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a b s t r a c t 

Accurately measuring and quantifying the underlying interactions between brain areas is crucial for understand- 

ing the flow of information in the brain. Of particular interest in the field of electrophysiology is the analysis and 

characterization of the spectral properties of these interactions. Coherence and Granger-Geweke causality are 

well-established, commonly used methods for quantifying inter-areal interactions, and are thought to reflect the 

strength of inter-areal interactions. Here we show that the application of both methods to bidirectional systems 

with transmission delays is problematic, especially for coherence. Under certain circumstances, coherence can 

be completely abolished despite there being a true underlying interaction. This problem occurs due to interfer- 

ence caused in the computation of coherence, and is an artifact of the method. We motivate an understanding of 

the problem through computational modelling and numerical simulations. In addition, we have developed two 

methods that can recover the true bidirectional interactions in the presence of transmission delays. 
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. Introduction 

A primary interest in neuroscience, particularly in the fields of fMRI

nd electrophysiology, is characterizing the neural correlates of func-

ional connectivity and information flow between neuronal populations.

n practice, researchers often rely on methods that quantify the sta-

istical dependencies between time-series data ( Pesaran et al., 2018 ).

hese statistical dependencies are often quantified with either coher-

nce, an undirected measure of the dependencies, or Granger-causality,

 directed measure of the dependencies. The understanding is that the

tatistical dependencies quantified by coherence and Granger-causality

rise as a direct result of the functional interactions and propagation

f signals between anatomically connected brain areas ( Pesaran et al.,

018; Schneider et al., 2021 ). It follows then that differences in coher-

nce and Granger-causality are typically interpreted as reflecting true

ifferences in either the strength of inter-areal (network) interactions,

r properties of the transmitted signals ( Bastos et al., 2015a; Vezoli et al.,

021 ). Indeed, we note that both coherence and Granger-causality can

e informative for analyzing the statistical dependencies in relatively

oise-free unidirectional systems. However, neural data is not noise free

nd brain areas are reciprocally connected. 
Abbreviations: AR, Autoregressive; CSD, Cross-spectral density; E-I, Excitatory-Inhi

eld potential; GGC, Granger-Geweke causality; PLV, Phase locking value; PSD, Powe

ross-covariance; VAR, Vector autoregressive. 
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For instance, anatomical studies in non-human primates have found

hat the large majority inter-areal connections are reciprocal in nature

 Markov et al., 2014a ). Thus, with regard to the methods, this system

s expected to be bidirectional with variable transmission delays (i.e.,

ausal). Furthermore, transmission delays will not only depend on fac-

ors such as white matter distance, and conduction delays (due to the

ber diameter and myelination), but also factors such as membrane time

onstants (which also depend on conductance states), neuromodulators

nd receptor mechanisms (e.g., NMDA vs. AMPA) ( Bucher and Goail-

ard, 2011; Destexhe et al., 2003; Tsodyks and Markram, 1997 ). Al-

hough it is assumed that coherence is invariant to transmission delays

i.e., a constant phase delay), we show that this does not hold for bidi-

ectional systems with transmission delays. Surprisingly, we found that

oherence and Granger-causality are highly dependent on transmission

elays even when the inter-areal interactions were otherwise identical. 

The reason bidirectional communication with delays is problematic

or coherence can be understood by recognizing that the cross-spectral

ensity (CSD) is the Fourier transform of the cross-covariance function.

ecause the cross-covariance that arises with bidirectional interactions

ontains two peaks separated by the total transmission delay, the Fourier

ransform will completely cancel for frequencies where the peak sepa-
bitory; FB, Feedback; FF, Feedforward; FIR, Finite impulse response; LFP, Local 

r spectral density; PUC, Proportion of unidirectional coherence; TCC, Truncated 
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ation is a half-integer multiple of the cycle length. In fact, the only

requencies that do not exhibit some amount of interference are those

here the cycle length is an exact integer multiple of the total transmis-

ion delay. It is important to emphasize here that this is a failure of the

ethod (coherence) to capture the true underlying inter-areal interac-

ions, rather than interference at the level of the communicating areas.

hat is, this interference is purely a consequence of the method, and is

n artifact. 

The implication is that differences in coherence and Granger-

ausality cannot be interpreted to be strictly the result of differences

n inter-areal communication. However, given certain assumptions on

he activity of each area and the transmitted signals, we show that it is

ossible to recover the underlying bidirectional interactions despite the

ransmission delays. To that end, we developed two methods for quan-

ifying inter-areal in bidirectional systems with transmission delays. 

. Methods 

.1. Bidirectional source mixing model 

We modelled the activity of each area, 𝑥 1 and 𝑥 2 , as the superposition

f the intrinsic activity, additive 1∕ 𝑓 , and the activity received from the

ther area weighted by the inter-areal connectivity strength, 𝑤 21 and

 12 , and delayed by 𝜏 to reflect the transmission delay, 

 

( 𝑜𝑏𝑠 ) 
1 [ 𝑛 ] = 𝑥 

( 𝑖𝑛𝑡 ) 
1 [ 𝑛 ] + 𝑤 21 𝑥 

( 𝑖𝑛𝑡 ) 
2 [ 𝑛 − 𝜏] + 𝜂1 [ 𝑛 ] , (1) 

 

( 𝑜𝑏𝑠 ) 
2 [ 𝑛 ] = 𝑥 

( 𝑖𝑛𝑡 ) 
2 [ 𝑛 ] + 𝑤 12 𝑥 

( 𝑖𝑛𝑡 ) 
1 [ 𝑛 − 𝜏] + 𝜂2 [ 𝑛 ] , (2) 

here 𝜂 is a term containing 1∕ 𝑓 fluctuations. 

Note, in all simulations shown here, 𝑤 21 = 𝑤 12 and 𝜏 was the same

n both directions. 

The intrinsic activity in each area was described by a pseudo-periodic

econd order autoregressive model (AR(2)), 

 

( int ) 
1 [ 𝑛 ] = 𝑎 11 𝑥 

( int ) 
1 [ 𝑛 − 1 ] + 𝑎 12 𝑥 

( int ) 
1 [ 𝑛 − 2 ] + 𝜖1 [ 𝑛 ] , (3) 

 

( int ) 
2 [ 𝑛 ] = 𝑎 21 𝑥 

( int ) 
2 [ 𝑛 − 1 ] + 𝑎 22 𝑥 

( int ) 
2 [ 𝑛 − 2 ] + 𝜖2 [ 𝑛 ] . (4) 

ere, 𝜖[ 𝑡 ] is the stochastic drive of the system, and 𝜖[ 𝑡 ] =  ( 𝜇, 𝜎2 ) . We

hose to model the intrinsic activity in each area using pseudo-periodic

R(2) models because they have been shown to reproduce the statistical

roperties of stationary gamma oscillations in primary visual cortex, and

rovide mean-field approximations of E-I circuits driven by stochastic

nput ( Spyropoulos et al., 2022 ). Note, only the oscillatory part of each

rea was transmitted (i.e., not the background 1∕ 𝑓 ), which follows from

he empirical observations that coherence spectra are peaked, suggest-

ng that only the oscillatory activity in the sender is coherent with the

eceiver ( Schneider et al., 2021 ). 

.2. Parameters of the auto-regressive models 

The following equations were used to determine the coefficients of

he AR(2) models given the desired peak frequency and bandwidth: 

 1 = 

4 𝑎 2 cos ( 𝜔 𝑚𝑎𝑥 ) 
𝑎 2 − 1 

, (5) 

 2 = − 𝑅 

2 , (6) 

here 𝜔 max is the peak frequency in radians, and 𝑅 is the moduli of

he models complex roots and controls the bandwidth of the pseudo-

eriodic oscillations. 
2 
The following equation was used to determine the variance of the

hite-noise process for the desired peak power 𝑆 max in the power spec-

ral density (PSD) at the peak frequency 𝜔 max : 

2 
𝜖 = 𝑆 𝑚𝑎𝑥 

(
𝑅 

2 − 1 
)2 (

𝑅 

4 − 2 cos (2 𝜔 𝑚𝑎𝑥 ) 𝑅 

2 + 1 
)

(
𝑅 

2 + 1 
)2 , (7)

hich can be derived from substituting Eq. (5) and Eq. (6) into Eq. (24) .

.3. Analytical description of the interference pattern 

In the Source Mixing model the observed PSDs of 𝑥 1 and 𝑥 2 are: 

 

( 𝑜𝑏𝑠 ) 
11 ( 𝑓 ) = 𝑆 

( 𝑖𝑛𝑡 ) 
11 ( 𝑓 ) + 𝑤 

2 𝑆 ( 𝑝𝑟𝑜𝑗) 22 ( 𝑓 ) , (8) 

 

( 𝑜𝑏𝑠 ) 
22 ( 𝑓 ) = 𝑆 

( 𝑖𝑛𝑡 ) 
22 ( 𝑓 ) + 𝑤 

2 𝑆 ( 𝑝𝑟𝑜𝑗) 11 ( 𝑓 ) , (9) 

mitting background 1∕ 𝑓 and letting 𝑤 = 𝑤 12 = 𝑤 21 for brevity. 

In the case of instantaneous transmission (i.e., 𝜏 = 0 ), the CSD is

iven by: 

 12 ( 𝑓 ) = 𝑤 𝑆 
( 𝑝𝑟𝑜𝑗) 
11 ( 𝑓 ) + 𝑤 𝑆 

( 𝑝𝑟𝑜𝑗) 
22 ( 𝑓 ) . (10)

ote, this assumes the intrinsic signals in each area are uncorrelated. 

The transmission delay leads to a phase shift in the projected signal

elative to the intrinsic signal such that the CSD becomes: 

 12 ( 𝑓 ) = 𝑤 𝑆 
( 𝑝𝑟𝑜𝑗) 
11 ( 𝑓 ) + 𝑤 𝑆 

( 𝑝𝑟𝑜𝑗) 
22 ( 𝑓 ) 𝑒 − 𝑖𝑓2 𝜋Δ𝜏 , (11)

here Δ𝜏 is the total transmission delay in seconds. 

Note that 

𝑆 12 ( 𝑓 ) |2 = ℜ ( 𝑆 12 ( 𝑓 )) 2 + ℑ ( 𝑆 12 ( 𝑓 )) 2 . (12)

iven that 𝑤 

2 𝑆 ( 𝑝𝑟𝑜𝑗) 11 ( 𝑓 ) is strictly real-valued, it follows that 

𝑆 12 ( 𝑓 ) |2 = 

(
𝑤𝑆 

( 𝑝𝑟𝑜𝑗) 
11 ( 𝑓 ) + 𝑤𝑆 

( 𝑝𝑟𝑜𝑗) 
22 ( 𝑓 ) cos (2 𝜋𝑓 Δ𝜏) 

)2 
⋯ 

+ 

(
𝑤𝑆 

( 𝑝𝑟𝑜𝑗) 
22 ( 𝑓 ) sin (2 𝜋𝑓 Δ𝜏) 

)2 
, (13) 

hich becomes 

𝑆 12 ( 𝑓 ) |2 = 

(
𝑤𝑆 

( 𝑝𝑟𝑜𝑗) 
11 ( 𝑓 ) 

)2 
+ 

(
𝑤𝑆 

( 𝑝𝑟𝑜𝑗) 
22 ( 𝑓 ) 

)2 
⋯ 

+ 2 𝑤 

2 𝑆 ( 𝑝𝑟𝑜𝑗) 11 ( 𝑓 ) 𝑆 ( 𝑝𝑟𝑜𝑗) 22 ( 𝑓 ) cos (2 𝜋𝑓Δ𝜏) . (14) 

f 𝑆 ( 𝑝𝑟𝑜𝑗) ( 𝑓 ) = 𝑆 
( 𝑝𝑟𝑜𝑗) 
11 ( 𝑓 ) = 𝑆 

( 𝑝𝑟𝑜𝑗) 
22 ( 𝑓 ) , then Eq. (14) reduces to 

𝑆 12 ( 𝑓 ) |2 = 2 𝑤 

2 𝑆 ( 𝑝𝑟𝑜𝑗) ( 𝑓 ) 2 ( 1 + cos (2 𝜋𝑓Δ𝜏) ) . (15)

Thus, the total transmission delay introduces a complex term in the

SD that reflects the phase difference between the two transmitted sig-

als per frequency as a function of the total transmission delay. 

The net result is the sum of the transmitted signals depends on the

agnitude of the real part of 𝑒 − 𝑖𝑓2 𝜋Δ𝜏 as seen in Eq. (15) , which ex-

lains why the pattern of interference across frequencies manifests as

 cosine function. Thus, there is no interference at frequency 𝑓 where

𝑜𝑠 ( 𝑓2 𝜋Δ𝜏) = 1 , and maximal interference when 𝑐𝑜𝑠 ( 𝑓2 𝜋Δ𝜏) = −1 . 

.4. Method 1: Truncated cross-covariance 

The truncated cross-covariance (TCC) method is a naive approach

hat assumes the signals projected from one area to the other will cause

eaks in the cross-covariance function at opposite lags. 

In this case, it is possible to partially isolate the influence of one

rea on another by multiplying the cross-covariance with a Heaviside

tep function Θ before applying the Fourier transform to derive the cross

pectral density for computing directional coherence measure. 

Thus, the directed cross-spectral densities are computed as follows: 

 𝑥 1 →𝑥 2 
=  

(
𝑠 12 ( 𝜏) Θ𝑥 1 →𝑥 2 

( 𝜏) 
)

(16) 
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 𝑥 2 →𝑥 1 
=  

(
𝑠 12 ( 𝜏) Θ𝑥 2 →𝑥 1 

( 𝜏) 
)
, (17) 

here 𝑠 12 ( 𝜏) is the cross-covariance function 

 12 ( 𝜏) = 𝔼 
[
𝑥 1 [ 𝜏] 𝑥 2 [ 𝑡 − 𝜏] 

]
(18)

nd 

𝑥 1 →𝑥 2 
( 𝜏) ∶= 

{ 

1 , 𝜏 > 0 
0 , 𝜏 ≤ 0 (19)

nd 

𝑥 2 →𝑥 1 
( 𝜏) ∶= 

{ 

0 , 𝜏 > 0 
1 , 𝜏 ≤ 0 . (20)

Then the TCC estimate of the directed coherence is 

 𝑥 1 →𝑥 2 
( 𝑓 ) = 

|𝑆 𝑥 1 →𝑥 2 
|2 

𝑆 11 ( 𝑓 ) 𝑆 22 ( 𝑓 ) 
, (21) 

 𝑥 2 →𝑥 1 
( 𝑓 ) = 

|𝑆 𝑥 2 →𝑥 1 
|2 

𝑆 11 ( 𝑓 ) 𝑆 22 ( 𝑓 ) 
. (22) 

.5. Method 2: Model fit 

The following additive model (sum of a spectral peak, AR(2) model,

nd background 1∕ 𝑓 ) was fit to the observed power spectral density us-

ng non-linear least squares regression (using lsqnonlin() ) in Mat-

ab): 

 𝑜𝑏𝑠 ( 𝜔 ) = 𝑆 𝑝𝑒𝑎𝑘 ( 𝜔 ) + 𝜂( 𝜔 ) , (23)

here 𝑆 𝑝𝑒𝑎𝑘 ( 𝜔 ) is the power spectrum of the AR(2) and 𝜂( 𝜔 ) is the power

pectrum of the 1∕ 𝑓 component. 

The power spectral density of the AR(2) was given by the equation 

 𝑝𝑒𝑎𝑘 ( 𝜔 ) = 

𝜎2 

1 + 𝑎 2 1 + 𝑎 2 2 − 2 𝑎 1 (1 − 𝑎 2 ) cos ( 𝜔 ) − 2 𝑎 2 cos (2 𝜔 ) 
, (24)

here 𝑎 1 and 𝑎 2 are the coefficients of the auto-regressive model, 𝜎2 is

 scaling factor, and 𝜔 ∈ [0 , 𝜋] is the frequency in radians. 

And the power spectral density of 1∕ 𝑓 component given by 

( 𝜔 ) = 𝑔 𝜔𝛼 , (25)

here 𝑔 ∈ (0 , ∞) is a gain factor that scales the 1∕ 𝑓 spectrum, 𝛼 ∈ [−2 , 0]
eflects the slope, and 𝜔 ∈ [0 , 𝜋] is the frequency in radians per sample.

To fit the auto-covariance functions to the observed cross-covariance

e followed these steps: 

1. Each area’s auto-covariance function, 𝑠 11 ( 𝜏) and 𝑠 22 ( 𝜏) , were esti-

mated from the parameters of the AR(2) coefficients of the model

fit. 

2. The individual auto-covariance functions were lag-shifted in their

respective direction according to biophysically reasonable 𝜏 (e.g., 0

to 10 ms) ( Ferraina et al., 2002; Miller, 1975; Swadlow et al., 1978 ).

3. The individual auto-covariance functions were then differently

weighted by 𝛿, and summed to produce an estimate cross-covariance

function, ̂𝑠 12 ( 𝜏) , as follows 

𝑠̂ 12 ( 𝜏) = 𝛿 𝑠 11 ( 𝜏) + (1 − 𝛿) 𝑠 22 ( 𝜏) , (26)

where 𝛿 ∈ [0 , 1] . In practice this step is necessary when 𝑤 12 ≠ 𝑤 21 .

However, for these simulations it was not strictly necessary as the

connectivity weights were always equal in both directions (i.e., 𝑤 =
0 . 5 ). 

4. For each ( 𝜏, 𝛿) , we correlated the estimate cross-covariance with the

observed cross-covariance to determine the best fit as follows: 

𝜌 = 

𝔼 
[
𝑠̂ 12 ( 𝜏) 𝑠 12 ( 𝜏) 

]2 
𝔼 
[
𝑠̂ 12 ( 𝜏) 

]2 𝔼 [𝑠 12 ( 𝜏) ]2 . (27)
3 
The best fit (determined by the maximum correlation coefficient 𝜌

over all 𝜏 and 𝛿) was taken as reflecting the underlying transmission

delay. For simplicity, we assumed that 𝜏 was approximately equal

in each direction (note, fitting unequal delays would require the ad-

ditional step of taking the max cross-correlation across all lags and

𝜏). 

5. To estimate the connectivity weights 𝑤 12 and 𝑤 21 , we first estimated

the total combined connectivity weight as follows 

𝑤̂ total = 

√ √ √ √ √ √ 

𝜌
𝔼 
[(
𝑠 12 ( 𝜏) 

)2 ]
𝔼 
[(
𝑠̂ 12 ( 𝜏) 

)2 ] . (28) 

Note, this is simply a re-scaling through a ratio of energies, and 𝜌

forces the weight to the linearly correlated portion of the ratio. 

6. Lastly, the total connectivity weight was divided into the connectiv-

ity weights for each direction according to the 𝛿 of the best fit as

follows: 

𝑤 12 = 𝛿 𝑤̂ 𝑡𝑜𝑡𝑎𝑙 , (29) 

𝑤 21 = (1 − 𝛿) 𝑤̂ 𝑡𝑜𝑡𝑎𝑙 . (30) 

.5.1. Approach to fitting the PSD 

We noted two strategies that assisted in fitting the power spectral

ensities. One caveat of power spectral analysis is that power of each ad-

itive component is unevenly distributed across frequencies. This leads

o difficulties fitting each component of the PSD as it implies that the

nformation for each component is not uniformly distributed across fre-

uencies (i.e., each frequency contains a different ratio of power from

ach component). For instance, when the spectral peaks are narrow

and, the frequency range that contains the most information useful

or fitting that peak is also limited to a narrow frequency range. In this

ase, fitting the model over a wide frequency range may fit the 1∕ 𝑓 com-

onent well, but miss the spectral peak altogether. Whereas, when the

pectral peak is broadband it is necessary to fit the model over a much

ider frequency range in order to accurately estimate both the 1∕ 𝑓 and

pectral peak. 

In practice, it is possible to overcome this problem by visually in-

pecting the PSD to pre-determine an appropriate frequency range that

alances the information used to fit both components. However, be-

ause we aimed to fit the spectrum across a wide range of possible spec-

ral peaks (from very broadband to very narrow), we needed a more

eneral approach that would perform well regardless of the bandwidth

f each component. We found that fitting the PSD over multiple (pre-

etermined but fixed) frequency ranges, and selecting the best overall

t (minimum L1 norm), performed nearly equally well across spectra

ith very different bandwidths. We further refined this fit, by using it

o set the initial conditions of a fit over a very wide frequency range,

5, 600] Hz. In all cases, the fit that minimized the L1 norm over the

requency range [5, 600] Hz was taken as the best fit. 

The second strategy we employed was repeating the multiple band-

idth fitting procedure each time with random initial conditions (we

ound 35 random initializations were sufficient). As with the multiple

andwidth fit, the best fit (as determined by the L1 norm) across all ini-

ial conditions was retained. Thus, the final fit was the fit that minimized

1 norm over the frequency interval [5, 600] Hz. We did not perform

ny additional checks on the quality of the fit as these two approaches

ombined were sufficient to accurately fit both the spectral peak and

∕ 𝑓 components across a wide range of spectral bandwidths. 

.6. Proportion of unidirectional coherence (PUC) 

We assessed the ability of each method to recover the true unidirec-

ional coherence (defined analytically) by quantifying the proportion of

nidirectional coherence (PUC) each method was able to recover. 
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For the source mixing model, the expected unidirectional coherence

s: 

 𝑥 1 →𝑥 2 
( 𝑓 ) = 

𝑤 

2 |||𝑆 ( 𝑖𝑛𝑡 ) 11 ( 𝑓 ) 
|||2 

𝑆 
( 𝑜𝑏𝑠 ) 
11 ( 𝑓 ) 𝑆 ( 𝑜𝑏𝑠 ) 22 ( 𝑓 ) 

, (31) 

 𝑥 1 ← 𝑥 2 
( 𝑓 ) = 

𝑤 

2 |||𝑆 ( 𝑖𝑛𝑡 ) 22 ( 𝑓 ) 
|||2 

𝑆 
( 𝑜𝑏𝑠 ) 
11 ( 𝑓 ) 𝑆 ( 𝑜𝑏𝑠 ) 22 ( 𝑓 ) 

. (32) 

The proportion of unidirectional coherence (PUC) was defined as 

 𝑈𝐶 𝑥 1 →𝑥 2 
∶= 1 − 

√ √ √ √ √ √ 

∑𝑁 

𝑓= 𝑘 

(
𝐶 𝑥 1 →𝑥 2 

( 𝑓 ) − 𝐶 𝑥 1 →𝑥 2 
( 𝑓 ) 

)2 
∑𝑁 

𝑓= 𝑘 𝐶 

2 
𝑥 1 →𝑥 2 

( 𝑓 ) 
, (33)

here 𝐶 𝑥 1 →𝑥 2 
( 𝑓 ) is the estimated unidirectional coherence from either

ethod. For both methods PUC was computed over the frequency range

f 5 to 120 Hz. 

.7. Bivariate vector autoregressive model 

To demonstrate that the interference in coherence due to transmis-

ion delays was not dependent on the source mixing model, we simu-

ated two bidirectionally coupled areas with bivariate vector autoregres-

ive (VAR) models: 

 1 ,𝑡 = 𝑎 11 𝑥 1 ,𝑡 −1 + 𝑎 12 𝑥 1 ,𝑡 −2 + 𝑤 21 𝑥 2 ,𝑡 − 𝜏 + 𝜖1 ,𝑡 (34) 

 2 ,𝑡 = 𝑎 21 𝑥 1 ,𝑡 −1 + 𝑎 22 𝑥 1 ,𝑡 −2 + 𝑤 12 𝑥 1 ,𝑡 − 𝜏 + 𝜖2 ,𝑡 . (35) 

The parameters of the VAR simulations were otherwise identical to

he source mixing simulations shown in Fig. 1 , which included the model

oefficients for the AR(2) models as well as the 1∕ 𝑓 background fluctu-

tions. The only difference was the connectivity weight for both areas

as adjusted to make the VAR model stable ( 𝑤 = 0 . 0015 ). 

.8. Background 1∕ 𝑓 fluctuations and numerical simulations 

Note that in the presence of 1∕ 𝑓 fluctuations we can describe 

 

( 𝑜𝑏𝑠 ) [ 𝑡 ] = 𝑥 ( 𝑖𝑛𝑡 ) [ 𝑡 ] + 𝜂[ 𝑡 ] , (36) 

here 𝜂 is a background term containing 1∕ 𝑓 fluctuations. We assumed

hat these 1∕ 𝑓 fluctuations were not projected, and uncorrelated with

ach area’s intrinsic activity. 

The power spectrum of 1∕ 𝑓 is approximately equal to the inverse of

he frequency 

( 𝑓 ) ∝ 1 
𝑓 
. (37)

We simulated the 1∕ 𝑓 spectrum according to 

( 𝑓 ) = 

𝑓 0 
𝑓 
𝑃 , (38)

hen inverse Fourier transformed the spectrum to arrive at the time-

omain coefficients of an 𝑁 order FIR filter, where 𝑁 was equal to the

umber of samples in each simulated time series epoch. For all simula-

ions that included background 1∕ 𝑓 , 𝑓 0 was set to the receiver’s peak

requency (60 Hz) and 𝑃 = 3 −1 . 
The sampling rate for all simulations was 𝑓𝑠 = 2000 . The epoch

ength was 1001 samples, 2500 independent epochs were generated for

ach run of a simulation, and 15 independent runs of each simulation

ere generated and then averaged to get a central estimate of the power,

oherence and Granger-causality spectra. 
4 
. Results 

Our primary question was how inter-areal transmission delays

ead to changes in the coherence between two areas with bidirec-

ional communication. We modelled inter-areal interactions with the

ource Mixing model (see Section 2.1 ) ( Schneider et al., 2021 ). In

he Source Mixing model, the observed signal in each area is com-

osed of its intrinsic signal plus the transmitted signal received from

he other area. The primary advantage of the Source Mixing model is

here is no recurrent coupling that could potentially lead to intrinsic

nterference. 

The Source Mixing model has been previously shown to account for

hanges in inter-areal coherence as a result of a complementary change

n the oscillatory power of the source projecting area ( Schneider et al.,

021 ). However, these results focused on the specific case of unidi-

ectional communication between two brain areas. In the case of uni-

irectional communication, the magnitude of coherence is unaffected

y transmission delays. However, the anatomical connectivity between

rain areas is typically reciprocal ( Chaudhuri et al., 2015; Markov et al.,

014b; Vezoli et al., 2021 ). 

.1. Coherence depends on inter-areal transmission delays 

To investigate the influence of transmission delays on the magnitude

f inter-areal coherence, we simulated the local field potential (LFP)

f two bidirectionally connected brain areas with quasi-periodic causal

utoregressive (AR) models. Note, the main result of these simulations,

amely that coherence depends on transmission delays, is not dependent

n AR models. In fact, coherence also shows a dependence on trans-

ission delays for white-noise signals (see Fig. 2 a). Thus, the results

resented here generalize to all systems with bidirectional communi-

ation and transmission delays. We further note that this problem can

lso occur at the level of spiking signals when computing spike-field and

pike-spike correlations. 

We simulated two bidirectionally connected areas ( 𝑥 1 and 𝑥 2 ) with

qual connectivity weights ( 𝑤 = 0 . 15 ), and increased the transmission

elay, 𝜏, from 0 to 5 ms ( Fig. 1 a). Coherence and Granger-Geweke

ausality were computed between the observed signals of each area,

hich were the superposition of the intrinsic activity of that area, the

nput from the other area and additive 1∕ 𝑓 background fluctuation (see

ection 2.1 ). Note the intrinsic oscillations and background 1∕ 𝑓 in both

reas were all independent and uncorrelated (i.e., there was no syn-

hronization or coupling between oscillators, thus the only source of

oherence were the transmitted signals). For all simulations, we set

𝑥 1 →𝑥 2 
= 𝜏𝑥 1 ← 𝑥 2 

under the assumption that the transmission delay be-

ween the two bidirectionally coupled areas would be approximately

qual in both directions. However, it should be noted that the relevant

etric for the effect on coherence is the total transmission delay between

he two areas, i.e., Δ𝜏 = 𝜏𝑥 1 ← 𝑥 2 
+ 𝜏𝑥 1 →𝑥 2 

. The power spectral densities of

 1 and 𝑥 2 overlapped, but with a slight shift in the peak frequency (60

nd 65 Hz, respectively, see Fig. 1 b). Note, the peak frequency shift

erves to illustrate that it is not necessary that the transmitted signals

ave exactly the same peak frequency, however some spectral overlap

s necessary. 

We observed that increasing the transmission delay ( 𝜏) led to a de-

rease in the magnitude of coherence ( Fig. 1 c). A similar pattern of in-

erference was also observed for phase locking value (PLV) ( Fig. 1 d).

he maximum decrease in coherence (and PLV) occurred for 𝜏 = 4 ms,

nd resulted in a visible dip at 62.5 Hz. Importantly, due to the nature

f the simulated model, this change in coherence cannot be explained

y a change in power, connectivity weight, nor a shift in the peak fre-

uencies, and therefore does not reflect a true change in the strength of

he interaction between these areas. 

We considered the possibility that Granger-Geweke causality (GGC)

nalysis may be able to recover the inter-areal interactions indepen-

ent of transmission delays (i.e., the spectral influence of 𝑥 → 𝑥 and
1 2 
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Fig. 1. Bidirectional communication with inter-areal delays. Comparison between two reciprocally connected areas with different transmission delays ( 𝜏) using the 

Source Mixing model. (a) Source Mixing model circuit diagram. For these simulations, both areas were reciprocally connected with the same connectivity weight 

was 𝑤 = 0 . 15 . Only the intrinsic gamma-band oscillations in each area (peak frequency at 60 Hz for 𝑥 1 and 65 Hz for 𝑥 2 ) were projected. These simulations included 

additive 1∕ 𝑓 background fluctuations, which were uncorrelated with the gamma-band oscillations. (b) The observed power spectra for 𝑥 1 and 𝑥 2 (blue and red 

lines, respectively) contains both the intrinsic gamma-band activity in each area, additive 1∕ 𝑓 background fluctuations, and the projected signal from the other area 

(weighted by the connectivity weight). The power of the intrinsic gamma-band activity and 1∕ 𝑓 background fluctuations were identical for both areas. Note, both 

the intrinsic gamma-band activity and 1∕ 𝑓 background fluctuations were uncorrelated between each area. That is, the only part of the activity in each area that 

was correlated with the other area was the projected signal. (c) The coherence spectra between 𝑥 1 and 𝑥 2 for 𝜏 between 0 and 5 ms. Note, an interference pattern 

emerges with increasing transmission delay, which appears maximal for a 𝜏 = 4 ms with a sharp dip at 62.5 Hz. (d) Phase locking value (PLV) between 𝑥 1 and 𝑥 2 for 

𝜏 between 0 and 5 ms. Note, an interference pattern emerges with increasing transmission delay, similar to coherence, and also appears maximal at 4 ms delay and 

≈ 62 Hz. (e) The non-parametric Granger-Geweke causality (GGC) spectra for 𝑥 1 to 𝑥 2 . (f) The non-parametric GGC spectra for 𝑥 2 to 𝑥 1 . (g) The instantaneous GGC 

spectra between 𝑥 1 and 𝑥 2 . Notice that the instantaneous GGC is negative for some frequencies. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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 1 ← 𝑥 2 ) ( Dhamala et al., 2018 ). Although GGC did not show the dip at

2.5 Hz observed in coherence, GGC did decrease with increasing trans-

ission delay ( Fig. 1 e-g). However, we note that when no 1∕ 𝑓 back-

round fluctuations were added to the observed time series, Granger-

ausality did not depend on the transmission delay (see Fig. S1e-g).

onetheless, these results indicate that both coherence and GGC are

ependent on transmission delays in systems with bidirectional com-

unication and additive noise. 
5 
.2. The source of the interference 

The pattern of coherence that results from varying transmission de-

ays is due to interference in the cross-covariance function. To under-

tand why this effect occurs, we note that the cross spectral density

CSD) can be computed by taking the Fourier transform of the cross-

ovariance function. In Fig. 2 , we have illustrated the procedure of com-

uting the Fourier transform on the cross-covariance function for two
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Fig. 2. Comparison of weak versus strong auto-correlation of the transmitted signals. (a) Auto-covariance functions for 𝑥 1 (blue) and 𝑥 2 (red) and cross-covariance 

(black) function for a bidirectional system with intrinsic signals modelled as zero-mean white-noise process (i.e., no auto-correlation). The connectivity weights, 

𝑤 = 0 . 15 , and transmission delays 𝜏 = 4 ms, were equal for both directions. (b) The same as in panel a, but with strongly auto-correlated signals. The intrinsic signals 

in this example were modelled as AR(2) processes, both with the same peak frequency at 62 Hz ( 𝜔 max ), and 𝑅 = 0 . 98 . The auto-covariance and cross-covariance 

functions are plotted normalized to the overall max. Note, unlike the white-noise process shown in panel a, the magnitude of the cross-covariance for strongly 

auto-correlated signals with an anti-phase relationship is significantly reduced due to interference. (c-d) Respective cross-covariance functions (black) showing a 

cosine (dashed line) function superimposed ( 𝑐 𝑜𝑠 (2 𝜋𝑓 [ 𝑡 − 𝜏]) , where 𝑓 = 62 . 5 Hz and 𝜏 = 4 ms.). The cross-covariance functions are plotted according to their max, 

and the cosine function illustrates the effect of the basis functions of the Fourier transform. (e-f) Example simulated time series of the intrinsic signals of area 𝑥 1 
for the white-noise process and AR(2), respectively. (g-h) Observed power spectra (note, 𝑥 1 and 𝑥 2 overlap in both examples). (i-j) Coherence spectra for the white- 

noise process and AR(2), respectively. The vertical dashed line indicates the first frequency of maximal interference (i.e., 62.5 Hz). Note, despite distinctly different 

power spectra between the two examples shown here, their coherence spectra are identical, and show a cosine modulation across frequencies that depends on the 

transmission delay (4 ms). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the inter-areal communication. 
airs of areas with contrasting power spectra, i.e., flat versus peaked

ower spectra. For this illustration, we simulated two pairs of areas with

idirectional communication, equal connectivity weight 𝑤 = 0 . 15 , and

 fixed transmission delay in both directions 𝜏 = 4 ms. For the purposes

f illustrating the cause of the effect we omitted the additive 1∕ 𝑓 back-

round fluctuations in these simulations. The only difference between

hese two pairs of areas was the auto-correlation of their intrinsic sig-

als. Thus, each pair reflects one extreme of autocorrelation that the

ransmitted signals between two area could have (that is, anywhere from

eak or no auto-correlation up to strong auto-correlation, Fig. 2 a vs. b

espectively). 

In the case where the signals transmitted between each area are seri-

lly uncorrelated (i.e., have white noise statistics), the cross-covariance

unction shows two delta peaks at ± 𝜏 lags reflecting the transmission

f two serially uncorrelated signals in each direction ( Fig. 2 a). Because

he transmitted signals have equal power at all frequencies, coherence

hould be a constant across all frequencies. However, the coherence
6 
hows an interference pattern that is maximal at frequencies where

 ⋅ 𝑓Δ𝜏 = 1 , where Δ𝜏 is the total transmission delay in seconds (see

ection 2.3 ). Thus, in the absence of additive noise, the coherence spec-

ra appear as a cosine modulation across frequencies whose frequency

epends on the total transmission delay ( Fig. 2 i). 

One way to understand this interference pattern is to envision the

um of two cosine waves each centered on one of the two peaks in the

ross-covariance function (see Fig. 2 c). It can be seen that the superpo-

ition of two cosines that are each shifted by 𝜏 = 0 . 25 ⋅ ( cycle duration)

ill maximally interfere as they are in anti-phase with respect to each

nother. Thus, for weakly auto-correlated signals, the interference pat-

ern occurs, because the basis functions underlying the Fourier trans-

orm are sines and cosines. Importantly, this particular example exem-

lifies the nature of the problem, namely that the interference is the

esult of the method rather than a true modulation in the strength of
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In the second example, we considered the case where the transmit-

ed signals were strongly auto-correlated. For these simulations we mod-

lled the intrinsic activity of each area with AR(2) models that produced

elatively strong pseudo-periodic oscillations with a center frequency of

2 Hz. The same AR(2) coefficients were used for both areas, and as

n the previous example, they had equal connectivity weights 𝑤 = 0 . 15 ,
nd a fixed transmission delay in both directions 𝜏 = 4 ms. Note that

lthough both areas were spectrally similar (i.e., identical AR(2) model

oefficients), the white-noise processes used to drive each model were

ndependent and uncorrelated, and thus so were the intrinsic signals of

ach area. In this second example, it is apparent that there is an ad-

itional source for the interference, which in this case occurs at the

evel of the cross-covariance function itself (see Fig. 2 b). Because the

ross-covariance function is the sum of the individual unidirectional

ross-covariance functions, it follows that the superposition of two uni-

irectional cross-covariance functions that are in anti-phase will result

n destructive interference. Thus, the stronger the auto-correlation, the

ore the individual unidirectional cross-covariance functions overlap

n the cross-covariance function. Taken to its extreme, this result im-

lies that the cross-covariance function between two areas with bidirec-

ional transmission of equal magnitude cosine waves with a frequency

f 62.5 Hz and a transmission delay of 4 ms will be entirely flat. One

ay suspect, especially in this extreme example, that the modulation in

oherence is somehow the result of interference between the intrinsic

ignal in one area and the transmitted signal it receives from the other.

owever, it important to remember that in these simulations the intrin-

ic signals, and likewise the signals each area transmitted to the other,

ere strictly uncorrelated between the two areas. More plainly, there

as no systematic phase relationship between the intrinsic activity of

ne area and the signal received from the other, and as such there was

o interference at the level of the communication between areas. 

These two examples clearly illustrate that this dependence of coher-

nce on transmission delays is strictly methodological. In the case of

eak auto-correlation, the interference occurs primarily at the level of

he Fourier transform, and in the case of strong auto-correlation the in-

erference can occur both in the cross-covariance function and Fourier

ransform. 

.3. The truncated cross-covariance method 

We aimed to develop a method that could recover the underlying

nter-areal interaction independent of the transmission delays. As a first

aive approach, we reasoned that it should be possible to isolate the di-

ected influences by appropriately truncating (or windowing) the cross-

ovariance function. The observation that weakly auto-correlated sig-

als do not, or at least minimally, interfere with each other in the cross-

ovariance function given sufficient transmission delays, suggests that

indowing the cross-covariance function based on the sign of lags may

e sufficient to recover the directional influences in most cases. We refer

o this approach as the truncated cross-covariance (TCC) method. 

To that end, we multiplied the cross-covariance with a step func-

ion, a Heaviside conditional on the sign of the lags, and then applied

he Fourier transform to estimate the cross-spectral density of the direc-

ional influences. Coherence can then be computed using this windowed

stimate of the cross-spectral density (see Section 2.4 ). Note, TCC pro-

ides two estimates of directed coherence, one for each direction, based

n the sign of the lags for which the Heaviside was equal to 1. 

Given the transmitted signals show minimal overlap in the cross-

ovariance, the TCC method should approximate the coherence that

ould have occurred if the communication was unidirectional in each

irection. Therefore, the effectiveness of the TCC method is expected

o be highly dependent on auto-correlation structure of the transmit-

ed signals, and to a lesser extent the transmission delay. To gain an

nderstanding of the range signals over which the TCC is effective, we

epeated the simulation depicted in Fig. 1 a, but for fixed the transmis-

ion delay, and instead varied the auto-correlation of the transmitted
7 
ignals ( Fig. 3 a). Similar to the previous simulation, the peak frequen-

ies of each area were 60 and 65 Hz, with equal connectivity weight

 𝑤 = 0 . 15 ), the transmission delay was 4 ms, and the observed activity

n both areas included additive 1/f background fluctuations. 

The auto-correlation of the transmitted signals was controlled by

arying the modulus of the eigenvalue of the AR(2) models from 0.01

o 0.99 used to simulate the intrinsic activity of each area ( Fig. 3 c).

nother way to understand the effect of changing the modulus of the

igenvalue of the AR(2) is that it controls the bandwidth (or peakiness)

f the oscillations as seen in the power spectral density, and with that

he auto-correlation structure. The modulus of the eigenvalues of the

R(2) models were always equal for both areas. The performance of TCC

as evaluated by computing the proportion of unidirectional coherence

PUC), which was defined as the proportion of unidirectional coher-

nce explained by TCC relative to the expected unidirectional coherence

iven the analytical model (see Section 2.6 ). As anticipated, we found

hat the effectiveness of the method decreased as the auto-correlations

ecame stronger (i.e., eigenvalue moduli closer to 1.0). However, the

CC method performed relatively well for signals with eigenvalues up

o ≈ 0 . 8 ( Fig. 3 c). It is worth noting that the performance of the TCC

ethod improved slightly for eigenvalues close to 1.0. The likely ex-

lanation for this effect is the frequency difference between each area.

hat is, as the transmitted signals become more auto-correlated, their

andwidths become more narrow and the PSDs overlap less. 

Although the TCC method was able to estimate the true unidirec-

ional coherence reasonably well over a range of signals, the method

uickly failed for signals with strong auto-correlation. Thus, the TCC

ethod may be sufficient for certain signals, but does not generally solve

he problem of destructive interference. 

.4. Fitting the power spectrum to recover the unidirectional coherence 

Because the TCC method failed to recover the true directed coher-

nce for strongly auto-correlated signals, this method may be of little

tility for those interested in quantifying oscillatory inter-areal interac-

ions. Thus, we were motivated to develop a method more suited for

uantifying inter-areal interactions given strongly auto-correlated (os-

illatory) signals. 

The TCC method failed to isolate the directed influences, because

he strong auto-correlations of the transmitted signals causes more over-

ap in the cross-covariance function, which leads to destructive interfer-

nce. This implies that it may be infeasible to decompose the observed

ross-covariance into the individual directional cross-covariance func-

ions when the transmitted signals are strongly auto-correlated. How-

ver, we reasoned that it may be possible to infer the unidirectional

ross-covariance functions by finding a re-composition that best explains

he observed cross-covariance function. 

In order to reconstruct the observed cross-covariance it is necessary

o estimate the auto-covariance functions of the transmitted signals. In

he simplest case, that is when there are no additive background fluc-

uations in either area, the observed power spectra accurately reflect

he power spectra of the transmitted signals themselves. In this case,

stimating the auto-covariance function of the transmitted signals is

traightforward. However, in practice it is likely that the data being

nalyzed (e.g., EEG and LFPs) contains auto-correlations that are not

ransmitted (e.g., additive 1∕ 𝑓 ). Therefore, it is necessary to decompose

he observed power spectra and isolate the component that reflects the

ransmitted signal. 

To that end, we fit an additive model (sum of a spectral peak, AR(2)

odel, and background 1∕ 𝑓 ) to the power spectrum of each area using a

on-linear least squares fit (see Section 2.5 ). Each area’s auto-covariance

unction could then be estimated from the parameters of the AR(2) coef-

cients. The individual auto-covariance functions were shifted in their

espective directions according to biophysically reasonable 𝜏 (e.g., 0 to

0 ms), and the weighted sum was correlated with the observed cross-

ovariance to determine the best fit. 
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Fig. 3. Method 1: The truncated cross- 

covariance (TCC) approach. For these sim- 

ulations, both areas were reciprocally con- 

nected with the same connectivity weight, 

𝑤 = 0 . 15 and 𝜏 = 4 ms in both directions. 

Only the intrinsic gamma-band activity in 

each area (peak frequency at 60 hz for 𝑥 1 
and 65 Hz for 𝑥 2 ) was projected. These 

simulations included uncorrelated additive 

1∕ 𝑓 background fluctuations. (a) Cross- 

covariance functions for different eigen- 

value moduli. The Heaviside applied to the 

cross-covariance functions for these results 

is plotted at the top. (b) Five examples 

of the directional coherence 𝑥 1 → 𝑥 2 com- 

pared to the expected derived analytically 

(dashed line). Colors correspond to results 

shown in panel c. (c) Proportion of uni- 

directional coherence (PUC) for the direc- 

tional coherence 𝑥 1 → 𝑥 2 . Examples shown 

in panel b are circled. 
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We fit this model to the same data derived from the simulations used

or the TCC method. We found that model fit approach performed much

etter than the TCC method across the entire range of signals tested (see

ig. 4 c). Surprisingly, the model fit approach also performed better than

he TCC method for weakly auto-correlated signals. 

.5. Bivariate vector autoregressive model simulations 

We motivated using the source mixing model as the primary model

or the simulations because the Source Mixing model has been shown

o capture interactions between brain areas as measured in the LFP sig-

al ( Schneider et al., 2021 ). However, we do not exclude the possibility

hat the interactions between brain areas may be more accurately de-

cribed by a different model, e.g., vector autoregressive model (VAR)

 Ding et al., 2006 ). In the VAR model, the signal that is sent from
8 
ne area passes through the transfer function of the receiver, and at

east to some extent is projected back to its original source. Therefore,

n the VAR model it possible that there can be some amount of self-

nterference, because of this recursion. For the purpose of demonstrat-

ng the interference effect, the source mixing model has the advantage

hat we can exclude the possibility of any interference at the level of the

ignals/system. 

However, we predicted that the problem of interference would still

ccur in VAR model. To that end, we constructed an otherwise similar

et of simulations as those show in Fig. 1 , i.e., with the source mix-

ng model, but now using the VAR(2) model. We found that Granger-

ausality, phase locking value and coherence behaved similarly in the

AR model as in the Source Mixing model ( Fig. 5 ). As in the Source

ixing model, coherence and PLV were more strongly affected by in-

erference than Granger-causality, yet magnitude of Granger-causality
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Fig. 4. Method 2: The model fit approach. The simulation data used for these analyses is the same data that was analyzed using the TCC method (see Fig. 3 ). (a) 

Example model fits to the observed power spectra for 𝑥 1 . The modelodel fit is colored according to the eigenvalue moduli shown in panel c. (b) Five examples of 

the directional coherence 𝑥 1 → 𝑥 2 compared to the expected derived analytically (dashed line). (c) Proportion of unidirectional coherence (PUC) for the directional 

coherence 𝑥 1 → 𝑥 2 . Examples shown in panel b are circled. 
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till showed a dependence on transmission delays. Similarly, we found

hat Granger-causality was able to recover the true interactions in the

bsence of 1∕ 𝑓 background fluctuations (see Fig. S2e-f). This is ex-

ected as the extent to which a signal predicts the future values of

nother signal does not depend on the delay between the signals.

owever, in either case the interference problem remained for coher-

nce, which in this case, reflects interference at the level of computing
oherence. c

9 
.6. Interference and other connectivity measures 

For systems with bidirectional interactions, we have shown that

oherence and Granger-Geweke causality (in the presence of additive

oise) depend on the total transmission delay. However, the question

s whether other commonly used connectivity measures also depend on

ransmission delays. In fact, any measure that is derived from cross-

orrelogram will depend on transmission delays. 
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Fig. 5. Comparison between two reciprocally connected areas with different transmission delays ( 𝜏) using a VAR model. (a) Simulation circuit diagram for the 

bivariate VAR model. For these simulations, both areas were reciprocally connected with the same connectivity weight was 𝑤 = 0 . 0015 . The peak frequency intrinsic 

to each area was 60 Hz for 𝑥 1 and 65 Hz for 𝑥 2 . These simulations included uncorrelated additive 1∕ 𝑓 background fluctuations. (b) The observed power spectra for 

𝑥 1 and 𝑥 2 (blue and red lines, respectively) contained both the intrinsic gamma-band activity (including the inputs form the other area) and additive 1∕ 𝑓 background 

fluctuations. The power and slope of the 1∕ 𝑓 background fluctuations were identical for both areas. Note, both the intrinsic gamma-band activity and 1∕ 𝑓 background 

fluctuations were uncorrelated between each area. (c) The coherence spectra between 𝑥 1 and 𝑥 2 for 𝜏 over the range of 0 to 5 ms. Note, there is already interference at 

𝜏 = 0 ms. This occurs because each area filters its inputs and thus shifts the phase accordingly. Therefore, in addition to the transmission delay there is an additional 

filter delay. (d) Phase locking value (PLV) between 𝑥 1 and 𝑥 2 for 𝜏 between 0 and 5 ms. Note, an interference pattern is similar to coherence. (e) The non-parametric 

Granger-Geweke causality (GGC) spectra for 𝑥 1 to 𝑥 2 . (f) The non-parametric GGC spectra for 𝑥 2 to 𝑥 1 . (g) The instantaneous GGC spectra between 𝑥 1 and 𝑥 2 . Notice 

that the instantaneous GGC is negative for some frequencies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Phase locking value (PLV) is typically defined as 

 𝐿𝑉 ( 𝑓 ) ∶= 

|||𝔼 [𝑒 𝑖 Δ𝜙𝑓 ]||| , (39)

here Δ𝜙 is the phase difference between observed signals in each area

 Lachaux et al., 1999 ). 
10 
However, PLV can also be written as the expected per trial, or per

poch, normalized cross-spectral density (CSD) 

 𝐿𝑉 ( 𝑓 ) ∶= 

||||||||
𝔼 
⎡ ⎢ ⎢ ⎢ ⎣ 

𝑆 12 ( 𝑓 ) √ 

𝑆 11 ( 𝑓 ) 𝑆 22 ( 𝑓 ) 

⎤ ⎥ ⎥ ⎥ ⎦ 
||||||||
, (40)
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here 𝑆 12 ( 𝑓 ) is the cross-spectral density estimate in a given trial, and

 ̂11 ( 𝑓 ) and 𝑆 22 ( 𝑓 ) are the respective estimates of the power spectral

ensities for that trial. 

Thus, both PLV and coherence depend on the transmission delays

iven bidirectional interactions, because both measures are derived

rom the cross-covariance function. 

We confirmed that PLV does indeed depend on transmission delays as

oes coherence through numerical simulations. PLV depended on trans-

ission delays similar to coherence for both the Source Mixing model

 Fig. 1 d) and bivariate autoregressive model with additive 1∕ 𝑓 ( Fig. 5 d),

s well as without 1∕ 𝑓 (see Figs. S1 and S2, respectively). Furthermore,

he relationship between PLV and coherence from the numerical simu-

ations with varying transmission delays followed the relationship given

y their analytical relationship (see Fig. S3) ( Aydore et al., 2013 ). 

. Discussion 

An active area of study in systems neuroscience involves character-

zing and understanding the temporal and spectral properties of the sig-

als communicated between brain areas. Coherence, and more recently

ranger-causality, have become standard methods that are routine in

nalyzing LFPs, EEG/MEG, spike-field and spiking data. These methods

re so influential that they underlie prominent theories in systems neu-

oscience on attention ( Bosman et al., 2012; Ferro et al., 2021; Grothe

t al., 2012 ), inter-areal communication ( Bastos et al., 2015a; 2015b;

uschman and Miller, 2007; Fries, 2005; 2015; Michalareas et al., 2016 ),

nter-areal networks ( Vezoli et al., 2021 ) and predictive coding ( Bastos

t al., 2020; Chao et al., 2018 ). The crucial assumption for these theo-

ies is that differences in coherence and Granger-causality directly corre-

pond to differences in inter-areal communication, stimulus processing,

r prediction/prediction error. However, we show that differences in

oherence and Granger-causality can occur simply because of the trans-

ission delays between two areas. The implication of these results is

hat previously reported differences in coherence are not unequivocal

vidence of differences in information flow, inter-areal communication,

timulus processing, or prediction/prediction error. 

.1. Understanding the cause of the interference 

We have shown that the magnitude and spectral characteristics of

oherence are dependent on the transmission delays between two ar-

as with bidirectional communication. Furthermore, this dependence on

ransmission delay is not a property of the inter-areal communication it-

elf, but rather a consequence of how coherence is computed. Therefore,

he modulation of coherence due to transmission delays shown here is

n artifact of the method, and does not reflect a true modulation of the

trength of inter-areal communication. 

In Fig. 2 , we illustrated that the source of the interference can appear

n two forms. When the transmitted signals are weakly auto-correlated,

he interference is predominantly due to the sine and cosine basis func-

ions underlying the Fourier transform. Conversely, when the transmit-

ed signals are strongly auto-correlated, there is an additional source

f interference that arises at the level of the cross-covariance function

tself. 

It is worth recognizing that this interference effect extends to com-

uting spike-field and spike-spike correlations. The reality is, this in-

erference effect will occur for any signal/system where there are two

eaks in the cross-covariance function that are separated by some non-

ero lag. In fact, this interference effect will also occur for unidirectional

ystems when both areas also receive common input. Note that it is suf-

cient for this common input to be the result of volume conduction

 Vinck et al., 2015 ). Furthermore, the interference pattern will change

f there is common input in a bidirectional system. In such a situation

here will be three peaks in the cross-covariance function, which will

ead to a more complex pattern of interference dependent on the rela-

ive delays between each pair of the three peaks. 
11 
An intuition behind the source of this interference can be gained by

ecognizing that the superposition of two anti-phase cosine waves will

esult in destructive interference. The cosine waves themselves can be a

omponent of the transmitted signals, or underlie the method applied to

he signals (e.g., the Fourier transform) (see Fig. 2 ). The effect of trans-

ission delays on coherence is that it shifts the cosine waves into an

nti-phase relationship, which then manifests as an interference pattern

cross frequencies. This interference pattern appears as a cosine mod-

lation across frequencies, because the CSD is modulated by the real

art of a complex term that reflects the phase difference between the

ransmitted signals as a function of the total transmission delay. 

Although the Granger-causality spectra did not show the same in-

erference pattern that was observed for coherence, Granger-causality

s still dependent on transmission delays in the presence of additive

∕ 𝑓 background fluctuations. We believe this problem is the result of

he spectral factorization method in estimating the minimum phase

ransfer functions given additive noise. It is worth noting, that al-

hough it has been previously reported that instantaneous Granger-

ausality spectra can be negative for some frequencies, to our knowl-

dge the circumstances under which this occurs has not been previ-

usly described ( Ding et al., 2006 ). Interestingly, although the direc-

ional Granger-causality spectra did not show interference in the ab-

ence of additive noise, the instantaneous Granger-causality spectra did

see Figs. S1 and S2). Note that the total interdependence ( 𝐹 𝑥 1 ,𝑥 2 ) be-

ween two time series, 𝑥 1 and 𝑥 2 , is the sum of the directional and instan-

aneous influences, i.e., 𝐹 𝑥 1 ,𝑥 2 = 𝐹 𝑥 1 →𝑥 2 
+ 𝐹 𝑥 1 ← 𝑥 2 

+ 𝐹 𝑥 1 ⋅𝑥 2 , ( Ding et al.,

006 ). Thus, the interference pattern is not evident in the directional

ranger-causality spectra because it is counteracted by the negative

nstantaneous Granger-causality values. Therefore, interference due to

ransmission delays is one case under which instantaneous Granger-

ausality can be negative, and further exemplifies the difficulty in in-

erpreting instantaneous Granger-causality. 

Nonetheless, it is the case that coherence depended on transmission

elays in all our simulations (i.e., for both the Source Mixing and VAR

odels, with and without 1∕ 𝑓 ). Therefore, coherence as method for an-

lyzing and characterizing the inter-areal interactions in bidirectional

ystems is severely limited (i.e., to cases where the power spectra of the

ransmitted are completely non-overlapping). 

.2. Implications for previous studies 

Previous studies have interpreted differences in coherence and

ranger-causality as reflecting differences in the strength or spectral

haracteristics of inter-areal communication, network interactions, or

redictive processing ( Bastos et al., 2015a; 2020; Bosman et al., 2012;

uschman and Miller, 2007; Ferro et al., 2021; Grothe et al., 2012;

ichalareas et al., 2016; Vezoli et al., 2021 ). We show however, that

hese differences may in fact be explained by differences in transmission

elays between bidirectionally coupled populations of neurons. The in-

erference pattern that arises as a result of the transmission delays is in

act an artifact of the coherence method. 

Several previous studies have shown that the strength of Granger-

ausality and coherence correlate with measures of anatomical con-

ectivity ( Bastos et al., 2015a; Vezoli et al., 2021 ). For example,

ezoli et al. (2021) showed a correlation between the strength of

natomical connectivity (i.e., the relative number of neurons project-

ng from area A to B, and from B to A) with the coherence. They found

hat the anatomical connectivity strength could be positively predicted

rom the coherence in different bands. The interpretation of these find-

ngs is that areas that are more strongly connected also exhibit stronger

unctional interactions. However, it should be noted that conduction

elays and the anatomical connectivity strength have the opposite re-

ationship with white-matter distance. That is, areas that are physically

loser tend to be more strongly connected, as measured by the propor-

ion of extrinsic projections between the areas (often referred to as FLN)

 Markov et al., 2013; 2014a; 2011 ), and their white-matter distance
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o  
s also shorter. Consequently, shorter white-matter distance implies

horter transmission delays, and thus less interference in the coherence

pectra. Furthermore, given a fixed transmission delay across all fre-

uencies, lower frequencies should be less affected by the interference

roblem than higher frequencies. And indeed, Vezoli et al. (2021) re-

orted that higher frequencies were more predictive of the anatomical

onnectivity. Therefore, it is possible that the correlation between coher-

nce and anatomical connectivity strength is at least partially explained

y the interference effect we have described here. 

Several studies have observed changes in coherence with cogni-

ive factors such as attention ( Bosman et al., 2012; Ferro et al., 2021;

rothe et al., 2012 ). These results have been interpreted as empiri-

al evidence for the hypothesis that coherence facilitates inter-areal

ommunication ( Bosman et al., 2012; Fries, 2005; 2015 ). In addition

o an increase in inter-areal coherence (between areas V1 and V4),

osman et al. (2012) reported a shift in the peak frequency of the V1

amma-oscillations with attention (see also Ferro et al., 2021 ). Taking

nto consideration the interference pattern across frequencies in coher-

nce spectra, which depends on the transmission delay, it is clear how

 shift in the peak frequency alone could result in a change the magni-

ude of coherence. That is, two V1 populations sending the same signal

o V4, although with a different frequency, can show different coherence

pectra with V4 simply because their peak frequencies land at different

hases of the interference pattern across frequencies. 

It is clear that the interference effect can lead to the appearance of

ifferences in coherence that do not correspond to differences in the

agnitude nor strength of the transmitted signals. However, there may

e true differences in the strength of feedforward (FF) and feedback (FB)

ignals as a result of differences in anatomical connectivity ( Vezoli et al.,

021 ), or cognitive factors such as attention and prediction ( Bastos et al.,

020; Bosman et al., 2012; Ferro et al., 2021; Grothe et al., 2012; Rao

nd Ballard, 1999 ). Nonetheless, the interference effect presents a prob-

em for interpreting any coherence differences that may result. The prob-

em becomes apparent when we consider two areas that transmit the

ame signal to a third area, but receive differential feedback. If it is the

ase that one area receives feedback while the other does not, then this

eans in one area interference can arise but in the other not. Paradoxi-

ally, this leads to the possibility that an increase in the strength of FF or

B communication may result in reduced inter-areal coherence - despite

n increase in the strength of the communication. Thus, the difficulty

n interpreting true differences in FF or FB communication is that the

nterference also depends on the relative strengths of FF and FB signals.

It is evident that coherence depends on factors such as transmission

elay and peak frequency, and as a result the true meaningful differ-

nces in FF or FB communication are rendered uninterpretable by the

nterference that results from computing coherence. Therefore, strictly

nterpreting coherence differences as the result of differences in the

trength of communication is problematic. This means that in most cir-

umstances, coherence is an ill-suited measure for analyzing and char-

cterizing interactions in bidirectional systems. 

.3. Practical recommendations and future work 

We have developed two methods that can recover the directed co-

erence independent of transmission delays. These methods may be use-

ul, but are also didactic as they illustrate that the interference that

rises is the result of the method (namely computing coherence), and

hat it is possible to recover the true directional influences. However,

t is important to recognize that these methods have limitations. For

nstance, the truncated cross-covariance method (method 1) is highly

ependent on the auto-correlation structure of the transmitted signals.

hat is, strongly auto-correlated signals are difficult to separate because

heir auto-correlation functions overlap in the cross-covariance. Thus,

ethod 1 is most effective when the auto-correlation of the transmit-

ed signals is weak, and the individual auto-covariance functions can

e well separated with appropriate windowing of the cross-covariance
12 
unction. The model fit method (method 2) is less dependent on the auto-

orrelation of the transmitted signals than method 1, however, method

 requires model specification and is much more computationally ex-

ensive. 

Between the two methods, method 2 performed much better across

he range of power spectra in our simulations. That said, our simulated

ower spectra were composed of a single oscillatory peak with addi-

ive 1∕ 𝑓 , whereas empirical power spectra typically contain multiple

scillatory peaks including 1∕ 𝑓 . One approach here would be to utilize

xisting toolboxes developed for fitting power spectra, such as FOOOF

 Donoghue et al., 2020 ). Regardless of the algorithm used for fitting the

ower spectra, it is important to specify the appropriate model that ac-

urately reflects the underlying statistics and features of the data being

nalyzed. We chose to model the LFP oscillations with pseudo-periodic

R(2) models, which have been shown to reproduce the statistical prop-

rties of stationary gamma oscillations in primary visual cortex, and

rovide mean-field approximations of E-I circuits driven by stochastic

nput ( Spyropoulos et al., 2022 ). Therefore, we recommend fitting the

ower spectral peaks with autoregressive models, rather than arbitrary

unctions such as a Gaussian. 

Unlike coherence, in the absence of additive 1∕ 𝑓 , Granger-causality

an accurately estimate the bidirectional interactions, and is therefore

nsensitive to transmission delays (see Figs. S1 and S2). However, in the

resence of additive 1∕ 𝑓 , which is expected in empirical data, Granger-

ausality is sensitive to transmission delays (see Figs. 1 e-g and 5 e-g).

herefore, in practice it should be assumed that Granger-causality will

lso depend on transmission delays. Importantly, the cause of this de-

endence appears to be more related to estimating the transfer func-

ion in the presence of noise. The problem of estimating Granger-

ausality in the presence of additive noise has been previously discussed

 Vinck et al., 2015 ). 

It is important to note that the interference pattern we have de-

cribed here depends on the presence of bidirectional interactions, and

verlapping power spectra of the transmitted signals (which may or may

ot be consistent with the peaks in the observed power spectra). This

eans of course, that in systems where the interactions are always unidi-

ectional, or in systems with non-overlapping power spectra, coherence

ay be a useful measure of their interaction. 

However, in systems with overlapping power spectra and bidirec-

ional interactions, transmission delays can influence the shape and

agnitude of the coherence spectra. Thus, caution should be taken when

nterpreting coherence spectra unless it is known that the interaction is

ntirely unidirectional, or it can be reasonably assumed that the power

pectra of transmitted signals do not overlap. 

We have shown that the interference pattern appears as a cosine

odulation across frequencies, which depends on the total transmission

elay (see Eq. (15) ). The maximal interference for a given frequency

ccurs when the transmission delay shifts the directed cross-correlations

uch they are in anti-phase (i.e., they are shifted by half of their cycle

ength relative to each other). For example, for two areas interacting at

lpha ( ≈10 Hz), the transmission delay in each direction would need to

e 𝜏 = 25 ms to cause maximal interference. Therefore, it is reasonable

o assume then that low frequencies in the coherence spectra would be

ess sensitive to interference. 

However, it is important to note that conduction delays have been

hown to range from 2–4 ms for cortico-cortico connections (within a

emisphere) ( Ferraina et al., 2002 ), to 2–18 ms for inter-hemispheric

onnections ( Miller, 1975; Swadlow et al., 1978 ). Thus, whether or not

here is a possibility for interference at a given frequency is highly de-

endent on the areas being studied. 

To that end, we have presented two possible solutions to the prob-

em of estimating bidirectional interactions when there are transmis-

ion delays. Although these methods have limitations, they may prove

seful for recovering the true bidirectional interactions in many cases.

owever, as this work shows, there is still a need for further devel-

pment of methods suitable for analyzing and characterizing interac-
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ions in bidirectional systems with transmission delays and additive

oise. 
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