not represent a resource bottleneck in every case (Adolfi, Bowers, & Poeppel, 2022). This
suggests that intractability concerns, if any, might be better placed, for instance, on the
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domain-specific processes that compute over segments rather than the boundary placement
itself.

Together, the results proven here caution against intuitive notions about the complexity
properties of computational problems driving empirical programs, and demonstrate the need
and benefits of critically assessing their soundness (something that is too rarely done explic-
itly; but see, e.g., van de Braak, de Haan, van Rooij, and Blokpoel, 2022; Woensdregt et al.,
2021; van de Pol, van Rooij, and Szymanik, 2018; Rich, Blokpoel, de Haan, and van Rooij,
2020; Zeppi and Blokpoel, 2017 for notable exceptions). Whenever intuitions are challenged,
this enables researchers to reevaluate the current meta-theoretical calculus (cf. Guest & Mar-
tin, 2021), and to redirect efforts as ideas shift regarding what evidence is relevant to collect.
For instance, if researchers believe that a certain problem is computationally hard and that
some set of neural and environmental regularities might speak to constraints that make it
tractable, then they would be inclined to look for those regularities that satisfy such a require-
ment. If, however, the original belief is removed, the target regularities or the kinds of exper-
iments that are adequate to test their putative role might be different.

We close with a similar word of caution about interpreting our results. These results are to
some degree tied to the particular formalization we put forth. While modeling choices were
motivated and they bear some generality, alternative theoretical commitments are conceivable.
For instance, an extended model could allow for multiple unsegregated high-dimensional
input streams with potentially overlapping output segments; it is an open question whether
such a model would have different complexity properties. Going forward, it will be impor-
tant to identify the precise conditions under which the segmentation problem crosses the
intractability boundary (cf. Stege, 2012; van Rooij, 2015). We view our analyses, therefore,
not as the last word on the computational complexity of segmentation but rather as initial
words in a conversation with a sound formal basis.

Notes

1 We bear in mind various distinctions: (1) problems as they are intuited by researchers and
computational problems as formalized in computer science; (2) hypothesized capacities
of cognitive systems, the real-world capacities they allude to, and researchers’ explana-
tions of them which may include conjectured (sub)computations. We use computational-
level theorizing and analysis as a way to explain cognitive capacities (cf. Marr, 1982),
initially related to informal problems, through the formal definition of computational
problems and associated computations. We only have access to the real-world capacities
through this explanatory process.

2 Segmentation relates closely to computations whose names vary depending on time
period, cognitive domain, and theoretical framework: chunking, sampling, discretiza-
tion, integration, grouping, packaging, quantization, sequencing, segregation, parsing,
temporal pooling, temporal gestalt, boundary placement, and temporal attention.

3 Without loss of generality, here “best” could be replaced by “good enough” and our
formal results would still apply.

4 For succinctness, we omit the cumbersome set notation for sequences,
{(i, si), . . . , (n, sn)}, and we slightly abuse set operation notation.
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5 We model segmentation as optimization without loss of generality. Our results represent
an upper bound on the complexity of the problem with respect to this modeling choice.

6 Here, we present proof sketches and direct the reader to https://arxiv.org/abs/2201.13106
for the full proofs.
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