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AUTOMORPHISMS OF AFFINE VERONESE SURFACES

Bakhyt Aitzhanova 1 and Ualbai Umirbaev2

Abstract. We prove that every derivation and every locally nilpotent derivation of
the subalgebra K[xn, xn−1y, . . . , xyn−1, yn], where n ≥ 2, of the polynomial algebra
K[x, y] in two variables over a field K of characteristic zero is induced by a derivation
and a locally nilpotent derivation of K[x, y], respectively. Moreover, we prove that
every automorphism of K[xn, xn−1y, . . . , xyn−1, yn] over an algebraically closed field K

of characteristic zero is induced by an automorphism of K[x, y]. We also show that
the group of automorphisms of K[xn, xn−1y, . . . , xyn−1, yn] admits an amalgamated free
product structure.

Mathematics Subject Classification (2020): 14R10, 14J50, 13F20.
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surface, free product.

1. Introduction

Let K be an arbitrary field and let An and Pn be the affine and the projective n-space
over K, respectively. The Veronese map of degree d is the map

νd : P
n → P

m

that sends [x0 : . . . : xn] to all m+ 1 possible monomials of total degree d, where

m =

(
n+ d

d

)
− 1.

It is well known that the image of the Veronese map is a projective variety and is called
the Veronese variety [9].

The rational normal curve Cn ⊂ Pn is a particular case of the Veronese variety and is
defined to be the image of the map

νn : P1 → P
n

given by

νn : [x0 : x1] 7→ [xn0 : xn−1
0 x1 : . . . : x

n
1 ] = [X0 : . . . : Xn].

It is well known that Cn is the common zero locus of the polynomials

Fi,j = Xi−1Xj+1 −XiXj for 1 ≤ i ≤ j ≤ n− 1.(1)

For n = 2 it is the plane conic X0X2 = X2
1 and for n = 3 it is the twisted cubic [9].
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Denote by Vn ⊂ An+1 the common zero locus of the polynomials (1) in An+1. The
variety Vn is the affine cone of the rational normal curve Cn and is called the Veronese
cone in [12]. We will call Vn the affine Veronese surface of index n in order to separate it
from the Veronese cones of higher dimensions. Veronese surfaces play an important role
in the description of quasihomogeneous affine surfaces given by M.H. Gizatullin [6] and
V.L. Popov [18]. They form one of the main examples of the so called Gizatullin surfaces

[12].
M.H. Gizatullin and V.I. Danilov devoted two papers [7, 8] to the systematic study

of automorphisms of affine surfaces including affine cones of rational normal curves. In
particular, generators of the automorphism group of Vn can be deduced from their work
along with its amalgamated product structure. L. Makar-Limanov [15, 16] gave an alge-
braic description of generators of the automorpism groups of algebraic surfaces defined
by an equation of the form xny = P (z). This gives an explicit description of generators
of the automorphism group of V2.

It is well known [10, 14] that all automorphisms of the polynomial algebra K[x, y] in
two variables x, y over a field K are tame. The well-known Nagata automorphism (see
[17])

σ = (x+ 2y(zx− y2) + z(zx − y2)2, y + z(zx − y2), z)

of the polynomial algebra K[x, y, z] over a field K of characteristic zero is proven to be
non-tame [22].

The automorphism group AutK[x, y] of this algebra admits an amalgamated free prod-
uct structure [14, 21], i.e.,

AutK[x, y] = Aff2 (K) ∗C Tr2 (K),(2)

where Aff2 (K) is the group of affine automorphisms, Tr2 (K) is the group of triangular
automorphisms, and C = Aff2 (K) ∩ Tr2 (K).

It follows that any algebraic subgroup G ⊆ AutK[x, y] is conjugate to a subgroup of
one of the factors Aff2 (K) and Tr2 (K) [8, 11, 25]. In particular, any reductive subgroup
G ⊆ AutK[x, y] is linearizable, i.e., is conjugated to a subgroup of linear automorphisms
GL2(K). The first examples of nonlinearizable actions were given by G.W. Schwarz [23]
and a nonlinearizable action of the symmetric group S3 on C4 is given in [5]. It is still
open question if any finite automorphism of Cn for n ≥ 3 is linearizable [13].

Recently I. Arzhancev and M. Zaidenberg [1] proved that every automorphism of the
Veronese surface Vn can be extended to an automorphism of the plane using the con-
struction of Cox rings. It is also shown that the automorphism group of the Veronese
surface Vn admits an amalgamated product structure induced by (2) and an analogue of
the Kambayashi [11] and Wright [25] result for Vn is proven.

This paper is devoted to the study of vector fields and automorphisms of the affine
Veronese surface Vn for all n ≥ 2 by purely algebraic methods. The algebra of poly-
nomial functions on Vn is isomorphic to the subalgebra K[xn, xn−1y, . . . , xyn−1, yn] of
K[x, y] (Proposition 1). Thus the group of automorphisms of Vn is anti-isomorphic to
the group of automorphisms of the algebra K[xn, xn−1y, . . . , xyn−1, yn]. We show that
over a field K of characteristic zero every derivation and every locally nilpotent deriva-
tion of the algebra K[xn, xn−1y, . . . , xyn−1, yn] is induced by a derivation and a locally
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nilpotent derivation of K[x, y], respectively. Using the proof of the Rentchler’s Theorem
[19] on locally nilpotent derivations of K[x, y] given in [4, Ch. 5], we prove that every
automorphism of K[xn, xn−1y, . . . , xyn−1, yn] is induced by an automorphism of K[x, y]
if K is an algebraically closed field of characteristic zero. This gives an explicit descrip-
tion of generators of the automorphism group of Vn as opposed to papers [1, 8]. We
also show that the amalgamated free product structure of the automorphism group of
K[x, y] induces an amalgamated free product structure on the automorphism group of
K[xn, xn−1y, . . . , xyn−1, yn].

The paper is organized as follows. In Section 2 we describe the algebra of polynomial
functions on the affine Veronese surface Vn. In Section 3 we recall some necessary results
on the structure of the automorphism group of K[x, y] from [2, 4]. Section 4 is devoted to
lifting of derivations of K[xn, xn−1y, . . . , xyn−1, yn] to derivations of K[x, y]. In Section 5
we prove that so called n-graded derivations of K[x, y] are triangulable. In Section 6 we
prove that every automorphism of K[xn, xn−1y, . . . , xyn−1, yn] is induced by an automor-
phism of K[x, y]. The amalgamated free product structure of the automorphism group of
K[xn, xn−1y, . . . , xyn−1, yn] is given in Section 7.

2. Polynomial functions on Vn

Let K be an arbitrary field and let K[X0, X1, . . . , Xn] be the polynomial algebra over
K in the variables X0, X1, . . . , Xn. The set of all monomials of the form

u = X i0
0 X

i1
1 . . .X

in
n ,(3)

where i0, i1, . . . , in ≥ 0, is a linear basis of K[X0, X1, . . . , Xn]. Set α(u) = (i0, i1, . . . , in) ∈
Zn+1. If u and v are two monomials of the form (3) then set u ≤ v if α(u) ≤ α(v) with
respect to the lexicographical order.

Let I be the ideal of K[X0, X1, . . . , Xn] generated by all elements Fij defined in (1).

Lemma 1. The images of all different monomials of the form X i
kX

j
k+1, where 0 ≤ k ≤

n− 1 and i, j ≥ 0, in K[X0, X1, . . . , Xn]/I form a linear basis of K[X0, X1, . . . , Xn]/I.

Proof. The leading monomial of Fij with respect to the ordering ≤ is Xi−1Xj+1. Con-
sider the leading monomials Xi−1Xj+1 and Xk−1Xl+1 of Fij and Fkl, respectively. Assume
i ≤ k and Fij 6= Fkl. Then monomialsXi−1Xj+1 andXk−1Xl+1 have nontrivial intersection
in the following cases:

(a) i = k and j < l;
(b) j + 1 = k − 1;
(c) i < k and j = l.
Case (a). We form an S-polynomial (see, for example [3])

S(Fij, Fil) = (Xi−1Xj+1 −XiXj)Xl+1 − (Xi−1Xl+1 −XiXl)Xj+1

= −(XjXl+1 −Xj+1Xl)Xi = −Fj+1,lXi.

The leading monomial of Fj+1,lXi is equal to XiXjXl+1 and is less than Xi−1Xj+1Xl+1.
3



Case (b). We have i+ 2 ≤ j + 2 ≤ l. Then

S(Fij , F(j+2)l) = (Xi−1Xj+1 −XiXj)Xl+1 −Xi−1(Xj+1Xl+1 −Xj+2Xl)

= −XiXjXl+1 +Xi−1Xj+2Xl = Fi(j+1)Xl −XiF(j+1)l.

The leading term of Fi(j+1)Xl isXi−1Xj+2Xl and the leading term ofXiF(j+1)l isXiXjXl+1.
Both of them are less than Xi−1Xj+1Xl+1.

Case (c) can be handled similar to the case (a).
Consequently, the set of all elements Fij forms a Gröbner basis for the ideal I [3,

Theorem 6, p. 86]. Since the leading monomial of Fij is Xi−1Xj+1 it follows the statement
of the lemma [3, Ch. 5, section 3]. ✷

Proposition 1. K[X0, X1, . . . , Xn]/I ∼= K[xn, xn−1y, . . . , xyn−1, yn].

Proof. The homomorphism

φ : K[X0, X1, . . . , Xn] → K[xn, xn−1y, . . . , xyn−1, yn]

defined by φ(Xi) = xn−iyi for all i induces the homomorphism

φ̄ : K[X0, X1, . . . , Xn]/I → K[xn, xn−1y, . . . , xyn−1, yn]

since φ(Xi−1Xj+1 −XiXj) = xn−(i−1)yi−1xn−(j+1)yj+1 − xn−iyixn−jyj = 0 for all 1 ≤ i ≤
j ≤ n− 1.

Let u = X i
kX

j
k+1 and v = Xp

sX
q
s+1 where k ≤ s. We get

φ(u) = (xn−kyk)i(xn−k−1yk+1)j = x(n−k)i+(n−k−1)jyki+(k+1)j

and, similarly,

φ(v) = x(n−s)p+(n−s−1)qysp+(s+1)q.

Consequently, φ(u) = φ(v) if and only if

(n− k)i+ (n− k − 1)j = (n− s)p+ (n− s− 1)q,

ki+ (k + 1)j = sp+ (s + 1)q.(4)

By adding the both sides of these equalities we get n(i+ j) = n(p+ q), i.e., i+ j = p+ q.
Then (4) gives that

k(p+ q) + j = s(p+ q) + q,

i.e.,

(s− k)(p+ q) = j − q.(5)

We get j − q ≥ 0 since s ≥ k. Then (5) is possible only if s = k or s − k = 1 and
p + q = j − q. If s = k then (5) gives j = q. Then i = p since i + j = p + q. This gives
u = v. Suppose that s − k = 1 and p + q = j − q. Since i + j = p + q it follows that
q = 0, i = 0, p = j. Then u = v = Xj

k+1.

Thus we proved that the images of different monomials of the form X i
kX

j
k+1 under φ

are different monomials in x, y. Consequently, the images of different monomials of the
form X i

kX
j
k+1 are linearly independent.
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By Lemma 1, the images of different monomials of the form X i
kX

j
k+1 gives a linear basis

for K[X0, X1, . . . , Xn]/I. Consequently, φ̄ is an injection. Obviously, φ̄ is a surjection,
i.e., φ̄ is an isomorphism. ✷

3. Automorphisms of K[x, y]

Let K[x, y] be the polynomial algebra in the variables x, y over a field K and let
AutK[x, y] be the group of automorphisms of K[x, y]. Denote by φ = (f, g) the automor-
phism of K[x, y] such that φ(x) = f and φ(y) = g, where f, g ∈ K[x, y]. If φ = (f1, g1)
and ψ = (f2, g2) then the product in AutK[x, y] is defined by

φ ◦ ψ = (f2(f1, g1), g2(f1, g1)).

An automorphism φ ∈ AutK[x, y] is called elementary if it has the form

φ = (x, αy + f(x))

or

φ = (αx+ g(y), y),

where f(x) ∈ K[x], g(y) ∈ K[y], and 0 6= α ∈ K. The subgroup of AutK[x, y] generated
by all elementary automorphisms is called the tame subgroup. Elements of this subgroup
are called tame automorphisms of K[x, y].

An automorphism φ ∈ AutK[x, y] is called affine if it has the form

φ = (α1x+ β1y + γ1, α2x+ β2y + γ2)

where α1β2 6= β1α2 and α1, α2, β1, β2, γ1, γ2 ∈ K. The subgroup Aff2 (K) of AutK[x, y]
generated by all affine automorphisms is called the affine subgroup. If γ1, γ2 = 0 then the
affine automorphism φ is called linear. The subgroup GL2 (K) of Aff2 (K) generated by
all linear automorphisms is called the linear subgroup.

An automorphism φ ∈ AutK[x, y] is called triangular if it has the form

φ = (αx+ f(y), βy + γ),(6)

where 0 6= α, β ∈ K and f(y) ∈ K[y]. The subgroup Tr2 (K) of AutK[x, y] generated by
all triangular automorphisms is called the triangular subgroup.

The well known Jung-van der Kulk Theorem [10, 14] says that all automorphisms of
the polynomial algebra K[x, y] in two variables x, y over a field K are tame. Moreover,
van der Kulk and Shafarevich [14, 21] proved that the automorphism group AutK[x, y]
of this algebra admits an amalgamated free product structure, i.e.,

AutK[x, y] = Aff2 (K) ∗C Tr2 (K),

where C = Aff2 (K) ∩ Tr2 (K).
We fix a grading

K[x, y] = K[x, y]0 ⊕K[x, y]1 ⊕K[x, y]2 ⊕ . . .⊕K[x, y]n−1(7)

of the polynomial algebra K[x, y], where K[x, y]i is the linear span of all homogeneous
monomials of degree i+ ns, i = 0, 1, . . . , n− 1, and s is an arbitrary nonnegative integer.

5



This is a Zn-grading of K[x, y], i.e.,

K[x, y]iK[x, y]j ⊆ K[x, y]i+j,

where i, j ∈ Zn = Z/nZ. For shortness we will refer to this grading as n-grading.
An automorphism φ ∈ AutK[x, y] is called a graded automorphism with respect to

grading (7) if φ(x), φ(y) ∈ K[x, y]1. A graded automorphism is called graded tame if it is
a product of graded elementary automorphisms.

Recently A. Trushin [24] studied graded automorphisms of polynomial automorphisms.
But his gradings do not include gradings of type (7).

A graded automorphism of K[x, y] with respect to grading (7) will be called an n-

graded automorphism for shortness. Obviosly, every n-graded automorphism induces an
automorphism of the algebra K[xn, xn−1y, . . . , xyn−1, yn].

A derivation D of K[x, y] will be called an n-graded derivation if D(x), D(y) ∈ K[x, y]1.
Recall that every derivation D of K[x, y] can be uniquely written in the form

D = f∂x + g∂y,

where D(x) = f , D(y) = g, and ∂x = ∂
∂x

and ∂y =
∂
∂y

are partial derivatives with respect
to x and y, respectively.

4. Derivations of K[xn, xn−1y, . . . , xyn−1, yn]

Let K be an arbitrary field of characteristic zero. Let A be any algebra over K. A
derivation D of A is called locally nilpotent if for every a ∈ A there exists a positive integer
n = n(a) such that Dn(a) = 0.

If D is a locally nilpotent derivation of A then

expD =
∑

p≥0

1

p!
Dp

is an automorpism of A and is called an exponential automorphism.
Moreover, if D is any derivation of A then

exp TD =

∞∑

i=0

1

i!
DiT i

is an automorpism of the formal power series algebra A[[T ]]. If D is locally nilpotent then
exp TD is an automorphism of A[T ].

Consider the grading (7) of K[x, y]. A derivation D of K[x, y] will be called an n-

graded derivation ifD(x), D(y) ∈ K[x, y]1. Obviously, every n-graded derivation ofK[x, y]
induces a derivation of K[xn, xn−1y, . . . , xyn−1, yn]. The reverse is also true.

Lemma 2. Every derivation of K[xn, xn−1y, . . . , xyn−1, yn] can be uniquely extended to

an n-graded derivation of K[x, y].

Proof. Let D be a derivation of K[xn, xn−1y, . . . , xyn−1, yn]. Denote by T the unique ex-
tension ofD [26, p. 120] to a derivation of the field of fractionsK(xn, xn−1y, . . . , xyn−1, yn)
of K[xn, xn−1y, . . . , xyn−1, yn]. Obviously, the field extension

K(xn, xn−1y, . . . , xyn−1, yn) ⊆ K(x, y)
6



is algebraic. This extension is separable since K is a field of characteristic zero. By Corol-
laries 2 and 2’ in [26, pages 124–125], every derivation of the field K(xn, xn−1y, . . . , xyn−1,
yn) can be uniquely extended to a derivation of K(x, y). Let S be the unique extension
of T to a derivation of K(x, y). Suppose that

S(x) =
f1
g1
, S(y) =

f2
g2
,(8)

where f1, f2 ∈ K[x, y], 0 6= g1, g2 ∈ K[x, y], and the pairs f1, g1 and f2, g2 are relatively
prime. We have

D(xn−iyi) = S(xn−iyi) = (n− i)xn−i−1yi
f1
g1

+ ixn−iyi−1f2
g2

for all 0 ≤ i ≤ n.
Since D(xn), D(xn−1y), . . . , D(xyn−1), D(yn) ∈ K[xn, xn−1y, . . . , xyn−1, yn] it follows

that

g1g2|(n− i)xn−(i+1)yif1g2 + ixn−iyi−1f2g1

for all 0 ≤ i ≤ n. Consequently,

g1|(n− i)xn−(i+1)yi

and

g2|ix
n−iyi−1

for all 0 ≤ i ≤ n.
This means that g1|x

n−1 and g1|y
n−1 and, consequently, we may assume that g1 = 1.

Similarly, g2|y
n−1 and g2|x

n−1 give that g2 = 1. Obviously, f1, f2 ∈ K[x, y]1. ✷

For any derivation D of K[xn, xn−1y, . . . , xyn−1, yn] denote by D̃ its unique extension

to a derivation of K[x, y] determined by Lemma 2. Obviously D is locally nilpotent if D̃
is locally nilpotent. The reverse statement is also true.

Lemma 3. If D is a locally nilpotent derivation of K[xn, xn−1y, . . . , xyn−1, yn] then D̃ is

a locally nilpotent n-graded derivation of K[x, y].

Proof. Suppose that D is a locally nilpotent derivation of K[xn, xn−1y, . . . , xyn−1, yn].

Then expTD is an automorphism of K[xn, xn−1y, . . . , xyn−1, yn][T ]. Recall that exp TD̃
is an automorphism of K[x, y][[T ]]. We have

exp TD(xn) = exp TD̃(xn) = expTD̃(x)n.

This implies that expTD̃(x) ∈ K[x, y][T ] since exp TD(xn) ∈ K[x, y][T ]. Similarly,

exp TD̃(y) ∈ K[x, y][T ]. This means that there exist natural numbers m and n such that

D̃m(x) = 0 and D̃n(y) = 0. Therefore D̃ is locally nilpotent. ✷
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5. Triangulation of locally nilpotent n-graded derivations

A derivation D of K[x, y] is called triangular if

D(x) = f(y) ∈ K[y], D(y) = α ∈ K.

A derivation D of K[x, y] is called triangulable if there exists an automorphism α ∈
AutK[x, y] such that α−1Dα is triangular.

Every triangular derivation, and hence every triangulable derivation, is locally nilpo-
tent. In 1968 R. Rentschler [19] proved that every locally nilpotent derivation of the
polynomial algebra K[x, y] over a field of characteristic zero is triangulable.

In this section we adopt the proof of this result given in [4, Ch. 5] to prove that
every locally nilpotent n-graded derivation of K[x, y] is triangulable by a tame n-graded
automorphism.

First recall some necessary definitions from [4].
Let 0 6= w = (w1, w2) ∈ Z2. Then w-degree of the monomial xa1ya2 is defined by

w(xa1ya2) = a1w1 + a2w2. This degree function leads to the w-grading

K[x, y] =
∑

d

Wd

of K[x, y], where Wd is the span of all monomials of w-degree d.
Let T = cxa1ya2∂i be a monomial derivation of K[x, y], where i = 1, 2. Set (s, t) =

(a1, a2)− ei, where ei is the i-th vector of the standard basis of K2. Then

T (xm1ym2) ∈ Kxm1+sym2+t

for all m1, m2. We call (s, t) the strength of T .
Every derivation D is a linear combination of monomial derivations. Set

suppD = {(s, t) ∈ Z
2 |D contains a term of strength (s, t)}.

Let us denote by D(s, t) the sum of all terms in D of strength (s, t) and set

Dp =
∑

sw1+tw2=p

D(s, t).

Obviously,

D =
∑

p

Dp

and this decomposition is called the w-homogeneous decomposition of D. If p is maximal
withDp 6= 0 then p is called the w-degree of D and is denoted by wdegD. When w = (1, 1)
p is called the degree of D and is denoted by deg D.

It is easy to check [4] that DpWd ⊂Wp+d for all p, d ∈ Z.
Consider the grading (7) of K[x, y]. Set K[y]1 = K[x, y]1 ∩ K[y]. Every triangular

n-derivation of K[x, y] can be written as f∂x + α∂y where f ∈ K[y]1 and α ∈ K.

Proposition 2. Let D be a locally nilpotent n-graded derivation of K[x, y]. Then there

exists a tame n-graded automorphism α of K[x, y] and f(y) ∈ K[y]1 such that

α−1Dα = f(y)∂x.
8



Proof. Let D be a locally nilpotent n-graded derivation of K[x, y]. According to Corol-
lary 5.1.16 in [4, p. 91], the following three cases are possible:

(i) D = f(y)∂x, for some f(y) ∈ K[y];
(ii) D = f(x)∂y, for some f(x) ∈ K[x];
(iii) there exist s0, t0 ≥ 0 such that (s0,−1) and (−1, t0) belong to suppD and, fur-

thermore, suppD is contained in the triangle with vertices (s0,−1), (−1,−1), (−1, t0).
Case (i). If D = f(y)∂x with f(y) ∈ K[y]1 then set α = id. Obviously, the identity

automorphism is an n-graded automorphism.
Case (ii). If D = f(x)∂y with f(x) ∈ K[x]1 then set α = (y, x). Obviously α is a

n-graded automorphism of K[x, y] and α−1Dα = f(y)∂x with f(y) ∈ K[y]1.
Case (iii). Suppose that we have s0, t0 ≥ 0 such that (s0,−1), (−1, t0) ∈ suppD. This

implies that D contains differential monomials of the form xs0∂y and yt0∂x with nonzero
coefficients. Hence s0 = 1 + nk, t0 = 1 + nl, k, l ∈ Z since xs0, yt0 ∈ K[x, y]1.

Let L be the line passing through the points (1+nk,−1) and (−1, 1+nl). The defining
equation of L is

(nl + 2)x+ (nk + 2)y = n2kl + nk + nl = nM.

Set w = (nl + 2, nk + 2) and p = n2kl + nk + nl. Obviously wdegD = p and Dp is the
highest homogeneous part of D with respect to the w-degree. It is well known that the
highest homogeneous part of a locally nilpotent derivation is locally nilpotent (see, for
example [4, p. 90]). Consequently, Dp is a locally nilpotent n-graded derivation.

We can write Dp = gD1, where D1 = a∂x + b∂y with gcd(a, b) = 1. By Corollary 1.3.34
in [4, p. 29], D1 is locally nilpotent and D1(g) = 0. By Proposition 1.3.46 in [4, p. 31],
D1 has a slice in K[x, y], i.e., there exists s ∈ K[x, y] such that D1(s) = 1. This implies
that a(0, 0) 6= 0 or b(0, 0) 6= 0. Assume that a(0, 0) 6= 0. This means that D1 has a
term of the form c∂x, where c ∈ K∗. Since (1 + nk,−1) ∈ suppDp and Dp = gD1 it
follows that D1 also has a term of the form dxr∂y with r ≥ 0 and d ∈ K∗. Moreover, g
and D1 are w-homogeneous since Dp is w-homogeneous. Therefore suppD1 is on the line
passing through the points (−1, 0) and (r,−1). Notice that this line does not contain any
other points with integer coordinates. Hence D1 = c∂x + dxr∂y. Since Dp is an n-graded
derivation it follows that g ∈ K[x, y]1 and n|r.

We have g ∈ KerD1 = K[y − d
(r+1)c

xr+1] since D1(g) = 0. Consequently, g = a(y −
d

(r+1)c
xr+1)N for some a ∈ K∗ and N ∈ N since g is w-homogeneous. So

Dp = a(y −
d

(r + 1)c
xr+1)N(c∂x + dxr∂y),

where a, c, d ∈ K∗, r ≥ 0, and N ∈ N. Obviously, t0 = N and s0 = (r + 1)N + r.
Let α be the automorphism given by

α(x) = x, α(y) = y −
d

(r + 1)c
xr+1.

This is an elementary n-graded automorphism since n|r. Direct calculations give that

α−1D1α = c∂x
9



and

α−1Dpα = acyt0∂x.

Since α is w-homogeneous, α−1Dpα is the highest w-homogeneous part of α−1Dα. Thus
α turns all points of suppDp to one point (−1, t0). Consequently, s0(α

−1Dα) < s0(D).
Leading an induction on s0(D) + t0(D) we can conclude that the statement of the propo-
sition is true. ✷

6. Automorphisms of K[xn, xn−1y, . . . , xyn−1, yn]

As we noticed above, every n-graded automorphism ofK[x, y] induces an automorphism
of K[xn, xn−1y, . . . , xyn−1, yn]. In this section we prove the reverse of this statement.

Lemma 4. Let p ∈ K[x, y]. If pn ∈ K[x, y]0 then p ∈ K[x, y]i for some i ∈ Zn = Z/nZ.

Proof. Consider the standard grading

K[x, y] = A0 ⊕ A1 ⊕ . . .⊕Ak ⊕ . . . ,

where Ai is the linear span of monomials of degree i for all i ≥ 0. For any f ∈ K[x, y]
denote by fi ∈ Ai its homogeneous part of degree i. Let

p = pi1 + pi2 + . . .+ pik , 0 6= pij ∈ Aij , i1 < i2 < . . . < ik.

Suppose that pi1 , pi2, . . . , pis ∈ K[x, y]i for some i ∈ Zn and pis+1
/∈ K[x, y]i. Set q =

pi1 +pi2 + . . .+pis . Obviously, qn ∈ K[x, y]0. Set t = (n−1)i1+ is+1. Then t 6≡ 0 mod n.
We get

(pn)t = (qn)t + npn−1
i1

pis+1
= npn−1

i1
pis+1

/∈ K[x, y]0

since qn ∈ K[x, y]0. This contradicts to p
n ∈ K[x, y]0. ✷

Theorem 1. Every automorphism of K[xn, xn−1y, . . . , xyn−1, yn] over an algebraically

closed field K of characteristic zero is induced by an n-graded automorphism of K[x, y].

Proof. Consider the derivation D = y∂x of K[x, y]. Let D be the derivation of
K[xn, xn−1y, . . . , xyn−1, yn] induced by D.

Let α be an arbitrary automorphism of K[xn, xn−1y, . . . , xyn−1, yn]. Set T = αDα−1.

This derivation is locally nilpotent since D is locally nilpotent. Let T̃ be the extension of

T to a derivation ofK[x, y] that uniquely defined by Lemma 2. By Lemma 3, T̃ is a locally
nilpotent n-graded derivation of K[x, y]. By Proposition 2, there exists an n-graded tame

automorphism β of K[x, y] such that S = β−1T̃ β is a triangular n-graded derivation of
K[x, y]. Let

S = β−1T̃ β = g(y)∂x,

where g(y) ∈ K[y]1. We get

S(f) = g(y)
∂f

∂x
, f ∈ K[x, y].

Let β be the automorphism ofK[xn, xn−1y, . . . , xyn−1, yn] induced by β. Then S induces

the derivation S = β
−1
Tβ = β

−1
αDα−1β of K[xn, xn−1y, . . . , xyn−1, yn].

10



Let φ = β
−1
α. Assume that φ(xn−iyi) = fi, where 0 ≤ i ≤ n. Applying the equation

φD = Sφ to xn−iyi for all i, we get

(n− i)fi+1 = g(y)
∂fi
∂x

,

i.e.,

0 = g(y)
∂fn
∂x

, fn = g(y)
∂fn−1

∂x
, . . . , (n− 1)f2 = g(y)

∂f1
∂x

, nf1 = g(y)
∂f0
∂x

.

These equalities immediately give that

degx fn = 0, degx fn−1 = 1, . . . , degx fn−i = i, . . . , degx f0 = n.

In particular, fn ∈ K[y].
We have

f0
f1

=
f1
f2

= . . . =
fn−1

fn
(9)

since the generators xn, xn−1y, . . . , xyn−1, yn of K[xn, xn−1y, . . . , xyn−1, yn] satisfy the re-
lations

xn

xn−1y
=

xn−1y

xn−2y2
= . . . =

xyn−1

yn
=
x

y
.

Let f0
f1

= p

q
, where p, q ∈ K[x, y] are relatively prime. Then f0

fn
= pn

qn
by (9). Since pn

and qn are relatively prime it follows that f0 = pnu and fn = qnu for some u ∈ K[x, y].
Moreover, (9) implies that fi = pn−iqiu for all i. From this we get

K[xn, xn−1y, . . . , xyn−1, yn] ⊆ K + (u),

where (u) is the ideal of K[x, y] generated by u. This is possible if the leading word
of u divides all of the words xn, xn−1y, . . . , xyn−1, yn. Consequently, u ∈ K∗. Over an
algebraically closed field we can write u = vn for some v ∈ K∗. Replacing vp with p and
vq with q, we may assume that u = 1 and fi = pn−iqi for all i.

We have q ∈ K[y] since fn = qn ∈ K[y]. We also have degx(p) = 1 since pn = f0 and
degx(f0) = n. Set p = xa(y) + b(y). We get

K[xn, xn−1y, . . . , xyn−1, yn] ⊆ K[fn] + (p) ⊆ K[y] + (p),

where (p) is the ideal of K[x, y] generated by p. Consequently,

xn = (xa(y) + b(y))h+ f(y).

Introducing a monomial order with prioritized x, we get that it is possible only if a(y) =
a ∈ K∗. Consequently, p = ax + b(y). By Lemma 4, it implies that p ∈ K[x, y]1 since
pn ∈ K[xn, xn−1y, . . . , xyn−1, yn]. Set γ = (ax+b(y), y). Then γ is an elementary n-graded
automorphism of K[x, y]. Set ψ = γ−1φ. Then ψ(xn−iyi) = xn−iqi for all i. We have

K[xn, xn−1y, . . . , xyn−1, yn] ⊆ K[qn] + (x),

where (x) is the ideal of K[x, y] generated by x. It is possible only if qn = cyn for some
c ∈ K∗. Consequently, q = ey for some e ∈ K∗ since K is algebraically closed.

Let δ = (x, ey). Then δ
−1
ψ = id, i.e., δ

−1
γ−1β

−1
α = id. Consequently, α = βγδ = βγδ

is induced by a tame n-graded automorphism of K[x, y]. ✷
11



7. Amalgamated free product structure of AutK[xn, xn−1y, . . . , xyn−1, yn]

Let Gn be the group of all n-graded automorphisms of the polynomial algebra K[x, y].

Lemma 5. The subgroup Gn of AutK[x, y] is generated by all linear automorphisms and

all automorphisms of the type (x − αym, y), where m = 1 + ns is a positive integer and

α ∈ K.

Proof. For any f ∈ K[x, y] denote by f̄ its highest homogeneous part with respect
the standard degree function deg. Let φ = (f, g) be a n-graded automorphism of the
algebra K[x, y] and suppose that deg f = k and deg g = l. If k + l = 2 then φ is a linear
automorphism.

Suppose that k+ l ≥ 3. It is well known that k|l or l|k (see, for example [2, 4]). Assume
that l|k. In this case we have f̄ = αḡm for some α ∈ K∗ and m ∈ N. Since f̄ , ḡ ∈ K[x, y]1
it follows thatm = 1+ns for some s ≥ 0. In fact, let deg(f̄) = 1+np and deg(ḡ) = 1+nq.
Then

1 + np = m(1 + nq).

Consequently, m− 1 = np−mnq = ns.
Therefore (x− αym, y) is an elementary n-graded automorphism of K[x, y]. We have

(f, g) ◦ (x− αym, y) = (f − αgm, g) = (f ′, g),

where deg(f ′) < deg(f). Leading an induction on k+l we may assume that (f ′, g) satisfies
the statement of the lemma. Then (f, g) also satisfies the statement of the lemma. ✷

Corollary 1. Every n-graded automorphism of K[x, y] is n-graded tame.

An automorphism φ ∈ AutK[x, y] is called n-graded triangular if it has the form

φ = (αx+ f(y), βy),

where 0 6= α, β ∈ K and f(y) ∈ K[y]1.
Let Tn be the group of all n-triangular automorphisms of the polynomial algebraK[x, y].

Corollary 2. Gn = GL2 (K) ∗B Tn, where B = GL2 (K) ∩ Tn.

Proof. Lemma 5 says that Gn is generated by GL2 and Tn. Consider (2). We have
GL2 ⊆ Aff2, Tn ⊆ Tr2 (K), and B ⊆ C. This means that every decomposition of an
element of Gn in the form

g1g2 . . . gk,

where gi ∈ GL2 ∪ Tn for all i and gi and gi+1 do not belong together to GL2 or Tn for all
i < k, determined by the amalgated free product structure (2). Consequently,

Gn = GL2 (K) ∗B Tn ⊆ Aff2 (K) ∗C Tr2 (K). ✷

Corollary 3. Let E = {ǫid|ǫn = 1, ǫ ∈ K}. Then

AutK[xn, xn−1y, . . . , xyn−1, yn] ∼= Gn/E.
12



Proof. Consider the homomorphism

ψ : Gn → AutK[xn, xn−1y, . . . , xyn−1, yn](10)

defined by ψ(α) = α, where α is the automorphism of K[xn, xn−1y, . . . , xyn−1, yn] induced
by the n-graded automorphism α of K[x, y].

By Theorem 1, ψ is an epimorphism. Let α ∈ Kerψ. Then

α(x)n−iα(y)i = xn−iyi

for all 0 ≤ i ≤ n. This implies that α(x) = ǫx, α(y) = ǫy for some nth root of unity
ǫ ∈ K. Consequently, α ∈ E. Obviously, E ⊆ Kerψ. ✷

Let

GL2 (K) = GL2 (K)/E, Tn = Tn/E,B = B/E.

Theorem 2. AutK[xn, xn−1y, . . . , xyn−1, yn] ∼= GL2 (K) ∗B Tn.

Proof. By Corollaries 2 and 3, the group AutK[xn, xn−1y, . . . , xyn−1, yn] is generated

by GL2 (K) and Tn.

Let G be any group and ψ1 : GL2 (K) → G and ψ2 : Tn → G be any homomorphisms
with ψ1|B = ψ2|B.

Let α : GL2 (K) → GL2 (K) and β : Tn → Tn be natural homomorphisms. Set
φ1 = ψ1α : GL2 (K) → G and φ2 = ψ2β : Trn → G. Obviously, φ1|B = φ2|B. By the
universal property of the amalgamated free products of groups [20, Ch. 1], there exists
a unique homomorphism φ : GL2 (K) ∗B Tn → G such that φ|GL2 (K) = φ1, φ|Tn

= φ2.

Since E ⊆ Ker(φ), φ induces the homomorphism φ : (GL2 (K)∗B Tn)/E → G. Obviously,
φ|GL2 (K) = ψ1 and φ|Tn

= ψ2. By the definition of the amalgamated free product [20], we
get

(GL2 (K) ∗B Tn)/E ∼= GL2 (K) ∗B Trn.

Corollary 2 finishes the proof of the theorem. ✷

Recall that an automorphism f ∈ AutK[xn, xn−1y, . . . , xyn−1, yn] is called linearizable

if there exists φ ∈ AutK[xn, xn−1y, . . . , xyn−1, yn] such that φ−1fφ is linear.

Corollary 4. Any automorphism of K[xn, xn−1y, . . . , xyn−1, yn] of finite order is lineariz-
able.

Proof. By Corollary 1 in [20, page 6] every element of AutK[xn, xn−1y, . . . , xyn−1, yn] of

finite order is conjugate to an element of GL2 (K) or Tn. Since Tn has no elements of finite
order over a field of characteristic zero, any automorphism of K[xn, xn−1y, . . . , xyn−1, yn]

of finite order is conjugate to an element of GL2 (K). ✷
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