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Cortical computations require coordination of neuronal activity within and across multiple areas. We characterized spiking relation-
ships within and between areas by quantifying coupling of single neurons to population firing patterns. Single-neuron population
coupling (SNPC) was investigated using ensemble recordings from hippocampal CA1 region and somatosensory, visual, and perirhinal
cortices. Within-area coupling was heterogeneous across structures, with area CA1 showing higher levels than neocortical regions. In
contrast to known anatomical connectivity, between-area coupling showed strong firing coherence of sensory neocortices with CA1,
but less with perirhinal cortex. Cells in sensory neocortices and CA1 showed positive correlations between within- and between-area
coupling; these were weaker for perirhinal cortex. All four areas harbored broadcasting cells, connecting to multiple external areas,
which was uncorrelated to within-area coupling strength. When examining correlations between SNPC and spatial coding, we found
that, if such correlations were significant, they were negative. This result was consistent with an overall preservation of SNPC across
different brain states, suggesting a strong dependence on intrinsic network connectivity. Overall, SNPC offers an important window
on cell-to-population synchronization in multi-area networks. Instead of pointing to specific information-coding functions, our results
indicate a primary function of SNPC in dynamically organizing communication in systems composed of multiple, interconnected areas.
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Introduction
Computations in the mammalian brain require coordinated
activity of networks of interconnected neurons (DeCharms and
Zador 2000; Harris et al. 2003; Barthó et al. 2004; Yuste 2015;
Perich and Rajan 2020). For example, computations underlying
the transformation of sensory information into episodic memory
and subsequent memory retrieval are thought to require
bidirectional communication between cortical sensory areas and
(para)hippocampal areas (Buzsáki 1989; Squire and Zola-Morgan
1991; Eichenbaum 2000; Battaglia et al. 2011; Whittington et al.
2020). Such multi-area networks composed of local networks
have been dubbed “meta-networks” to denote the requirement
for a higher order of integration across the brain than can be
achieved within single structures such as primary visual cortex
(Pennartz 2015, 2022). These networks are subject to anatomical
and physiological constraints, such as decreasing likelihood of
having connectivity with increasing distance (Ercsey-Ravasz
et al. 2013; Wang and Kennedy 2016). Although brain-wide
networks have been investigated with anatomical methods (e.g.
Harris et al. 2019), functional connectivity need not align with
anatomy per se. A method to assess a theoretical framework
for understanding meta-networks is to consider the functional
relationships between spiking activity of single neurons and

neuronal populations, quantified by cross-correlating single
unit and population spiking activity (Okun et al. 2015). The
strength of this single-neuron population coupling (SNPC) reflects
the relationship between activity of the reference cell and the
population’s dynamics.

Here, we examined multi-area network dynamics by assessing
SNPC within and between four distinct cortical areas in freely
moving rats performing a figure-8 maze task, as well as during
quiet wakefulness and non-REM (NREM) sleep. To study popu-
lation coupling along the sensory-to-hippocampal hierarchy, we
recorded cells from primary visual cortex (V1), the barrel field
of primary somatosensory cortex (S1BF), hippocampal area CA1,
and perirhinal cortex (PER). Although strong SNPC within a single
cortical area has been reported (Bachatene et al. 2015; Okun et al.
2015, 2019), we predict this to be markedly less strong and less
temporally precise between different brain structures, depending
on anatomical and physiological constraints such as distance (cf.
Wang and Kennedy 2016; Clancy et al. 2019). Furthermore, we
expect functional and anatomical relationships between areas to
be reflected in the SNPC. For instance, previous data indicate that
primary sensory areas have modest levels of direct connectivity
(Garner and Keller 2021; Iurilli et al. 2012; Meijer et al. 2017,
2019; Miller and Vogt, 1984; Oh et al. 2014; Van Strien et al. 2009;
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Zakiewicz et al. 2014). Sensory inputs are known to reach the
hippocampus indirectly via the perirhinal and postrhinal cortex
(Burwell and Amaral 1998; Naber et al. 1999, 2000; Agster and
Burwell 2009; Zakiewicz et al. 2014), but not directly—which pre-
dicts stronger coupling from sensory cortices to PER than to hip-
pocampus. Lastly, in contrast to pyramidal cells, one may expect
putative Fast Spiking (FS) interneurons to be coupled mainly
locally.

The availability of both within- and between-area SNPC data
also raises the question how these two forms of coupling are
related (cf. Clancy et al. 2019). In other words, are there “hub”
or “broadcasting” cells that do not only display local synchrony,
but also regulate dynamics and information-processing in distant
populations (cf. Stevens and Zador 1998)? An alternative config-
uration holds that individual neurons mediate only one type of
coupling, so that some engage strongly only in local interactions,
whereas others couple strongly to external, but not local popula-
tions. Multi-area SNPC analysis allowed us to investigate whether
single cells are specifically coupled to only one target area or
show a broadcasting configuration where each neuron couples
to multiple areas, which may support a role of single neurons in
meta-network functioning. We hypothesize that a higher degree
of external broadcasting of a cell coincides with strong local
synchrony.

SNPC may be governed by hard-wired connectivity and internal
systems dynamics (Okun et al. 2015), but possibly also by behav-
ioral factors, such as the subject’s navigation through space and
the correlative dynamics arising from hippocampal cells having
nearby place fields (O’Keefe and Dostrovsky 1971). Thus, we inves-
tigated whether SNPC correlates with spatial coding by CA1 and
neocortical cells. Furthermore, If SNPC values primarily depend
on behavioral variables, one would not expect SNPC relationships
to be conserved across different brain states. If, in contrast, SNPC
is governed by hard-wired connectivity and intrinsic dynamics, we
would expect SNPC and levels of broadcasting to remain similar
across brain states.

In summary, we address four questions on SNPC within and
across sensory cortical and (para)hippocampal areas: (i) How does
SNPC within and between areas differ across various cortical
areas, and does this follow known anatomical and functional
constraints? (ii) Are levels of within and between-area population
coupling correlated? (iii) Are there neurons that couple strongly
to populations in multiple areas? (iv) Is SNPC mediated by fixed,
intrinsic properties or is it governed by the dynamics associated
with behavioral activity and concomitant spatial coding? The
consequences of our findings for thinking about the structure and
functioning of meta-networks will be addressed in the Discussion.

Materials and methods
Behavioral apparatus and task
All experiments were conducted in accordance with the National
Guidelines on Animal Experiments and were approved by the
Animal Experimentation Committee of the University of Ams-
terdam. Details of the experiment were previously described in
Bos et al. (2017). Briefly, food restricted rats (n = 3) were trained
to perform a two-choice visual discrimination task on a figure-
eight maze (Fig. 1A, B, 114 cm × 110 cm). The animal was confined
to the middle arm until a tone indicated a trial could be started
by approaching the front barrier in the middle arm and breaking
a photobeam, placed just before the front barrier. This triggered
the onset of a visual stimulus on two monitors at the end of the
middle arm with a 1-s delay. Visual stimuli were two equiluminant

wingding-font symbols; a plane and a diamond, defined as the
conditioned stimuli CS+ and CS−, respectively. These were pre-
sented on two monitors placed in front of the initial arm segments
of the maze; one of the monitors displayed a CS+ stimulus and the
other one the CS− stimulus. Which monitor displayed the CS+
or CS− changed from trial to trial in a manner unpredictable to
the rat. Visual stimuli were presented until the animal ventured
in either the right or left arm and passed a “point of no return”.
Part of each arm was covered with sandpaper to provide tactile
stimulation, and the coarseness of the texture was associated
with the size of the reward in case of a correct trial. When the
rat chose to enter the arm corresponding to the CS+ location, it
received a food reward at the end of that arm. Choosing the arm
marked by the CS− did not result in reward. Upon returning to
the middle arm, an additional smaller food reward was delivered.
Animal position was estimated with photobeams at several points
on the maze, as well as with an overhead video-camera. The
three animals (which were the same as used in Bos et al. 2017)
were subjected to 12, 12, and 17 sessions, respectively, perform-
ing 60.1 ± 18.7 trials (mean ± SEM) per session. Sessions were on
average 6,293 ± 543 s long. To assess sleep states, recordings were
appended with a period of sleep after task performance (TP),
which was done for two animals for 9 and 12 sessions, respectively.
Total length of sleeping session were on average 1,774 ± 390 s
(mean ± SEM). Additional details have been described in (Vinck
et al. 2016; Bos et al. 2017).

Electrophysiological data acquisition
We performed simultaneous tetrode recordings in S1BF, V1, PER,
and CA1. These areas are of interest because rats are highly skilled
in using tactile abilities while exploring their environment; the
visual modality had to be used to make correct choices in the
task; the hippocampus is involved in spatial representations and
memory, and PER is situated as a higher-level, multimodal cortical
area with direct and indirect connections to the hippocampal
region. After behavioral training, the animals were implanted
with a custom-made microdrive (“quaddrive”; Technology Center,
Faculty of Science, University of Amsterdam), consisting of 36
tetrodes, split equally over four areas: V1, S1BF, hippocampal area
CA1, and PER (Fig. 1C, D). Tetrodes were gradually lowered for
8–10 days after implantation, and depth was estimated by the
number of turns of guide screws (Lansink et al. 2007). Tetrode
localization was later verified by anatomic reconstructions of
tetrode tracts based on registration of histological section images
to the Waxholm Space Atlas of the Sprague Dawley rat Brain v3
(Fig. 1D; RRID: SCR_017124; Papp et al. 2014; Bjerke et al. 2018),
using the software tool QuickNII (RRID: SCR_016854; Puchades
et al. 2019). Coordinates of the craniotomies relative to bregma
were: V1 at −6.0 mm posterior, −3.2 mm lateral; S1BF at −3.1 mm
posterior, −5.1 mm lateral; PER at −5 mm posterior, −5 mm
lateral; CA1, −3.5 mm posterior, −2.4 mm lateral. Within each
area, a separate reference electrode was inserted. Neural activ-
ity was recorded with a 128-channel Digital Neuralynx Cheetah
Setup (Neuralynx, Bozeman MT). Spiking activity was extracted
from bandpass filtered (600–6,000 Hz) signals, which digitized one
millisecond epochs at 3 kHz when a pre-set voltage threshold
was crossed. Single units were isolated by semi-automated spike
sorting (KlustaKwik, Ken Harris, and MClust 3.5, A.D. Redish). A
total of 1,781 neurons was recorded; the cell counts per animal
were 456, 226, and 1,086 neurons. From S1BF, V1, PER, and CA1,
we recorded on average 10.2, 2.4, 16.4, and 15.6 neurons per
session, with a maximum of 32, 15, 40, and 72 neurons per session,
respectively. Some sessions did not contain any neurons in a given
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Fig. 1. Animals performed a behavioral task on a figure-8 maze, during which recordings were performed from S1BF, V1, PER, and CA1. (A) A schematic
depiction of the figure-8 maze. Images were presented on monitors along the initial segments of the alleys. Crimson edges below the visual stimulus
indicate sandpaper-walls. White dots represent reward wells. Green, blue, and magenta lines represent closable barriers in the animal’s behavioral
progression of the trial; a frontal barrier in the middle lane (green; trial start point), point of no return (PNR, blue) after which the animal cannot return
to correct its decision, and the point of no return middle (PRM, magenta), the posterior barrier of the middle lane. (B) The temporal structure of the
behavioral task. “Block away” marks the time point at which the green barrier was removed to enable the animal to execute its choice. ITI: intertrial
interval. (C) Sagittal view of the recorded areas: S1BF (green), V1 (blue), PER (violet), and dorsal CA1 region of the hippocampus (orange). (D) Example
3D reconstruction of tetrode recording locations in PER of one animal. The red dots represent the reconstruction of the endpoints of respective tetrodes
targeting the PER. A and B adapted from Bos., et al 2017.

area, and we used a threshold of minimum of 3 cells per session
and area, otherwise said area was discarded from further analysis.
Automated and manual clustering of spikes was performed based
on waveform peak amplitude, energy, and first derivative of the
energy. Clusters were accepted when the inter-spike interval of
2 ms was contaminated with < 0.1% of the total spike count. As
interneurons can show narrow waveforms (Cardin et al. 2009;
Gentet et al. 2010, 2012), we classified neurons as putative FS
interneurons or putative pyramidal cells (cf. Vinck et al. 2016
for more details). For spatial linearization of the maze, it was
segmented into 51 equally sized spatial bins (21 per each arm, 9 for
the middle lane, bin length of ∼ 9 cm). Rat position was assigned
to a bin by assessing the minimal Euclidean distance between the
rat’s position and the bin centre position.

Analyses
Single-neuron population coupling. The goal of this analysis was to
determine the temporal profile of population activity relative to
the spikes fired by a single reference cell (Okun et al. 2015). The
SNPC as calculated here is normalized for reference cell firing

rates and z-scored against a null-distribution (see below: shuff ling
procedure), allowing us to compare between cells and areas. Briefly,
the SNPC quantifies how much a certain reference cell’s activity
is correlated with a certain population. Single-unit activity was
collected in 1-ms bins. For each reference cell, the SNPC was
calculated relative to the summed single unit activity of a target
population, which could be recorded from the same brain area
or a different one. When calculating within-area (i.e. internal or
local) coupling, the reference cell was not included in the target
population. Let the reference cell’s firing rate be a 1×tvector R,
with t being the duration of the recording period in ms. The target
population firing rate was defined as the N×tmatrix PR, where
N is the number of single units in said target population. To
compute the SNPC, the population rate PR was summed across
all target neurons to yield the 1 × t vector PRsum. The SNPC was
first calculated as the unscaled cross-correlation, specifically, the
inner product of PRsum with R at different lags (using MATLAB’s
xcorr), with a maximum positive and negative lag of 5,015 samples
(5 s and 15 additional samples for edge-effect corrections). The
outcome of this cross-correlation was normalized by the number
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of spikes of reference cell R to correct for varying amounts of
spikes per reference cell (i.e. by definition, more spikes would
result in a higher outcome of this cross-correlation. The normal-
ized cross-correlation was then convoluted with a Gaussian kernel
(with a half-width of 12 ms, size of 15 samples). Edge effects due to
the convolution were corrected by removing the outer 15 samples,
resulting in a − 5 to +5 s SNPC.

Shuff ling procedures. To determine the statistical significance of
peaks or troughs in the SNPC cross-correlogram versus baseline
activity and compare this appropriately between animals and
sessions, we used a shuffling approach to generate a null dis-
tribution that served as a basis for Z-scoring. As sessions could
differ in the number of neurons in the target population, we
aimed to establish a null distribution based on the spiking activity
of the reference cell and population in question, but in which
coupling was abolished. While keeping the original reference-
cell firing rate R, each row of the population rate matrix PR (i.e.
firing rate of each neuron in the target population) was shuffled
based on a circular temporal shift, with a maximal shift of plus
or minus 50% of the entire recording length to get PRshuff led. The
circular temporal shift was shown to generate an appropriate
null distribution (Fig. S1, comparing with a jitter shift shuffling
of 100 ms). The SNPCshuffled was calculated from PRshuff led and
R, as before. This shuffling procedure was repeated 1,000 times.
The Z-scored SNPC cross-correlogram was acquired from the
mean and standard deviation of all the SNPCshuffled versus the
actual SNPC cross-correlogram. Physiologically meaningful cou-
pling implies a significant deviation of the SNPC from SNPCshuffled.
The rationale behind this procedure is that, if the SNPCshuffled

shows a high mean or variance, the actual SNPC needs to be
corrected for such randomly generated cross-correlations. The
level of coupling, expressed in standard deviations, was quantified
as the peak value of the SNPC (where a peak is the highest value
flanked by lower values, as determined by the MATLAB default
peakfinding algorithm). We defined a cell as “coupled” if the
SNPC was above a certain threshold std or higher above baseline,
which also provided the basis for the Broadcasting Index (see
also “statistical analysis,” below). The threshold for coupling was
based on a Bonferroni correction on the total amount of SNPCs
calculated, i.e. the number of cells times the number of areas
(i.e. 1,781 × 4), which was 4.5 std when rounded to one decimal.
Negative coupling was quantified with the same algorithm, but
looking for highest negative numbers.

Decoding of firing rate from population activity. Spike trains were
first binned in 100-ms bins. The population rate was composed
by summing the binned spike counts of all the cells in the popu-
lation except for the seed cell. We then employed a K-fold cross-
validation routine with five-folds to predict the binned spike
counts of the seed cell from the population rate. We employed
a linear regressor fit with stochastic gradient descent using ordi-
nary least squares, as implemented in scikit-learn. Binned spike
counts of both the seed cell and the population rate were stan-
dardized using mean and variance computed on the training set.
To evaluate the performance of the regressor, we use the R2 score
(coefficient of determination), which takes a value of 1 when
predictions are perfectly correct, and can be negative (models can
be arbitrarily bad). An R2 score of 0.2 indicates that the model can
explain 20% of the variance in the data.

Spatial selectivity. Spatial selectivity was quantified in bits per
spike (Skaggs et al. 1993):

I =
∫

x

r(x)

r
log2

r(x)

r
p(x)dx ,

which calculates I, the spatial information (in bits per spike),
where x denotes the current spatial bin, r(x) is the mean firing
rate at bin x, r is the overall mean firing rate of the neuron, and
p(x) is the probability density for the rat’s position.

Clustering of CA1 spatial selectivity and coupling values was
performed with a K-means clustering algorithm. Clustering was
performed on log-transformed data, with the aim to find two
clusters. For Fuzzy clustering, a Fuzzy C-means clustering algo-
rithm (Fuzzy Clustering and Data Analysis toolbox, abonyilab.
com/fclusttoolbox) was used. Here, cluster identity was defined
by having a fuzzy partition above 0.75.

Non-REM sleep, quiet wakefulness and awake wakefulness. We
compared three brain states: an awake but task-disengaged state
during the inter-trial interval (ITI), TP, and NREM sleep. The ITI
was identified as the period between the animal’s return to
the central arm (i.e. the start of the intertrial interval, ITI) and
sound cue indicating onset of a new trial. This period lasted
19.0 ± 0.05 s (mean ± SEM) per trial. The TP period was taken from
the active part of the trial and ranged from visual stimulus onset
to the return to the central arm. This period lasted 23.5 ± 0.42 s
(mean ± SEM) per trial. After the period of TP, the animal was
allowed to sleep in a towel-covered flowerpot during which
recordings continued. NREM sleep periods were identified by
visual inspection of video footage and LFP traces as characterize
by an absence of body movement and prominence of sharp wave-
ripples and large-irregular activity (LIA) in the hippocampal leads
(cf. Lansink et al. 2009). Bouts of NREM sleep lasted 47.7 ± 1.33 s
(mean ± SEM) for a total of for 23 sessions.

Correlation coefficients between total coupling profiles of the
different brain states were calculated for individual sessions. Indi-
vidual sessions provided three coupling profiles (i.e. 4 × 4 matrices)
for the three brain states, defined as the median coupling for each
combination of available areas in said session. 2D correlations
coefficients were calculated using MATLAB’s corr2, for each ses-
sion, between the three different brain states.

Statistical analysis. Under all conditions, and for all areas,
levels of SNPC were not normally distributed, as shown by a
Kolmogorov–Smirnov goodness-of-fit test. Hence, non-parametric
testing was applied wherever possible. The Kruskal–Wallis
test was used to determine an effect of each combination of
reference and target area. The Wilcoxon’s Rank-Sum test was
used for pairwise comparison between different population
coupling levels. Notably, the within- and between-area groups
were handled separately because the marginally large SNPC
values of the within-area group would skew any statistical
analysis severely (note that the within-area group consisted
of the four available areas coupled with themselves; between-
area groups consisting of the four available areas coupled with
the three other areas, resulting in a total of 12 combinations).
Correlations were quantified using Spearman’s rank correlation
(within-area versus between-area coupling, spatial selectivity
vs. coupling), or Pearson’s correlation (Decoding accuracy). To
identify significant effects of correlations, a Kruskal–Wallis
test was performed on data binned along the explanatory
variable (i.e. within-area in Fig. 4, spatial selectivity in Fig. 6).
Bins were determined with the Freedman-Diaconis’ method. The
same statistical assumptions hold for the correlations between
coupling levels and spatial selectivity. Lastly, if both brain area
and brain state served as independent variables, we used a
Schreier–Ray–Hare test, followed up by Wilcoxon’s signed-rank
(in paired conditions) or Wilcoxon’s rank sum (in unpaired
conditions) test for differences between states within one set of
brain areas. All P-values of comparative and correlative statistics
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were Bonferroni-corrected for the number of tests. Additionally,
to verify key findings, we computed these on randomized halves
of the data in a bootstrapping procedure (1,000 iterations);
discrepancies have been indicated where applicable. Lastly, we
define the Broadcasting Index (BI) as the number of areas a
single cell is significantly coupled with (excluding the area
containing that cell). To estimate how likely connections to two
or three areas are, we compared bootstrapped (1,000 repetitions)
significant connections (i.e. SNPC above 4.5 standard deviations,
see Methods: shuff ling procedures) to either two or three target
areas with the joint probability calculated from probabilities
of having any connecting to the respective target area. Here,
we defined significance as having a joint probability outside of
the 5 to 95% confidence intervals from the bootstrapped data
(Fig. 5A, S12A). To compare percentages of cells with different
broadcasting indices per area, a bootstrapping procedure (1,000
repetitions) was applied. Proportions of cells with a particular BI
with nonoverlapping 5 and 95% confidence intervals were deemed
significantly different (Fig. 5B, S12B).

Results
Within-area coupling
We performed tetrode recordings while rats (n = 3) navigated a
figure-8 maze (Fig. 1A, B). We isolated single unit activity (total
1,781 neurons) from S1BF, V1, PER, and CA1 (Fig. 1C, D). For
the SNPC, we calculated Z-scored, within-area coupling, cross-
correlating single unit activity with summed population activity
(Fig. 2A, S1). SNPC was calculated for all four areas, first assessed
during active wakefulness. Our hypothesis held that within-area
coupling would be homogeneous across the neocortical areas
with likely stronger within-area coupling in the hippocampus,
based on its strong propensity to generate synchronous rhythmic
activity (Buzsáki 2010). Regardless of the brain area, over 80%
of all cells showed a peak centered at zero lag (Fig. 2, Table 1),
indicating that these cells were spiking often near-synchronously
with numerous other units from the same population. In all
areas, a number of cells showed a lack of a strong central
peak, as expected from earlier studies in V1 (e.g. Fig. 2B; green
lines in V1 plots and red line in PER plot; cf. Okun et al. 2015).
A Kruskal–Wallis test indicated a strong difference between
average levels of population coupling of the four areas (performed
on only within-area data, Chi-square = 408.28, P < 10−5, df = 3).
Notably, we observed a higher level of within-area coupling in
the hippocampus compared with perirhinal and sensory cortices
(Fig. 2C; CA1 vs. S1BF, V1 and PER: all P < 10−5, Wilcoxon’s Rank-
Sum test). In the somatosensory and visual cortex we observed
similar levels of coupling. Lastly, perirhinal cortex showed
significantly weaker within-area coupling compared with S1BF
and area CA1 (both P < 10−5, Wilcoxon’s Rank-Sum test), but not
visual cortex. In sum, these within-area coupling results are in
line with earlier results on population coupling in V1 (Okun
et al. 2015) and show a relatively large heterogeneity across
the four areas, with area CA1 showing markedly high levels of
within-area coupling. Negative within-area coupling, i.e. a trough
around t = 0, was found in a smaller subset of cells distributed
across areas (table 2). Negative coupling was generally smaller
compared with positive coupling, and found not to be different
between the four areas (Fig. S2).

High coupling rates would indicate that the local population
rate can be informative of a certain reference cell’s firing. Indeed,
we found that a cell’s population coupling strength correlates
with the ability to decode the cell’s activity from local population

activity (Fig. S3). Significantly coupled cells (i.e. with coupling
value above 4.5 std, see Methods) show a significantly higher
explained variance than non-coupled cells in perirhinal cortex
and hippocampus, but this distinction was not significant in
barrel cortex and visual cortex, due to higher variability of decod-
ing accuracy in non-coupled cells.

Between-area coupling: general observations
Between-area coupling was studied by correlating activity of a
single unit from one area with the population activity of another
(Fig. 3A). We hypothesized that the coupling between two distinct
sets of areas will conform to anatomical patterns of connectivity
as described in the literature (see the specific sections below for
references on the corresponding connections). Every single com-
bination of areas contained single units displaying a noticeable
peak around t = 0 (Fig. 3B, Table 1), signifying a cell being cou-
pled between the two areas in question. Generally, between-area
SNPC profiles were more temporally spread out, more variable
and showed more complex shapes compared with within-area
SNPC (i.e. in terms of peak-valley configurations, peak lags to
zero, etc.; see Fig. 3B for examples). Detailed analysis of these
complex shapes, performed e.g. by multi-Gaussian curve fitting
or dimensionality reduction techniques, did not result in a sys-
tematic description of these highly variable profiles. Few neurons
showed very high coupling, and on average, coupling values were
lower than for within-area SNPC patterns (Fig. 3B, C, S4). These
data indicate that a neuron’s coupling to an external area is,
on average, less tightly correlated in comparison to local cou-
pling. A Kruskal–Wallis test indicated a strong difference in cou-
pling levels for all between-area combinations (performed on only
between-area data; Chi-square = 221.88, P < 10−5, df = 11). For the
sake of clarity, we will next discuss these between-area results in
three categories: sensory cortices (S1BF and V1), perirhinal cortex,
and hippocampus. The two sensory areas are deemed to have
relatively similar neocortical circuitry, considerably different from
perirhinal and hippocampus, as such they are grouped together
(Douglas and Martin 2010; Harris and Shepherd 2015). Negative
between-area coupling was also present, showing less differences
between different area combinations (Fig. S5).

As was the case for within-area coupling, decoding a reference
cell’s spiking activity from population rates of other areas cor-
related significantly with its coupling values (Fig. S6), with the
exception of reference S1BF cells relative to the V1 population and
V1 cells to the PER population. Moreover, these two combinations
showed no significant difference between mean decoder accura-
cies of coupled and uncoupled cells, whereas, for all other com-
binations, a clear and significant difference was found (Fig. S7).
Thus, it generally appears that the activity of coupled cells can be
decoded well from population activity in external areas, although
this was not ubiquitously confirmed for all connections.

Coupling of sensory cortical neurons with
populations in other areas
We expected to see coupling between sensory areas (Iurilli et al.
2012; Zakiewicz et al. 2014; Meijer et al. 2017), and from sensory
areas to perirhinal (Burwell and Amaral 1998; Naber et al. 2000;
Agster and Burwell 2009; Zakiewicz et al. 2014), as these areas
have been shown to be directly anatomically connected. Moreover,
sensory areas were not expected to couple strongly with the
hippocampus due to their indirect connectivity (Naber et al. 2000;
Zakiewicz et al. 2014). Assessing S1BF neurons in relation to V1
populations and vice versa we found a mean Z-scored coupling
level of 4.83 (for S1BFcell − V1pop), and 6.42 std (for V1cell − S1BFpop),
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Fig. 2. Within-area single-neuron population coupling shows divergence between strongly and weakly coupled cells. (A) The within area SNPC was
calculated from spiking activity within a single area (left, only V1 is depicted). V1 spiking activity is summated and cross-correlated with single unit
activity (right), for example: comparing the red spikes with the total population activity (bottom right). (B) Representative SNPC within single areas,
Z-scored to shuffled distribution, of three reference cells being coupled with the population within the same area, for each of the four recorded areas.
Note the diversity in peak height, and the lack of a peak for some units, such as the green cell in V1. Each differently colored line indicates a different
reference cell. Barrel cortex displays oscillatory activity in the low theta range (∼7 Hz) as noticeable oscillations in these graphs. (C) Violin plots showing
spread and average of the within-area population coupling of all units of all animals. White dot: median; horizontal line: mean; black dots are > 95%
percentile outliers. The areas are represented as green (S1BF), blue (V1), violet (PER), orange (CA1). Significance was assessed with Wilcoxon’s Rank-Sum
test: ∗∗∗ indicates P < 0.0005. P-values are Bonferroni corrected for six tests.
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Fig. 3. Between-area SNPC shows how single neuron activity related across great anatomical distance to other populations. (A) Schematic illustration of
between-area coupling, comparable with Fig. 2(A). The spike train of a single unit in a given area (e.g. V1, left) is correlated with the population activity
of another area (e.g. PER). The red example neuron is cross-correlated with the total population rate of the target area (right). (B) Representative SNPC
between areas, Z-scored to shuffled distribution, between different areas, excluding within-area coupling at the diagonal. Note a longer time range on
the X-axis than used in Fig. 2(B). Columns correspond to reference areas, i.e. the areas to which the single neurons belong, rows correspond to the target
areas, i.e. the areas to which the population rate signals belong. Differently colored lines per individual plot denote different cells from the reference
area. Note the lower central peaks, and the broader temporal spread, compared with Fig. 2(B). As opposed to the within-area cases, most cells do not
show strong coupling; however, several units are strongly coupled, e.g. the green line indicating an S1BF cell with the CA1 population. (C) Schematic
depiction of median coupling levels across sessions, expressed as Z-scored SNPC, between the different cells and areas. Line thickness scales linearly
with median coupling strength. Across all images the areas are represented as green (S1BF), blue (V1), violet (PER), orange (CA1). Triangles represent
single units, the colored circles the entire population, i.e. a line from one triangle in V1 to the S1BF population depicts the median strength of V1 cells
to the S1BF population.
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and noticeable spread to higher values, with outliers above 20 std
(Fig. S4). These outliers represent single neurons with very strong
spike synchronization relative to the other sensory cortical area.
Interestingly, V1 units were more strongly coupled to the S1BF
population than the other way around (Fig. 3C, S4, P < 10−5

, see
also table 3). Next, our data showed low coupling of sensory areas
with perirhinal cortex compared with coupling of the two sensory
areas to each other. Lastly and surprisingly, S1BF cells showed
significantly elevated coupling with CA1 populations compared
with other target areas (P < 0.0005, Wilcoxon’s Rank-Sum test),
whereas V1 cells lacked strong coupling with the CA1 population.
However, the coupling of both sensory areas to CA1 showed
noticeable outliers. V1cell-CA1pop and S1BFcell-CA1pop coupling did
not differ significantly. For an overview of testing for statistical sig-
nificance, see table 3. These results indicate that spike-based cou-
pling between sensory areas and parahippocampal areas diverges
from predictions based on anatomy.

Coupling of perirhinal neurons with populations
in other areas
As an area intermediate between sensory areas and hippocampus,
perirhinal cortex was expected to be coupled with both sensory
areas (Burwell and Amaral 1998; Naber et al. 2000; Agster and
Burwell 2009; Zakiewicz et al. 2014) and hippocampus (Burwell
and Amaral 1998; Naber et al. 1999; Agster and Burwell 2009).
Moreover, perirhinal neurons locking to CA1 theta oscillations (Bos
et al. 2017) may be expected to show strong coupling. However, of
all four areas studied, perirhinal neurons showed the lowest level
of between-area coupling, with less outliers (Fig. 3, S4, table 1).
PER cells engaged in significant SNPC with the sensory cortices,
albeit less than SNPC levels between these two sensory areas.
PER neurons coupled noticeably less with V1; in this respect their
coupling was similar to that of V1 neurons, showing low coupling
with PER populations. PER neurons showed stronger coupling to
hippocampal populations (PERcell − CA1pop) and S1BF (PERcell −
S1BFpop) than to V1 populations (P < 10−5, Wilcoxon’s Rank-Sum
test, table 3), which was of a comparable level as the sensory
neurons with CA1 populations (i.e. not significantly different).
Interestingly, the overall coupling profile does not appear to dif-
fer much from the other two neocortical areas. These results
highlight PER as an overall weakly coupled area, but its strong
coupling with CA1 populations agrees with earlier anatomical and
physiological studies.

Coupling of hippocampal neurons with
populations in other areas
The hippocampus was expected to be well connected with the
perirhinal cortex (Burwell and Amaral 1998; Naber et al. 1999;
Agster and Burwell 2009), and to a lesser extent with sensory
areas (Naber et al. 2000; Zakiewicz et al. 2014). Our data showed a
modest level of functional coupling for CA1cell − PERpop (Fig. 3, S4),
comparable with the value of PERcell—CA1pop coupling, and with
relatively less strong coupled outliers (e.g. below 20 std, Fig. S4).
Area CA1 cells showed similar levels of coupling with sensory
cortices, noticeably with strong outliers, especially with the V1
population. CA1 cell couplings to all three target areas were not
significantly different from each other (Fig. S4, table 3, P > 0.05,
Wilcoxon’s Rank-Sum test). Thus, unlike the anatomic connectiv-
ity would suggest, CA1 cells are similarly coupled to the sensory
cortical areas and to PER populations.

Cell types
Fast spiking (FS) interneurons and pyramidal neurons were classi-
fied by way of waveform shape and firing characteristics (putative

interneurons, n = 188; putative pyramidal neurons, n = 1593). We
hypothesized FS interneurons and pyramidal neurons to show
markedly different coupling profiles, with FS interneurons being
strongly locally interconnected, whereas pyramidal neurons were
expected to be more strongly coupled to more distant popula-
tions. However, when putative pyramidal and FS interneurons
were analyzed separately, within-area coupling showed a similar
pattern as when all neurons were combined, accompanied by
roughly similar significant differences (albeit different P-values,
Fig. S8). An exception was found for the two sensory areas: FS
interneurons in S1BF showed higher within-area coupling than V1
FS interneurons, which was not the case for pyramidal cells. FS
interneurons showed an overall higher level of within-area cou-
pling than pyramidal cells, yet this was only significant for area
CA1 (Wilcoxon Rank-Sum, pyramidal neurons vs. FS interneurons
for CA1, P < 10−5) and to a lesser extent S1BF (P < 0.05; see table 4
for statistical testing of differences between within-area coupling
for pyramidal and FS interneurons).

As concerns between-area coupling, putative FS interneurons
and pyramidal cells showed a surprisingly similar pattern (Fig. S9).
Overall, FS interneurons tended to show higher levels of coupling
to other areas than pyramidal cells, although this was only sig-
nificantly different for three areas (table 5), most noticeably for
CA1cell − S1BFpop. Thus, the overall pattern we observed when all
cells were combined, as described above, was largely preserved for
the two different neuron types (see table 5 for statistical testing of
differences of all between-area coupling combinations for the two
different cell types; see table 6 for statistical testing of between-
area coupling of pyramidal cells versus FS interneurons).

Intra-areal coupling selectively correlates with
inter-areal coupling
Could there be a relation between a cell’s local and global cou-
pling patterns? If single cells can play a pivotal role in regulat-
ing meta-network activity, one might expect a cell’s within-area
coupling to be predictive of between-area coupling: a strongly
locally connected cell may be in an ideal situation to convey
information to an external target. Fig. 4 displays the relations
between within- and between-area coupling for four reference
areas to selected target areas with linear regressions displayed
for significant correlations (see Fig. S10 for individual plots for
all reference-target combinations). Data showed mostly moderate
to weak correlations between within-area coupling and between-
area coupling. Interestingly, S1BF showed a significant correlation
between its within-area coupling and its coupling to CA1. A sim-
ilar trend was seen for visual cortex (i.e. V1 within-area versus
V1cell − CA1pop, where the linear regression was relatively flat
despite an increased spread with rising within-area coupling val-
ues (Fig. S10, second column, top row). Both sensory areas lacked
a significant correlation between their within-area coupling and
their coupling to the PER population. PER cells showed overall
low Spearman’s rho values between their within-area coupling
and all target areas, indicative of a general lack of within-area
SNPC correlation to connected areas. Lastly, within-area coupling
of CA1 cells was significantly correlated with coupling to S1BF
and PER populations, but not with V1. Overall, we find several
connections showing positive correlations between external and
internal coupling; however, this was not invariantly shown in all
area-to-area combinations.

Broadcasting index
To quantify in more detail how cellular coupling to populations
diverges—or broadcasts—across multiple areas, we defined a
broadcasting index (BI). The BI is the number of target areas to
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Fig. 4. Positive correlations between within- and between-area coupling. Scatterplots of within-area coupling versus between-area coupling strength for
the four reference areas with one selected target area (A–D). X-axis indicates the within-area coupling strength of the reference area, Y-axis indicates
the coupling of said reference area with the target area (indicated in the title as “Refcell vs Targetpop”). Each dot represents one cell. Target areas were
selected based on the significance of their correlations (a complete overview of all the areas is given in Supplementary Fig. S10). Black lines are linear
regressions on log-transformed data. Correlations are quantified as Spearman’s rho (from A to D: ρ = 0.28, P < 10−5; ρ = 0.57, P < 10−5; ρ = 0.23, P = 0.00015;
ρ = 0.28, P < 10−5). P-values were Bonferroni corrected for 12 tests. Across all images the reference areas are represented as green (S1BF), blue (V1), violet
(PER), orange (CA1).

which the cell under scrutiny significantly couples (4.5 std above
shuffled distribution; see Methods). By definition, for each cell this
value ranges from 0 (no significant coupling) to 3 (significantly
coupled to all three target areas). Within-area coupling was not
included in the BI. We hypothesized that high-broadcasting cells
(BI of two or three) are found in every area, with a higher number
in CA1 and perirhinal cortex, because these areas are thought to
be hierarchically well-positioned to broadcast to many neocortical
areas (Squire et al. 1989; Fiorilli et al. 2021). Much like the within-
area versus between-area correlations described above, we would
expect high-broadcasting cells to be strongly connected with their
local population.

In every reference area, we found cells that broadcast to all
three other areas (i.e. BI = 3), albeit that these constituted only
a small minority of the total number of neurons (Fig. 5A). In all
areas, we found that the number of cells with a BI of 3 exceeded
what would be expected from the joint probability of the single
connections, whereas a BI of 2 often appeared in lower numbers
than expected (Fig. 5A). Furthermore, we observed a trend with
V1 showing more broadcasting cells, yet an effect of area on the
number of cells with a specific BI was not significant. Comparing

percentages of cells with a certain BI across all areas (Fig. 5),
we saw a general reduction of the ratio of cells with higher
broadcasting indices, yet between broadcasting indices 1 and 2
this diverged for the different areas: CA1 and V1 showed no
significant difference between indices 1 and 2, while S1BF and PER
showed a significant reduction in the number of cells with index
2 compared with 1 (based on bootstrap-estimated confidence
intervals, see Methods). No significant differences between the
four areas were observed for maximum broadcasting (BI of 3).
Lastly, we expected a higher BI to be related to stronger local
coupling. Interestingly, however, cells with different broadcasting
indices did not show significantly different levels of within-area
coupling, for all areas (Fig. S11).

Between pyramidal cells and FS interneurons (Fig. S12), we
observed a similar overall decrease in the number of cells with
higher broadcasting indices. FS interneurons showed a signif-
icantly higher percentage of cells with non-zero broadcasting
indices in S1BF and CA1 (P < 0.05, bootstrap test), and showed an
overall larger variation for each area (note that the total number
of FS interneurons was roughly 7 times less than the number of
pyramidal neurons, influencing statistical power and variability).

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/13/8247/7146577 by guest on 21 Septem

ber 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad111#supplementary-data


8256 | Cerebral Cortex, 2023, Vol. 33, No. 13

Fig. 5. Cells in sensory and (Para)hippocampal areas mostly show varying degrees of broadcasting. (A) Venn diagrams illustrating the percentages of cells
having a significant number of coupling to the three available target areas. Asterisks and pound symbols show results for bootstrap testing (α = 0.05) if
connections to two or more areas are expected compared with the joint probability of cells connecting to one area. Asterisks indicate more cells than
expected, and pound symbol less than expected. (B) Percentages of cells plotted as a function of broadcasting index. Confidence intervals are bootstrap
estimates (1,000 iterations). Across all images the areas are represented as green (S1BF), blue (V1), violet (PER), orange (CA1).

FS interneurons in PER lacked coupling with V1, resulting in a lack
of cells with a BI of 3. Similarly, pyramidal neurons as well as
FS interneurons showed no effect of BI on within-area coupling
(Fig. S13).

Summarizing, highly broadcasting cells were found in all areas,
and we did not find strong differences between the examined
brain areas. Broadcasting appears to be independent of the cell’s
coupling with its local population.

Population-coupled neurons and spatial
selectivity
Within-area population coupling may reflect intrinsic neuronal
parameters, largely invariant to cognitive computations. The con-
trasting hypothesis holds that SNPC does cohere with representa-
tional content coded in the area under scrutiny, such as spatial
information coded in area CA1 (O’Keefe and Dostrovsky 1971).
Regarding between-area coupling, we hypothesized that the spa-
tial selectivity of CA1 cells may be correlated with strong coupling
to sensory areas: if the spatial selectivity of CA1 cells is dependent
on sensory inputs (Hartley et al. 2000; Jeffery 2007; Mehta 2015),
coupling of spatially selective cells may be stronger with sensory
areas as compared with non-selective cells. Spatial selectivity was
calculated in bits per spike (Fig. 6A). As expected, we found high
levels of spatial selectivity in a subset of CA1 cells during maze
running (Fig. 6A, B). As reported before, a subset of PER neurons
fired selectively for large maze segments (Bos et al. 2017) and
a limited location-dependence was observed for both sensory
areas (Lansink et al. 2018; Mertens et al. 2023), resulting in a low
number of cells with high spatial selectivity (Fig. 6B). It should be
noted that the apparent spatial selectivity of some S1BF and V1
cells may be partly explained by location-specific behaviors that
impose local, sensory-specific changes (Mertens et al. 2023).

We found that, if correlations between spatial selectivity and
population coupling were significantly different from zero, they

were negative (Fig. 6C). This negative correlation was significant
for PER, CA1 and S1BF (P < 10−5, P < 10−5, and P = 0.0076, respec-
tively, Wilcoxon’s Rank-Sum test, P < 0.05 in an additional boot-
strap test, see Methods) but not for V1 (P = 1.2, Wilcoxon’s Rank-
Sum test). As the SNPC is corrected for number of spikes and
spatial selectivity is expressed in bits/spike, this effect cannot
arise from lower numbers of spikes in cells with higher spatial
information. Furthermore, CA1 showed two distinguishable clus-
ters of higher and lower spatial selectivity (defined with K-means
clustering, Fig. 6C and S14). When comparing SNPC in these sep-
arate clusters, we found a strong significant difference in within-
area coupling between the low and high spatially selective groups
(Fig. S14B, Wilcoxon’s Rank-Sum test, P < 10−5). Because some dat-
apoints do not appear to clearly fall in a cluster, we applied fuzzy
clustering and tested for differences between datapoints with a
partition over 0.75 (Fig. S14C), which provided a comparable level
of significance. Negative coupling was not significantly correlated
with spatial selectivity, except weakly within S1BF (rho = −0.14,
data not shown).

Next, we analyzed spatial selectivity versus between-area
coupling. We found significant correlations between CA1cell and
S1BFpop, and reciprocally between CA1 and PER all with relatively
low correlation coefficients (Fig. S15). Here, too, we were able
to separate CA1 neuron couplings to different areas based on
clear clusters of higher and lower spatial selectivity (Fig. S16).
Differences in between-area coupling for the high and low
spatially selective groups were only significant for the coupling of
CA1 cells with PER populations (Fig. S16C, Wilcoxon’s Rank-Sum
test, P < 10−5).

Dependence of coupling on brain state
To gain further insight into the dependence of SNPC on intrinsic
state parameters vis à vis behavioral conditions, we asked
whether coupling, analyzed so far in active wakefulness, is
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Fig. 6. Different areas display differing levels of spatial selectivity, correlated with within-area coupling in S1BF and CA1. (A) Examples of four CA1 cells’
spatial responses on the figure eight maze and their respective spatial information in bits per spike. (B) Distribution of spatial selectivity in all four
areas. (C) Spatial selectivity correlated with within-area coupling. Black lines are linear regressions on log-transformed data, only shown for significant
correlations (from left to right: ρ = −0.16, P = 0.0076; ρ = −0.11, P = 1.2; ρ = −0.38, P < 10−5; ρ = −0.38, p = < 10−5). Note that the CA1 population appears
to consist of two clusters of cells, based on their spatial selectivity. Across all images the areas are represented as green (S1BF), blue (V1), violet (PER),
orange (CA1). All correlations are quantified as Spearman’s rho. P-values in C are Bonferroni corrected for four tests.

affected by the brain state. We hypothesized that overall between-
area coupling will decrease during NREM sleep, corresponding to
decreased inter-areal communication as compared with active
TP. In addition, we hypothesized that within-area coupling
during sleep will increase relative to awake conditions. Lastly,
we expected lower levels of between-area coupling in behaviorally
active states (Olcese et al. 2016). We classified NREM sleep periods
(NREM), ITI periods, and active TP. As expected, these different
brain states show differential spiking activity, with NREM showing
significantly decreased firing rates relative to ITI and TP (Fig. S17).
First, we assessed brain state-driven differences between overall
coupling profiles, i.e. the total profile of coupling of all areas with
each other, as a 4x4 matrix. By calculating correlations between
coupling profiles during the different brain states we observed
that the total profile of coupling per session was different in
NREM conditions versus ITI and TP (Fig. 7). ITI and TP were highly
correlated, indicating no dramatic changes of the total coupling
profile between these awake states. The lowest correlations were
seen between NREM and TP, however, with a median still above
0.6, indicating that even amongst strongly different brain states,
global coupling patterns remain comparable.

The levels of within-area population coupling were selectively
affected by state, area and their interaction (Fig. 8A, Kruskal–
Wallis, P < 0.05 for all four areas separately), but remained globally
intact across all three states. Post hoc Wilcoxon’s Sign-Rank tests
indicated several significant differences per area. For the sensory
areas, coupling in NREM was slightly but significantly elevated in
S1BF. V1 displayed a reduced level of coupling in TP versus ITI,
a result not shared with S1BF. Next, PER showed higher coupling
during NREM versus the other two states. CA1 showed differences
between all three states: the highest coupling was found in ITI,
followed by TP and lastly NREM. Thus, although brain state has
an effect on coupling levels, our hypothesis on a generalized
increased within-area coupling in NREM sleep was not confirmed.
Interestingly, CA1 did show a different pattern, displaying lower
coupling in NREM.

For between-area coupling, we observed no unitary effect of
state in all areas, such as a global loss during NREM sleep in
between-area coupling (Fig. 8B, S18). In a first analysis, we found
a statistical effect of state on coupling levels (Kruskal–Wallis,
Chi-square = 106.66, P < 10−5, df = 2). Specifically, we observed a
decrease of coupling of CA1 to all three target areas during NREM,
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Fig. 7. Correlations of all coupling levels between different brain states,
for each session. For each session, correlation coefficients of entire cou-
pling profiles (i.e. all four areas with each other) for two brain states were
calculated. The awake states (ITI and TP) are very strongly correlated,
whereas NREM is significantly correlated (although less) with both awake
states. White dot: median; horizontal line: mean. NREM: non-REM sleep,
TP: task performing, ITI: inter-trial interval. Significance was assessed
with Wilcoxon’s sign-sum test: ∗∗P < 0.005, ∗∗∗P < 0.0005. P-values are
Bonferroni corrected for three tests.

which was significantly lower than ITI and TP states (Wilcoxon’s
Sign-Rank, P < 0.05). Furthermore, PERcell � S1BFpop showed an
increase in coupling in NREM sleep relative to ITI (Wilcoxon’s
Sign-Rank, P < 0.0005). However, a secondary analysis using a
bootstrap procedure (1,000 iterations, with half the data per iter-
ation used for cross-validation, comparing median distributions)
failed to confirm these differences. Thus, although there appears
to be a trend in levels of coupling from CA1 to other areas, no
definitive conclusions can be drawn here on brain-state effects
on inter-areal coupling.

Discussion
We investigated how single-neuron spike patterns correlate with
population firing activity within and between sensory cortical
and (para)hippocampal areas, with special emphasis on cross-
areal interactions. Our main findings can be summarized as
follows: (i) coupling of single neurons to their local population
was prominent across all four areas investigated, and area CA1
showed a markedly stronger within-area coupling than the other
areas (Fig. 2); (ii) between-area coupling showed broader and
more variable temporal profiles than within-area coupling (Fig. 3);
(iii) a majority of pairwise area combinations showed significant
positive correlations of within- and between-area coupling,
especially when involving area CA1 (Fig. 4, S10); (iv) broadcasting
cells were found in all four areas, where higher broadcasting
appeared uncorrelated with local coupling (Fig. 5); (v) negative
correlations were found between spatial selectivity and within-
area coupling in S1BF, PER, and CA1 (Fig. 6), and (vi) although
within-area coupling patterns were subject to modulation by the
brain state, we found no generalized strong effect of brain state on
between-area coupling values (Fig. 8b). These results characterize
the S1BF-V1-PER-CA1 system as a coherent, dynamic meta-
network with heterogeneous degrees of internal and external
coupling. In this multi-area system, coupling strengths appear
not to be governed primarily by selective information processing
expressed during behavior (e.g. spatial selectivity), but cohere

more strongly with intrinsic dynamic properties subject to non-
homogenous modulation by the brain state across cortical areas.

Within-area coupling: contrast between
hippocampus and perirhinal cortex
Our results on within-area coupling in rat cortex are largely in
line with previous reports on mouse V1 (Okun et al. 2015) and
prefrontal cortex (Okun et al. 2019). The two sensory cortical
areas we investigated, S1BF and V1, showed comparable levels
of within-area coupling, which is consistent with the general
similarity in sensory neocortical wiring conforming to principles
of canonical cortical microcircuits (Douglas and Martin 2004).
CA1 harbors densely packed, synchronized populations, acting as
a powerful dipole layer that generates high-amplitude LFPs to
which neuronal firing locks (Buzsáki 2002; Csicsvari et al. 2003;
Buzsáki 2010; Somogyi 2010; Yang et al. 2014). This rhythmic firing
could be an important factor in accounting for the strong within-
area coupling of CA1 neurons. Furthermore, the increased within-
area coupling of FS interneurons in CA1 might link to their promi-
nent role in regulating brain dynamics. Of the four areas studied,
perirhinal cortex showed the lowest level of within-area coupling,
albeit not significantly lower than V1. Although perirhinal cortex
is usually deemed to conform to canonical cortical circuitry, it
deviates in some aspects, such as a lower density of pyramidal
neurons (Kealy and Commins 2011). PER has been described as
an “inhibitory wall,” gating information flow from the neocortex
to hippocampus (Martina et al. 2001; de Curtis and Paré 2004;
Pelletier et al. 2004) and PER has been reported to lack strongly
synchronized activity (Pelletier et al. 2004). This might be reflected
in the relatively low levels of within-area coupling of PER neurons.

Between-area coupling: deviations from
predictions based on neuroanatomy
In general, between-area coupling was less strong than within-
area coupling. Secondly, between-area coupling showed a broader
temporal alignment with firing of the reference cell, spanning
up to seconds compared with the sub-second range in within-
area conditions. This difference was expected because connec-
tion probabilities decrease over longer anatomical distances
(Ercsey-Ravasz et al. 2013), the involvement of poly- instead of
monosynaptic circuitry likely increases with distance, and a given
neuron in a remote target area likely receives inputs from many
other afferent areas than from the area containing the reference
cell alone. The underlying microcircuitry is not elucidated here
and may involve “third sources” that provide common input
driving activity of both the reference cell and target population.
Indeed, population activities are likely not fully independent,
due to the strong interconnectedness of cortical areas. Yet, the
involvement of a third source does not negate this correlated
activity as being functionally relevant.

We found asymmetric coupling levels between the two sen-
sory cortical areas: V1 neurons showed significantly higher levels
of coupling with S1BF populations than from S1BF neurons to
V1 populations. (Fig. 3, S4, table 3). In line with this, a previous
study reported phase-locking of V1 neurons to LFPs recorded
from somatosensory cortex (Sieben et al. 2013). Theoretically, if
firing rates in both sensory areas were the same, it would be
statistically unlikely to have different coupling levels between two
reciprocal connections (note that firing rates did differ between
areas, e.g. Fig. S17, yet it is unknown how different firing rates
affect coupling specifically). As yet, we can only speculate why
the V1-S1BF coupling shows an asymmetry. During TP, intense
whisker and other tactile inputs may predominate over visual
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Fig. 8. Modulation of within- and between-area coupling by the brain state. (A) Violin plots of within-area coupling in the four areas in the three brain
states. White dot: median; horizontal line: mean; black dots are > 95% percentile outliers. (B) Median of between-area coupling as a function of brain
state. Error bars indicate 5–95% confidence intervals. Significance bars with symbols (e.g. the triangle) indicate which individual coupling value shows
significant differences between brain states. Horizontal black bars in the rightmost plot indicate significance between brain states for all three target
areas in question. Across all graphs, the areas are represented as green (S1BF), blue (V1), violet (PER), orange (CA1). NREM: non-REM sleep, TP: task
performing, ITI: inter-trial interval. The significance of differences between coupling values in different brain states was assessed with Wilcoxon’s Sign-
Rank test: ∗P < 0.05, ∗∗P < 0.005, ∗∗∗P < 0.0005; horizontal black bar in (B) indicates P < 0.05 for all three target areas in question. P-values are Bonferroni
corrected for the number of tests (12 in A, 48 in B).
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inputs, possibly resulting in stronger S1BF population synchrony
than in V1. As yet, however, it is too early to ascribe this difference
in coupling to sensory inputs arising during active behavior.

Strikingly, sensory cortical neurons showed higher coupling
with CA1 populations than with the anatomically more proxi-
mal and more connected perirhinal cortex. Anatomic consen-
sus holds that sensory cortical information is relayed via the
perirhinal and postrhinal cortices to the hippocampus (Deacon
et al. 1983; Burwell and Amaral 1998; Naber et al. 1999, 2000;
Witter et al. 2000; Agster and Burwell 2009; Arszovszki et al.
2014; Zakiewicz et al. 2014). A strong between-area SNPC may,
however, not only reflect sensory input to the hippocampus, but
could also express how CA1 population output correlates with
single-cell activity in sensory cortices. Such correlation might be
driven by brain-wide effectors such as sensorimotor feedback.
Likewise, the low coupling between sensory areas and perirhinal
cortex diverges from the anatomically based prediction. Again,
following the concept of PER as an “inhibitory wall,” a sensory-to-
hippocampal gating function may result in a sparsification of PER
firing patterns, and hence may result in lower levels of coupling
between PER and the sensory cortices. However, if PER would
simply function to critically suppress neocortical inputs en route to
the hippocampus, one would not expect the strong sensory-CA1
coupling like we observed (Fig. 3, S4). This strong coupling may be
most parsimoniously explained by sensory cortical-hippocampal
connections bypassing the PER (Naber et al. 1999; Agster and
Burwell 2009; Goode et al. 2020; Fiorilli et al. 2021). In general, we
note that fiber tracer studies can only provide a crude guidance in
predicting SNPC relationships; they establish global innervation
patterns but neither probe synaptic connectivity to specific cell
types, nor synaptic strength. Thus, tract-tracing and spike-based
studies reveal different aspects of interconnected networks and
are largely complementary to each other.

Turning to the involvement of putative pyramidal cells and
FS interneurons in within- and between-area coupling, we found
surprisingly few differences. Although FS interneurons generally
have only local, short-range connections, several studies on
hippocampal and rhinal regions showed FS interneurons to
project outside their area of origin (Apergis-Schoute et al. 2007;
Jinno et al. 2007; Melzer et al. 2012). A possible explanation for the
elevated between-area coupling of FS interneurons (Fig. S9) may
be their role in synchronizing pyramidal neurons, which thereby
involve these FS interneurons in between-area interactions via a
polysynaptic route. In CA1 and S1BF, interneuronal within-area
coupling was, on average, higher than for pyramidal neurons—
a result that may likewise be explained by the entraining (i.e.
temporal alignment) or synchronizing effect of interneuron
activity on mass pyramidal cell activity within the same region
(Csicsvari et al. 1999).

Within-area versus between-area coupling
For 9 out of 12 area-to-area combinations, we report significant
positive correlations for within-area versus between-area cou-
pling (Fig. 4, S10). This finding indicates that a locally coupled
cell tends to couple significantly to an external population
(Clancy et al. 2019), but it should be noted that most of
the correlations had modest Spearman’s rho values, implying
a great degree of cell-to-cell variability in the relationship
between internal and external coupling. Strong local synchrony,
corresponding to within-area correlation, would indeed be
expected to either correlate with strong afferent input to the
same area, or be conducive to driving coordinated output—in
both cases, leading to a stronger level of between-area coupling

(Stevens and Zador 1998; Zandvakili and Kohn 2016). Perirhinal
cortex was the only target population where coupling with
sensory neurons showed no significant correlation between
within- and between-area coupling. Thus, positively correlated
within- and between-area coupling does not represent a general
connectivity rule. Interestingly, although strength of within-
and between-area coupling correlate, the number of targets
significantly coupled with, i.e. the broadcasting index, did not
effect within-area coupling strengths (Fig. 5).

The “inhibitory wall” property attributed to the perirhinal cor-
tex might act to transform cortical to parahippocampal activity,
where neocortical input has a low probability of driving PER
neurons to spiking (de Curtis and Paré 2004; Pelletier et al. 2004).
This sparsification would indicate that sensory information gated
in perirhinal cortex need not be from “hub”-like sensory neu-
rons with strong local involvement, but from a broad range of
sensory cells. Furthermore, the neocortical-to-parahippocampal
transformative properties would predict that CA1 neurons also
lack within-vs-between correlation with the sensory areas. How-
ever, CA1 neurons coupling with S1BF and V1 showed overall posi-
tive correlations. Although this might be explained by differential
pathways of information transfer from neocortex to hippocampus
(Somogyi 2010), the exact neuronal variables driving the differ-
ences in between-area coupling remain unknown.

Negative correlation between spatial selectivity
and SNPC
The negative correlation we found between spatial selectivity
and local population coupling of CA1 neurons was mirrored by
similar findings in S1BF and PER (Fig. 6). At first sight, this neg-
ative relationship may seem surprising, but a strong functional
connectivity of a given neuron to its local population may well be
accompanied by a plethora of mixed inputs to this neuron, pre-
venting it from generating a highly specific spatial code. Indeed,
a recent study found synaptic glutamatergic input to non-place
cells to be slightly but significantly higher than place cells (Adoff
et al. 2021). Secondly, our findings indicate that high within-area
SNPC is not driven by local neurons with high spatial selectivity.
Had within-area coupling been driven by the animal’s locomotor
behavior leading to sequential activation of place cells in CA1,
then a positive correlation would have been expected. Thus, SNPC
in areas CA1 and S1BF is not strongly determined by cognitive
computations underlying place tuning.

Modulation of population coupling by brain state
We report several differences in SNPC between awake (i.e. task-
performing and non-performing states) and NREM sleep. First, the
high correlation between the active and resting (ITI) awake states
indicates that overt behavior has little effect on general patterns
of coupling between brain areas, despite the need for sensory
processing, goal-directed behavior, and reward expectation and
consumption in the active state. The paradigm task at hand
is unsuitable to investigate sensory processing and coupling in
more detail. Furthermore, although within-area coupling patterns
differed between the NREM condition and awake states, the corre-
lation between these states was far from abolished, with average
correlations in the range of 0.6 to 0.7. Thus, when comparing
different brain states, coupling remains to a large extent driven
by internal dynamics and not by sensorimotor inputs. During
NREM sleep, we expected a general decrease in between-area
coupling, but an increase in within-area coupling (Olcese et al.
2016). Within-area coupling indeed increased during sleep in most
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areas, with CA1 being an exception. Furthermore, we did not find
a clear decrease of between-area coupling between areas.

Although it is known that brain states affect the firing rate
(Vyazovskiy et al. 2009; Fig. S17), coupling need not be directly
affected by absolute changes in firing rate if neurons fire less but
still in temporal alignment. Notably, our SNPC measure was cor-
rected for changes in baseline firing rate. The slow waves typical
of NREM sleep show ON and OFF periods with high-intensity firing
and synchronization during the ON periods (Vyazovskiy et al.
2009), but lower firing rate when both periods were combined.
This coincides with increased within-area coupling during NREM
sleep as shown here, as SNPC is dominated by synchronous peri-
ods without being affected by prolonged periods of silence. The
overall lack of effect of brain states on between-area coupling sug-
gests that, at least for cortical areas, population coupling may to a
large extent be governed by hard-wired connectivity and remains
relatively stable between conditions of varying neural activity.

Our data reveal a decrease in within-area coupling in hip-
pocampus during NREM sleep, and suggested a trend of decreased
hippocampal coupling to neocortical areas, although our analysis
could not confirm the latter result based on an additional boot-
strapping test. A mechanism proposed for memory consolidation
during sleep posits that, during NREM sleep, widespread slow
oscillatory activity coupled with hippocampal sharp-wave ripples
is necessary to bind elements coded by cortical and hippocam-
pal networks (Buzsáki and Draguhn 2004; Ji and Wilson, 2006;
Battaglia et al. 2011). However, we found no evidence of overall
coupling increase in average levels of coupling during NREM sleep.
During sleep, precise reactivation between hippocampus and cor-
tex during sharp wave ripples would predict stronger levels of
coupling (Rothschild et al. 2017; Skelin et al. 2019), but apart
from these brief events, predominantly desynchronized activity
(LIA) is found in area CA1 during NREM sleep, compatible with
the reported decrease in within-area CA1 coupling (Fig. 8A), as
well as with the absence of a strong decrease in CA1-neocortical
population coupling (Fig. 8B).

Although the loss of cortical integration has been theorized to
be an integral part of the loss of consciousness (Massimini et al.
2005; Alkire et al. 2008), the current data on NREM sleep suggest
that on the cell-to-population level, such a loss of integration is
not clearly shown. Olcese et al. (2016) showed different results
using a nonlinear, information-theoretical measure of functional
connectivity, highlighting that different levels of processing at
ascending scales of brain function paint varying pictures of brain
state effects on functional connectivity. Further elucidation at
the level of single neurons, cellular subtypes, distinct states and
sub-states (e.g. up or down states) are needed to further progress
on this subject.

Broadcasting cells and the implications for
conceptualizing meta-networks
Our findings offer a glimpse on the structure and functioning
of meta-networks, which may serve to outline a theoretical
framework for interpreting the current findings. Meta-networks
have been postulated to exist, based on the notion that
higher perceptual and cognitive functions likely depend on the
cooperation between multiple brains areas, achieving a higher
order of integration than can be achieved by single structures
operating in isolation (Pennartz 2015, 2022; cf. Buzsáki 1989;
Eichenbaum 2000). The current results may offer some initial
insights into several principles by which meta-networks may
operate.

First, the observation of positive correlations between internal
and external coupling gave rise to the hypothesis that broad-
casting or “hub” cells may exist—neurons significantly coupled
to more than one area. Such cells were indeed identified in all
four areas, and especially neurons with an index of three were
more often found than expected by chance. The distribution of
broadcasting indices did not vary greatly between areas and did
not markedly differ between different cell types (Fig. S12). Widely
broadcasting cells might indicate important synchronizing nodes
in a small-world-like network (Watts and Strogatz 1998; Bassett
and Bullmore 2017). Because broadcasters engage in synchroniz-
ing relationships with multi-area populations, they may function
to integrate information, and dynamically coordinate activity in
single-area networks, thus contributing to the formation of meta-
networks (Pennartz 2015) or network-of-networks (e.g. Havlin
et al. 2015). Notably, broadcasting cells did not show strong within-
area coupling, indicating that involvement in the local circuit does
not correlate with a cell’s broadcasting properties. If, however,
broadcasting cells are sufficiently connected to neurons with
strong within-area coupling, then such internal coupling can still
influence spiking synchronization in multiple connected areas.

Second, even within the four-area configuration we exam-
ined, the heterogeneity in SNPC relationships was remarkably
high, as illustrated by the lack of a common positive correlation
between within- and between-area SNPC amongst pairwise area-
to-area comparisons. As yet, the extraction of “common rules” for
dynamic SNPC coupling thus remains elusive. Instead, our find-
ings suggest that heterogeneity may reflect a fundamental char-
acteristic of meta-networks in the brain, arising in association
with unique functions exerted by individual brain areas within
the larger network. This heterogeneity is revealed, for instance,
by the diversity of within-area coupling changes associated with
transitions between brain states (Fig. 8).

Finally, it is appropriate to re-examine what the functional
significance of SNPC may be as regards information coding and
transmission in multi-area networks. As SNPC correlated neg-
atively with specific information-coding—illustrated here espe-
cially by the spatial selectivity of CA1 cells—this result is most
parsimoniously interpreted as an expression of intrinsic network
dynamics, offering a time-averaged window on cell-to-population
synchronization. Our findings show that single neurons not only
synchronize with their local network, but also with other popu-
lations in the hippocampal-neocortical network, and may thus
primarily function in dynamically organizing communication in
such large, cross-areal systems. However, when one adopts the
reverse perspective and focuses on those cells that do not conform
to the population firing regime (“soloists”; Okun et al. 2015), one
does identify subgroups of neurons having specific information-
processing functions. Desynchronized from internal and/or exter-
nal networks as these cells are, they may guarantee a required
level of sparse neural coding (Goltstein et al. 2015) and prevent
the overall network from reaching a state of hyperstability dur-
ing wakefulness. Thus, our findings support the adagium “less
coupling means more coding” (or, in a more popularized and
speculative rhyme, “less syncing means more thinking”). In a
similar vein, but now in the context of (conscious) perception,
they also plea against the idea that more “integration” (as indi-
cated by stronger coupling, given sufficient heterogeneity or dif-
ferentiation) would imply more experienced content (cf. Tononi
et al. 2016), but instead favor the notion of sparsely synchro-
nized, distributed ensembles as coding perceptual experience
(Jadhav et al. 2009; Harris et al. 2011; Goltstein et al. 2015; Pennartz
2015, 2022). Therefore, non-coupled cell groups form an intriguing
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target of future investigations of ensemble behavior during wake-
ful, conscious processing, characterized by a desynchronization of
the EEG (Destexhe et al. 1999).
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