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The Eureka effect refers to the common experience of suddenly solving a problem. Here, we study this effect in a pattern recognition
paradigm that requires the segmentation of complex scenes and recognition of objects on the basis of Gestalt rules and prior knowledge.
In the experiments, both sensory evidence and prior knowledge were manipulated in order to obtain trials that do or do not converge
toward a perceptual solution. Subjects had to detect objects in blurred scenes and indicate recognition with manual responses.
Neural dynamics were assessed with high-density Electroencephalography (EEG) recordings. The results show significant changes of
neural dynamics with respect to spectral distribution, coherence, phase locking, and fractal dimensionality. The Eureka effect was
associated with increased coherence of oscillations in the alpha and theta bands over widely distributed regions of the cortical mantle
predominantly in the right hemisphere. This increase in coherence was associated with decreased beta power over parietal and central
regions and with decreased alpha power over frontal and occipital areas. In addition, there was a right hemisphere-lateralized reduction
of fractal dimensionality. We propose that the Eureka effect requires cooperation of cortical regions involved in working memory,
creative thinking, and the control of attention.
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Introduction
Nervous systems need to be able to distinguish activity patterns
associated with the search for the solution of a computational
problem from those representing a result. This distinction is
necessary in order to terminate further search, to eventually
convert the result into action, to permit synaptic plasticity for
the storage of results, to allow initiation of a new search process,
and to permit access of results to awareness. Humans experi-
ence solution states as rewarding and are capable of judging
the reliability of a particular result. It is pleasant to suddenly
arrive at the solution of a perceptual problem, to understand a
previously incomprehensible concept, or to solve a puzzle. This
sudden transition from searching for a solution to having found
the solution has been termed as the Eureka effect (Kaplan and
Simon 1990; Sternberg and Davidson 1995; Ahissar and Hochstein
1997; Kounios and Beeman 2014; Sprugnoli et al. 2017). Some of
the features of the Eureka experience are probably also shared by
higher mammals (Tovee et al. 1996).

However, very little is known about the neuronal underpin-
nings of the Eureka effect. One of the reasons is that it is hard to
predict under which circumstances and exactly when the Eureka
effect occurs. Investigations of the Eureka effect are fraught with
several methodological problems. First, measurements need to be
performed with high temporal resolution because the moment
when the Eureka effect occurs is often unpredictable. Second,
neurophysiological studies require a sufficient number of com-
parable trials for analysis.

In the present study, we applied black-and-white Mooney
images (Dolan et al. 1997; Tallon-Baudry and Bertrand 1999;
McKeeff and Tong 2007; Giovannelli et al. 2010; Castelhano et al.
2013) as the paradigm to induce the Eureka effect. The most
interesting feature of Mooney images is that they are initially
difficult to interpret but can eventually lead to a stable percept of
objects. This percept can also be facilitated by cues, which usually
consist of original images (color or greyscale images) of the
Mooney images (Hsieh et al. 2010; Goold and Meng 2016). Mooney
images have several advantages as test material. First, they permit
precise manipulation of parameters such as luminance, contrast,
size, and pixels. Second, Mooney images allow the combination
of natural objects with complex backgrounds. This permits the
induction of strong Eureka effects and the search for neuronal
correlates. To maximize the occurrence of Eureka experiences, we
developed a method to generate and fine-tune Mooney images
that evoke Eureka experiences reliably and reproducibly.

How are ambiguous inputs from Mooney images transformed
to unambiguous perceptual solutions? It is suggested that prior
experience, stored in memory, is used to modulate peripheral
processing in order to facilitate scene segmentation, perceptual
grouping, and recognition (Dolan et al. 1997; Gorlin et al. 2012;
Goold and Meng 2016). The Bayesian hypothesis of perception
posits that internal information, made available by top-down
processes, is matched with sensory evidence (Kersten et al. 2004;
Friston and Stephan 2007; Clark 2013; de Lange et al. 2018). Thus,
the brain is assumed to perform a probabilistic inference that

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad150/7158362 by Ernst-Struengm

ann-Institut gG
m

bH
 user on 15 M

ay 2023

http://creativecommons.org/licenses/by/4.0/


2 | Cerebral Cortex, 2023

can optimize sensory information to minimize the mismatch
between internal and external information. This function can be
interpreted as perceptual closure which consists of the comple-
tion of incomplete sensory evidence and the correct binding of
components into a coherent percept (Grutzner et al. 2010; Moratti
et al. 2014). One proposal is that this is achieved through the
transient association of distributed neurons into a coherently
active assembly (Singer and Gray 1995).

Assuming that the signature of such assemblies is enhanced
coherence of neuronal activity (Gray et al. 1989; Singer 1999;
Sehatpour et al. 2008; Hipp et al. 2011; Volberg et al. 2013; Singer
2018), we wondered whether, and if so, how the Eureka effect is
associated with the changes in neuronal dynamics. We hypoth-
esized that solution states might be associated with enhanced
coherence of neuronal activity, as they are likely to result from
the successful integration of distributed computational results. To
examine this hypothesis, we presented Mooney stimuli to induce
the Eureka effect, captured neural activity with high-density EEG
recordings, and then investigated how these neuronal responses
were modulated during the Eureka effect. The human brain is a
highly complex and dynamic system that displays a wide range
of state transitions. In light of this, the metrics used in complex-
ity theory are deemed to be valuable indicators of these state
transitions and might offer crucial insights into the underlying
mechanisms of brain function. In recent years, the utilization of
nonlinear methods has gained great interest due to its ability
to characterize varying states of both healthy and pathological
brain activities (Rodriguez-Bermudez and Garcia-Laencina 2015;
Ma et al. 2018; Keshmiri 2020). One of the commonly used metrics
is the fractal dimension, a measure of the degree of complexity
of a time series, and it has been used to detect changes in the
brain’s state during a variety of processes. For instance, it has
been used to distinguish between different sleep stages, to identify
changes in brain activity associated with the onset of seizures, and
as a potential biomarker for various disorders, such as autism,
depression, and Alzheimer’s disease (Rodriguez-Bermudez and
Garcia-Laencina 2015; Ma et al. 2018). For these reasons, we mea-
sured not only the power and coherence of oscillatory activity but
also measured the fractal dimension of activity vectors (Nikolic
et al. 2008; Singer and Lazar 2016) to further characterize the state
transitions associated with the Eureka effect.

Materials and methods
The selection of images
The original images used for the construction of the stimuli
were taken from the Caltech-256 Object Category Dataset (Griffin
et al. 2007) and Flickr. More than 30,000 images were included
in our initial database. We then manually chose images for fur-
ther testing according to the following criteria. (i) Familiarity:
We chose well known objects, such as animals, plants, furniture,
tools, instruments, vehicles, and so on. (ii) Natural and complex
background: The images were taken from natural scenes, the
target objects being embedded in a complex background, which
can render identification difficult.

The procedure of manipulating the images
The original images were first converted to 256-level greyscale
images. As the distribution of greyscale pixels varied widely and
was non-normal and as the luminance levels and contrast also
differed, adjustments were required. Luminance and contrast
were equated with histogram equalization which generates even
contrast distributions (Lim 1990).

To create Mooney images with different degradation levels,
we applied a frequency-domain Gaussian filter on the greyscale
images processed according to the methods described above (Had-
dad and Akansu 1991). Lowering the cutoff frequency of the filter
increases the difficulty to recognize the object in an image. The
filters were generated in 3 processing steps: (i) The spatial domain
of the original image f (x, y) is transformed to the frequency
domain F(u, v) by Fourier transformation; (ii) this F(u, v) is low-
pass filtered with a set of cutoff frequencies to obtain a band
passed representation G(u, v); and (iii) this representation G(u, v)
is then transformed back to the spatial domain g(x, y) (i.e. the
blurred image) by an inverse Fourier transformation. In order
to obtain images with different degradation levels, the low-pass
filter was varied between cutoff frequencies ranging from 10 to
80 Hz (10 Hz per interval) (Supplementary Fig. S1). The median
gray level of each image was then chosen as the divider for
the assignment of black or white pixels in order to obtain two-
tone Mooney images. Subsequently, the recognizability of Mooney
images with different cutoff frequencies was tested. This led to
the selection of the 20-Hz cutoff frequency for the induction of
the Eureka effect because it assured transitions from search to
solution most reliably (details are provided in the Supplementary
material, see also Supplementary Figs. S2 and S3).

Participants
In the pilot experiment aimed at the determination of the cutoff
frequency, 10 subjects were included. None of these subjects
participated in the main experiment (the detailed information
of the pilot experiment is given in the Supplementary material).
Another 29 healthy subjects (Age 25.2 ± 4.0 years, 16 males, 13
females) took part in the main experiment that comprised both
behavioral assessment and EEG recordings. None of these subjects
participated in the pilot experiment. Twenty-five subjects were
included, and 4 were rejected due to an insufficient number
of correct responses. In addition, EEG data from 3 of these 25
subjects had to be excluded from EEG analysis due to insufficient
valid data because of artifact rejection. (The artifact rejection is
described in the “EEG data preprocessing” section.) All subjects
were naive to the experiment, were right-handed, had normal or
corrected-to-normal vision, and had no history of neurological or
psychiatric disorders. They gave written informed consent before
the experiment. The study was approved by the ethical commit-
tee of the Goethe University, Frankfurt, and was conducted in
accordance with the Declaration of Helsinki. The subjects were
recruited from local universities and got paid 15 Euros per hour
for their participation.

Visual stimuli
Presentation (V10.3, Neurobehavioral Systems) was used for stim-
ulus presentation and response collection. All stimuli were gener-
ated using Matlab (The Mathworks). The stimuli were displayed as
150 × 150 pixels matrices at the center of a monitor screen with
a refresh rate of 60 Hz and were located 70 cm from the subjects’
eye plane, subtending a visual angle of 4.4◦ × 4.4◦, surrounded by
gray background, with a gray level of 0.5 on a greyscale of [0, 1].

The task during EEG recording
For each subject, 160 different stimuli were used. At the beginning
of each trial, a fixation cross was presented on gray background
with a randomized duration between 2 and 3 s. Then, a Mooney
image was displayed for 8 s. We address this presentation as the
“first stage” of a trial. If the subject could identify the object in
the image, they had to press the button “Yes” as soon as possible
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Fig. 1. The paradigm during EEG recording. The upper row shows an example of Eureka (Aha) trials which are composed of Mooney images and their
congruent greyscale images. The lower row shows an example of control (Ctrl) trials which are composed of Mooney images and incongruent greyscale
images.

during this 8-s interval, which terminated the trial. If they could
not identify the object in the 8 s, the Mooney image disappeared.
Then, a greyscale image was provided as the cue after a random
interval of 1.5–2 s. This image lasted for 4 s. In 50% of the
trials, the greyscale images were congruent with the last Mooney
images and served as cues for the subsequent identification. In
the other 50% of the trials, they were incongruent. We address
this greyscale image presentation as the “second stage” of a trial.
Once the greyscale image had disappeared, the last Mooney image
appeared again after a random interval of 2–3 s. We address
this repeated Mooney image presentation as the “third stage” of
a trial. At this stage, subjects had to press the button “Yes” or
“No”, as quickly and accurately as possible, indicating whether
or not they could identify the object in the Mooney image. The
response needed to be completed within the presentation time
of the “third stage” image (i.e. a maximum of 8 s; this time limit
was sufficient for subjects to complete the response). If subjects
responded with a prompt “Yes” in the matching trials, we took
this as evidence that they had experienced a Eureka effect, the
sudden recognition of a pattern that they had been unable to
identify in the “first stage”. Figure 1 illustrates the task procedure.
The order of trials and the order of experimental conditions were
randomized. The experiment was evenly divided into 4 blocks. A
break of 2–3 min was introduced after each block. Prior to the
experiment, a training session with a different set of images was
performed in order to allow each subject to practice.

Data acquisition
The experiment was implemented in an electrically shielded,
sound-attenuated, darkroom. Subjects watched the monitor
which was outside the room through an electrically shielded
window. The EEG was recorded with a HydroCel Geodesic Sensor
Net 130 with 128 channels (Electrical Geodesics, Inc.), with the
reference electrode at Cz. The electrodes were spaced over the
head following the instructions. Electrode impedances were kept
<50 kΩ. Data were sampled at 1,000 Hz and were digitally saved
on a Mac system for offline analysis.

Behavioral analysis
We subdivided trials into 2 groups: an Eureka (Aha) group and a
control (Ctrl) group. The Aha group consisted of trials (with con-
gruent cue) and “Yes” responses at the “third stage”. The Ctrl group

consisted of trials (with incongruent cue) and “No” responses at
the “third stage”. Trails that did not meet these requirements (9.5%
of trials) were discarded from further analysis. We then compared
the distributions of reaction times (RTs) for trials of Aha and Ctrl
groups.

EEG data preprocessing
In Net Station software 4.5.1 (Electrical Geodesics, Inc.), the con-
tinuous EEG signal was high-pass filtered (0.3 Hz) and notch
filtered (50 Hz), and then segmented into a series of 2–10-s long
epochs (depends on the RTs). Each trial segment started 1 s
before the onset of the “third stage” and ended 1 s after the
response during the “third stage.” In the following steps, data were
analyzed using the Matlab toolbox FieldTrip (Oostenveld et al.
2011) and our customized scripts. The semiautomatic artifact
rejection was supplemented by visual inspection, Fieldtrip scripts,
and independent component analysis to detect electrode drifts,
eye movements, and electromyographic and electrocardiographic
interference (Amari et al. 1995; Bell and Sejnowski 1995; Lee et al.
1999; Anemuller et al. 2003). Rejected channels were interpolated
using spherical splines. To avoid contamination of neural activity
induced by stimulus onset rather than Eureka effects, only the
trials with RTs longer than 0.5 s were analyzed.

Spectral analysis
To investigate the time-frequency activities that are involved in
the Eureka effect, we analyzed the spectral changes of EEG signals
over the whole electrode space, using the Hanning taper approach,
with a 5-cycle time window and variable width of frequency
smoothing depending on the frequency, with 1-Hz steps. The
analysis time window was 1 s (for stimulus-locked epochs, from
−0.25 to 0.75 s around stimulus presentation; for response-locked
epochs, from −0.75 to 0.25 s around the response). For baseline
correction, a time period after stimulus onset of the “first stage”
was used, which had the same length as the analysis window
used in the “third stage”, whose duration was determined by
the respective RTs. In summary, the baseline correction and the
comparison between Aha and Ctrl can be described as a simple
formula: Diff = (M3Aha − M1Aha) − (M3Ctrl − M1Ctrl), in which, Diff
is the difference between Aha and Ctrl; M3 and M1 refer to data
from Mooney images at the “third stage” and the “first stage”,
respectively; M3 − M1 refers to a dB conversion specifically
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for spectral analysis. The subtraction removes the components
resulting from the stimulus-evoked responses. Finally, we
calculated grand averages for each condition and participant.
The theta, alpha, beta, and gamma bands were defined by the
following frequency ranges, respectively: 4–7, 8–12, 13–30, and
31–100 Hz.

In order to avoid the bias that may be introduced by unequal
numbers of trials, the number of trials for Aha and Ctrl groups was
equalized before comparison by randomly discarding trials (18.9%
of trials) from the condition with a larger number of trials. This
correction was also performed for coherence and phase locking
value (PLV) analysis.

Coherence
Brain networks are defined both anatomically and functionally.
Given the high degree of anatomical connectedness among pro-
cessing streams, any cognitive and executive task requires fast
and flexible formation of functional networks. One suitable mea-
sure for functional connectivity is coherence (Rosenberg et al.
1989). It takes into account both phase and amplitude compo-
nents of signals and provides information about the anatomical
and functional coupling of network nodes. We therefore calcu-
lated coherence in specific frequency bands in selected time
windows between electrode positions/channels. Coherence was
calculated according to the formula below:

C(f ) =

∣∣∣∣∣∣∣∣

∑
k

Ak(f )Bk(f )ej(φk(f )−θk(f ))

√∑
k

Ak(f )
2
√∑

k
Bk(f )

2

∣∣∣∣∣∣∣∣
,

where Ak(f )ejφk(f ) and Bk(f )ejθk(f ) describe the Fourier-transformed
signals, and k is the trial number (Srinath and Ray 2014). The
coherence values are real-valued numbers from 0 to 1. One indi-
cates that two signals have perfect coupling, while 0 indicates
independence. The coherence values described in the results
were all baseline corrected according to the method applied for
the spectral analysis. Since standard coherence measures may
be affected by volume conduction (Nolte et al. 2004), we also
analyzed coherence by using the imaginary part of the coherence
(iCOH) value, which is less compromised by volume conduction.
The coherence values were calculated for all electrode combina-
tions.

Phase locking value
As coherence values are sensitive to amplitude variations, we also
calculated PLVs. These values reflect phase correlations between
two oscillatory signals (Lachaux et al. 1999; Srinath and Ray 2014)
and serve as an index for the synchronization of different neuron
groups. The key factor distinguishing the PLV from coherence
is that the PLV does not take amplitude into account. It only
measures the phase component. Similar to coherence, the PLV
also has a real-valued number ranging from 0 to 1. The value
1 indicates that two signals are strictly phase locked, while 0
indicates that their phase relations are random. The PLV can be
represented as

P(f ) = 1
N

∣∣∣∣∣
∑

k

ej(φk(f ) − θk(f ))

∣∣∣∣∣ ,

where φk(f ) − θk(f ) is the phase difference between two signals,
N is the number of trials, and k is the trial number. The PLVs
described in the results are all baseline corrected according to
the method applied for spectral analysis. Similar to the analysis

of coherence, we also used the imaginary part of PLV (iPLV) to
reduce the potential effects of volume conduction. The PLVs were
calculated for all electrode combinations.

Laterality index
To capture the lateralization effects, we calculated laterality
indices (LIs) (Jansen et al. 2006; Wilke and Schmithorst 2006;
Seghier 2008). LIs were calculated by evaluating the differences
between the right and left hemispheres. We used the following
formula to determine the

LI = VR − VL

VR + VL
,

where VR and VL refer to averaged values within the right and left
hemispheres, or the right and left electrode clusters. A positive or
negative value of LI indicates lateralization of neural activity to
the right or left side, respectively. To calculate the LI of coherence
and PLV, only a selection of electrodes were used. Right electrodes:
Fp2, F4, F8, C4, T4, P4, T6, and O2; left electrodes: Fp1, F7, F3, T3, C3,
T5, P3, and O1; midline electrodes: Fz, CPz, Pz, and Oz. The values
of coherence and PLV of the right hemisphere were calculated
from intra-“right electrodes” combinations and “right electrodes”–
“midline electrodes” combinations. Similarly, the values of the left
hemisphere were calculated from intra-“left electrodes” combi-
nations and “left electrodes”–“midline electrodes” combinations.
The electrode locations were defined according to the 10–20 EEG
system.

Dimensionality
In order to assess changes in the complexity of network dynam-
ics, we determined the fractal dimension of the recorded high-
dimensional time series. The EEG data were normalized to z-
scores and were then analyzed for fractal structure. The principle
of the analysis is based on scale-versus-count relationships. For n
points inside spheres of a certain size δ (i.e. the distances between
these points are < δ),

C (δ) = lim
n→∞

1
n2

∣∣(xi, xj)
∣∣ ,

where (xi, xj) are pairs of points with the indices of i and j (|xi − xj |
< δ, i �= j), and C(δ) is the correlation integral (Grassberger and
Procaccia 1983). The dimension D can be estimated by the slope
of ln(C(δ)) versus ln(δ), given by:

D = ln (C (δ)) / ln (δ) .

Under ideal conditions, the slope is a constant that represents
perfect self-similarity. But under real conditions, the slope can
change across scales, providing additional information of the
multifractals in the data series (Nikolic et al. 2008).

The dimension was calculated for clusters of electrodes that
were selected depending on their positions. Ten clusters were
formed according to the proposal by Marie and Trainor (2013).
The clusters cover the left frontal, left central, left parietal, left
temporal, left occipital, right frontal, right central, right parietal,
right temporal, and right occipital areas (Figs. 8 and 9). Each
cluster included 8–10 electrodes.

Statistics
To evaluate the significance of differences between trials with the
Eureka effect and the control condition, we performed a Wilcoxon
signed-rank test when samples were not normally distributed;
or a t-test (two-tailed) when samples were normally distributed.
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A cluster-based nonparametric randomization test was used to
solve the multiple comparisons problem (Maris and Oostenveld
2007). For each paired sample, an independent samples t-test was
computed. All samples with a P-value lower than a threshold of
0.05 were selected and were then clustered on the basis of spatial
and temporal adjacency. The sum of the clustered t values was
calculated. These samples were then randomized across Aha and
Ctrl conditions, and the cluster t value was analyzed. This step
was repeated for 1,000 times. We then obtained a new distribution
of cluster t values. On the basis of this distribution, the t value
from the original data was evaluated. Here, we used the threshold
0.05 for significance and to obtain significant data cluster(s) (for
example: including electrodes and time windows for predefined
frequencies). Similarly, the cluster-based nonparametric random-
ization test was also used to correct the z value of the Wilcoxon
signed-rank test.

Results
Our study investigated the electrophysiological signatures of EEG-
recorded brain activity during the Eureka effect. In this section,
we will describe in subsequent paragraphs the behavioral results,
changes in power in different frequency bands, changes in coher-
ence and PLVs in the alpha and theta bands, and changes in fractal
dimensionality.

Behavioral data
Subjects continued 83.9% of the trials till the “third stage”, and
90.5% of these trials had correct responses (for congruent trials:
86.0%; and for incongruent trials: 95.5%). Correct meant “Yes”
response to congruent trials or “No” responses to incongruent
trials. This result suggests that the subjects really experienced
the Eureka effect and that the comparison between Aha and Ctrl
conditions was valid.

The RTs of Eureka (Aha) and Control (Ctrl) trials are summa-
rized in Fig. 2. The RTs in Aha trials are significantly faster than
the RTs in Ctrl trials (P = 5.0699e-109, Z = −22.1825, Wilcoxon rank-
sum test). The smoothed distribution of RTs shows that the peak
of the Aha RTs distribution is at 0.90 s, while the peak of the Ctrl
RTs distribution is at 1.50 s. The Aha RTs distribution is narrower
than the Ctrl RTs distribution. The median of the Aha trial RTs is
1.13 s and that of the Ctrl trials is 2.00 s. In 92.9% of the Aha trials
and 99.3% of the Ctrl trials, the RTs were longer than 0.50 s. These
trials were kept for further analysis.

The spectral changes
Alpha power
Given that numerous functions and processes associated with the
Eureka effect, such as attention, memory, and top-down modula-
tion, involve activity in the alpha band (Klimesch et al. 2010; Palva
and Palva 2011; Clayton et al. 2018), we explored whether alpha
power changes in association with the Eureka effect. In stimulus-
locked epochs, there was no significant difference in alpha band
(8–12 Hz) power between Aha and Ctrl conditions. In response-
locked epochs, alpha power was found to be lower for Aha than
for Ctrl trials. As shown in Fig. 3 (for a time-frequency plot, see also
Supplementary Fig. S4), two clusters (obtained from cluster-based
nonparametric randomization tests) of reduced alpha power were
found (P < 0.05). One was in the frontal region, mostly in the left
hemisphere, from 150 ms before response to response (−150 to
0 ms). In this cluster, alpha power was significantly decreased
before the response. The second cluster was in the occipital
region, from 335 ms before response to response (−335 to 0 ms).
Interestingly, this cluster exhibited a gradual shift from the left

Fig. 2. The distribution of RTs. Upper panel: distribution of RTs for all
trials. Abscissa: RTs, bin width 0.10 s. Ordinate: frequency of RTs in %.
Continuous lines: fitted curves. Lower panel: box plots of the respective
RTs distributions, with median values, the 25th, and the 75th percentiles.
The whiskers indicate extrema.

to the right hemisphere with elapsing time. Before −220 ms, this
cluster was mainly located in the left occipital area; after −220 ms,
it moved to the right occipital and right superior parietal areas. In
brief, we observed decreased alpha power in association with the
Eureka effect.

Beta power
The Eureka effect involves numerous cognitive processes, and two
of them have been linked to the alterations in beta power–memory
retrieval and the switching of cognitive states (Sheth et al. 2009;
Piantoni et al. 2010). Therefore, we investigated whether beta
power changes in association with the Eureka effect. In stimulus-
locked epochs, the Eureka effect was associated with a decrease
in beta power (13–30 Hz) relative to control in the interval from
240 to 360 ms after stimulus onset (P < 0.05), as shown in Fig. 4.
This decrease was most prominent in the regions of the right pari-
etal cortex and central gyrus, close to the midline. In response-
locked epochs, the cluster-based nonparametric randomization
test revealed a strong but not significant trend (P = 0.0789) of beta
power decrease in the right parietal and right occipital cortices
in the time window of −380 to −285 ms before the response
(Fig. 5). For a time-frequency plot of decreased beta power, see
also Supplementary Fig. S5. In short, the power of beta oscillations
decreased in association with the Eureka effect.

Theta power and gamma power
Theta band oscillations have been proposed to be involved in
various memory processes (Buzsaki and Moser 2013; Roux and
Uhlhaas 2014; Herweg et al. 2020) and gamma band oscillations
in the integration of sensory evidence with contextual predic-
tions (Singer 1999; Peter et al. 2019). Therefore, we examined
whether the power of theta and gamma oscillations changed
during the Eureka experience. However, the power analysis of
these frequency bands showed no significant differences between
the Eureka and control conditions.

The increase of alpha and theta coherence in the
right hemisphere
The spectral power of oscillations is a measure of local synchrony.
However, to assess global changes of synchronization, it is nec-
essary to also evaluate the coherence and the PLV of oscillatory
activity recorded from different sites. Therefore, we also analyzed
coherence and PLV.
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Fig. 3. Changes in alpha power before the response to the Eureka-inducing stimulus. The top and second rows: Amplitude (color scale) and distribution
of alpha power (baseline corrected) in the Aha and Ctrl conditions at times (indicated above the snapshots) preceding the response. Third row: Difference
between Aha and Ctrl (Aha − Ctrl). Fourth row: t-values of cluster-based nonparametric randomization test for the difference between Aha and Ctrl.
The white regions represent clusters where alpha power decreased significantly (P < 0.05).

Fig. 4. Changes in beta power after stimulus onset. Conventions as in Fig. 3. Note the significant decrease in beta power (white regions in the bottom
row) following the Eureka-inducing stimulus.

Fig. 5. Changes in beta power before the response to the Eureka-inducing stimulus. Conventions as in Figs. 3 and 4. Note the decrease in beta power
(white regions in the bottom row; here, P = 0.0789) found by cluster-based nonparametric randomization test for the difference between Aha and Ctrl,
preceding the response to the Eureka-inducing stimulus.
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Fig. 6. The topographic distribution of A, B) alpha and C, D) theta coherence. Baseline corrected. Diff indicates the difference of values between Aha and
Ctrl conditions (Aha − Ctrl). OS represents stimulus onset-locked epochs (A, C) (from stimulus onset to 500 ms after onset). RP represents response-
locked epochs (B, D) (from 500 ms before response to response). The colored lines represent the coherence values between electrode pairs (coherence
values are indicated by the color scales on the right). Note the different (only for clearer illustration) scales in C and D.

Alpha coherence
To analyze synchronization between channels in the low-
frequency range, we calculated coherence in a 500-ms long win-
dow starting at stimulus onset (from 0 to 500 ms, “stimulus-locked
epochs”). This analysis revealed an increase of coherence in the
alpha band, which was lateralized and particularly prominent in
the right hemisphere, for the Aha condition (Fig. 6A). To quantify
this lateralization, we calculated the LI of alpha coherence for
channel pairs. This confirmed a significant right hemisphere
increase of alpha coherence for Aha as compared to Ctrl in the
time window from 345 to 450 ms poststimulus (P < 0.05). Due to
the variable RTs across trials, we also aligned the analysis window
to the responses (from −500 ms to response onset, “response-
locked epochs”). The right hemisphere-lateralized increase in
alpha coherence was present also in this response segment
and was significant in the time window from −355 to −275 ms
(P < 0.05) (Fig. 6B). For the representation of alpha coherence on
the timeline, see Supplementary Figs. S6, S9, and S10 (the same
applies to the theta coherence). The LI analysis of the iCOH
revealed a similar pattern. For stimulus-locked epochs, the right
lateralization of increased alpha coherence for Aha versus Ctrl
was significant in the time window from 260 to 435 ms (P < 0.05)
(Supplementary Fig. S7A). For response-locked epochs, the right
lateralization was significant in the time window from −410 to
−270 ms (P < 0.05) (Supplementary Fig. S7B).

Theta coherence
Coherence analysis in the theta band also revealed a right-
lateralized increase for the Aha condition in the interval of
0–500-ms poststimulus (Fig. 6C). The LI analysis showed that
this right lateralization was significant in two time windows:
from 125 to 260 ms (P < 0.05) and from 375 to 395 ms (P < 0.05).
For response-locked epochs, there was only a trend for a right
hemispheric increase of coherence, but this interhemispheric
difference was not significant (Fig. 6D). The iCOH analysis
of theta coherence showed that the right lateralization of
the Aha-related increase was significant from 180 to 365 ms
poststimulus (P < 0.05), (Supplementary Fig. S7C). For response-
locked epochs, no interhemispheric difference was observed
(Supplementary Fig. S7D).

The increase of alpha and theta phase locking in
the right hemisphere
Alpha PLV
To assess the changes in phase locking associated with the Eureka
effect, we analyzed the PLVs for channel pairs in the alpha band

from 0 to 500 ms after stimulus onset. Alpha band PLV also
increased during the Eureka effect and the topography (Fig. 7A) of
this increase resembles that of increases in alpha coherence. The
right hemisphere increase of PLVs for Aha as compared to Ctrl was
significant within the interval from 385 to 445 ms poststimulus
(P < 0.05). For the representation of alpha PLV on the timeline,
see Supplementary Figs. S6, S11 and S12 (the same applies to the
theta PLV). This window overlaps with the interval of enhanced
coherence (345–450 ms). PLVs were also enhanced in the response-
locked epochs, again more on the right than the left side, but this
interhemispheric difference did not reach significance (Fig. 7B).
The LI analysis of the iPLV revealed that the right hemisphere
increase of iPLVs was significant from 315 to 425 ms poststimulus
(P < 0.05) (Supplementary Fig. S8A) and from 500 to 395 ms before
response (P < 0.05) (Supplementary Fig. S8B).

Theta PLV
The PLV analysis for stimulus-locked epochs again showed a right-
lateralized increase of theta synchrony in the Aha trials (Fig. 7C).
The LI analysis indicated that this effect was significant in the
time window from 375 to 420 ms (P < 0.05). For response-locked
epochs, there was also a trend for a right-lateralized increase, but
the LI indices did not reach the significance level (Fig. 7D). The
iPLVs in the theta band confirmed that the right lateralization
was significant from 370 to 405 ms poststimulus (P < 0.05), for
Aha as compared to Ctrl (Supplementary Fig. S8C). No interhemi-
spheric differences were noted in the response-locked window
(Supplementary Fig. S8D).

Changes in fractal dimensionality
The brain can be considered a complex system exhibiting non-
linear dynamics. Thus, spectral analysis is likely to fall short
of capturing the complexity of brain activity associated with
switches in cognitive states such as are likely concurrent with the
Eureka effect. Therefore, we determined fractal dimensionality,
a measure developed to assess the state of complex dynamic
systems.

We analyzed dimensionality in the time window from 0
to 500 ms after stimulus onset for 10 predefined clusters of
electrodes (described in Materials and methods). We observed
significant reductions of dimension over the right central
and left parietal areas and a significant increase over the
right occipital area (Fig. 8A) in the Eureka trials. Furthermore,
LI analysis showed that the dimension reduction was more
pronounced (ln(δ) from 1.47 to 1.65, P < 0.05) in the temporal
region of the right hemisphere (Fig. 8B). Similar results were
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Fig. 7. The topographic distribution of alpha and theta PLV. Conventions as in Fig. 6. The colored lines represent the PLV values. Note the different (only
for clearer illustration) scale in D. Interestingly, these distributions are similar to coherence in Fig. 6, reflecting that the coherence of alpha and theta
bands are associated with phase locking rather than amplitude.

Fig. 8. Changes in the dimensionality of activity vectors in the 500-ms interval following stimulus onset. A) Panels representing the dimensionality
of activity vectors derived from 10 clusters of recording sites as indicated by the map of electrode coverage (L = left, R = right; F = frontal, C = central,
T = temporal, P = parietal, and O = occipital). Baseline corrected. The lower left coordinate indicates the coordinate scale of each subpanel in panel A.
Ordinate: dimension; abscissa: natural logarithm of scale size. B) LI of dimension for the clusters. The lower right coordinate indicates the coordinate
scale of each subpanel in panel B. Ordinate: LI; abscissa: natural logarithm of scale size. The bins with significant differences between Aha and Ctrl are
marked by gray lines.

obtained for response-aligned activity patterns. In the time
window from −500 ms to the response, there was a significant
reduction of dimension over the right temporal area and an
increase of dimension over the left frontal area (Fig. 9A). The
LI analysis confirmed the right lateralization of the dimension
reduction (ln(δ) from 0.94 to 1.26, P < 0.05) over temporal areas
(Fig. 9B).

Taken together, in both the stimulus- and response-locked
epochs, the Eureka effect was associated with a reduction of
fractal dimension in the right temporal cortex.

Discussion
We investigated with EEG recordings brain activity during the
Eureka effect and found that oscillatory activity in the alpha and
theta bands exhibited right hemisphere-lateralized increases in
coherence and phase locking, decreased power in the alpha band
over frontal and occipital regions, and decreased power in the beta
band over right parietal regions and the central gyrus, close to the
midline. In addition, we observed a reduction of dimensionality
for the activity recorded from the frontal and temporal regions in
the right hemisphere. The results of all analyses are summarized
in Table 1 in a time resolved manner for stimulus- and response-
locked changes.

Methodological considerations
A crucial question is whether our paradigm reliably elicited a
Eureka effect. As reviewed in the introduction, the identification
of neuronal correlates of the Eureka effect is hampered by the
inability to precisely predict the time of its occurrence and to
obtain sufficient trials per subject. Therefore, most of the classical
conditions inducing Eureka effects are not suitable for neuro-
biological investigations. We have settled for a psychophysical
task that allowed us to predict with some confidence, whether
and when a stimulus would elicit a Eureka experience, and to
confirm its occurrence with a behavioral response. Subjects had
to accomplish a difficult pattern completion task with physically
identical stimuli that required flexible binding of features into a
coherent gestalt and could be solved only in a minority of trials
despite long inspection time when no additional cues were pro-
vided. However, by supplying additional associated information,
subjects were enabled to solve the task promptly in the majority
of trials, reporting sudden perceptual insight into the solution of
the pattern completion problem (Dolan et al. 1997; Giovannelli
et al. 2010; Ludmer et al. 2011). The main focus of this study is
on the neural processes that are associated with this subjective
experience. Our experimental design implied that subjects had
to keep in working memory the greyscale images and had to
match these templates with the Mooney test stimuli in order to
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Fig. 9. Changes in the dimensionality of activity vectors in the 500-ms interval before the response to the Eureka-inducing stimulus. Conventions as in
Fig. 8.

Table 1. A timeline summary of EEG signatures of the Eureka effect in stimulus- or response-locked epochs.

Stimulus-locked Response-locked

Alpha power N.S. −150 to 0 ms and −335 to 0 msa

Beta power 240 to 360 ms −380 to −285 msb

Alpha coherence 345 to 450 ms (260 to 435 ms)c −355 to−275 ms (−410 to −270 ms)
Theta coherence 125 to 260 ms and 375 to 395 ms (180 to

365 ms)
N.S. (N.S.)d

Alpha PLV 385 to 445 ms (315 to 425 ms) N.S. (−500 to −395 ms)d

Theta PLV 375 to 420 ms (370 to 405 ms) N.S. (N.S.)d

Dimension ln(δ): 1.47 to 1.65e ln(δ): 0.94 to 1.26e

N.S., not significant. aThe first cluster is in the frontal region, from 150 ms before the response to response onset; the second cluster is in the occipital region,
from 335 ms before the response to response onset. bP = 0.0789. cThe results obtained from the imaginary part of coherence (or PLV) analysis are indicated in
parentheses, the same convention for the other frequency bands. dFor coherence and PLV, the laterality index analyses do not always reach statistical
significance in response-locked epochs, but the trend of increasing coherence and PLV on the right hemisphere is preserved. eFor dimension analysis, the
logarithmic scale values are obtained from the entire 500-ms interval after stimulus onset or before response.

achieve perceptual closure and experience the Eureka effect. In
other words, they had to engage top-down processes to resolve the
perceptual problem. We carefully titrated the difficulty of the task
in the preceding psychophysical experiments in order to assure
that our task was distinct from a simple pattern recognition task.
During the exposure to the Mooney images at the “third stage”,
subjects had to engage several cognitive operations: retrieval of
information from working memory, reinterpretation of sparse and
ambiguous sensory evidence on the basis of prior knowledge, and
identifying the result of this “creative” operation as a solution, the
latter being equated with “deeper understanding”. In this respect,
our task shared a number of features, with conditions leading
to Eureka experiences (see Introduction). Debriefing after the
experiment confirmed that subjects indeed experienced a Eureka
feeling at the “third stage” of the trials in which they suddenly
succeeded to identify the image. We are thus confident that the
paradigm allowed for the comparison of neuronal responses to
physically identical stimuli that did or did not induce the Eureka
effect. In addition, our design allowed us to run a large number of
trials on the same subject, which is a prerequisite for neurophys-
iological studies.

There may be a concern that subjects misclassified recog-
nized objects because they were not asked to name the perceived
object. We consider this possibility rather unlikely because the
greyscale images were relatively easy to identify. This has been
verified in the preceding pilot experiments: The identification
rate for the greyscale images was 98.2%. Moreover, even if such
misidentifications had occurred, these would not have invalidated

the results because subjects would still have experienced an
Eureka effect.

Although our paradigm allowed narrowing the time interval
during which the Eureka effect was bound to occur, response
latencies were still variable. This could have been due to variable
latencies of the Eureka effect or to variable lag times between the
subjective Eureka experience and the motor response. In order to
capture the electrophysiological signatures of the Eureka state,
we aligned neuronal responses for analysis to both stimulus and
response onset, respectively. By adjusting the duration of the
two analysis windows, we made sure to cover the whole interval
during which the Eureka effect was bound to occur. Because the
results obtained for the two analysis windows were rather similar
and located the effect to overlapping epochs between stimulus
and response onset, we are confident that the electrophysiological
changes reflect processes associated with the Eureka experience.

Coherence analyses based on EEG recordings are fraught
with possible confounds resulting from volume conduction.
We tried to minimize this problem in several ways: First, we
used signals only from widely separated electrodes (n = 20)
according to the low-resolution 10–20 EEG system (as mentioned
in Materials and methods). This allowed resolving hemispheric
differences, suggesting sufficient independence of recording
sites. Second, we could rely on the “first stage” to control for
task independent effects mediated by volume conduction: The
use of the “first stage” as baseline for the “third stage” should
have reduced the contribution of volume conduction. Third, the
adoption of the “imaginary part” approach for the analysis
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of coherence and PLV (Nolte et al. 2004), which also reduces
the effects of volume conduction, gave similar results as the
conventional analyses.

Right hemisphere-lateralized alpha and theta
activity
Our data indicate that the Eureka effect is associated with distinct
lateralized changes of coherence and power of oscillations in
distinct frequency bands.

The most significant correlates of the Eureka effect were
enhanced coherence and phase locking of alpha and theta oscil-
lations over the right hemisphere. This enhanced synchronization
was not associated with amplitude changes but was only apparent
in the measures applied to sensor pairs. This indicates that
coherence increases were due to improved phase locking rather
than the enhanced amplitude of oscillatory activity in the two
frequency bands.

Alpha oscillations have been associated with many different
functions. The fact that they tend to be suppressed when neu-
ronal circuits engage in information processing and enter in
a regime of high-frequency oscillations has been taken as an
indication that they represent an idling rhythm (Pfurtscheller
et al. 1996). However, there are also abundant indications for
an involvement of alpha oscillations in active processing. Alpha
oscillations have been suggested to serve the suppression of irrel-
evant information in tasks requiring focusing attention (Clarke
et al. 2008; Zanto et al. 2010; Zanto et al. 2011; Klimesch 2012;
Clayton et al. 2018), to coordinate widely distributed processes by
serving as carrier frequency for the establishment of coherence
across various frequency bands (cross-frequency coupling) (Palva
et al. 2005; Canolty and Knight 2010; Jensen et al. 2014), to be
involved in the maintenance of contents in working memory
(Palva et al. 2005; Freunberger et al. 2009; Zanto et al. 2014; Foster
et al. 2017; Riddle et al. 2020), and to mediate top-down control
(Klimesch et al. 2010; Benedek et al. 2011; Palva and Palva 2011;
Samaha et al. 2015; Clayton et al. 2018). As elaborated further
down, we suggest that the association of increased alpha coher-
ence and phase locking with the Eureka effect might be related to
the maintenance and readout of contents from working memory
and the top-down mediation of this information to facilitate scene
segmentation and perceptual binding.

Theta band activities have been proposed to be involved in
various memory processes such as memory encoding, mainte-
nance, and retrieval (Sauseng et al. 2010; Fell and Axmacher 2011;
Watrous et al. 2013; Burke et al. 2014; Roux and Uhlhaas 2014;
Herweg et al. 2020). For example, investigators have observed
increased theta phase locking (Liebe et al. 2012) and increased
theta coherence (Sarnthein et al. 1998) between prefrontal and
posterior recording sites in working memory retention. Recently,
increased theta phase locking has been found connecting a large
set of brain regions to support memory encoding and recall (Burke
et al. 2013; Clouter et al. 2017; Solomon et al. 2017, 2019; Wang
et al. 2018). In the present study, the prior experience stored in
memory must be retrieved and used for perceptual grouping and
recognition. We thus suggest that the increased theta coherence
and phase locking are involved in the maintenance and retrieval
of working memory contents required for the solution of our
experimental task.

There is a hypothesis that hemispheric asymmetry serves
as the underlying structural and functional basis for the
Eureka effect (or called insight in some studies), with the right
hemisphere playing a prominent role (Kounios and Beeman
2014; Sprugnoli et al. 2017). This hypothesis has been sup-
ported by several investigations (e.g. Jung-Beeman et al. 2004;

Grabner et al. 2007; Sandkuhler and Bhattacharya 2008; Zhao
et al. 2014; Aberg et al. 2017). But it is worth noting that most
of these studies have focused on the activity of anatomically
specified regions and not on networks. Therefore, more studies
(as our study) on the latter are necessary. Moreover, most of these
studies used verbal/semantic tasks to elicit the Eureka effect and
only a few used visual tasks (e.g. Freunberger et al. 2008). This
raises the question why visual tasks generate right-lateralized
brain activity like verbal/semantic tasks. One possibility is that
(part of) the right hemispheric activity was related to covert
verbalization even though subjects were not asked to name the
recognized objects. Another possibility is that all these tasks
involve creativity (a nondissociable feature of the Eureka effect),
which per se could lead to an increase in right hemispheric activity.
Similar electrographic signatures have been described in previous
studies on creativity (Razoumnikova 2000; Grabner et al. 2007;
Sandkuhler and Bhattacharya 2008; Kounios and Beeman 2014).

Dissociation between alpha power and alpha
phase locking
Somewhat, unexpectedly, there was a dissociation between alpha
power and alpha phase locking. While alpha power decreased,
coherence and phase locking increased. This excludes that
enhanced coherence was simply a consequence of increased
power and suggests nontrivial relations between the power of
oscillatory activity and pair-wise synchrony. Power increases in
oscillatory population responses can have two reasons. First, an
increase in the number of neurons participating in the rhythmic
activity, and second, an enhanced precision of synchronization as
this enhances the effective summation of currents. In the present
case, we observed an enhanced precision of synchronization
as reflected by the enhanced coherence and improved phase
locking. This suggests that the Eureka effect was associated with
a reduction of neurons engaged in alpha oscillations, but, at
the same time, with enhanced synchronization of the neuron
populations participating in a right hemisphere network engaged
in alpha oscillations. A similar dissociation has been described
by Freunberger et al. (2008) in an object recognition task with
distorted color pictures. Associated with the recognition of
the objects, alpha power (9–13 Hz) decreased in occipital and
right centro-temporal areas, while phase locking (10–12 Hz)
increased in a right hemispheric long-range anterior-to-posterior
network. In a later study on working memory, Freunberger et al.
(2009) found in posterior areas (parietal-occipital) reduced alpha
power and, at the same time, enhanced phase locking. These
observations add to the notion that alpha oscillations reflect
heterogeneous processes. In line with the idling hypothesis
(Pfurtscheller et al. 1996), the decrease in alpha power could
reflect the increased engagement of right hemispheric networks
and the simultaneous increase in synchronization the emergence
of a specific, widely distributed, but sparse network. The latter
could serve the mediation of the top-down information required
for the memory based perceptual closure of the Mooney images. It
remains an open question, whether the alpha and theta networks
serve themselves as carrier of information or whether they
provide the carrier frequencies for the coordination of other
processes (Palva et al. 2005; Canolty and Knight 2010; Jensen et al.
2014; Esghaei et al. 2022).

Right hemisphere-lateralized reduction of
dimensionality
As discussed above, the Eureka effect is associated with the
transient formation of large but sparse right hemispheric
networks oscillating in the alpha and theta frequency range. This
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agrees with the dimensionality reduction observed over the right
hemisphere.

Dimensionality is a measure of the complexity of dynamic
states. If the dimensionality of network activity is high, coding
space and degrees of freedom are large but so is ambiguity. A
reduction of dimensionality can be interpreted as a reduction of
the number of possible states and hence as a reduction of ambi-
guity (Nikolic et al. 2008; Singer and Lazar 2016). In the present
experiments, changes in dimensionality were in general variable
and reached significance only rarely. However, there was a robust
reduction of dimensionality over the frontal and temporal areas
of the right hemisphere. This agrees with the finding that the
“solution” state leading to the Eureka experience was associated
with enhanced coherence in the alpha and theta frequency bands,
again over the right hemisphere. We interpret these changes as an
indication that large cortical networks, in particular in the right
hemisphere, converged toward a state identified as a solution
state due to enhanced coherence and reduced variability.

Decrease of beta activity
A transient decrease of beta activity has been reported in asso-
ciation with the transition from the maintenance of posture to
movement initiation (Schoffelen et al. 2008; Pogosyan et al. 2009;
Allen and MacKinnon 2010; Kilavik et al. 2013; Armstrong et al.
2018; Wessel 2020), but it is unlikely that the observed decrease
was related to the motor response of our subjects because it
should have been canceled by the subtraction of the control
condition. A more likely interpretation is that the beta decrease is
related to memory retrieval and the switching of cognitive states.
The present task required retrieval of information from memory
(Sheth et al. 2009; Kounios and Beeman 2014; Sprugnoli et al.
2017), and engaging memory has been found to be associated
with decreased beta power in the parietal and parieto-occipital
areas (Pesonen et al. 2007; Sheth et al. 2009). As described in the
study of Sheth et al. (2009), beta power also decreased in the
parietal, parieto-occipital, and centro-temporal areas in subjects
solving verbal puzzles. Beta power also decreases transiently with
switches in cognitive states (Okazaki et al. 2008; Engel and Fries
2010; Piantoni et al. 2010) and with the disambiguation of visual
stimuli (Minami et al. 2014). As sudden switches in cognitive
states are a hallmark of the Eureka effect, we propose that the
beta decrease observed in conjunction with the Eureka effect is
related to such switches. To which extent the decrease in beta
power is correlated to changes in neuronal activation cannot be
inferred from the EEG recordings. Two studies assessing neuronal
activity with positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) (Dolan et al. 1997; Eger et al.
2007) described an increase in activation in the parietal cortex
associated with the Eureka experience. How this evidence relates
to the transient decrease in beta power is unclear. As changes in
neuronal dynamics, such as increases and decreases of synchrony
in particular frequency bands, can occur without major changes
in average firing rates, there need not be a conflict of these
fMRI findings with our present results, both observations actually
suggesting an involvement of the parietal cortex in the Eureka
effect.

The Eureka effect and gamma band oscillations
Although the processing of Mooney images, or in a more general
context, perceptual closure has been shown to be associated with
enhanced power and phase synchronization of gamma oscilla-
tions (Uhlhaas et al. 2006, 2009; Castelhano et al. 2013; Moratti
et al. 2014), our data did not reveal any significant changes in

the gamma band in the Eureka condition. This was somewhat
unexpected as gamma synchronization is associated with low-
level binding operations (Singer 1999) and successful matching
of sensory evidence with contextual predictions in early visual
areas (Peter et al. 2019). The solution of the detection task in our
experiments did also require the integration of sensory evidence
with stored information. However, it is likely that these match-
ing processes occurred at higher levels of the visual processing
stream where oscillation frequencies are typically lower than in
V1. Moreover, in EEG recordings, the high-frequency oscillations
in the gamma frequency range are detectable only when large
assemblies of neurons get entrained in sustained, synchronized
oscillations. Such entrainment can be achieved in early visual
cortex with stimuli that exhibit a high degree of redundancy and
regularity in feature space such as high contrast drifting gratings.
Cluttered scene stimuli as used in the present experiments are
not well suited to induce synchronized gamma oscillations; for a
review, see Singer (2021).

Conclusion
Our data indicate that the Eureka effect involves primarily
the right hemisphere in our sample of right-handed subjects.
We interpret the increased coherence in the alpha and theta
bands as indicators of the formation of widely distributed
networks of cortical areas involved in the comparison of sensory
evidence with information stored in working memory. The finding
that enhanced coherence was associated with a reduction of
dimensionality of the dynamic state but not with an increase in
power in the respective frequency bands suggests, as neuronal
correlate of the Eureka experiences the convergence of a large
network to a dynamic state, which is characterized by reduced
dimensionality, reduced degrees of freedom and hence reduced
ambiguity.
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