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Maximum likelihood pandemic-scale  
phylogenetics

Nicola De Maio    1  , Prabhav Kalaghatgi2, Yatish Turakhia3, 
Russell Corbett-Detig4,5, Bui Quang Minh6 & Nick Goldman    1

Phylogenetics has a crucial role in genomic epidemiology. Enabled by 
unparalleled volumes of genome sequence data generated to study and 
help contain the COVID-19 pandemic, phylogenetic analyses of SARS-CoV-2 
genomes have shed light on the virus’s origins, spread, and the emergence 
and reproductive success of new variants. However, most phylogenetic 
approaches, including maximum likelihood and Bayesian methods, cannot 
scale to the size of the datasets from the current pandemic. We present 
‘MAximum Parsimonious Likelihood Estimation’ (MAPLE), an approach 
for likelihood-based phylogenetic analysis of epidemiological genomic 
datasets at unprecedented scales. MAPLE infers SARS-CoV-2 phylogenies 
more accurately than existing maximum likelihood approaches while 
running up to thousands of times faster, and requiring at least 100 times less 
memory on large datasets. This extends the reach of genomic epidemiology, 
allowing the continued use of accurate phylogenetic, phylogeographic  
and phylodynamic analyses on datasets of millions of genomes.

As viruses and bacteria spread within and between hosts, they  
accumulate genetic mutations. By analyzing the genetic data of  
sampled pathogens, we can understand their evolutionary and trans-
mission history. For this reason, genomic data have a crucial role in 
epidemiology, as exemplified during the COVID-19 pandemic, and are 
used to track and reconstruct the spread of disease within communi-
ties and within and between countries1–6, understand the dynamics of 
transmission5,7–9, estimate the efficacy of containment measures10–13 
and predict future epidemiological dynamics4,14, and for the track-
ing of pathogen evolution as showcased by the identification of  
new SARS-CoV-2 mutations and variants of concern15–19.

Investigations of genomic epidemiological data are predomi-
nantly based on phylogenetic methods, but analyses of SARS-CoV-2 
genome sequence data with existing phylogenetic approaches are 
becoming more difficult due to the excessive computational resources 
required by current global datasets consisting of millions of genomes20. 
Large and up-to-date global phylogenies21 are expected to be more 

accurate than smaller ones22 and allow detailed analyses such as for 
transmission tracking6 and lineage assignment19. However, estimat-
ing such large phylogenies accurately with established phylogenetic 
software like RAxML23 or IQ-TREE24 would require years for each tree 
update (if possible at all due to memory demand). For this reason, 
tools for tracking viral genome evolution and spread (for example 
NextStrain25) and many other genomic analyses often downsample 
global SARS-CoV-2 datasets to a few thousand genomes, leading  
to loss of power and resolution22,26.

Results
Pandemic-scale likelihood-based phylogenetics. To address these 
issues, we have devised a set of algorithms, techniques and formats  
tailored for large-scale genomic epidemiology. Our approach, 
‘MAximum Parsimonious Likelihood Estimation’ (MAPLE), performs 
maximum likelihood phylogenetic inference23,24,27 and uses explicit 
probabilistic models of sequence evolution; we combine these 
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Fig. 1 | Graphical summary of sequence and likelihood representation and 
processing. a, Left—Fasta representation of an individual SARS-CoV-2 genome 
consists of sample name followed by the entire ≈ 30 kbp genome sequence. 
Right—MAPLE format records only the differences between the genome 
under consideration and a reference; columns represent the variant character 
observed, the position along the genome and (when necessary) the number of 
consecutive positions for which the character is observed. b, Left—an example 
likelihood vector at an internal node of a phylogenetic tree (shown by the 
narrow blue arrow; only a small portion of the tree is shown); for simplicity, we 
show only ten genome positions. At each position (rows 1–10), each column 
contains the likelihood for a specific nucleotide. For rows 1–9, the likelihood is 
concentrated at only one nucleotide (highlighted in green), while for position 
10, we show an example with more uncertainty. Right—MAPLE representation 

of these node likelihoods. Assuming that the reference sequence at the first 
nine positions matches the most likely nucleotides in the vector (ATTAAAGGT), 
then for positions 1–9, the likelihood of nonreference nucleotides is negligible 
and we represent the likelihoods with a single symbol (R). At position 10, due to 
non-negligible uncertainty, we explicitly calculate and store the four relative 
likelihoods. c, Examples of likelihood calculation steps in MAPLE. Red arrows 
represent the flow of information from the tips to the root of the tree. Left—if two 
child nodes are in reference state R for a region of the genome (here, positions 
1–9), then MAPLE assumes that their parent is also in state R. Right—if at a genome 
position (here, position 10), two child nodes have likelihoods concentrated at 
different nucleotides, then for their parent, we explicitly calculate the relative 
likelihoods of all four nucleotides.
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best-in-class features with some aspects of maximum parsimony 
methods28 that allow it to greatly reduce computer memory and time 
demand.

Concise genome data representation. Genomic data typically need  
to be aligned before performing phylogenetic inference; resulting 
alignments usually employ Fasta or similar formats29, which list the 
whole DNA sequence of each considered sample. In the context of 
genomic epidemiology, this is very highly redundant because genomes 
within an epidemic are usually extremely similar to each other. The  
VCF format can sometimes reduce alignment file size; however, with 
large datasets, as the number of variable sites approaches genome 
size, the VCF format can also become memory-demanding. While it 
is possible to reduce the size of datasets using standard compression 
techniques30, sequences still need to be uncompressed before analysis.

Instead, we represent each genome in our MAPLE alignment  
format in terms of differences with respect to a reference genome  
(Fig. 1a; Methods). This way, we reduce file size approximately 100-fold 
compared to Fasta files (Fig. 2); for example, we reduced the size of the 
31-03-2021 GISAID global SARS-COV-2 alignment of 915,508 genomes 
from 27.84 GB to 224.6 MB (a 124× reduction).

Concise phylogenetic likelihoods. Likelihood-based phylogenetic 
methods typically keep track of the probability of every possible  
nucleotide at each position of the genome and each node of the  
phylogenetic tree31,32. With pandemic-scale genomic data, this pro-
cess requires excessive computational time and memory resources20.  
However, in genomic epidemiology, due to the similarity of the 
genomes considered, these probabilities are typically highly con-
centrated at only one of the four nucleotides for most genome posi-
tions and tree nodes. We exploit this feature by approximating these 
 probabilities and representing them concisely (Fig. 1b; Methods).  
As an example, when estimating a phylogeny from a random 10,000- 
sample subset of the GISAID dataset above, with a reference genome 
of 29,891 bp, on average we only record the phylogenetic likeli-
hoods of 2.7 genome positions per tree node (≈10,000 times less  
than usual). This allows us to considerably reduce the memory  
demand of likelihood-based phylogenetic inference in genomic 
epidemiology.

Additionally, we develop a faster and approximate alternative 
to the Felsenstein pruning algorithm32 used to calculate phyloge-
netic likelihoods; this algorithm has been at the core of most of the 
likelihood-based phylogenetics in the past 40 years, and so is funda-
mental to some of the most cited and used scientific software, but 
is not tailored for the features of pandemic-scale genomic data. Our 
alternative (Fig. 1c; Methods) takes advantage of the strong similarities 
between the considered genomes and of concise likelihood and data 
representation to reduce the computational time demand of approxi-
mate likelihood-based phylogenetics in genomic epidemiology.

Fast tree exploration. To quickly but accurately find likely phyloge-
netic trees, we develop heuristic strategies for exploring tree space. Our 
first strategy is an adaptation of stepwise addition33, in which samples 
are added to the phylogenetic tree one at a time. We use this strategy 
to find an initial tree (which is then refined with the second strategy), 
but it is similarly useful in extending an existing tree, for example, as 
new genomes become available with time. Our adaptation involves a 
fast and approximate search among the nodes of the tree for the most 
likely tree position in which to add the new sample (Fig. 3; Methods).

Our second strategy consists of a modification of subtree pruning 
and regrafting33, which is used to perturb (and thereby improve) an 
existing tree. Our modification consists again in quickly exploring a 
broad range of possible tree changes.

Computational demand and accuracy of MAPLE. Maximum likeli-
hood phylogenetic methods typically present trade-offs between 
accuracy and computational demand, with more accurate tree recon-
struction requiring deeper, and therefore more time-consuming, 
tree space exploration. Thanks to the considerable time and memory 
savings brought by our approach to likelihood calculation, MAPLE  
can invest more resources in tree estimation than other methods, 
resulting in more accurate tree inference, while still requiring less time 
and memory than other maximum likelihood inference approaches 
(Fig. 4 and Extended Data Figs. 1–4).

As an example, MAPLE shows consistently higher accuracy than 
RAxML-NG34 (the most accurate of the methods we compared MAPLE 
against) on simulated and real SARS-CoV-2 datasets (Fig. 4c–f and 
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Fig. 3 | Graphical summary of phylogenetic placement in MAPLE. a, To search 
for the best placement of a new sample s (here represented by a green dot and 
branch) on the current tree, we first assess placement at the root, which in this case 
results in a relative log-likelihood score of −70. b, We iteratively visit descendant 
nodes by preorder traversal and assess placement for each visited node (in 
practice, we also attempt placement onto branches). c, When the log-likelihood 
score decreases two times consecutively and falls below a certain threshold relative 
to the best placement found so far, we do not visit further nodes downstream  
(red crosses). d, The placement with the highest score at the end of this process  
(in this case with cost 0) is taken as optimal for the addition of s to the tree.
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Extended Data Figs. 3,4), while being more than 100-fold faster (Fig. 4a)  
and requiring less memory (Fig. 4b). MAPLE can also estimate trees 
about 25 times larger than IQ-TREE 2 (ref. 24) or FastTree 2 (ref. 27) 
(500,000 versus 20,000 samples) because of their 50-fold larger mem-
ory demand (Fig. 4b). Figure 5 shows an example of 500,000-sample 
SARS-CoV-2 whole-genome phylogeny, inferred by MAPLE v0.0.4 in 
69.4 h with a maximum memory usage of 8.4 GB on one core of an Intel 
Xeon Gold 6252 Processor @ 2.10 GHz.

matOptimize35 (a recent feature improving the accuracy  
of UShER28) is a phylogenetic inference method that, similarly to 
MAPLE, has been tailored to the features of genomic epidemiological 
analyses, but that uses maximum parsimony rather than maximum 
likelihood principles. MAPLE shows similar computational demand 
to matOptimize, and less steep slopes in time and memory demand, 
therefore being able to estimate larger trees (Fig. 4a,b). matOptimize 
appears less accurate than maximum likelihood methods on simulated 

data (Fig. 4c–e) but more accurate on real data (Fig. 4f), being second 
only to MAPLE. A feature aiding the accuracy of matOptimize is its deep 
tree search, similar to MAPLE; an important disadvantage compared 
to maximum likelihood methods is instead its lack of a substitution 
model distinguishing different types of mutations (which we expect 
to have a bigger role with real data than in simulations due to the lower 
abundance of homoplasies in the latter). Combining both features 
helps MAPLE prevent hundreds of topological errors in simulated data 
(Fig. 4c–e) and, based on likelihood differences (Extended Data Fig. 4), 
we expect even more errors prevented with real data.

We can further improve the computational performance of MAPLE 
by reducing the depth of its tree space search; for example, using 
option ‘--fast’ in MAPLE, runtime typically becomes two to three times 
faster (Extended Data Fig. 1) without decreasing accuracy on simulated 
datasets (Extended Data Fig. 3) and while remaining the most accurate 
approach on real data (Extended Data Fig. 4).
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Fig. 4 | MAPLE consistently delivers higher accuracy phylogenetic inference 
from SARS-CoV-2 genomes at lower computational demand. a, Time required 
to run each method considered on real SARS-CoV-2 datasets. Each phylogenetic 
inference method considered is represented by a different color and line style 
(see legend). Values on the x axis show the number of samples included in each 
replicate. We ran each method up to the maximum dataset size that could be 
analyzed due to time (1 week) and memory (40 GB) limitations. Each violin plot 
summarizes values for ten replicates, and dots represent mean values.  
b, Maximum RAM demand required to run each method considered on real  

SARS-CoV-2 datasets. c–e, Proportional Robinson–Foulds (RF) distances 
between estimated trees and true trees in simulations. Higher values correspond 
to more errors in phylogenetic estimation. c, ‘Basic’ simulation scenario;  
d, ‘rate variation’ simulation scenario; e, ‘sequence ambiguity’ simulation 
scenario. f, Log-likelihoods (computed with IQ-TREE 2) of phylogenies inferred by 
different methods on real SARS-CoV-2 data, relative to the highest log-likelihood 
score obtained by any method for the same replicate. Higher values on the y 
axis represent more likely estimates. We consider only datasets of up to 20,000 
samples due to the computational demand of likelihood evaluation.
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The approaches used in MAPLE are tailored for the scenario of 
many sequences at short divergence from each other. When consid-
ering datasets with higher divergence, we find that the performance 
of MAPLE deteriorates both in terms of time (Fig. 6a) and memory 

(Fig. 6b) demand; eventually, for datasets with about 50 times higher 
divergence than our baseline dataset (representing approximately 
100 years of SARS-CoV-2 evolution), it becomes more feasible to use 
traditional maximum likelihood phylogenetic methods than MAPLE. 

B.1.177

B.1.160

B.1.2

B.1.1

B.1.1.7

B.1.177.63

B.1.177.64

Fig. 5 | 500,000-sample phylogeny inferred by MAPLE. Example phylogeny, 
with two consecutive zoom-ins each of about 100× magnification. Different 
SARS-CoV-2 lineages are shown in different colors, with some clades labeled to 
give context. Left—500,000-sample phylogeny estimated by MAPLE from real 

SARS-CoV-2 sequence data. Center—zoom-in on a subtree containing 3,600 
B.1.177 samples. Right—further zoom-in on a subtree containing 49 samples. 
Phylogenies were plotted using Taxonium45.
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sequences (Methods). a, Time required to run each method. Each phylogenetic 
inference method considered is represented by a different color and line style (see 
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analyzed due to time (1 week) and memory limitations. Each violin plot summarizes 
values for ten replicates, and dots represent mean values. b, Maximum RAM 
demand required to run each method. c, Proportional Robinson–Foulds distances 
between estimated trees and true trees used in simulations. Higher values 
correspond to more errors in phylogenetic estimation. d, Log-likelihoods (LK) 
(computed with IQ-TREE 2) of phylogenies inferred by different methods, relative 
to the highest log-likelihood score obtained by any method for the same replicate. 
Higher values on the y-axis represent more likely estimates.
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For this reason, our software recommends the use of alternative  
methods at higher divergence levels (Methods). MAPLE’s accuracy 
remains however very high even at these levels of divergence—trees 
inferred from simulated data are similarly accurate as those of other 
maximum likelihood methods (Fig. 6c) and have the highest or 
near-highest likelihoods (Fig. 6d) for all the levels of divergence for 
which we could run MAPLE. While at higher divergence we expect 
MAPLE’s accuracy to deteriorate, it remains an accurate method for 
levels of divergence for which it can be used feasibly.

Discussion
By developing an approximate alternative to the classic Felsenstein 
pruning algorithm, by including features of parsimony-based phy-
logenetic inference in a likelihood-based context and by using more 
concise data representation, we have achieved substantial reductions 
in memory and time demand and increases in accuracy compared to 
popular maximum likelihood approaches when inferring SARS-CoV-2 
phylogenies. This enables state-of-the-art phylogenetic inference to 
be performed on larger datasets than previously possible.

Beyond SARS-CoV-2, our approach will be equally useful in any 
analysis with many sequences and with short evolutionary distances, 
such as in most scenarios in genomic epidemiology. This includes 
genomic datasets with many samples from an individual pathogen, 
including, for example, large collections of Mycobacterium tuberculosis 
genomes36 or influenza genomes37, and collections of genomic data 
from possible future pandemics. Our approach could also be com-
bined with divide-and-conquer phylogenetic algorithms38,39 to further 
improve its performance and applicability. Other improvements, such as 
implementations in more efficient programming languages, sorting of 
genome positions (for example, ref. 40), and representation of ancestral 
genomes in terms of differences with respect to genomes at neighboring 
phylogenetic nodes (ref. 35) could further extend MAPLE’s applicability.

While in this work we have discarded inserted genetic material in 
genome sequences, it is possible, although not optimally efficient or 
informative, to consider insertions in a MAPLE phylogenetic analysis 
by including them as part of the reference sequence. In the future, it 
could be possible to efficiently represent insertions in MAPLE format 
and extend the algorithm and model to account for indel events.

The applicability of our methods goes beyond maximum like-
lihood phylogenetics. The same algorithms and data structures in 
MAPLE could also be used in a Bayesian setting because Bayesian phy-
logenetic methods (for example, BEAST41,42) use the same genetic data 
(multiple sequence alignments) and the same likelihood calculation 
algorithms as maximum likelihood phylogenetic methods, and so 
would benefit from the same reduction in computational demands. 
MAPLE’s speed could also enable the use of other techniques to assess 
phylogenetic uncertainty (such as the transfer bootstrap43 and approxi-
mate likelihood ratio tests44) on large datasets.

For these reasons, we expect that in the future, MAPLE and its algo-
rithms will expand the computational toolkit of genomic epidemiology 
and could improve our preparedness for combating future epidemics.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01368-0.
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Methods
Representation of genomic epidemiological sequence data
We use a concise and human-readable format for representing an 
alignment of closely related genome sequences, which we call MAPLE 
format. We express each genome sequence in terms of its differences 
(substitutions and deletions) with respect to the reference. We also 
record ambiguous positions (IUPAC ambiguity characters) and deleted 
or nonsequenced portions of the genomes (gap ‘-’ and ‘N’ characters, 
respectively).

As an illustrative example, we consider a reference genome  
‘Reference’ comprising 20 ‘A’ characters:

>Reference
AAAAAAAAAAAAAAAAAAAA
(here represented in Fasta format). If a sampled genome ‘Sample’ 

consists of the sequence:
>Sample
NNNNNAAAAA---AAAAATA
when aligned to the reference, as it would be represented in Fasta 

format, we instead represent it as:
>Sample
N  1   5
-   11   3
T   19
where, in each entry (row), the first column represents the type 

of difference with respect to the reference, the second column in each 
row represents the position (along the reference genome) of the differ-
ence and the third column (which we only require for ‘N’ and ‘-’ entries) 
represents how many consecutive positions have this same character.

Representation of ancestral sequences and likelihoods
In addition to representing sequence data at lower memory cost, 
we also calculate and represent partial likelihoods—probabilities of 
nucleotides at internal nodes of the tree—at low memory and time 
cost. For a genome of length L and a tree ϕ with ∣ϕ∣ nodes, we typically 
would need to compute and store 4 × L × ∣ϕ∣ such likelihoods. Instead, 
we replace partial likelihood vectors with more concise structures that 
we call ‘genome lists’.

Each entry of a genome list represents relative (normalized) phy-
logenetic partial likelihoods for either one position of the genome or 
for a set of consecutive positions that share similar features. An entry of 
type ‘A’, ‘C’, ‘G’ or ‘T’ represents an individual genome position where the 
nucleotide indicated, different from the reference genome nucleotide 
at the position, has a much higher likelihood than the other nucleotides. 
An entry of type ‘R’ represents a collection of contiguous sites with 
likelihood concentrated at the reference nucleotide. An entry of type 
‘N’ indicates contiguous sites that contain no descendant sequence 
information. Finally, an entry of type ‘O’ (‘other’) indicates a position 
where multiple nucleotides have non-negligible relative partial likeli-
hoods—in this case, all four likelihoods are stored as part of the entry.

Each entry also has a position element, identifying the genome 
position(s) it refers to, and a branch length element specifying the 
phylogenetic distance from the node the entry refers to. See Supple-
mentary Methods Section S1.1 for a more in-depth description and 
examples.

Calculation of genome lists
We described above and in Supplementary Methods S1.1 how we ini-
tialize genome lists for terminal nodes (samples) of the tree. Similar to 
the Felsenstein pruning algorithm, we calculate the genome list of an 
internal node only after calculating it for its children.

As is standard in phylogenetics, we assume that sequence evo-
lution is a continuous-time and finite-space homogeneous Markov 
process, where all sites evolve independently46. We assume a nucleo-
tide substitution process determined by a substitution rate matrix 
Q whose entries qXY, for any X ≠ Y, represent instantaneous rates of 

substitution of nucleotide X to nucleotide Y, and qXX = − ∑Y≠XqXY. Transi-
tion probabilities over a branch length l are typically calculated using 
matrix exponentiation46; instead, considering the short branch lengths 
involved in genomic epidemiology, we use a first-order approximation:

P(Y|X, l) = elQ ≈ I + lQ (1)

where I is the identity matrix. This means that the probability P(Y∣X,l) of 
nucleotide X evolving into nucleotide Y ≠ X is approximated as lqXY, and 
that P(X∣X,l) ≈ 1 + lqXX. Note that these will only be good approximations 
as long as the considered branch lengths are short, while for larger 
branches, these approximations will not be reliable. MAPLE warns the 
user if any estimated branch length is >0.01 (and if any genome has 
divergence >10% from the reference, due to the likely effect on compu-
tational demand), recommending instead the use of other methods.

If different genome positions all belong to the same genome list 
entries in the two child nodes of node n, then they can all be represented 
by the same type of genome list entry for n. We exploit this fact by first 
finding such contiguous segments of genome positions, and then cal-
culating genome list entries for n, one for each such segment. We can 
calculate each genome list entry in constant time, and so, at the short 
levels of divergence considered here, genome lists can be calculated 
much faster than classical phylogenetic likelihoods, which typically 
require linear time in genome size. The algorithm we use to calculate 
genome lists is described in detail in Supplementary Methods S1.2, and 
graphical examples are given in Extended Data Fig. 5.

Other partial likelihoods
Partial likelihoods representing the probabilities of nucleotides con-
ditional on all their observed descendants are normally sufficient for 
phylogenetic inference. However, when using a nonstationary model, 
additional types of likelihoods are useful47. Here we also use these 
additional likelihoods and represent them with additional genome lists. 
Furthermore, for most nodes of the tree, we also calculate genome lists 
representing relative likelihoods considering all the data in the align-
ment, which correspond to ancestral state reconstructions48. We pre-
sent the details of these genome lists in Supplementary Methods S1.3.

Phylogenetic inference
We infer phylogenies in two steps. First, we infer a starting tree by 
stepwise addition33—we start from a tree containing only one sample 
and iteratively expand it by adding (‘placing’) samples on it one at a 
time (Supplementary Methods S1.4). Then, we improve the starting 
tree topology using custom subtree pruning and regrafting33 (‘SPR’) 
proposals (Supplementary Methods S1.10).

Both initial sample placements and SPR searches are made in 
such a way as to focus on nodes of the tree that are most promising 
for beneficial placements and SPR proposals (Fig. 3). The likelihood 
benefit of placements and SPR moves can be calculated quickly using 
our precomputed genome lists (Supplementary Methods S1.5). Also, 
every time we modify the tree, we only need to update the genome  
lists of a small portion of the tree (Supplementary Methods S1.7).

During estimation of the initial tree, we also estimate the substitu-
tion model (Supplementary Methods S1.9).

Software implementation
We implemented our methods in a Python3 script available from 
https://github.com/NicolaDM/MAPLE. For efficiency, we recommend 
its execution with the pypy3 implementation of Python (https://www.
pypy.org/#!).

Other phylogenetic methods considered
We compare the performance of MAPLE to high-performance  
and popular maximum likelihood phylogenetic methods that are  
often used to analyze large sequence datasets as follows: IQ-TREE 
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v2.1.3 (ref. 24), FastTree v2.1.11 (ref. 27) (double precision, no SSE3) 
and RAxML-NG v1.0.2 (ref. 34). For all these methods, we adopt a GTR 
substitution model49. We also consider the parsimony-based method 
matOptimize v0.5.1 (ref. 35), a recent approach to improving the  
accuracy of UShER28 trees, which has been tailored for SARS-CoV-2 
datasets. We selected program options to permit a fair comparison 
of methods, with each being tuned to the largest problems it could 
analyze on available hardware. In detail:

We ran IQ-TREE 2 with options ‘-quiet’ to reduce screen output, 
‘-nt 1’ to use only one core per replicate on our cluster and ‘-fast’, with 
which only nearest neighbor interchange (NNI) moves are used. For 
simulations with rate variation, we used a GTR+G model.

FastTree 2 was executed with options ‘-quiet’ to limit screen  
output, ‘-nosupport’ to skip support value computations and ‘-nocat’ 
to ignore rate variation (except for simulations with rate variation, for 
which we use ‘-cat 4’). We also used option ‘-fastest’ to reduce the time 
demand of NNI steps.

RAxML-NG was run with options ‘--threads 1’ to use only one  
core per replicate on our cluster, ‘--blmin 0.000005’ to increase the 
minimum branch length considered and ‘--tree pars{1}’ to start the  
tree search from a parsimony tree. For simulations with rate variation, 
we used a GTR+G model.

UShER v0.5.1 and matOptimize were run with option ‘-T 1’ to use a 
single thread per replicate and were run using the vcf input file format 
(option ‘-v’). matOptimize was run starting from the initial tree estimate 
of UShER and using option ‘-n’ to avoid the creation of intermediate 
files.

We ran MAPLE with default parameters and using PyPy (v7.3.5 with 
GCC 7.3.1 20180303 for Python 3.7.10; see https://www.pypy.org/#!).

Additional options considered for these and additional methods 
are described in Supplementary Methods Section S1.11, with corre-
sponding results reported in Extended Data Figs. 1–4.

Real SARS-CoV-2 sequence data
We randomly subsampled, without replacement, a given number of 
sequences from the 540,520 whole genomes that were represented 
both in the 31 March 2021 global unmasked SARS-CoV-2 alignment 
from GISAID37 and in the corresponding phylogenetic tree (https://
www.gisaid.org/). No ethical approval was required to access or  
analyze this data. We did not mask sites or filter out sequences. We use  
the consensus of all the sequences in the global GISAID alignment  
as reference genome for MAPLE. When measuring running times,  
we did not consider the cost of creating the input alignment for a  
given method.

Simulated SARS-CoV-2 sequence data
For real datasets, we have the drawback of not knowing the true under-
lying phylogenetic tree, which makes it harder to assess the accuracy 
of different phylogenetic inference methods. For this reason, we also 
simulated SARS-CoV-2 alignments of known phylogeny and substitu-
tion dynamics. We used the publicly available 26 October 2021 global 
SARS-CoV-2 phylogenetic tree as background ‘true’ tree from http://
hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/ 
(ref. 21), representing the evolutionary relationship of 2,250,054 
SARS-CoV-2 genomes as obtained using UShER28. We used phastSim 
v0.0.3 (ref. 50) to simulate sequence evolution along this tree accord-
ing to SARS-CoV-2 nonstationary neutral mutation rates51 and using 
the SARS-CoV-2 Wuhan-Hu-1 genome52 as root sequence. We simulated 
three different scenarios:
•	 The ‘basic’ simulation scenario (no rate variation and full 

genomes available).
•	 The ‘rate variation’ scenario, where we allow different genome 

positions to evolve at different speeds in our simulations to 
mimic the effect on genome evolution of variable mutation rates 
and selective pressures along the genome. We simulated four 

genome site categories, all with the same frequency and with 
relative substitution rates of 0.1, 0.5, 1 and 2.

•	 The ‘sequence ambiguity’ scenario, where we modified the 
simulated sequence data of the basic simulation scenario to 
include ambiguous characters. To realistically mimic amplicon 
drop-out effects53, for each simulated sequence, we sample one 
random sequence from the real dataset and copy-paste from 
it the stretches of ‘N’ and gap ‘-’ characters into the simulated 
sequence. Additionally, because contamination and mixed 
infections can result in individual ambiguous characters specifi-
cally at phylogenetically informative sites of the genome54, we 
count the number of isolated ambiguous characters in the real 
sequence, and we mask an equal number of randomly selected 
SNPs (differences with respect to the reference genome) in the 
simulated sequence. If more isolated ambiguous characters 
are observed in the real sequence than SNPs in the simulated 
sequence, then we simply mask all SNPs in the simulated 
sequence.

We also created a second set of simulations to assess the effect 
of different levels of divergence on MAPLE’s phylogenetic inference. 
First, we took a random 10,000-sample subtree of the phylogeny above. 
We then simulated genome evolution along this tree as in the ‘basic’ 
scenario above, but scaling the branch lengths of the tree by different 
divergence factors ranging from 0.1 to 1000. For each such simulated 
alignment, we then sampled 2,000 random sequences for each of 10 
replicates for each divergence scaling factor; in these simulations, we 
used MAPLE v0.2.0, while for the other analyses, we used v0.0.4.

Comparison of methods’ performance
We measured the computational demand of different approaches in 
estimating phylogenies by tracking the running time and maximum 
memory demand of all methods. All methods were run in parallel, 
assigning one thread per replicate per method. Because matOptimize 
requires an initial run of UShER, the running time of matOptimize is 
defined as the sum of the time it took to execute UShER followed by 
matOptimize; the maximum memory demand for matOptimize was 
defined as the highest of the maximum memory demands of the two 
methods.

We used two methods to compare the topological inference accu-
racy of different approaches. The first compares the likelihoods of the 
estimated tree topologies. Trees with higher topology likelihoods are 
interpreted as better estimates. Because the phylogenetic likelihood of 
the same tree computed by different software can differ due to different 
approximations employed, we use the same software, IQ-TREE 2, to cal-
culate the likelihood of the topologies inferred by all methods. To make 
the comparison of topological accuracy of different methods even 
fairer, in particular considering that maximum parsimony methods 
UShER and matOptimize do not represent branch lengths in the same 
way as maximum likelihood methods and do not estimate substitution 
models, when measuring topology tree likelihoods we run IQ-TREE 2 
using the tree to be assessed as starting tree, and performing model 
and branch length optimization but without attempting topological 
improvements. In simulations with rate variation, we run IQ-TREE 2 
with a GTR+G model with four categories; otherwise, we use a plain 
GTR model. Note that the use of IQ-TREE 2 for tree topology likelihood 
estimation limits the size of the trees that can be assessed due to the 
memory demand of the software.

The second measurement of phylogenetic accuracy (only available 
for simulated data for which the correct tree is known) is to calculate 
the Robinson–Foulds distance55 between an inferred tree and the cor-
responding true simulated tree. This distance gives a measure of how 
topologically close an inferred tree is to the true tree, and therefore 
quantifies inference error. We consider trees as unrooted, collapse 
all branches of the simulated trees on which no simulated mutation 

http://www.nature.com/naturegenetics
https://www.pypy.org/#!
https://www.gisaid.org/
https://www.gisaid.org/
http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/
http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01368-0

events occurred, and collapse all branches shorter than a minimum 
branch length (defined by the minimum branch length considered 
by each estimation method) so as to represent trees as multifurcating 
when a method finds little or no support for the local branching order. 
Robinson–Foulds distance calculations were performed with a custom 
implementation of Day’s algorithm56.

Statistics and reproducibility
The size and composition of the datasets considered were determined 
by the availability of SARS-CoV-2 genome alignments and phylogenetic 
trees and the capabilities of different methods to analyze these data; no 
statistical method was used to predetermine sample size. Subsample 
sizes (ranging from 2,000 to 500,000) were chosen to showcase the 
performance of the methods considered at different dataset sizes. All 
subsamples were generated uniformly at random, and the analysis 
can be replicated using our scripts in https://github.com/NicolaDM/
MAPLE.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All real data was downloaded from the GISAID initiative website (https://
www.gisaid.org/, 31 March 2021 alignment, accessed from https://www.
epicov.org/epi3/) which requires a GISAID account and acceptance of 
the GISAID data sharing conditions. Unique identifiers of the samples 
used are listed in the file https://github.com/NicolaDM/MAPLE/blob/
main/2021-03-31_unmasked_differences_reduced_namesOnly.txt.zip.

Code availability
The code is available from https://github.com/NicolaDM/MAPLE ref. 57.
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Extended Data Fig. 1 | Comparison of running times of all considered 
methods and options for phylogenetic inference from SARS-CoV-2 genomes. 
Comparison of running times of all considered methods and options for 
phylogenetic inference from SARS-CoV-2 genomes. On the Y axis on a logarithmic 
scale, we show the number of seconds it takes to run each method. On the X axis 
is the number of sequences in the dataset considered on a logarithmic scale. 
Different line styles and colors represent different options for each method, as 

denoted in the legend and Supplementary Methods Section S1.11. We ran each 
method and set of options up to the maximum dataset size that was achievable 
due to time and memory limitations. Violin plots summarize values for 10 
replicates, and dots represent their mean. A Results for subsamples from the real 
SARS-CoV-2 dataset. B Simulated datasets with no rate variation or ambiguity. 
C Results on simulated data with rate variation but no ambiguities. D Simulated 
data with sequence ambiguities but no rate variation.
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Extended Data Fig. 2 | Comparison of maximum memory demand of all 
considered methods and options for phylogenetic inference from SARS-
CoV-2 genomes. On the Y axis on a logarithmic scale, we show the maximum RAM 
memory demand in MB required to run each method. A Results for subsamples 

from the real SARS-CoV-2 dataset. B Simulated datasets with no rate variation or 
ambiguity. C Results on simulated data with rate variation but no ambiguities. D 
Simulated data with sequence ambiguities but no rate variation. Other details are 
the same as in Extended Data Figure S1.
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Extended Data Fig. 3 | Comparison of proportional Robinson-Foulds 
distances of inferred trees from the correct simulated trees. On the Y axis we 
show the proportional Robinson-Foulds distances (that is, normalized by 2(m − 3) 
with m the number of samples in the tree) of the tree estimated by each method 
with respect with the true simulated tree of the corresponding scenario and 
replicate. We collapsed tree branches of the simulated trees where no mutation 
event was simulated. Trees were compared as unrooted, and polytomies were 

compared as such (we collapsed branches of inferred trees with length equal 
to the minimum allowed length by the corresponding inference method). A 
Results for simulated datasets with no rate variation or ambiguity. B Results on 
simulated data with rate variation but no ambiguities. C Simulated data with no 
rate variation but with ambiguities. Other details are the same as in Extended 
Data Figure S1.
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Extended Data Fig. 4 | Comparison of relative likelihood scores of trees 
inferred by different phylogenetic methods from SARS-CoV-2 genomes. 
MAPLE leads to more accurate tree reconstruction (tree topologies with higher 
likelihoods) both in real data and simulations. On the Y axis we show the relative 
log-likelihood scores (computed with IQ-TREE 2) of the tree estimated by each 

method, as in Fig. 4f, with higher scores representing more likely tree estimates. 
A Results for subsamples from the real SARS-CoV-2 dataset. B Simulated datasets 
with no rate variation or ambiguity. C Results on simulated data with rate 
variation but no ambiguities. D Simulated data with sequence ambiguities but no 
rate variation. Other details are the same as in Extended Data Figure S1.
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Extended Data Fig. 5 | Graphical example of the merging of genome lists. We 
consider, as in the main text, an example reference genome of 20 “A” nucleotides, 
partial likelihood genome lists L1 and L2, and a two-tips phylogeny with a branch 
long l1 leading to Sample1 and L1, and one long l2 leading to Sample2 and L2. 
A Graphical representation of the phylogeny, genomes, and partial likelihood 
genome lists. Blue parentheses and lines highlight the correspondence between 
genome list entries and portions of the observed genomes. We want to show 
how we calculate the partial likelihood genome list for the most recent common 
ancestor n of Sample1 and Sample2. Parameters c1 and c2 are always 0 for tree 
tips, but we keep the notation more general since for internal nodes these values 
can be strictly positive. B For the first three positions, both genomes contain no 
information (the corresponding genome list entries are of type N), so the parent 
node genome list entry is of type N. C For positions 4 and 5, Sample1 provides 

no information while Sample2 presents the reference allele. The corresponding 
parent node genome list entry is then of type R and its branch length element is c2 
+ l2, the evolutionary distance between n and the last visited node in the tree with 
no state uncertainty at the considered positions. D From positions 6 to 19 both 
child node genome list entries are of type R. The corresponding genome list entry 
for n is then also of type R, and its branch length element is 0, which is the same 
as considering the reference alleles observed exactly at the parent node. E At the 
last position of the genome we observe “T” at Sample1 and reference nucleotide 
“A” at Sample2. The corresponding parent node genome list entry is then of type 
O. This entry also contains an explicit partial likelihood vector with the relative 
likelihoods of all four nucleotides. The branch length element of the entry is 0, 
since the relative partial likelihoods refer to n.
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