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Abstract

Behavioural cascades through social reinforcement are ubiqui-
tous in human and animal groups. Nonetheless, we only have
a rudimentary understanding of which choices are more likely
to initiate cascades. Here we investigate the role of response
time (RT) asymmetries (i.e., one choice alternative being se-
lected faster than the other) in shaping behavioural cascades
by combining an empirical and modelling approach. RT asym-
metries are found in a wide range of decision-making contexts,
including police shooting, risky choice, and memory retrieval.
How they shape collective dynamics, is, however, unknown.
Applying evidence accumulation models to analyse behaviour
in a sequential choice paradigm, we show that RT asymme-
tries crucially shape behavioural cascades. Using simulations,
we show that especially start point biases (and to a less extent
varying drift rates) can initiate cascades, as they lead to rapid
choices for one choice alternative. Our results highlight the
importance of RT asymmetries in shaping collective dynam-
ics.
Keywords: collective dynamics, decision making, informa-
tion cascades, response bias, diffusion models

Introduction
Across a range of social settings, from pedestrians crossing
the street and investors in the stock market, to animals es-
caping predation, individuals observe the choices of others to
inform their own behaviour. In these situations, behavioural
cascades can emerge through social reinforcement whereby
fast-deciding individuals typically play a crucial role in the
evolving collective dynamics and final outcome. To under-
stand the emergent dynamics, it is thus crucial to understand
the characteristics of fast choices and their subsequent im-
pact. For example, under many conditions accurate choices
are, on average, made faster than inaccurate choices (Ratcliff,
Smith, Brown, & McKoon, 2016). Such fast, accurate choices
can thereby promote the spread of accurate information to
less accurate, slower-deciding individuals (Tump, Pleskac, &
Kurvers, 2020; Kurvers, Wolf, Naguib, & Krause, 2015), ex-
plaining the emergence of informed leaders and naive fol-
lowers (Couzin, Krause, Franks, & Levin, 2005; Stroeymeyt,
Franks, & Giurfa, 2011; Watts, Nagy, Burt de Perera, & Biro,
2016).

In addition to correct options being selected faster, research
on single individuals has shown that across a wide range of
decision-making contexts one choice alternative is, on aver-
age, selected faster than the other alternative. For example,
police officers in a shooter task are faster in deciding to shoot

than to not shoot a potentially armed target (Pleskac, Cesario,
& Johnson, 2018). In risky choice, the safe option is typ-
ically selected faster than the risky option (Zhao, Walasek,
& Bhatia, 2020). In memory retrieval, the decision that an
item is old (i.e.,“already seen”) is made faster than “new”
(Bowen, Spaniol, Patel, & Voss, 2016), and in cooperation
experiments, larger donations are made faster than smaller
ones (Rand, Greene, & Nowak, 2012). Despite the prevalence
of such response time (RT) asymmetries, their importance in
shaping collective dynamics is currently unknown. This is an
important research gap as fast choices are generally expected
to be amplified through social interactions. This implies that
such RT asymmetries could have large consequences in col-
lective systems by introducing or amplifying choice biases
(i.e., increasing the probability of choosing a particular op-
tion). We address this gap by investigating the role of RT
asymmetries in collective dynamics both empirically and the-
oretically.

A powerful approach to understanding the latent cognitive
mechanisms governing asymmetric RTs are evidence accu-
mulation models. The drift-diffusion model (DDM) is ar-
guably the most widely used for binary decision tasks. It
assumes that decision makers gather evidence over time un-
til they reach a threshold and make a decision (Ratcliff et
al., 2016). For example, a decision maker having to decide
between the options “A” or “B” will start the choice pro-
cess with an initial state of evidence described by the rela-
tive start point. Over time the decision maker gathers further
evidence supporting either option “A” or “B”. Once the deci-
sion maker has gathered enough evidence for one of the op-
tions a choice is made accordingly. For individuals in collec-
tive systems, the evidence comes from two different sources:
either via personal information (e.g., from memory), or via
social information (e.g., by observing the choices of others;
Germar, Schlemmer, Krug, Voss, & Mojzisch, 2014; Toelch,
Panizza, & Heekeren, 2018; Tump et al., 2020; Frydman &
Krajbich, 2021). A recent extension of the individual DDM
allows modelling the integration of personal and social in-
formation dynamically over time, accounting for information
flow across individuals (Tump et al., 2020). The observed
choices of others enter the accumulation process of undecided
individuals by changing their drift rate towards the major-
ity option. It, thereby, captures key features of realistic so-
cial dynamics, such as the importance of fast choices on the
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subsequent choices of group members (Tump et al., 2020).
Thus, the model allows us to gain a detailed understanding
of the underlying cognitive processes and their consequences
for group dynamics. Here, we use the social DDM to delin-
eate which cognitive processes underlie asymmetric response
times, and how this, in turn, shapes collective dynamics.

Research on the decision process of single individuals
has described four mechanisms how the DDM can generate
asymmetric RTs: i) A bias in the relative start point (Fig. 1A).
The relative start point influences the amount of additional in-
formation that is required for either option. If the start point
is biased towards one option, the responses for that option
are expected to come faster. Start point biases can be the re-
sult of differences in base rates or expected payoffs (Gold &
Shadlen, 2007; Leite & Ratcliff, 2011; Mulder, Wagenmak-
ers, Ratcliff, Boekel, & Forstmann, 2012). ii) Varying drift
rates (Fig. 1B). The drift rate describes the average amount
of evidence accumulated for an option per time unit and can
vary over trials, meaning that some trials have a stronger drift
towards one option than others. Trials with strong drifts will
lead to choices which are fast, and consistent with the drift di-
rection. Trials with lower drifts will contain more random and
slower choices. On average, this will lead to faster choices
for the more frequently chosen option (White & Poldrack,
2014; Ratcliff et al., 2016). iii) Variance in the start point.
This mechanism can explain faster choices for the less fre-
quently chosen option. Choices inconsistent with the drift
direction will predominantly appear on trials where the in-
dividuals start close the choice threshold opposing the drift
direction and, therefore, will be made very fast. Start point
variance is typically added to account for fast errors. We do
not investigate this further as fast errors are not of focal in-
terest in our study. iv) Collapsing decision threshold. Mod-
els with collapsing decision thresholds assume that the deci-
sion maker requires less evidence to trigger a decision as time
passes. Here, late choices are more random as the choices
are based on less evidence. Collapsing bounds and varying
drift rates make highly similar predictions and whether or not
thresholds collapse over time is hotly debated in the DDM
literature (Ratcliff et al., 2016). We, therefore, focus only on
the first two potential processes driving asymmetric RTs.

To investigate the role of asymmetric RTs in shaping col-
lective dynamics, we proceed in three steps. First, we use a
sequential choice task to study empirically how asymmetric
RTs influence human group dynamics. Second, we fit a social
DDM to our data to uncover the underlying latent cognitive
mechanisms driving these dynamics. Third, we use simula-
tions to investigate how the two key processes driving asym-
metric RTs shape choice biases in collectives across a broad
range of parameter settings. We show in a binary decision
task that if one option is, on average, chosen faster this can
bias the information spreading through the group and pro-
mote choice biases. Further, we show that the danger of such
a bias amplification is especially high in the presence of start
point biases but not so much in presence of varying biased

Figure 1: Possible mechanisms underlying asymmetric RTs.
Both, (A) a start point bias towards “A” and (B) drift rate variance in
combination with a drift towards “A” can explain faster choices for
Option “A” compared to “B”.

drift rates.

Methods
A total of 120 participants (66 females; 52 males, 2 other,
mean age = 27 years, range = 18-39) were recruited from the
participant pool of the Max Planck Institute for Human De-
veopment. After providing informed consent they were as-
signed to one of two conditions, either being alone (n=20) or
in groups of ten (n=10 groups). Participants within the same
group were seated in the same room and all had a separate
tablet.

In the experiment, participants were confronted with a vi-
sual search task. In each trial, they first briefly (for 2 sec-
onds) were shown an image of a shoal of 72 stylized fish
(tuna and sharks aligned in an 8 x 9 grid; see Fig. 2) with
either three, four, six, or seven sharks hidden between tuna.
After the image was removed the participants had to decide
between “escape” and “stay”. Participants were instructed to
“escape” when there were five or more sharks present and
“stay” if there were four or fewer. In such visual search tasks,
the responses for finding the target (here sharks) are generally
made faster than for not finding it (Palmer, Horowitz, Tor-
ralba, & Wolfe, 2011). Hence, we expected faster “escape”
choices. Participants could indicate their choice by pressing
the respective button on their tablet within 12s. Individuals in
the alone condition performed the experiment by themselves.
When participants in the group condition made a choice, their
choice was immediately displayed on the tablets of all group
members, by means of a green bar for the respective option
(see Fig. 2). Participants (in both conditions) could only de-
cide once, and not alter their decision. A countdown timer
on the screen indicated the remaining time. The separation of
each trial into a stimuli phase and a choice phase facilitated
participants’ visual attention allocation. In the stimuli phase
participants could allocate their attention to the image, and
in the choice phase to the choices of others. After each trial
participants received feedback on whether their choice was
correct or not. Participants earned a flat fee of 7C and could
additionally earn a bonus based on their performance (mean
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Figure 2: Illustration of the experimental paradigm. Participants
briefly observe a grid of “sharks” and “tuna”. They then make a
decision whether to “stay” or “escape” by pressing the respective
button on their tablet. Individuals in groups can observe the choices
of others in real-time via counts for the different options.

bonus = 3.57C). Participants started the experiments with a
bonus balance of 1C. They earned 0.10C for each correct
decision, and lost that amount for each wrong decision—or
when they failed to respond within the time limit. In addi-
tion, we introduced a small time cost of 0.001C per second
reflecting naturally-occurring opportunity costs. There were
50 trials in total with each number of sharks (3, 4, 6, or 7) oc-
curring at least 12 times, and with “escape” being the correct
option in half of the trials. Prior to the 50 trials, there were
two test trials to familiarise the participants with the experi-
ment (not included in the analysis).

To analyse which factors predicted the RTs of individu-
als, we used Bayesian hierarchical generalized linear mod-
els with the “brms” package (Bürkner, 2017), analysing sin-
gle individuals and groups separately. We used RTs as re-
sponse variable assuming a shifted lognormal-distribution
(Wagenmakers & Brown, 2007). We included the choice (es-
cape/stay) and the choice being correct (correct/wrong) as
predictors. Individual identity and for groups also groups
identity was included as a random effect. We ran four chains
in parallel with 10.000 iterations each, disregarding first half
as burn-in.

Social DDM: Model parameter estimation.
To understand how individuals gather evidence and time their
decision, we fitted an evidence accumulation model to the
data. By accounting for changing drift rates within a trial
it allows estimating the influence of social information on
the evidence accumulation process. To obtain choice and
RT predictions we generated probability density functions by
implementing an extended version of a Markov chain ap-
proach (Diederich & Busemeyer, 2003). For a detailed de-
scription of the implementation see supplementary informa-
tion https://osf.io/jn6a7/.

Note that the social DDM starts modelling the evidence
accumulation process at the start of the choice phase, hence
after participants observed the stimuli. The evidence state at
this point is called the relative start point, and can include
already gathered evidence in the form of personal informa-

tion. Thus, the relative start point β can be decomposed into
two components, one related to participants’ initial tenden-
cies, and one to participants’ discrimination ability. The first,
can incorporate potential initial tendencies to escape (or stay)
βbias which shifts the relative start point towards (or away
from) the escape boundary. Second, individuals may have
gathered correct (or incorrect) information βdisc during stim-
uli presentation, which shifts the relative start point towards
(or away from) the correct boundary:

β =

{
0.5+βbias +βdisc, if escape is correct
0.5+βbias −βdisc, if stay is correct

(1)

The personal drift rate δp is similarly decomposable into
a drift towards the correct option δdisc (i.e., the discrimina-
tion ability) and a drift bias δbias (i.e., a bias in the evidence
evaluation process):

δp =

{
δbias +δdisc, if escape is correct
δbias −δdisc, if stay is correct

(2)

In groups, participants can additionally gather social in-
formation by observing the choices of others. This informa-
tion is integrated as further evidence via the social drift. The
strength of the social drift changes over time t whenever an-
other group member makes a choice and is a function of the
majority of individuals M(t) who already decided (see also
Tump et al., 2020):

δs(t) = s×M(t)q, (3)

with
M(t) = Nescape(t)−Nstay(t). (4)

Whereby Nescape(t) and Nstay(t) are the number of individu-
als who have decided at time t to escape or stay, respectively.
The parameters s and q shape the relationship of majority size
and social drift rate whereby s serves as a scaling factor and q
influences the shape of the power function. Values of q below
one indicate that the impact of an additional individual satu-
rates with increasing majority size M(t). Once the decision
threshold θ (or −θ) is reached, a decision to escape (or stay)
is made.

For statistical inferences with the social DDM, we used a
Differential-Evolution-MCMC algorithm. We ran a Bayesian
hierarchical model which allowed us to obtain individual and
population-level parameter estimates. We ran 24 chains in
parallel, each with a chain length of 10,000 including a burn-
in period of 5,000 and a thinning factor of 10 to reduce auto-
correlations, fitting the single and group condition separately.
For further details of the estimation process see supplemen-
tary information. A parameter recovery analysis shows that
generating and recovered parameters show strong positive
correlations indicating that all parameters are identifiable and
interpretable in their magnitude (see supplementary informa-
tion).
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Table 1. Description of the parameters of the social DDM
Model
feature Parameter Description

Relative
start point

β = 0.5+
βbias±βdisc

Incorporates the initial
tendency to choose escape
(βbias) and already gathered
correct evidence (βdisc). It is
assumed to be drawn from a
uniform distribution with a
range of sβ (Fig. 4A–C).

Personal
drift rate

δp =
δbias ±δdisc

The accumulated evidence
can consists of evidence for
the correct option (δdisc)
which can be biased towards
escape (δbias). It is assumed
to be normal distributed with
a variance of sδ (Fig. 4D–F).

Social
drift rate

δs =
s×M(t)q

Describes the impact of so-
cial information, with s scal-
ing the strength of the so-
cial drift rate, and q shaping
the power function describ-
ing the relationship of major-
ity size M(t) and social drift
rate (Fig. 4G).

Choice
threshold θ

The amount of evidence an
individual has to accumu-
late to make a decision;
θ (−θ) reflects the escape
(stay) choice threshold (Fig.
4H).

Nondeci-
sion time NDT

Response latency describing
any share of the response
time which is not captured by
the choice process (Fig. 4I).

Social DDM: Agent-based simulations.

To analyse how the cognitive mechanisms underlying evi-
dence accumulation influence the group dynamics we con-
ducted agent-based simulations of the social DDM. We pa-
rameterized each agent with the mean of the posterior esti-
mates of all participants in groups of ten. To examine the in-
fluence of social interactions on the agents’ behaviour we also
ran a control simulation with the social drift set to zero (i.e.,
without social interaction). For each simulation run, we saved
the agents’ choice and decision order (Fig. 3D). Afterwards,
we further examined how the start point bias and the drift
variance influence the group dynamics. Because drift vari-
ance only predicts faster responses for the more frequently
chosen option (i.e., in presence of a drift bias), we systemat-
ically varied either the start point bias from -0.2 to 0.2 or the
drift bias from -0.3 to 0.5 in combination with a drift variance
of zero, one or two (Fig. 5). The code for the analyses and
simulations can be accessed at https://osf.io/jn6a7/.

Figure 3: The relationships between choices, RTs and decision
order. (A) The RT densities for “escape” and “stay” choices of sin-
gle individuals with a smoothing bandwidth of 0.1 seconds. The
vertical dashed lines indicate the mean. (B) The RTs of stay (0) and
escape (1) choices for single individuals. Each circle represents a
single choice, with darker areas containing more choices. The black
line indicates the estimated probability to escape at any time point
estimated by loess-smoothing with the default smoothing span of
0.75. The uncertainty bands indicate twice the standard error. Note
that ≈ 3% of the RTs were above 3 seconds and are not shown. (C)
The proportion of escapes for singletons (green) and groups (red).
For groups, the overall proportion is shown (most left dot), and as
a function of the decision order. (D) The proportion of escapes for
simulated non-interacting (green) and interacting (red) groups. The
points and error bars in C–D reflect the mean and twice the standard
error, and the horizontal dashed lines indicate average escape prob-
ability

Results
Behavioural results.
We begin by examining participants’ behaviour alone and in
groups. As expected, participants in groups outperformed
single individuals (accuracy: 78% versus 71%). We found
asymmetric RTs in both conditions. For both individuals
alone and in groups the decision to escape was made credibly
faster than the stay decision. Single individuals: 1.31s versus
1.40s (est =−0.09, CI = [-0.15, -0.03]); groups: 1.97s versus
2.27s (est =−0.18, CI = [-0.21, -0.15]). A closer look at the
RT distributions of singletons reveals that this difference was
most prominent for the leading edge of the distributions (i.e,
the fastest choices; Fig. 3A). Figure 3B shows the probability
to escape for singletons over time, showing that the earliest
choices of singletons were substantially more likely to be es-
cape choices, while later choices were increasingly likely to
be stay choices.

These asymmetric RTs might strongly influence the infor-
mation flow in groups: whereas single individuals only es-
caped in 51% of the trials (i.e., showed no clear preference for
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either option), individuals in groups chose to escape in 57%
of the trials (Fig. 3C). Comparing the likelihood to escape be-
tween singletons and the first deciding individual in a group,
we found that the latter was much more likely to escape, de-
spite both making choices in absence of social information.
Later-deciding individuals (order ≥ 2) were influenced by
these early escaping individuals and also escaped more of-
ten as compared to singletons. In summary, on a behavioural
level, we found that individuals in groups were more likely to
escape, which is most likely due to asymmetric RTs: escape
responses were made earlier and swayed others into escaping.

The social dynamic captured by the social DDM.
Next, we used the social DDM to investigate the cognitive
mechanisms underlying the escape choice amplification. Fig-
ure 4 shows the individual and population-level parameter es-
timates of singletons (green) and individuals in groups (red).
For brevity, we focus our description on individuals in groups.
The choice process in groups can, in short, be described by:
(i) individuals’ relative start point is biased towards escape
(βbias = 0.08, CI = [-0.07, 0.09]; Fig. 4A) and closer to the
correct decision threshold (βdisc = 0.02, CI = [0.01, 0.03];
Fig. 4B), indicating that they gathered, on average, correct
evidence while observing the stimuli. (ii) During the choice
phase, individuals in groups continued to gather correct (δdisc
= 0.58, CI = [0.49, 0.67]; Fig. 4E) and unbiased (δbias =
-0.00, CI = [-0.11, 0.10]; Fig. 4D) evidence. (iii) Further-
more, individuals gathered social information by drifting to
the option chosen by the majority of individuals (s = 1.08, CI
= [0.95, 1.22]; q = 0.59, CI = [0.51, 0.68]; Fig. 4G). (iv) Fi-
nally, once individuals gathered enough evidence they made
a choice (θ = 1.97, CI = [1.86, 2.08]; Fig. 4H). Note that in-
dividuals in groups required substantially more evidence than
single individuals as indicated by a higher choice threshold
(θgroups −θsingletons = 0.88, CI = [0.70, 1.06]).

Next, we investigated which mechanism(s) of the choice
process could explain the asymmetric RTs and the resulting
escape choice amplification. Importantly, the start point pa-
rameter of individuals in groups (and to a lesser extent of sin-
gletons) was biased towards the escape choice, which would
predict faster escape choices (Fig. 4A). A variance in drift
rate only predicts asymmetric RTs in presence of a drift bias
(i.e., faster escapes if individuals drift towards escape). As
the personal drift rate of individuals in groups was not biased
towards escape, this mechanism cannot explain faster escape
choices (Fig. 4D, F). To test whether the social DDM can
indeed explain the escape choice amplification through so-
cial interactions, we simulated groups of 10 agents which ei-
ther interacted (via the social drift) or decided independently
(i.e., no social coupling). Figure 3D shows that the social
coupling is key for recovering our main finding: agents de-
ciding independently did not escape more often than chance
and showed a steep drop in likelihood to escape with deci-
sion order, which was not observed empirically (Fig. 3C).
Interacting agents, on the other hand, showed a bias towards
escape, and no (or only a slight) drop of escape probability

Figure 4: Parameter estimates of the social DDM. Shown are
the individual (gray) and population-level parameter estimates for
single individuals (green) and groups of ten (red). For parameter
descriptions see Table 1. Panels (A–C) show parameter estimates
associated with the relative start point, (D–F) with the personal drift
rate and (G) with the social drift rate. Panels (H) and (I) show the
parameter estimates for the choice threshold and nondecision time.
The dots and error bars show the mean and the 95% credible inter-
vals of the posterior distributions.

with decisions order, as empirically observed. Though in both
simulations early-deciding agents were more likely to escape,
the social coupling was essential for these escape choices to
cascade through the group.

The mechanisms driving choice bias amplifications
Finally, we investigated how the two key processes driving
asymmetric RTs shape choices biases in collectives across a
broader range of parameter settings. First, we investigated the
influence of a start point bias, by simulating interacting and
non-interacting agents in groups with varying start point bi-
ases while the drift bias was set to zero. Figure 5A shows how
an increase in the start point bias increases the proportions of
escape choices for both group types. However, for interact-
ing agents, the increase is much stronger because of social
amplification (see also Fig. 3D). Thus, we expect the influ-
ence of start point biases on choice proportions to be strongly
amplified in sequentially deciding groups.

Next, we investigated the influence of drift variance while
the start point bias was set to zero (Figure 5A & B). As
drift variance predicts faster choices of the more frequently
chosen option, we further systematically varied the drift bias
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Figure 5: How start point bias and drift variance can explain
choice bias amplification. The average choice proportions of
simulated groups with (red) and without (green) social interaction
across varying DDM parameters. (A) Increasing the start point
bias towards escape slightly increases escape proportions for non-
interacting agents. These biases are, however, strongly amplified in
interacting agents. (B) Interacting and non-interacting agents only
show substantial differences in the presence of a strong drift rate bias
and drift rate variance. Note that the intermediate variance strength
approximates the variance found in this study. The points and error
bars reflect the mean and standard error.

whereby a drift bias towards “escape” predicts faster “escape”
responses. With little to no intermediate drift variance, even
strong biases in the drift rate will not be amplified in groups.
Only if both, drift bias and variance are high, interacting
agents start escaping substantially more often compared to
non-interacting agents. The amplifying effect of the drift rate
variance is comparably small to the start point bias because
the start point bias deferentially impacts the leading edge of
the RT distributions. In other words, the fastest choices are
driven by the start point bias. These fast choices are in turn,
the most influential ones for social dynamics. Varying drift
rates, on the other hand, have only little influence in the lead-
ing edge of the RT distribution and impact much more the tail
(i.e., late decisions).

Discussion
Despite a long history of research on behavioural cascades,
our ability to predict what kind of choice alternatives are
prone to cascades is still limited. One reason is that past re-
search tended to investigate collective patterns with simpli-
fied assumptions about the underlying cognitive mechanisms
(Raafat, Chater, & Frith, 2009; Heyes, 2016; Krause et al.,
2021). Here we try a different approach by using the social
DDM to gain a detailed understanding of the underlying cog-
nitive processes and their consequences for group dynamics.

We show that if one option is on average chosen faster, this
can bias the spread of information through the group. The
characteristic of these fast choices is here driven by individu-

als having a start point bias towards escape. Further, simula-
tions show that a variance in the drift in combination with a
strong drift rate bias could also bias the spread of information
through groups, however, to a much lesser extent.

In the DDM literature, start point and drift biases have typ-
ically been studied in signal-detection tasks (Gold & Shadlen,
2007), whereby individuals predominantly account for differ-
ences in potential payoff by adjusting their start point instead
of their drift rate. Individuals, in a similar fashion, shift their
start point towards the more often correct option in presence
of frequency manipulations (Leite & Ratcliff, 2011; Mulder
et al., 2012; White & Poldrack, 2014). Thus, start point biases
describe an a priori preference for an option, for example, to
“shoot” instead of “not-shoot” on a potentially armed target
in a shooter task (Pleskac et al., 2018) or to prefer the save
versus the risky option in risky choice (Zhao et al., 2020).
Especially the fastest decisions are thereby expected to be
driven by start point. The more time passes the more are the
choices expected to be influenced by new incoming evidence
(White & Poldrack, 2014). Drift rate biases, on the other
hand, have been manipulated by changing the stimuli evalua-
tion rules (Leite & Ratcliff, 2011; White & Poldrack, 2014).
In memory retrieval tasks, for example, where participants
had to categorise words as new or old (i.e., already seen on a
list) the instruction to only consider items as old if they were
associated with strong memories biased the drift rate towards
the option “new” (White & Poldrack, 2014). Thus, drift rate
biases reflect a biased information evaluation. As this bias in-
troduces tendencies in the evaluation process itself, it persists
over time and thereby can explain choice biases even after a
long deliberation process (White & Poldrack, 2014). Note
that because the start point in this study describes the evi-
dence state after stimuli presentation, we cannot rule out that
a drift rate bias during the short stimuli presentation caused a
subsequent start point bias. Enabling responses already dur-
ing the short stimuli presentation would allow to identify po-
tential drift rate biases but also introduce a trade-off between
observing the stimuli and choices of others.

Conclusions
In summary, the social interactions in our experiment
introduced choice biases—higher probabilities of choosing
escape—on a group level which were negligible in single
individuals. We identified fast escapes as a driving force
which were caused by start point biases. Drift variance has
a much weaker bias amplifying effect on group dynamics.
These findings have important implications because many
choice tasks are characterized by one alternative being, on
average, chosen faster. However, whether these choices
are expected to be amplified in social contexts depends on
the exact underlying choice mechanisms and resulting RT
distributions.

Supplementary material. All supplementary information
including the empirical data and code for the analyses and
simulations can be accessed at https://osf.io/jn6a7/.
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