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Accurately measuring and quantifying the underlying interactions between brain areas is crucial for understand-
ing the flow of information in the brain. Of particular interest in the field of electrophysiology is the analysis and
characterization of the spectral properties of these interactions. Coherence and Granger-Geweke causality are
well-established, commonly used methods for quantifying inter-areal interactions, and are thought to reflect the
strength of inter-areal interactions. Here we show that the application of both methods to bidirectional systems

with transmission delays is problematic, especially for coherence. Under certain circumstances, coherence can
be completely abolished despite there being a true underlying interaction. This problem occurs due to interfer-
ence caused in the computation of coherence, and is an artifact of the method. We motivate an understanding of
the problem through computational modelling and numerical simulations. In addition, we have developed two
methods that can recover the true bidirectional interactions in the presence of transmission delays.

1. Introduction

A primary interest in neuroscience, particularly in the fields of fMRI
and electrophysiology, is characterizing the neural correlates of func-
tional connectivity and information flow between neuronal populations.
In practice, researchers often rely on methods that quantify the sta-
tistical dependencies between time-series data (Pesaran et al., 2018).
These statistical dependencies are often quantified with either coher-
ence, an undirected measure of the dependencies, or Granger-causality,
a directed measure of the dependencies. The understanding is that the
statistical dependencies quantified by coherence and Granger-causality
arise as a direct result of the functional interactions and propagation
of signals between anatomically connected brain areas (Pesaran et al.,
2018; Schneider et al., 2021). It follows then that differences in coher-
ence and Granger-causality are typically interpreted as reflecting true
differences in either the strength of inter-areal (network) interactions,
or properties of the transmitted signals (Bastos et al., 2015a; Vezoli et al.,
2021). Indeed, we note that both coherence and Granger-causality can
be informative for analyzing the statistical dependencies in relatively
noise-free unidirectional systems. However, neural data is not noise free
and brain areas are reciprocally connected.

For instance, anatomical studies in non-human primates have found
that the large majority inter-areal connections are reciprocal in nature
(Markov et al., 2014a). Thus, with regard to the methods, this system
is expected to be bidirectional with variable transmission delays (i.e.,
causal). Furthermore, transmission delays will not only depend on fac-
tors such as white matter distance, and conduction delays (due to the
fiber diameter and myelination), but also factors such as membrane time
constants (which also depend on conductance states), neuromodulators
and receptor mechanisms (e.g., NMDA vs. AMPA) (Bucher and Goail-
lard, 2011; Destexhe et al., 2003; Tsodyks and Markram, 1997). Al-
though it is assumed that coherence is invariant to transmission delays
(i.e., a constant phase delay), we show that this does not hold for bidi-
rectional systems with transmission delays. Surprisingly, we found that
coherence and Granger-causality are highly dependent on transmission
delays even when the inter-areal interactions were otherwise identical.

The reason bidirectional communication with delays is problematic
for coherence can be understood by recognizing that the cross-spectral
density (CSD) is the Fourier transform of the cross-covariance function.
Because the cross-covariance that arises with bidirectional interactions
contains two peaks separated by the total transmission delay, the Fourier
transform will completely cancel for frequencies where the peak sepa-

Abbreviations: AR, Autoregressive; CSD, Cross-spectral density; E-I, Excitatory-Inhibitory; FB, Feedback; FF, Feedforward; FIR, Finite impulse response; LFP, Local
field potential; GGC, Granger-Geweke causality; PLV, Phase locking value; PSD, Power spectral density; PUC, Proportion of unidirectional coherence; TCC, Truncated

cross-covariance; VAR, Vector autoregressive.
* Corresponding authors.

E-mail addresses: jarrod.dowdall@gmail.com (J.R. Dowdall), martin.vinck@esi-frankfurt.de (M. Vinck).

https://doi.org/10.1016/j.neuroimage.2023.119998.

Received 20 August 2022; Received in revised form 5 February 2023; Accepted 27 February 2023

Available online 28 February 2023.

1053-8119/© 2023 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.neuroimage.2023.119998
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.119998&domain=pdf
mailto:jarrod.dowdall@gmail.com
mailto:martin.vinck@esi-frankfurt.de
https://doi.org/10.1016/j.neuroimage.2023.119998
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.R. Dowdall and M. Vinck

ration is a half-integer multiple of the cycle length. In fact, the only
frequencies that do not exhibit some amount of interference are those
where the cycle length is an exact integer multiple of the total transmis-
sion delay. It is important to emphasize here that this is a failure of the
method (coherence) to capture the true underlying inter-areal interac-
tions, rather than interference at the level of the communicating areas.
That is, this interference is purely a consequence of the method, and is
an artifact.

The implication is that differences in coherence and Granger-
causality cannot be interpreted to be strictly the result of differences
in inter-areal communication. However, given certain assumptions on
the activity of each area and the transmitted signals, we show that it is
possible to recover the underlying bidirectional interactions despite the
transmission delays. To that end, we developed two methods for quan-
tifying inter-areal in bidirectional systems with transmission delays.

2. Methods
2.1. Bidirectional source mixing model

We modelled the activity of each area, x; and x,, as the superposition
of the intrinsic activity, additive 1/ f, and the activity received from the
other area weighted by the inter-areal connectivity strength, w,; and
w),, and delayed by 7 to reflect the transmission delay,

x(lom)[n] = x(li"f)[n] + wy; xgm)[n —zl+nnl, 1

x5t = "+ wi X"l = 7]+ gl @

where 7 is a term containing 1/ f fluctuations.

Note, in all simulations shown here, w,, = w;, and = was the same
in both directions.

The intrinsic activity in each area was described by a pseudo-periodic
second order autoregressive model (AR(2)),

X0rn) = a0 = 17+ a,x ™0 = 2] + ¢, [n], 3)

X0 = ayy x™n = 1]+ ayxi™[n - 21 + & [n]. 4)

Here, ¢[f] is the stochastic drive of the system, and e[t] = N'(u, 6%). We
chose to model the intrinsic activity in each area using pseudo-periodic
AR(2) models because they have been shown to reproduce the statistical
properties of stationary gamma oscillations in primary visual cortex, and
provide mean-field approximations of E-I circuits driven by stochastic
input (Spyropoulos et al., 2022). Note, only the oscillatory part of each
area was transmitted (i.e., not the background 1/ f), which follows from
the empirical observations that coherence spectra are peaked, suggest-
ing that only the oscillatory activity in the sender is coherent with the
receiver (Schneider et al., 2021).

2.2. Parameters of the auto-regressive models

The following equations were used to determine the coefficients of
the AR(2) models given the desired peak frequency and bandwidth:

4 a) cos(w,,,,)

= 5
i a, — 1 ’ ©)
a, = —R?, (6)
where w,,, is the peak frequency in radians, and R is the moduli of

the models complex roots and controls the bandwidth of the pseudo-
periodic oscillations.
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The following equation was used to determine the variance of the
white-noise process for the desired peak power S, in the power spec-
tral density (PSD) at the peak frequency w

l'ﬂElX:

g (R- 1)? (R* = 208230 R2 + 1) -
o= s

cm (R2+1)°

which can be derived from substituting Eq. (5) and Eq. (6) into Eq. (24).
2.3. Analytical description of the interference pattern

In the Source Mixing model the observed PSDs of x, and x, are:

S = S+ wrSH (), @®
S = SE0) +wr S, ©

omitting background 1/ and letting w = w,, = w,, for brevity.
In the case of instantaneous transmission (i.e., = = 0), the CSD is
given by:

Si(f) =w STV +w ST (f). (10)

Note, this assumes the intrinsic signals in each area are uncorrelated.
The transmission delay leads to a phase shift in the projected signal
relative to the intrinsic signal such that the CSD becomes:

Sia(f) = w STV + 1w ST (f) e AT an
where Az is the total transmission delay in seconds.

Note that
1SN = RSN + (S () (12)

Given that szi‘;m" )(f) is strictly real-valued, it follows that

1S20NF = (wST ) +wsE () COS(ZﬂfAT)>2

. 2

+ (wSE () sin@rran) (13)

which becomes
. 2 . 2

12N = (ST () + (wSEP () -

+ 2w SED()SLD(f) cos@r fAT). (14)
If SCroi(f) = S0 (f) = S (f), then Eq. (14) reduces to
1S12(NIP = 2w SPD(f)*(1 + cos2r f At)). (15)

Thus, the total transmission delay introduces a complex term in the
CSD that reflects the phase difference between the two transmitted sig-
nals per frequency as a function of the total transmission delay.

The net result is the sum of the transmitted signals depends on the
magnitude of the real part of e~'/2747 as seen in Eq. (15), which ex-
plains why the pattern of interference across frequencies manifests as
a cosine function. Thus, there is no interference at frequency f where
cos(f2x A7) = 1, and maximal interference when cos(f2z A7) = —1.

2.4. Method 1: Truncated cross-covariance

The truncated cross-covariance (TCC) method is a naive approach
that assumes the signals projected from one area to the other will cause
peaks in the cross-covariance function at opposite lags.

In this case, it is possible to partially isolate the influence of one
area on another by multiplying the cross-covariance with a Heaviside
step function © before applying the Fourier transform to derive the cross
spectral density for computing directional coherence measure.

Thus, the directed cross-spectral densities are computed as follows:

Sx]—>x2 = F<512(T)®x]—>x2(7")) (16)
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and
Supony = F (5200, @), an
where s, () is the cross-covariance function
512(0) = E[x,[7] x,[t — 7] (18)
and

1, >0
0,5, (1) 1= {0’ <0 (19)
and

._J0, >0
0Oy, (1) 1= {1’ <0, (20)
Then the TCC estimate of the directed coherence is
c ) = 18,0, |2 o
MRS () Sp(f)

|SX2*>X] |2

Cryox, () = (22)

SN SN’

2.5. Method 2: Model fit

The following additive model (sum of a spectral peak, AR(2) model,
and background 1/ f) was fit to the observed power spectral density us-
ing non-linear least squares regression (using 1sqnonlin()) in Mat-
lab):

Sops (@) = Speqi (@) + n(@), (23)

where S, (@) is the power spectrum of the AR(2) and #(w) is the power
spectrum of the 1/f component.
The power spectral density of the AR(2) was given by the equation

o2

2, 2 ’ @4
1+ ay+a; - 2a;(1 — ay) cos(w) — 2a, cos(2w)

S peak (w) =

where a; and a, are the coefficients of the auto-regressive model, 2 is
a scaling factor, and w € [0, x] is the frequency in radians.
And the power spectral density of 1/ component given by

n(w) =g”*, (25)

where g € (0, o) is a gain factor that scales the 1/ f spectrum, a € [-2,0]
reflects the slope, and w € [0, ] is the frequency in radians per sample.

To fit the auto-covariance functions to the observed cross-covariance
we followed these steps:

1. Each area’s auto-covariance function, s;;(z) and s,,(r), were esti-
mated from the parameters of the AR(2) coefficients of the model
fit.

2. The individual auto-covariance functions were lag-shifted in their
respective direction according to biophysically reasonable 7 (e.g., 0
to 10 ms) (Ferraina et al., 2002; Miller, 1975; Swadlow et al., 1978).

3. The individual auto-covariance functions were then differently
weighted by 6, and summed to produce an estimate cross-covariance
function, §,(z), as follows

S12(0) = 8511 (0) + (1 = 8) s0(7),, (26)

where § € [0, 1]. In practice this step is necessary when w;, # w,;.
However, for these simulations it was not strictly necessary as the
connectivity weights were always equal in both directions (i.e., w =
0.5).
4. For each (z, §), we correlated the estimate cross-covariance with the
observed cross-covariance to determine the best fit as follows:
E[S12(0) 5150
= 2 2 @n
E[S12(0)] E[s15(2)]
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The best fit (determined by the maximum correlation coefficient p
over all 7 and §) was taken as reflecting the underlying transmission
delay. For simplicity, we assumed that r was approximately equal
in each direction (note, fitting unequal delays would require the ad-
ditional step of taking the max cross-correlation across all lags and
7).

5. To estimate the connectivity weights w, and w,,, we first estimated
the total combined connectivity weight as follows

p[E[(Sn(T))Z]
[E[(§12(T))2] .

Note, this is simply a re-scaling through a ratio of energies, and p
forces the weight to the linearly correlated portion of the ratio.

6. Lastly, the total connectivity weight was divided into the connectiv-
ity weights for each direction according to the 6 of the best fit as
follows:

Wioal = (28)

Wiy = & Wygrar » 29)

Wy = (1= 8) Dypyy - (30)

2.5.1. Approach to fitting the PSD

We noted two strategies that assisted in fitting the power spectral
densities. One caveat of power spectral analysis is that power of each ad-
ditive component is unevenly distributed across frequencies. This leads
to difficulties fitting each component of the PSD as it implies that the
information for each component is not uniformly distributed across fre-
quencies (i.e., each frequency contains a different ratio of power from
each component). For instance, when the spectral peaks are narrow
band, the frequency range that contains the most information useful
for fitting that peak is also limited to a narrow frequency range. In this
case, fitting the model over a wide frequency range may fit the 1/ f com-
ponent well, but miss the spectral peak altogether. Whereas, when the
spectral peak is broadband it is necessary to fit the model over a much
wider frequency range in order to accurately estimate both the 1/ and
spectral peak.

In practice, it is possible to overcome this problem by visually in-
specting the PSD to pre-determine an appropriate frequency range that
balances the information used to fit both components. However, be-
cause we aimed to fit the spectrum across a wide range of possible spec-
tral peaks (from very broadband to very narrow), we needed a more
general approach that would perform well regardless of the bandwidth
of each component. We found that fitting the PSD over multiple (pre-
determined but fixed) frequency ranges, and selecting the best overall
fit (minimum L1 norm), performed nearly equally well across spectra
with very different bandwidths. We further refined this fit, by using it
to set the initial conditions of a fit over a very wide frequency range,
[5, 600] Hz. In all cases, the fit that minimized the L1 norm over the
frequency range [5, 600] Hz was taken as the best fit.

The second strategy we employed was repeating the multiple band-
width fitting procedure each time with random initial conditions (we
found 35 random initializations were sufficient). As with the multiple
bandwidth fit, the best fit (as determined by the L1 norm) across all ini-
tial conditions was retained. Thus, the final fit was the fit that minimized
L1 norm over the frequency interval [5, 600] Hz. We did not perform
any additional checks on the quality of the fit as these two approaches
combined were sufficient to accurately fit both the spectral peak and
1/f components across a wide range of spectral bandwidths.

2.6. Proportion of unidirectional coherence (PUC)

We assessed the ability of each method to recover the true unidirec-
tional coherence (defined analytically) by quantifying the proportion of
unidirectional coherence (PUC) each method was able to recover.
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For the source mixing model, the expected unidirectional coherence
is:
; 2
w? | S0

T T €D
SRR

Cx1—>x2(f) =

. 2
w? |57
SOV SL(f)

The proportion of unidirectional coherence (PUC) was defined as

Copeny(N) = (32)

~ 2
S (Comn D = E ()
PUC =1- T , (33)
T (D)

where 6xﬁx2( f) is the estimated unidirectional coherence from either
method. For both methods PUC was computed over the frequency range

of 5 to 120 Hz.

2.7. Bivariate vector autoregressive model

To demonstrate that the interference in coherence due to transmis-
sion delays was not dependent on the source mixing model, we simu-
lated two bidirectionally coupled areas with bivariate vector autoregres-
sive (VAR) models:

X1 = a1 X T A Xy g+ Wy X T €1, (34)

Xpp = Ay Xy F A X+ Wi X 6y (35)

The parameters of the VAR simulations were otherwise identical to
the source mixing simulations shown in Fig. 1, which included the model
coefficients for the AR(2) models as well as the 1/f background fluctu-
ations. The only difference was the connectivity weight for both areas
was adjusted to make the VAR model stable (w = 0.0015).

2.8. Background 1/ f fluctuations and numerical simulations

Note that in the presence of 1/ f fluctuations we can describe
xXO[e] = X[ + ], (36)

where 7 is a background term containing 1/ f fluctuations. We assumed
that these 1/ f fluctuations were not projected, and uncorrelated with
each area’s intrinsic activity.

The power spectrum of 1/f is approximately equal to the inverse of
the frequency

1
S —=. 37
(f) 7 37
We simulated the 1/f spectrum according to
S(f) = %P, (3%

then inverse Fourier transformed the spectrum to arrive at the time-
domain coefficients of an N order FIR filter, where N was equal to the
number of samples in each simulated time series epoch. For all simula-
tions that included background 1/f, f, was set to the receiver’s peak
frequency (60 Hz) and P =31,

The sampling rate for all simulations was fs =2000. The epoch
length was 1001 samples, 2500 independent epochs were generated for
each run of a simulation, and 15 independent runs of each simulation
were generated and then averaged to get a central estimate of the power,
coherence and Granger-causality spectra.
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3. Results

Our primary question was how inter-areal transmission delays
lead to changes in the coherence between two areas with bidirec-
tional communication. We modelled inter-areal interactions with the
Source Mixing model (see Section 2.1) (Schneider et al., 2021). In
the Source Mixing model, the observed signal in each area is com-
posed of its intrinsic signal plus the transmitted signal received from
the other area. The primary advantage of the Source Mixing model is
there is no recurrent coupling that could potentially lead to intrinsic
interference.

The Source Mixing model has been previously shown to account for
changes in inter-areal coherence as a result of a complementary change
in the oscillatory power of the source projecting area (Schneider et al.,
2021). However, these results focused on the specific case of unidi-
rectional communication between two brain areas. In the case of uni-
directional communication, the magnitude of coherence is unaffected
by transmission delays. However, the anatomical connectivity between
brain areas is typically reciprocal (Chaudhuri et al., 2015; Markov et al.,
2014b; Vezoli et al., 2021).

3.1. Coherence depends on inter-areal transmission delays

To investigate the influence of transmission delays on the magnitude
of inter-areal coherence, we simulated the local field potential (LFP)
of two bidirectionally connected brain areas with quasi-periodic causal
autoregressive (AR) models. Note, the main result of these simulations,
namely that coherence depends on transmission delays, is not dependent
on AR models. In fact, coherence also shows a dependence on trans-
mission delays for white-noise signals (see Fig. 2a). Thus, the results
presented here generalize to all systems with bidirectional communi-
cation and transmission delays. We further note that this problem can
also occur at the level of spiking signals when computing spike-field and
spike-spike correlations.

We simulated two bidirectionally connected areas (x; and x,) with
equal connectivity weights (w = 0.15), and increased the transmission
delay, 7, from O to 5 ms (Fig. 1a). Coherence and Granger-Geweke
causality were computed between the observed signals of each area,
which were the superposition of the intrinsic activity of that area, the
input from the other area and additive 1/ f background fluctuation (see
Section 2.1). Note the intrinsic oscillations and background 1/ in both
areas were all independent and uncorrelated (i.e., there was no syn-
chronization or coupling between oscillators, thus the only source of
coherence were the transmitted signals). For all simulations, we set
Ty =xy under the assumption that the transmission delay be-
tween the two bidirectionally coupled areas would be approximately
equal in both directions. However, it should be noted that the relevant
metric for the effect on coherence is the total transmission delay between
the two areas, i.e., At = 7, ., + 7, ., The power spectral densities of
x; and x, overlapped, but with a slight shift in the peak frequency (60
and 65 Hz, respectively, see Fig. 1b). Note, the peak frequency shift
serves to illustrate that it is not necessary that the transmitted signals
have exactly the same peak frequency, however some spectral overlap
is necessary.

We observed that increasing the transmission delay (z) led to a de-
crease in the magnitude of coherence (Fig. 1c). A similar pattern of in-
terference was also observed for phase locking value (PLV) (Fig. 1d).
The maximum decrease in coherence (and PLV) occurred for © = 4 ms,
and resulted in a visible dip at 62.5 Hz. Importantly, due to the nature
of the simulated model, this change in coherence cannot be explained
by a change in power, connectivity weight, nor a shift in the peak fre-
quencies, and therefore does not reflect a true change in the strength of
the interaction between these areas.

We considered the possibility that Granger-Geweke causality (GGC)
analysis may be able to recover the inter-areal interactions indepen-
dent of transmission delays (i.e., the spectral influence of x; — x, and

= Txl<—x2
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Fig. 1. Bidirectional communication with inter-areal delays. Comparison between two reciprocally connected areas with different transmission delays (z) using the
Source Mixing model. (a) Source Mixing model circuit diagram. For these simulations, both areas were reciprocally connected with the same connectivity weight
was w = 0.15. Only the intrinsic gamma-band oscillations in each area (peak frequency at 60 Hz for x, and 65 Hz for x,) were projected. These simulations included
additive 1/f background fluctuations, which were uncorrelated with the gamma-band oscillations. (b) The observed power spectra for x, and x, (blue and red
lines, respectively) contains both the intrinsic gamma-band activity in each area, additive 1/f background fluctuations, and the projected signal from the other area
(weighted by the connectivity weight). The power of the intrinsic gamma-band activity and 1/f background fluctuations were identical for both areas. Note, both
the intrinsic gamma-band activity and 1/f background fluctuations were uncorrelated between each area. That is, the only part of the activity in each area that
was correlated with the other area was the projected signal. (c) The coherence spectra between x; and x, for = between 0 and 5 ms. Note, an interference pattern
emerges with increasing transmission delay, which appears maximal for a r = 4 ms with a sharp dip at 62.5 Hz. (d) Phase locking value (PLV) between x, and x, for
7 between 0 and 5 ms. Note, an interference pattern emerges with increasing transmission delay, similar to coherence, and also appears maximal at 4 ms delay and
~ 62 Hz. (e) The non-parametric Granger-Geweke causality (GGC) spectra for x; to x,. (f) The non-parametric GGC spectra for x, to x,. (g) The instantaneous GGC
spectra between x, and x,. Notice that the instantaneous GGC is negative for some frequencies. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

X| < x,) (Dhamala et al., 2018). Although GGC did not show the dip at
62.5 Hz observed in coherence, GGC did decrease with increasing trans-
mission delay (Fig. le-g). However, we note that when no 1/f back-
ground fluctuations were added to the observed time series, Granger-
causality did not depend on the transmission delay (see Fig. Sle-g).
Nonetheless, these results indicate that both coherence and GGC are
dependent on transmission delays in systems with bidirectional com-
munication and additive noise.

3.2. The source of the interference

The pattern of coherence that results from varying transmission de-
lays is due to interference in the cross-covariance function. To under-
stand why this effect occurs, we note that the cross spectral density
(CSD) can be computed by taking the Fourier transform of the cross-
covariance function. In Fig. 2, we have illustrated the procedure of com-
puting the Fourier transform on the cross-covariance function for two
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Fig. 2. Comparison of weak versus strong auto-correlation of the transmitted signals. (a) Auto-covariance functions for x, (blue) and x, (red) and cross-covariance
(black) function for a bidirectional system with intrinsic signals modelled as zero-mean white-noise process (i.e., no auto-correlation). The connectivity weights,
w = 0.15, and transmission delays = = 4 ms, were equal for both directions. (b) The same as in panel a, but with strongly auto-correlated signals. The intrinsic signals
in this example were modelled as AR(2) processes, both with the same peak frequency at 62 Hz (w,,,), and R = 0.98. The auto-covariance and cross-covariance
functions are plotted normalized to the overall max. Note, unlike the white-noise process shown in panel a, the magnitude of the cross-covariance for strongly
auto-correlated signals with an anti-phase relationship is significantly reduced due to interference. (c-d) Respective cross-covariance functions (black) showing a
cosine (dashed line) function superimposed (cos(2z f[t — 7]), where f = 62.5 Hz and = = 4 ms.). The cross-covariance functions are plotted according to their max,
and the cosine function illustrates the effect of the basis functions of the Fourier transform. (e-f) Example simulated time series of the intrinsic signals of area x,
for the white-noise process and AR(2), respectively. (g-h) Observed power spectra (note, x, and x, overlap in both examples). (i-j) Coherence spectra for the white-
noise process and AR(2), respectively. The vertical dashed line indicates the first frequency of maximal interference (i.e., 62.5 Hz). Note, despite distinctly different
power spectra between the two examples shown here, their coherence spectra are identical, and show a cosine modulation across frequencies that depends on the
transmission delay (4 ms). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pairs of areas with contrasting power spectra, i.e., flat versus peaked
power spectra. For this illustration, we simulated two pairs of areas with
bidirectional communication, equal connectivity weight w = 0.15, and
a fixed transmission delay in both directions r = 4 ms. For the purposes
of illustrating the cause of the effect we omitted the additive 1/f back-
ground fluctuations in these simulations. The only difference between
these two pairs of areas was the auto-correlation of their intrinsic sig-
nals. Thus, each pair reflects one extreme of autocorrelation that the
transmitted signals between two area could have (that is, anywhere from
weak or no auto-correlation up to strong auto-correlation, Fig. 2a vs. b
respectively).

In the case where the signals transmitted between each area are seri-
ally uncorrelated (i.e., have white noise statistics), the cross-covariance
function shows two delta peaks at +r lags reflecting the transmission
of two serially uncorrelated signals in each direction (Fig. 2a). Because
the transmitted signals have equal power at all frequencies, coherence
should be a constant across all frequencies. However, the coherence

shows an interference pattern that is maximal at frequencies where
2. fAr =1, where Az is the total transmission delay in seconds (see
Section 2.3). Thus, in the absence of additive noise, the coherence spec-
tra appear as a cosine modulation across frequencies whose frequency
depends on the total transmission delay (Fig. 2i).

One way to understand this interference pattern is to envision the
sum of two cosine waves each centered on one of the two peaks in the
cross-covariance function (see Fig. 2c¢). It can be seen that the superpo-
sition of two cosines that are each shifted by z = 0.25 - (cycle duration)
will maximally interfere as they are in anti-phase with respect to each
another. Thus, for weakly auto-correlated signals, the interference pat-
tern occurs, because the basis functions underlying the Fourier trans-
form are sines and cosines. Importantly, this particular example exem-
plifies the nature of the problem, namely that the interference is the
result of the method rather than a true modulation in the strength of
the inter-areal communication.
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In the second example, we considered the case where the transmit-
ted signals were strongly auto-correlated. For these simulations we mod-
elled the intrinsic activity of each area with AR(2) models that produced
relatively strong pseudo-periodic oscillations with a center frequency of
62 Hz. The same AR(2) coefficients were used for both areas, and as
in the previous example, they had equal connectivity weights w = 0.15,
and a fixed transmission delay in both directions r = 4 ms. Note that
although both areas were spectrally similar (i.e., identical AR(2) model
coefficients), the white-noise processes used to drive each model were
independent and uncorrelated, and thus so were the intrinsic signals of
each area. In this second example, it is apparent that there is an ad-
ditional source for the interference, which in this case occurs at the
level of the cross-covariance function itself (see Fig. 2b). Because the
cross-covariance function is the sum of the individual unidirectional
cross-covariance functions, it follows that the superposition of two uni-
directional cross-covariance functions that are in anti-phase will result
in destructive interference. Thus, the stronger the auto-correlation, the
more the individual unidirectional cross-covariance functions overlap
in the cross-covariance function. Taken to its extreme, this result im-
plies that the cross-covariance function between two areas with bidirec-
tional transmission of equal magnitude cosine waves with a frequency
of 62.5 Hz and a transmission delay of 4 ms will be entirely flat. One
may suspect, especially in this extreme example, that the modulation in
coherence is somehow the result of interference between the intrinsic
signal in one area and the transmitted signal it receives from the other.
However, it important to remember that in these simulations the intrin-
sic signals, and likewise the signals each area transmitted to the other,
were strictly uncorrelated between the two areas. More plainly, there
was no systematic phase relationship between the intrinsic activity of
one area and the signal received from the other, and as such there was
no interference at the level of the communication between areas.

These two examples clearly illustrate that this dependence of coher-
ence on transmission delays is strictly methodological. In the case of
weak auto-correlation, the interference occurs primarily at the level of
the Fourier transform, and in the case of strong auto-correlation the in-
terference can occur both in the cross-covariance function and Fourier
transform.

3.3. The truncated cross-covariance method

We aimed to develop a method that could recover the underlying
inter-areal interaction independent of the transmission delays. As a first
naive approach, we reasoned that it should be possible to isolate the di-
rected influences by appropriately truncating (or windowing) the cross-
covariance function. The observation that weakly auto-correlated sig-
nals do not, or at least minimally, interfere with each other in the cross-
covariance function given sufficient transmission delays, suggests that
windowing the cross-covariance function based on the sign of lags may
be sufficient to recover the directional influences in most cases. We refer
to this approach as the truncated cross-covariance (TCC) method.

To that end, we multiplied the cross-covariance with a step func-
tion, a Heaviside conditional on the sign of the lags, and then applied
the Fourier transform to estimate the cross-spectral density of the direc-
tional influences. Coherence can then be computed using this windowed
estimate of the cross-spectral density (see Section 2.4). Note, TCC pro-
vides two estimates of directed coherence, one for each direction, based
on the sign of the lags for which the Heaviside was equal to 1.

Given the transmitted signals show minimal overlap in the cross-
covariance, the TCC method should approximate the coherence that
would have occurred if the communication was unidirectional in each
direction. Therefore, the effectiveness of the TCC method is expected
to be highly dependent on auto-correlation structure of the transmit-
ted signals, and to a lesser extent the transmission delay. To gain an
understanding of the range signals over which the TCC is effective, we
repeated the simulation depicted in Fig. 1a, but for fixed the transmis-
sion delay, and instead varied the auto-correlation of the transmitted
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signals (Fig. 3a). Similar to the previous simulation, the peak frequen-
cies of each area were 60 and 65 Hz, with equal connectivity weight
(w = 0.15), the transmission delay was 4 ms, and the observed activity
in both areas included additive 1/f background fluctuations.

The auto-correlation of the transmitted signals was controlled by
varying the modulus of the eigenvalue of the AR(2) models from 0.01
to 0.99 used to simulate the intrinsic activity of each area (Fig. 3c).
Another way to understand the effect of changing the modulus of the
eigenvalue of the AR(2) is that it controls the bandwidth (or peakiness)
of the oscillations as seen in the power spectral density, and with that
the auto-correlation structure. The modulus of the eigenvalues of the
AR(2) models were always equal for both areas. The performance of TCC
was evaluated by computing the proportion of unidirectional coherence
(PUC), which was defined as the proportion of unidirectional coher-
ence explained by TCC relative to the expected unidirectional coherence
given the analytical model (see Section 2.6). As anticipated, we found
that the effectiveness of the method decreased as the auto-correlations
became stronger (i.e., eigenvalue moduli closer to 1.0). However, the
TCC method performed relatively well for signals with eigenvalues up
to ~ 0.8 (Fig. 3c). It is worth noting that the performance of the TCC
method improved slightly for eigenvalues close to 1.0. The likely ex-
planation for this effect is the frequency difference between each area.
That is, as the transmitted signals become more auto-correlated, their
bandwidths become more narrow and the PSDs overlap less.

Although the TCC method was able to estimate the true unidirec-
tional coherence reasonably well over a range of signals, the method
quickly failed for signals with strong auto-correlation. Thus, the TCC
method may be sufficient for certain signals, but does not generally solve
the problem of destructive interference.

3.4. Fitting the power spectrum to recover the unidirectional coherence

Because the TCC method failed to recover the true directed coher-
ence for strongly auto-correlated signals, this method may be of little
utility for those interested in quantifying oscillatory inter-areal interac-
tions. Thus, we were motivated to develop a method more suited for
quantifying inter-areal interactions given strongly auto-correlated (os-
cillatory) signals.

The TCC method failed to isolate the directed influences, because
the strong auto-correlations of the transmitted signals causes more over-
lap in the cross-covariance function, which leads to destructive interfer-
ence. This implies that it may be infeasible to decompose the observed
cross-covariance into the individual directional cross-covariance func-
tions when the transmitted signals are strongly auto-correlated. How-
ever, we reasoned that it may be possible to infer the unidirectional
cross-covariance functions by finding a re-composition that best explains
the observed cross-covariance function.

In order to reconstruct the observed cross-covariance it is necessary
to estimate the auto-covariance functions of the transmitted signals. In
the simplest case, that is when there are no additive background fluc-
tuations in either area, the observed power spectra accurately reflect
the power spectra of the transmitted signals themselves. In this case,
estimating the auto-covariance function of the transmitted signals is
straightforward. However, in practice it is likely that the data being
analyzed (e.g., EEG and LFPs) contains auto-correlations that are not
transmitted (e.g., additive 1/ f). Therefore, it is necessary to decompose
the observed power spectra and isolate the component that reflects the
transmitted signal.

To that end, we fit an additive model (sum of a spectral peak, AR(2)
model, and background 1/ f) to the power spectrum of each area using a
non-linear least squares fit (see Section 2.5). Each area’s auto-covariance
function could then be estimated from the parameters of the AR(2) coef-
ficients. The individual auto-covariance functions were shifted in their
respective directions according to biophysically reasonable 7 (e.g., 0 to
10 ms), and the weighted sum was correlated with the observed cross-
covariance to determine the best fit.
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Fig. 3. Method 1: The truncated cross-
covariance (TCC) approach. For these sim-

ulations, both areas were reciprocally con-

nected with the same connectivity weight,

w =0.15 and r = 4 ms in both directions.

Only the intrinsic gamma-band activity in

each area (peak frequency at 60 hz for x,

and 65 Hz for x,) was projected. These
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We fit this model to the same data derived from the simulations used
for the TCC method. We found that model fit approach performed much
better than the TCC method across the entire range of signals tested (see
Fig. 4c). Surprisingly, the model fit approach also performed better than
the TCC method for weakly auto-correlated signals.

3.5. Bivariate vector autoregressive model simulations

We motivated using the source mixing model as the primary model
for the simulations because the Source Mixing model has been shown
to capture interactions between brain areas as measured in the LFP sig-
nal (Schneider et al., 2021). However, we do not exclude the possibility
that the interactions between brain areas may be more accurately de-
scribed by a different model, e.g., vector autoregressive model (VAR)
(Ding et al., 2006). In the VAR model, the signal that is sent from

one area passes through the transfer function of the receiver, and at
least to some extent is projected back to its original source. Therefore,
in the VAR model it possible that there can be some amount of self-
interference, because of this recursion. For the purpose of demonstrat-
ing the interference effect, the source mixing model has the advantage
that we can exclude the possibility of any interference at the level of the
signals/system.

However, we predicted that the problem of interference would still
occur in VAR model. To that end, we constructed an otherwise similar
set of simulations as those show in Fig. 1, i.e., with the source mix-
ing model, but now using the VAR(2) model. We found that Granger-
causality, phase locking value and coherence behaved similarly in the
VAR model as in the Source Mixing model (Fig. 5). As in the Source
Mixing model, coherence and PLV were more strongly affected by in-
terference than Granger-causality, yet magnitude of Granger-causality
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Fig. 4. Method 2: The model fit approach. The simulation data used for these analyses is the same data that was analyzed using the TCC method (see Fig. 3). (a)
Example model fits to the observed power spectra for x,. The modelodel fit is colored according to the eigenvalue moduli shown in panel c. (b) Five examples of
the directional coherence x; — x, compared to the expected derived analytically (dashed line). (c) Proportion of unidirectional coherence (PUC) for the directional

coherence x; — x,. Examples shown in panel b are circled.

still showed a dependence on transmission delays. Similarly, we found
that Granger-causality was able to recover the true interactions in the
absence of 1/f background fluctuations (see Fig. S2e-f). This is ex-
pected as the extent to which a signal predicts the future values of
another signal does not depend on the delay between the signals.
However, in either case the interference problem remained for coher-
ence, which in this case, reflects interference at the level of computing
coherence.

3.6. Interference and other connectivity measures

For systems with bidirectional interactions, we have shown that
coherence and Granger-Geweke causality (in the presence of additive
noise) depend on the total transmission delay. However, the question
is whether other commonly used connectivity measures also depend on
transmission delays. In fact, any measure that is derived from cross-
correlogram will depend on transmission delays.
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Fig. 5. Comparison between two reciprocally connected areas with different transmission delays (r) using a VAR model. (a) Simulation circuit diagram for the
bivariate VAR model. For these simulations, both areas were reciprocally connected with the same connectivity weight was w = 0.0015. The peak frequency intrinsic
to each area was 60 Hz for x, and 65 Hz for x,. These simulations included uncorrelated additive 1/f background fluctuations. (b) The observed power spectra for
x, and x, (blue and red lines, respectively) contained both the intrinsic gamma-band activity (including the inputs form the other area) and additive 1/ f background
fluctuations. The power and slope of the 1/f background fluctuations were identical for both areas. Note, both the intrinsic gamma-band activity and 1/ f background
fluctuations were uncorrelated between each area. (c) The coherence spectra between x, and x, for z over the range of 0 to 5 ms. Note, there is already interference at
7 = 0 ms. This occurs because each area filters its inputs and thus shifts the phase accordingly. Therefore, in addition to the transmission delay there is an additional
filter delay. (d) Phase locking value (PLV) between x; and x, for  between 0 and 5 ms. Note, an interference pattern is similar to coherence. (e) The non-parametric
Granger-Geweke causality (GGC) spectra for x; to x,. (f) The non-parametric GGC spectra for x, to x,. (g) The instantaneous GGC spectra between x, and x,. Notice
that the instantaneous GGC is negative for some frequencies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Phase locking value (PLV) is typically defined as
(39

PLV(f) := |[E[e‘A¢f]‘ )

where A¢ is the phase difference between observed signals in each area
(Lachaux et al., 1999).

10

However, PLV can also be written as the expected per trial, or per
epoch, normalized cross-spectral density (CSD)

PLV(f) :=|E % (40)
V80 8n(h)

5
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where §12( f) is the cross-spectral density estimate in a given trial, and
8,,(f) and Sy, (f) are the respective estimates of the power spectral
densities for that trial.

Thus, both PLV and coherence depend on the transmission delays
given bidirectional interactions, because both measures are derived
from the cross-covariance function.

We confirmed that PLV does indeed depend on transmission delays as
does coherence through numerical simulations. PLV depended on trans-
mission delays similar to coherence for both the Source Mixing model
(Fig. 1d) and bivariate autoregressive model with additive 1/ f (Fig. 5d),
as well as without 1/f (see Figs. S1 and S2, respectively). Furthermore,
the relationship between PLV and coherence from the numerical simu-
lations with varying transmission delays followed the relationship given
by their analytical relationship (see Fig. S3) (Aydore et al., 2013).

4, Discussion

An active area of study in systems neuroscience involves character-
izing and understanding the temporal and spectral properties of the sig-
nals communicated between brain areas. Coherence, and more recently
Granger-causality, have become standard methods that are routine in
analyzing LFPs, EEG/MEG, spike-field and spiking data. These methods
are so influential that they underlie prominent theories in systems neu-
roscience on attention (Bosman et al., 2012; Ferro et al., 2021; Grothe
et al., 2012), inter-areal communication (Bastos et al., 2015a; 2015b;
Buschman and Miller, 2007; Fries, 2005; 2015; Michalareas et al., 2016),
inter-areal networks (Vezoli et al., 2021) and predictive coding (Bastos
et al., 2020; Chao et al., 2018). The crucial assumption for these theo-
ries is that differences in coherence and Granger-causality directly corre-
spond to differences in inter-areal communication, stimulus processing,
or prediction/prediction error. However, we show that differences in
coherence and Granger-causality can occur simply because of the trans-
mission delays between two areas. The implication of these results is
that previously reported differences in coherence are not unequivocal
evidence of differences in information flow, inter-areal communication,
stimulus processing, or prediction/prediction error.

4.1. Understanding the cause of the interference

We have shown that the magnitude and spectral characteristics of
coherence are dependent on the transmission delays between two ar-
eas with bidirectional communication. Furthermore, this dependence on
transmission delay is not a property of the inter-areal communication it-
self, but rather a consequence of how coherence is computed. Therefore,
the modulation of coherence due to transmission delays shown here is
an artifact of the method, and does not reflect a true modulation of the
strength of inter-areal communication.

In Fig. 2, we illustrated that the source of the interference can appear
in two forms. When the transmitted signals are weakly auto-correlated,
the interference is predominantly due to the sine and cosine basis func-
tions underlying the Fourier transform. Conversely, when the transmit-
ted signals are strongly auto-correlated, there is an additional source
of interference that arises at the level of the cross-covariance function
itself.

It is worth recognizing that this interference effect extends to com-
puting spike-field and spike-spike correlations. The reality is, this in-
terference effect will occur for any signal/system where there are two
peaks in the cross-covariance function that are separated by some non-
zero lag. In fact, this interference effect will also occur for unidirectional
systems when both areas also receive common input. Note that it is suf-
ficient for this common input to be the result of volume conduction
(Vinck et al., 2015). Furthermore, the interference pattern will change
if there is common input in a bidirectional system. In such a situation
there will be three peaks in the cross-covariance function, which will
lead to a more complex pattern of interference dependent on the rela-
tive delays between each pair of the three peaks.

11
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An intuition behind the source of this interference can be gained by
recognizing that the superposition of two anti-phase cosine waves will
result in destructive interference. The cosine waves themselves can be a
component of the transmitted signals, or underlie the method applied to
the signals (e.g., the Fourier transform) (see Fig. 2). The effect of trans-
mission delays on coherence is that it shifts the cosine waves into an
anti-phase relationship, which then manifests as an interference pattern
across frequencies. This interference pattern appears as a cosine mod-
ulation across frequencies, because the CSD is modulated by the real
part of a complex term that reflects the phase difference between the
transmitted signals as a function of the total transmission delay.

Although the Granger-causality spectra did not show the same in-
terference pattern that was observed for coherence, Granger-causality
is still dependent on transmission delays in the presence of additive
1/ f background fluctuations. We believe this problem is the result of
the spectral factorization method in estimating the minimum phase
transfer functions given additive noise. It is worth noting, that al-
though it has been previously reported that instantaneous Granger-
causality spectra can be negative for some frequencies, to our knowl-
edge the circumstances under which this occurs has not been previ-
ously described (Ding et al., 2006). Interestingly, although the direc-
tional Granger-causality spectra did not show interference in the ab-
sence of additive noise, the instantaneous Granger-causality spectra did
(see Figs. S1 and S2). Note that the total interdependence (FX],XZ) be-
tween two time series, x; and x,, is the sum of the directional and instan-
taneous influences, i.e., F, . = Fy _,, + F y, + Fy ., (Ding et al,
2006). Thus, the interference pattern is not evident in the directional
Granger-causality spectra because it is counteracted by the negative
instantaneous Granger-causality values. Therefore, interference due to
transmission delays is one case under which instantaneous Granger-
causality can be negative, and further exemplifies the difficulty in in-
terpreting instantaneous Granger-causality.

Nonetheless, it is the case that coherence depended on transmission
delays in all our simulations (i.e., for both the Source Mixing and VAR
models, with and without 1/ f). Therefore, coherence as method for an-
alyzing and characterizing the inter-areal interactions in bidirectional
systems is severely limited (i.e., to cases where the power spectra of the
transmitted are completely non-overlapping).

4.2. Implications for previous studies

Previous studies have interpreted differences in coherence and
Granger-causality as reflecting differences in the strength or spectral
characteristics of inter-areal communication, network interactions, or
predictive processing (Bastos et al., 2015a; 2020; Bosman et al., 2012;
Buschman and Miller, 2007; Ferro et al., 2021; Grothe et al., 2012;
Michalareas et al., 2016; Vezoli et al., 2021). We show however, that
these differences may in fact be explained by differences in transmission
delays between bidirectionally coupled populations of neurons. The in-
terference pattern that arises as a result of the transmission delays is in
fact an artifact of the coherence method.

Several previous studies have shown that the strength of Granger-
causality and coherence correlate with measures of anatomical con-
nectivity (Bastos et al., 2015a; Vezoli et al., 2021). For example,
Vezoli et al. (2021) showed a correlation between the strength of
anatomical connectivity (i.e., the relative number of neurons project-
ing from area A to B, and from B to A) with the coherence. They found
that the anatomical connectivity strength could be positively predicted
from the coherence in different bands. The interpretation of these find-
ings is that areas that are more strongly connected also exhibit stronger
functional interactions. However, it should be noted that conduction
delays and the anatomical connectivity strength have the opposite re-
lationship with white-matter distance. That is, areas that are physically
closer tend to be more strongly connected, as measured by the propor-
tion of extrinsic projections between the areas (often referred to as FLN)
(Markov et al., 2013; 2014a; 2011), and their white-matter distance
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is also shorter. Consequently, shorter white-matter distance implies
shorter transmission delays, and thus less interference in the coherence
spectra. Furthermore, given a fixed transmission delay across all fre-
quencies, lower frequencies should be less affected by the interference
problem than higher frequencies. And indeed, Vezoli et al. (2021) re-
ported that higher frequencies were more predictive of the anatomical
connectivity. Therefore, it is possible that the correlation between coher-
ence and anatomical connectivity strength is at least partially explained
by the interference effect we have described here.

Several studies have observed changes in coherence with cogni-
tive factors such as attention (Bosman et al., 2012; Ferro et al., 2021;
Grothe et al., 2012). These results have been interpreted as empiri-
cal evidence for the hypothesis that coherence facilitates inter-areal
communication (Bosman et al., 2012; Fries, 2005; 2015). In addition
to an increase in inter-areal coherence (between areas V1 and V4),
Bosman et al. (2012) reported a shift in the peak frequency of the V1
gamma-oscillations with attention (see also Ferro et al., 2021). Taking
into consideration the interference pattern across frequencies in coher-
ence spectra, which depends on the transmission delay, it is clear how
a shift in the peak frequency alone could result in a change the magni-
tude of coherence. That is, two V1 populations sending the same signal
to V4, although with a different frequency, can show different coherence
spectra with V4 simply because their peak frequencies land at different
phases of the interference pattern across frequencies.

It is clear that the interference effect can lead to the appearance of
differences in coherence that do not correspond to differences in the
magnitude nor strength of the transmitted signals. However, there may
be true differences in the strength of feedforward (FF) and feedback (FB)
signals as a result of differences in anatomical connectivity (Vezoli et al.,
2021), or cognitive factors such as attention and prediction (Bastos et al.,
2020; Bosman et al., 2012; Ferro et al., 2021; Grothe et al., 2012; Rao
and Ballard, 1999). Nonetheless, the interference effect presents a prob-
lem for interpreting any coherence differences that may result. The prob-
lem becomes apparent when we consider two areas that transmit the
same signal to a third area, but receive differential feedback. If it is the
case that one area receives feedback while the other does not, then this
means in one area interference can arise but in the other not. Paradoxi-
cally, this leads to the possibility that an increase in the strength of FF or
FB communication may result in reduced inter-areal coherence - despite
an increase in the strength of the communication. Thus, the difficulty
in interpreting true differences in FF or FB communication is that the
interference also depends on the relative strengths of FF and FB signals.

It is evident that coherence depends on factors such as transmission
delay and peak frequency, and as a result the true meaningful differ-
ences in FF or FB communication are rendered uninterpretable by the
interference that results from computing coherence. Therefore, strictly
interpreting coherence differences as the result of differences in the
strength of communication is problematic. This means that in most cir-
cumstances, coherence is an ill-suited measure for analyzing and char-
acterizing interactions in bidirectional systems.

4.3. Practical recommendations and future work

We have developed two methods that can recover the directed co-
herence independent of transmission delays. These methods may be use-
ful, but are also didactic as they illustrate that the interference that
arises is the result of the method (namely computing coherence), and
that it is possible to recover the true directional influences. However,
it is important to recognize that these methods have limitations. For
instance, the truncated cross-covariance method (method 1) is highly
dependent on the auto-correlation structure of the transmitted signals.
That is, strongly auto-correlated signals are difficult to separate because
their auto-correlation functions overlap in the cross-covariance. Thus,
method 1 is most effective when the auto-correlation of the transmit-
ted signals is weak, and the individual auto-covariance functions can
be well separated with appropriate windowing of the cross-covariance
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function. The model fit method (method 2) is less dependent on the auto-
correlation of the transmitted signals than method 1, however, method
2 requires model specification and is much more computationally ex-
pensive.

Between the two methods, method 2 performed much better across
the range of power spectra in our simulations. That said, our simulated
power spectra were composed of a single oscillatory peak with addi-
tive 1/f, whereas empirical power spectra typically contain multiple
oscillatory peaks including 1/f. One approach here would be to utilize
existing toolboxes developed for fitting power spectra, such as FOOOF
(Donoghue et al., 2020). Regardless of the algorithm used for fitting the
power spectra, it is important to specify the appropriate model that ac-
curately reflects the underlying statistics and features of the data being
analyzed. We chose to model the LFP oscillations with pseudo-periodic
AR(2) models, which have been shown to reproduce the statistical prop-
erties of stationary gamma oscillations in primary visual cortex, and
provide mean-field approximations of E-I circuits driven by stochastic
input (Spyropoulos et al., 2022). Therefore, we recommend fitting the
power spectral peaks with autoregressive models, rather than arbitrary
functions such as a Gaussian.

Unlike coherence, in the absence of additive 1/ f, Granger-causality
can accurately estimate the bidirectional interactions, and is therefore
insensitive to transmission delays (see Figs. S1 and S2). However, in the
presence of additive 1/ f, which is expected in empirical data, Granger-
causality is sensitive to transmission delays (see Figs. le-g and 5e-g).
Therefore, in practice it should be assumed that Granger-causality will
also depend on transmission delays. Importantly, the cause of this de-
pendence appears to be more related to estimating the transfer func-
tion in the presence of noise. The problem of estimating Granger-
causality in the presence of additive noise has been previously discussed
(Vinck et al., 2015).

It is important to note that the interference pattern we have de-
scribed here depends on the presence of bidirectional interactions, and
overlapping power spectra of the transmitted signals (which may or may
not be consistent with the peaks in the observed power spectra). This
means of course, that in systems where the interactions are always unidi-
rectional, or in systems with non-overlapping power spectra, coherence
may be a useful measure of their interaction.

However, in systems with overlapping power spectra and bidirec-
tional interactions, transmission delays can influence the shape and
magnitude of the coherence spectra. Thus, caution should be taken when
interpreting coherence spectra unless it is known that the interaction is
entirely unidirectional, or it can be reasonably assumed that the power
spectra of transmitted signals do not overlap.

We have shown that the interference pattern appears as a cosine
modulation across frequencies, which depends on the total transmission
delay (see Eq. (15)). The maximal interference for a given frequency
occurs when the transmission delay shifts the directed cross-correlations
such they are in anti-phase (i.e., they are shifted by half of their cycle
length relative to each other). For example, for two areas interacting at
alpha (~10 Hz), the transmission delay in each direction would need to
be 7 = 25 ms to cause maximal interference. Therefore, it is reasonable
to assume then that low frequencies in the coherence spectra would be
less sensitive to interference.

However, it is important to note that conduction delays have been
shown to range from 2-4 ms for cortico-cortico connections (within a
hemisphere) (Ferraina et al., 2002), to 2-18 ms for inter-hemispheric
connections (Miller, 1975; Swadlow et al., 1978). Thus, whether or not
there is a possibility for interference at a given frequency is highly de-
pendent on the areas being studied.

To that end, we have presented two possible solutions to the prob-
lem of estimating bidirectional interactions when there are transmis-
sion delays. Although these methods have limitations, they may prove
useful for recovering the true bidirectional interactions in many cases.
However, as this work shows, there is still a need for further devel-
opment of methods suitable for analyzing and characterizing interac-
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tions in bidirectional systems with transmission delays and additive
noise.

Code availability statement

All code was written in Matlab and run with Matlab 2021a, The
MathWorks, Inc., Natick, Massachusetts, United States.

The code for the numerical simulations and methods was written by
the corresponding author (J.R.D) and is available upon request.

External toolboxes

For the Granger-Geweke causality (GGC) analyses, spectral fac-
torization was computed using the Wilson-Burg algorithm written in
Matlab by Dhamala et al. (2018), available here: https://scholarworks.
gsu.edu/phy astr_facupub/13/. Pairwise Granger-Geweke causality
was computed using the modified code from the FieldTrip toolbox
(Oostenveld et al., 2011), available here: https://github.com/fieldtrip/
fieldtrip/blob/master/connectivity/ft_connectivity_granger.m. The
Gaussian hypergeometric functions were computed in Matlab us-
ing the external function hypergeometric2fl.m available here
https://www.mathworks.com/matlabcentral/fileexchange/1844-
gaussian-hypergeometric-function. ~ Figures were generated in
Matlab and exported using a combination of custom code,
and the following external toolboxes: arrow.m available here
https://www.mathworks.com/matlabcentral/fileexchange/278-arrow,
and export_fig available here https://github.com/altmany/export fig.
Colormaps were created using David Johnstone’s colour gradient and
cubehelix picker, available here https://davidjohnstone.net/lch-lab-
colour-gradient-picker, and https://davidjohnstone.net/cubehelix-
gradient-picker
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