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A B S T R A C T   

There is an ongoing debate about differential clinical outcome and associated adverse effects of deep brain 
stimulation (DBS) in Parkinson’s disease (PD) targeting the subthalamic nucleus (STN) or the globus pallidus pars 
interna (GPi). Given that functional connectivity profiles suggest beneficial DBS effects within a common 
network, the empirical evidence about the underlying anatomical circuitry is still scarce. Therefore, we inves-
tigate the STN and GPi-associated structural covariance brain patterns in PD patients and healthy controls. 

We estimate GPi’s and STN’s whole-brain structural covariance from magnetic resonance imaging (MRI) in a 
normative mid- to old-age community-dwelling cohort (n = 1184) across maps of grey matter volume, 
magnetization transfer (MT) saturation, longitudinal relaxation rate (R1), effective transversal relaxation rate 
(R2*) and effective proton density (PD*). We compare these with the structural covariance estimates in patients 
with idiopathic PD (n = 32) followed by validation using a reduced size controls’ cohort (n = 32). 

In the normative data set, we observed overlapping spatially distributed cortical and subcortical covariance 
patterns across maps confined to basal ganglia, thalamus, motor, and premotor cortical areas. Only the 
subcortical and midline motor cortical areas were confirmed in the reduced size cohort. These findings con-
trasted with the absence of structural covariance with cortical areas in the PD cohort. 

We interpret with caution the differential covariance maps of overlapping STN and GPi networks in patients 
with PD and healthy controls as correlates of motor network disruption. Our study provides face validity to the 
proposed extension of the currently existing structural covariance methods based on morphometry features to 
multiparameter MRI sensitive to brain tissue microstructure.   

1. Introduction 

Given the critical role of the basal ganglia and thalamus in modu-
lating motor and non-motor cortico-subcortical networks in movement 
disorders, there is a pressing need to delineate the connectivity patterns 
determining their unique contributions to clinical outcomes. The sub-
thalamic nucleus (STN) and globus pallidus pars interna (GPi) are 

established targets for deep brain stimulation (DBS) in patients with 
idiopathic Parkinson’s disease (PD) (Kleiner-Fisman et al., 2006; Volk-
mann et al., 1998). Despite significant progress in the field, we are still 
falling short of understanding the differential effects of DBS linked to a 
particular target structure, which hampers the accurate prediction of 
clinical outcome and the prevention of stimulation-associated adverse 
effects (Lachenmayer et al., 2021). Most recent meta-analytical evidence 
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(Lachenmayer et al., 2021), covering 14 years after the first STN vs GPi 
meta-analysis and including over 2000 DBS-treated patients with PD 
(Kleiner-Fisman et al., 2006), supports the notion of overall non- 
superiority between targets on the background of significant disparity 
of the available pre- and post-surgery data. With respect to therapy ef-
ficacy, the results point towards better motor outcome after STN DBS, 
whilst the fair comparison for other treatment end-points - non-motor 
symptoms and quality-of-life, was not possible due to the heterogene-
ity and scarcity of data, particularly for GPi DBS. 

The anatomical embedding of the STN and GPi in the cortico- 
subcortical circuitry favours their partially overlapping functional pro-
files (Shen et al., 2020; Younce et al., 2021; Zhang et al., 2021; Haynes 
and Haber, 2013). Although distinct structures, STN and GPi are 
strongly interconnected via the bidirectional subthalamic fasciculus. 
Through the hyper-direct pathway, the dorso-lateral STN receives pre-
motor and motor cortical projections (Nambu et al., 1996), whilst the 
GPi projects via the ventro-lateral thalamus to the same premotor and 
cortical motor areas (Nakano et al., 2000). 

With the advent of non-invasive magnetic resonance imaging (MRI), 
diffusion-weighted tractography has taken the lead in investigating the 
anatomical connectivity of brain structures over the traditional tract- 
tracing techniques in the animal model. Currently, diffusion-based 
tractography is increasingly used for enhancing the precision of in-
dividuals’ DBS electrode placement (Liebrand et al., 2019). However, 
the downside of the available tractography methods is the presumption 
of representing only monosynaptic connections and their reliance on 
relatively low-resolution data – i.e., 1.5–2 mm resolution on a clinical 
3Tesla scanner. These, together with the inability to differentiate be-
tween dominant and small bundles’ contributions result in a high rate of 
false positives (Maier-Hein et al., 2017) that renders the technique un-
suitable for in vivo discovery of new pathways. 

The investigation of structural covariance overcomes part of the 
diffusion-based tractography shortcomings by allowing for whole-brain 
investigation at the voxel/vertex or region-of-interest level at the usual 
1 mm spatial resolution (Evans, 2013). Independent of the applied 
analytical method and features extracted from the MRI data at hand, the 
neurobiological interpretation of the obtained covariance networks also 
includes polysynaptic connections that go beyond the delineation of 
diffusion-based direct fiber pathways (Seeley et al., 2009). Initially 
established for studying covariance networks of cortical thickness or 
regional grey matter volume, this approach was extended by our group 
for the analysis of MRI measures indicative for microscopic brain tissue 
properties – i.e., myelin and iron, across cortical and subcortical struc-
tures (Accolla et al., 2014; Melie-Garcia et al., 2018; Weitnauer et al., 
2021). 

We sought to tackle the question about STN and GPi connectivity 
raised recently in a functional connectivity study (Sobesky et al., 2022), 
which tends to generalize across basal ganglia disorders (Haber et al., 
2020; Haber et al., 2021). The supposition here is that the cortical and 
subcortical areas constituting a functional network will also share a 
similar anatomical fingerprint. We extend the existing morphometry 
description of the regional volume and cortical thickness to MR contrast 
estimates sensitive to myelin, iron and tissue water content (Accolla 
et al., 2014; Melie-Garcia et al., 2018; Weitnauer et al., 2021). First, we 
compare the STN and GPi structural covariance patterns in a normative 
large-scale community-dwelling population (n = 1184). Next, we look 
for structural covariance differences in a cohort of patients with PD (n =
32) not only to provide face validity of our analytical framework but also 
to look for informative patterns associated with the view on PD as a 
disconnection disorder. Finally, we probe the robustness of the obtained 
patterns in a reduced size healthy controls’ cohort (n = 32). 

2. Materials and methods 

2.1. Participants 

We use data from the community-dwelling population (n = 1184, 
629 females, mean age: 59,6 years, standard deviation ± 7,29 years) 
collected within the CoLaus|PsyColaus longitudinal study with more 
than 15 years of observation every five years. In addition, we study 
patients with Parkinson’s disease (PD) recruited at the local Movement 
Disorders speciality clinic (n = 32, 13 females, mean age: 64,4 years, 
standard deviation ± 6,41 years) that was partially presented in a pre-
vious publication (Jastrzębowska et al., 2019). For validation, we 
created a reduced size sex- and age-matched random subsample of the 
community-dwelling cohort (n = 32, 15 females, mean age: 65,9 years, 
standard deviation ± 3,92 years). For details on demographic and 
clinical characteristics, see Table 1. The local ethics committee approved 
the use of the anonymized data for further analysis beyond the initially 
intended study. Study data are available upon reasonable request. 

3. MRI acquisition parameters 

The MRI data were acquired at a 3 T whole-body MRI system 
(Prisma, Siemens Healthcare, Erlangen, Germany) using a 64-channel 
RF head receive coil, and RF body transmit coil. The whole-brain 
relaxometry protocol comprised 3D multi-echo FLASH datasets with 
predominantly proton density weighting (PDw; repetition time TR =
23.7 ms, flip angle α = 6◦), T1 weighting (T1w; TR/α = 18.7 ms/20◦), 
and magnetization transfer weighting (MTw; TR/α = 23.7 ms/6◦) 
contrast according to the previously published protocol (Melie-Garcia 
et al., 2018). We acquired multiple gradient echoes with alternating 
readout polarity at six equidistant echo times (TE) between 2.34 and 
14.04 ms for the MTw acquisitions and at 8 equidistant TE between 2.34 
ms and 18.72 ms for the T1w and PDw acquisition. The Image resolution 
was 1x1x1mm voxel size, FOV 256 × 240 × 176 mm, matrix 256 × 240 

Table 1 
Demographic data of participants in the structural covariance analysis.   

Healthy 
controls 

Parkinson’s disease 
patients 

Total p-value 

Total (% female) 1184 (53) 32 (41) 1216 0.209b 

Age [years], mean 
(SD) 

59,62 
(7,29) 

65,46 (6,41) 59.78 
(8.84) 

<0.001a 

TIV [l], mean (SD) 1.43 (0.15) 1.47 (0.16) 1.43 
(0.15) 

0.120 a 

Medication Off 
(%)  

5 (15.63)   

UPDRS III, mean 
(SD)   

OFF  
20.6 (8.33) 
ON 
17 (8.74) 

17.56 
(8.77)   

UPDRS IV, mean 
(SD)  

OFF 
0 
ON 
1 (1.57) 

0.83 
(1.48)   

Hoehn and Yahr 
staging   

OFF 
2 (0) 
ON 
1.33 (0.47) 

1.45 
(0.49)   

Handedness, 
mean (SD)  

OFF 
92.5 (12.99) 
ON 
78.64 (52.94) 

80.77 
(49.22)   

MoCA, mean (SD)  OFF 
24.8 (2.79) 
ON 
25.15 (5.56) 

25.09 
(5.22)   

Univariate analysis of demographic data through either (a) Student’s t-test or (b) 
Chi-Square test. 
Abbreviations: SD – standard deviation, UPDRS – Unified Parkinson’s disease 
rating scale, MoCA – Montreal Cognitive Assessment. 

A.N. Santos et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 38 (2023) 103432

3

× 176, GRAPPA factor 2 in phase-encoding (PE) direction, 6/8 partial 
Fourier in partition direction, non-selective RF excitation. For the 
correction of inhomogeneous radiofrequency (RF) excitation effects on 
the qMRI estimates, B1 + -mapping data was acquired using a 3D 
echoplanar imaging spin-echo (SE)/stimulated echo (STE) method with 
a FOV 256x192x192mm, matrix 64x48x48, TR = 500 ms (Lutti et al., 
2010; Lutti et al., 2012). We corrected the B1 + maps for EPI image 
distortions and off-resonance effects using a standard B0 map according 
to the published protocol (Lutti et al., 2010; Lutti et al., 2012). All MRI 
data for the CoLaus|PsyCoLaus and the PD cohorts were acquired at the 
very same MRI scanner and under identical Syngo software VD13 
version according to the same imaging protocol. 

4. MRI data quality 

Given the effects of head motion on image quality and analysis 
particularly in the context of large-scale studies and in patients with 
movement disorders, i.e. Parkinson’s disease, we quantitatively estimate 
MRI data quality in our study. We assess the quality of the MRI data 
using the validated Motion Degradation Index (MDI) (Castella et al., 
2018). Consistently with (Lutti et al., 2022), MDI values from the MT- 
weighted images are higher than those from the PD- and T1-weighted 
images by ~ 1 s-1* due to the lower number of echo images and 
lower signal-to-noise of the raw data. The distribution of the MDI values 
across both cohorts is provided as Supplementary material (supple-
mentary Figure 2). Datasets with MDI values below 6 s− 1 for the PD- and 
T1-weighted images, and 7 s− 1 for the MT-weighted images are empir-
ically considered of sufficient quality. Extension of this method to 
such covariance analyses is currently under investigation. 

For completion, we also provide values of the rigid body trans-
formation parameters for co-registration of the MT-weighted and T1- 
weighted images to the reference PD-weighted images, that represent -
metrics of head motion between image volumes (Tabelow et al., 2019) 
(supplementary Figure 3). 

5. MRI data processing 

Image processing was performed with the freely available Statistical 
Parametric Mapping software (SPM12; Wellcome Centre for Human 
Neuroimaging, London, UK, https://www.fil.ion.ucl.ac.uk/spm/soft 
ware) and inhouse routines, running under Matlab2019a (Mathworks, 
Sherborn, MA, USA). 

Multi-parameter maps calculation: Maps of magnetization transfer 
(MT) saturation and effective proton density (PD*) as described in 
(Helms et al., 2008; Helms et al., 2008), from the raw MR images 
averaged across echo times (Tabelow et al., 2019; Draganski et al., 
2011). Maps of the effective transverse relaxation rate (R2* = 1/T2*) 
were computed from the raw MR images pooled across all contrasts 
using the ordinary-least-squares approach described in (Weiskopf et al., 
2014). Following this, we automatically classified the brain images into 
grey matter, white matter and cerebro-spinal fluid (CSF) using the MT 
and PD* within the multi-channel”unified segmentation” framework of 
SPM12 with enhanced tissue priors for optimal delineation of basal 
ganglia (Lorio et al., 2016). The individual grey and white matter tissue 
classes were used for diffeomorphic registration to standard Montreal 
Neurological Institute (MNI) space (Ashburner, 2007). We applied the 
spatial registration parameters to the parameter maps following the 
weighted averaging procedure of the voxel-based quantification (VBQ) 
framework (Draganski et al., 2011). Finally, we apply an isotropic 
Gaussian kernel of 8 mm full-width-at-half-maximum for spatial 
smoothing before statistical analysis. 

Motor STN and GPi seeds: Aiming to test the hypothesis of structural 
covariance within motor networks, we used a previously published 
definition of the motor part of the STN (mSTN) and GPi based on 
probabilistic diffusion-based tractography (Accolla et al., 2014). We 
then extracted from the volume and multi-parameter maps registered to 

the standard MNI space the mSTN and GPi local averages of PD*, MT 
saturation, R1, R2* values indicative for tissue water, myelin and iron 
content that were used for whole-brain covariance analysis. 

5.1. Statistical analysis 

For the whole-brain structural covariance analyses, we used a linear 
regression model as implemented in the General Linear Model frame-
work of SPM. Age, gender, and total intracranial volume (TIV) were 
included as additional variables in the design matrix to control for global 
effects on the brain structure. Voxel-based two-tailed T-statistics were 
calculated to detect GPi and mSTN covariance patterns for each 
parameter map and each seed structure separately. Statistical thresholds 
were applied at p < 0.05 after family-wise error (FWE) correction for 
multiple comparisons over the entire GM or WM search volume. Trends 
were assessed using an auxiliary uncorrected voxel threshold of p <
0.001. 

The use of parametric tests for our analyses is motivated by the large 
sample theorem, which states that as the sample size increases, the 
sample mean approaches the population mean and the sample distri-
bution becomes more normal, regardless of the population distribution. 
The law applies to both parametric and non-parametric tests if the 
sample size is large enough. 

Non-parametric approaches make no assumptions about the under-
lying distribution, but they also require a larger sample size. Non- 
parametric tests can be less efficient and powerful than parametric 
tests if the sample size is large. In the case of large samples, parametric 
methods are more efficient because they can build on the assumed 
structure to obtain more accurate and robust estimates (Flandin and 
Friston, 2019). In the case of functional MRI (fMRI) data, the complexity 
of the noise and the assumptions about the shape of the variance matrix 
of the noise can be problematic for parametric tests (and non-parametric 
tests), which can result in systematic bias (Winkler et al., 2014). In brain 
anatomy studies, the structure of the noise is assumed to be independent 
across individuals, so we benefit from the law of large numbers (Sal-
mond et al., 2002). 

6. Results 

6.1. Healthy controls 

Volume estimates: We observed largely overlapping structural 
covariance patterns of the mSTN and GPi, including the basal ganglia, 
the primary motor cortex and insula bilaterally (all results at pFWE <

0.05; see Fig. 1 and supplementary Table 1-2). The covariance between 
the local mSTN and GPi volume and white matter comprised all three 
components of the superior longitudinal fasciculus (all results at pFWE <

0.05; see Fig. 1 and supplementary Table 1-2). In the reduced size 
cohort, we could replicate only the subcortical and the midline cortical 
findings (supplementary Figure 3). 

Magnetization transfer saturation MTsat: The MT saturation in the 
mSTN and GPi covaried with basal ganglia, thalamus, hippocampus, 
entorhinal cortex, insula and primary motor cortex bilaterally (all re-
sults at pFWE < 0.05; see Fig. 2 and supplementary Table 1-2). Across the 
white matter, MT saturation in the mSTN and GPi showed significant 
covariance with the temporal pole, the posterior limb of the internal 
capsule and the white matter adjacent to the primary sensorimotor 
cortex (all results at pFWE < 0.05; see Fig. 2 and supplementary Table 1- 
2). Similarly, in the reduced size cohort, we could replicate only the 
subcortical and the midline cortical findings (supplementary Figure 4). 

Effective proton density PD*: Local PD* averages in the GPi covaried 
with the PD* content in putamen, external pallidum, insula and cingu-
late gyrus in both hemispheres, whereas the mSTN covaried with thal-
amus, red nucleus and substantia nigra (all results at pFWE < 0.05; see 
Fig. 2 and supplementary Table 1-2). 

Transverse relaxation rate R2*: The R2* averages in the mSTN and 
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GPi showed a more spatially restricted pattern confined to the basal 
ganglia, the cerebellar dentate nucleus and the surrounding white 
matter R2* content (all results at pFWE < 0.05; see Fig. 3 and supple-
mentary Table 1-2). 

7. Patients with Parkinson’s disease 

Volume estimates: Like the findings in healthy controls; we observed 
an overlapping structural covariance pattern of the mSTN and GPi that 
included the basal ganglia and surrounding white matter without further 
extending to the cortex (all results at pFWE < 0.05; see Fig. 1 and sup-
plementary Table 3-4). 

Magnetization transfer saturation MTsat: We report a covariance 
between mSTNs MT saturation with the MT saturation in basal ganglia, 
thalamus, hippocampus, entorhinal cortex, insula and planum tempo-
rale bilaterally (all results at pFWE < 0.05; see Fig. 2 and supplementary 
Table 3-4). The GPi did not show any significant covariance results. 
Similarly, we did not observe any covariance between the MT saturation 

of mSTN and GPi across the white matter. 
Effective proton density PD*: Conversely to the PD* covariance 

pattern confined to subcortical areas in healthy controls, PD patients 
show an extended anatomical pattern including not only basal ganglia 
and thalamus, but also the cingulate gyrus, insula, precuneus, cerebellar 
and mesial temporal lobe structures for both mSTN and GPi (all results at 
pFWE < 0.05; see Fig. 2 and supplementary Table 3-4). 

Transverse relaxation rate R2*: R2* averages in the mSTN and GPi 
covaried with the basal ganglia, the cerebellar dentate nucleus (GPi 
only) and the surrounding white matter R2* content (all results at pFWE 
< 0.05; see Fig. 3 and supplementary Table 3-4). 

8. Discussion 

Our structural covariance study leveraged the statistical power of 
large-scale data (n greater than 1000) to provide empirical evidence 
about the overlapping anatomical connectivity patterns of both DBS 
targets for treatment of PD – the GPi and the mSTN. We test the 

Fig. 1. Statistical parametric maps (SPMs) of structural covariance. LEFT: mSTN and GPi covariance maps of regional grey matter (top) and white matter (bottom) 
volume estimates across the whole brain in healthy controls at pFWE < 0.05; RIGHT: mSTN and GPi covariance maps of regional grey matter (top) and white matter 
(bottom) volume estimates across the whole brain in patients with Parkinson’s disease (PD) at pUNCORR < 0.001. 

Fig. 2. Statistical parametric maps (SPMs) of structural covariance. LEFT: mSTN and GPi covariance maps of grey matter magnetization transfer (MT) saturation 
(top) and PD* (bottom) across the whole brain in healthy controls at pFWE < 0.05; RIGHT: mSTN and GPi covariance maps of grey matter magnetization transfer (MT) 
saturation (top) and PD* (bottom) across the whole brain in patients with Parkinson’s disease (PD) at pUNCORR < 0.001. 
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subcortical covariance patterns in a separate clinical cohort of PD pa-
tients and demonstrate a differential anatomical profile of cortical re-
gions. While GPi’s and mSTNs volume and myelin content in healthy 
controls covary with the corresponding tissue properties of the primary 
motor cortex, PD patients seem to lose it and show covariance of 
increased unbound water content in these very same GPi and mSTN 
related motor networks. The partial validation of the cortical covariance 
patterns in a reduced size cohort of healthy controls limited to midline 
motor areas only, calls for a cautious interpretation of the obtained 
findings. 

Our main finding is the discovery of almost identical structural 
covariance patterns of both DBS targets for the treatment of PDs motor 
fluctuations – the GPi and mSTN across the brain. Similar to our pre-
vious findings, the delineated networks comprise subcortical areas 
representing key nodes of the motor circuitry (Accolla et al., 2014). The 
novelty is the demonstration of covariance with cortical primary motor 
areas – for both regional volume and indices of myelin content in the GPi 
and mSTN. These results align with relaxometry and myelin water 
fraction differences in patients with PD (Dean et al., 2016) and more 
recent work on the diffusion imaging-derived PD connectome weighted 
by local R1 values (Boshkovski et al., 2022). The similar covariance 
pattern of GPi and mSTN confirms the notion of shared tissue properties 
across cortico-subcortical networks that go beyond monosynaptic con-
nections – e.g. the hyperdirect pathway between the cortex and mSTN. 
Finally, our findings corroborate the presumed overlap of functional 
connectivity patterns between the GPi and mSTN as recently demon-
strated on the empirical basis of predictability of STN-DBS outcome by 
GPi connectivity and vice versa (Sobesky et al., 2022). 

Conversely, the R2* covariance maps indicative of tissue iron con-
tent remained confined to subcortical and cerebellar structures for both 
DBS targets. We attribute this finding to the specific distribution of 
dopaminergic receptors, intra- and extra-striatal dopamine across the 
basal ganglia (Smith and Kieval, 2000 Oct; Smith and Villalba, 2008). 
The presumption here is that the involvement of iron in the enzymatic 
machinery for dopamine synthesis and reuptake along nigro-striatal, 
nigro-pallidal and nigro-subthalamic projections, additionally to its 
storage in nigral neuromelanin and ferritin renders the basal ganglia as 
susceptible to iron-related MR contrast behaviour compared with the 
cerebral cortex (Ward et al., 2014). 

The second finding of our study is the loss of structural covariance of 
GPi’s and mSTNs volume and MT saturation with primary motor areas in 
PD patients. This is contrasted by the emergence of widespread PD* 

covariance with cortical and subcortical structures that is much less 
spatially extended in healthy controls. Under the assumption that neu-
rodegeneration is related to increase in MR visible water due to cell loss, 
thus represented by increase in PD*, we interpret the concomitant loss of 
covariance with primary motor cortex and increased covariance as 
disruption of motor networks in PD. The differential effects on volume, 
MT saturation as index of myelin content and PD* lend us some confi-
dence in the validity of our results. 

We interpret our results of loss of volume and MT saturation 
covariance between the GPi, mSTN and the superior longitudinal 
fasciculus in the context of neurodegenerative processes governing PD 
progression. Similar to the notion of shared mechanisms underlying the 
phenomenon of structural covariance in grey matter (Evans, 2013), at-
rophy or loss of myelin in the GPi or the mSTN are associated with 
volume decrease in long-range fronto-parietal connections, as shown 
previously (Dadar et al., 2020). The covariance across brain tissue 
compartments also provides neurobiological face validity to the pro-
posed analysis within networks rather than specific tissue types. 

Despite the sufficient statistical power, we would like to acknowl-
edge certain limitations of our study. First, one can argue that the 
absence of volume and MT saturation structural covariance between the 
GPi, mSTN and primary motor cortex in PD is merely the issue of sta-
tistical power rather than true loss due to neurodegeneration. This 
assumption is supported by the fact that in the reduced size cohort we 
could validate the covariance patterns only in midline motor areas. The 
differential impact of PD on atrophy/myelin vs. effective proton density 
covariance could, however, point towards true biological effects. Addi-
tionally, even lowering the statistical threshold to uncorrected levels did 
not show any trends for covariance with primary motor areas in PD 
patients. Second, we also acknowledge potential bias in the PD* and R2* 
maps in iron-rich structures prone to susceptibility artefacts due to 
violation of the assumption of the mono-exponential decay model 
(Weiskopf et al., 2013). Given the fact that we do not expect a differ-
ential impact of this potential bias in healthy controls and PD patients, 
we estimate its effect as negligible. Finally, given the still ongoing work 
on implementing statistical methods for structural covariance analysis of 
multiparameter maps, we acknowledge the lack of correction for the 
effects of head motion on the statistical validity as recently suggested 
(Lutti et al., 2022). 

In summary, we investigate the structural covariance patterns of the 
two most widely used DBS targets in Parkinson’s disease – the GPi and 
mSTN, across multiple available brain anatomy characteristics ranging 

Fig. 3. Statistical parametric maps (SPMs) of structural covariance. LEFT: mSTN and GPi covariance maps of grey matter (top) and white matter (bottom) transverse 
relaxation rate R2* across the whole brain in healthy controls at pFWE < 0.05; RIGHT: mSTN and GPi covariance maps of grey matter (top) and white matter (bottom) 
transverse relaxation rate R2* across the whole brain in patients with Parkinson’s disease (PD) at pUNCORR < 0.001. 
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from morphometry via parameters indicative for tissue myelin, iron, and 
unbound water content. We demonstrate the spatial pattern of covari-
ance in a large-scale community dwelling cohort that spans over cortical 
and subcortical nodes of motor networks. Confirmatory to recent studies 
about largely overlapping functional connectivity between the GPi and 
mSTN, we find a similar structural covariance pattern. The analysis in a 
clinical cohort of patients with PD demonstrates a loss of the myelin and 
volume-defined covariance with primary motor cortex paralleled by 
emerging covariance patterns of effective proton density related to the 
process of neurodegeneration. However, the fact that we replicate only 
partially the cortical covariance patterns in a reduced size cohort of 
healthy controls, motivates the cautious interpretation of the obtained 
findings as a signature of PD-associated disruption of motor circuits. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

BD is supported by the Swiss National Science Foundation (project 
grants Nr. 32003B_135679, 32003B_159780, 324730_192755 and 
CRSK-3_190185), ERA_NET iSEE project, the Swiss Personalised Health 
Network SACR project and the Leenaards Foundation. AL is supported 
by the Swiss National Science Foundation (project grants Nr. 
320030_184784) and the Foundation ROGER DE SPOELBERCH. LREN is 
very grateful to the ROGER DE SPOELBERCH and Partridge Foundations 
for their generous financial support. 

Previous presentation 

None. 

Sources of funding 

This study did not receive special funding. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2023.103432. 

References 

Accolla, E.A., Dukart, J., Helms, G., Weiskopf, N., Kherif, F., Lutti, A., Chowdhury, R., 
Hetzer, S., Haynes, J.-D., Kühn, A.A., Draganski, B., 2014. Brain tissue properties 
differentiate between motor and limbic basal ganglia circuits. Hum Brain Mapp. 35 
(10), 5083–5092. 

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. NeuroImage. 38 
(1), 95–113. 

Boshkovski, T., Cohen-Adad, J., Misic, B., Arnulf, I., Corvol, J.-C., Vidailhet, M., 
Lehéricy, S., Stikov, N., Mancini, M., 2022. The Myelin-Weighted Connectome in 
Parkinson’s Disease. Mov Disord. 37 (4), 724–733. 

Castella, R., Arn, L., Dupuis, E., Callaghan, M.F., Draganski, B., Lutti, A., 2018. 
Controlling motion artefact levels in MR images by suspending data acquisition 
during periods of head motion. Magn Reson Med. 80 (6), 2415–2426. 

Dadar, M., Gee, M., Shuaib, A., Duchesne, S., Camicioli, R., 2020. Cognitive and motor 
correlates of grey and white matter pathology in Parkinson’s disease. NeuroImage 
Clin. 27, 102353. 

Dean, D.C., Sojkova, J., Hurley, S., Kecskemeti, S., Okonkwo, O., Bendlin, B.B., 
Theisen, F., Johnson, S.C., Alexander, A.L., Gallagher, C.L., Fuh, J.-L., 2016. 
Alterations of Myelin Content in Parkinson’s Disease: A Cross-Sectional 
Neuroimaging Study. PloS One. 11 (10), e0163774. 

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R.S.J., Helms, G., 
Weiskopf, N., 2011. Regional specificity of MRI contrast parameter changes in 

normal ageing revealed by voxel-based quantification (VBQ). NeuroImage. 55 (4), 
1423–1434. 

Evans, A.C., 2013. Networks of anatomical covariance. NeuroImage. 80, 489–504. 
Flandin, G., Friston, K.J., 2019. Analysis of family-wise error rates in statistical 

parametric mapping using random field theory. Hum. Brain Mapp. 40 (7), 
2052–2054. 

Haber, S.N., Tang, W., Choi, E.Y., Yendiki, A., Liu, H., Jbabdi, S., Versace, A., Phillips, M., 
2020. Circuits, Networks, and Neuropsychiatric Disease: Transitioning From 
Anatomy to Imaging. Biol Psychiatry. 87 (4), 318–327. 

Haber, S.N., Yendiki, A., Jbabdi, S., 2021. Four Deep Brain Stimulation Targets for 
Obsessive-Compulsive Disorder: Are They Different? Biol Psychiatry. 90 (10), 
667–677. 

Haynes, W.I.A., Haber, S.N., 2013. The organization of prefrontal-subthalamic inputs in 
primates provides an anatomical substrate for both functional specificity and 
integration: implications for Basal Ganglia models and deep brain stimulation. 
J Neurosci Off J Soc Neurosci. 33 (11), 4804–4814. 

Helms, G., Dathe, H., Dechent, P., 2008. Quantitative FLASH MRI at 3T using a rational 
approximation of the Ernst equation. Magn Reson Med. 59 (3), 667–672. 

Helms, G., Dathe, H., Kallenberg, K., Dechent, P., 2008. High-resolution maps of 
magnetization transfer with inherent correction for RF inhomogeneity and T1 
relaxation obtained from 3D FLASH MRI. Magn Reson Med. 60 (6), 1396–1407. 

Jastrzębowska, M.A., Marquis, R., Melie-García, L., Lutti, A., Kherif, F., Herzog, M.H., 
Draganski, B., 2019. Dopaminergic modulation of motor network compensatory 
mechanisms in Parkinson’s disease. Hum Brain Mapp. 40 (15), 4397–4416. 

Kleiner-Fisman, G., Herzog, J., Fisman, D.N., Tamma, F., Lyons, K.E., Pahwa, R., Lang, A. 
E., Deuschl, G., 2006. Subthalamic nucleus deep brain stimulation: summary and 
meta-analysis of outcomes. Mov Disord Off J Mov Disord Soc. 21 (S14), S290–S304. 

Lachenmayer, M.L., Mürset, M., Antih, N., Debove, I., Muellner, J., Bompart, M., 
Schlaeppi, J.-A., Nowacki, A., You, H., Michelis, J.P., Dransart, A., Pollo, C., 
Deuschl, G., Krack, P., 2021. Subthalamic and pallidal deep brain stimulation for 
Parkinson’s disease—meta-analysis of outcomes. Npj Park Dis. 7 (1). 

Liebrand, L.C., Caan, M.W.A., Schuurman, P.R., van den Munckhof, P., Figee, M., 
Denys, D., van Wingen, G.A., 2019. Individual white matter bundle trajectories are 
associated with deep brain stimulation response in obsessive-compulsive disorder. 
Brain Stimulat. 12 (2), 353–360. 

Lorio, S., Fresard, S., Adaszewski, S., Kherif, F., Chowdhury, R., Frackowiak, R.S., 
Ashburner, J., Helms, G., Weiskopf, N., Lutti, A., Draganski, B., 2016. New tissue 
priors for improved automated classification of subcortical brain structures on MRI. 
NeuroImage. 130, 157–166. 

Lutti, A., Hutton, C., Finsterbusch, J., Helms, G., Weiskopf, N., 2010. Optimization and 
validation of methods for mapping of the radiofrequency transmit field at 3T. Magn 
Reson Med. 64 (1), 229–238. 

Lutti, A., Stadler, J., Josephs, O., Windischberger, C., Speck, O., Bernarding, J., 
Hutton, C., Weiskopf, N., Zhan, W., 2012. Robust and fast whole brain mapping of 
the RF transmit field B1 at 7T. PLoS ONE. 7 (3), e32379. 

Lutti, A., Corbin, N., Ashburner, J., Ziegler, G., Draganski, B., Phillips, C., et al., 2022. 
Restoring statistical validity in group analyses of motion-corrupted MRI data. Hum 
Brain Mapp. 43 (6), 1973–1983. 

Maier-Hein, K.H., Neher, P.F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J., 
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M., Leemans, A., Boré, A., Pinsard, B., Bedetti, C., Desrosiers, M., Brambati, S., 
Doyon, J., Sarica, A., Vasta, R., Cerasa, A., Quattrone, A., Yeatman, J., Khan, A.R., 
Hodges, W., Alexander, S., Romascano, D., Barakovic, M., Auría, A., Esteban, O., 
Lemkaddem, A., Thiran, J.-P., Cetingul, H.E., Odry, B.L., Mailhe, B., Nadar, M.S., 
Pizzagalli, F., Prasad, G., Villalon-Reina, J.E., Galvis, J., Thompson, P.M., Requejo, F. 
D.S., Laguna, P.L., Lacerda, L.M., Barrett, R., Dell’Acqua, F., Catani, M., Petit, L., 
Caruyer, E., Daducci, A., Dyrby, T.B., Holland-Letz, T., Hilgetag, C.C., Stieltjes, B., 
Descoteaux, M., 2017. The challenge of mapping the human connectome based on 
diffusion tractography. Nat Commun. 8 (1). 

Melie-Garcia, L., Slater, D., Ruef, A., Sanabria-Diaz, G., Preisig, M., Kherif, F., 
Draganski, B., Lutti, A., 2018. Networks of myelin covariance. Hum Brain Mapp. 39 
(4), 1532–1554. 

Nakano, K., Kayahara, T., Tsutsumi, T., Ushiro, H., 2000. Neural circuits and functional 
organization of the striatum. J Neurol. 247 (Suppl), V1–V. 

Nambu, A., Takada, M., Inase, M., Tokuno, H., 1996. Dual somatotopical representations 
in the primate subthalamic nucleus: evidence for ordered but reversed body-map 
transformations from the primary motor cortex and the supplementary motor area. 
J Neurosci Off J Soc Neurosci. 16 (8), 2671–2683. 

Salmond, C.H., Ashburner, J., Vargha-Khadem, F., Connelly, A., Gadian, D.G., Friston, K. 
J., 2002. Distributional assumptions in voxel-based morphometry. NeuroImage. 17 
(2), 1027–1030. 

Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., 2009. 
Neurodegenerative diseases target large-scale human brain networks. Neuron. 62 
(1), 42–52. 

Shen, L., Jiang, C., Hubbard, C.S., Ren, J., He, C., Wang, D., Dahmani, L., Guo, Y.i., 
Liu, Y., Xu, S., Meng, F., Zhang, J., Liu, H., Li, L., 2020. Subthalamic Nucleus Deep 
Brain Stimulation Modulates 2 Distinct Neurocircuits. Ann Neurol. 88 (6), 
1178–1193. 

Smith, Y., Kieval, J.Z., 2000. Anatomy of the dopamine system in the basal ganglia. 
Trends Neurosci. 23 (10 Suppl), S28–S33. 

Smith, Y., Villalba, R., 2008. Striatal and extrastriatal dopamine in the basal ganglia: an 
overview of its anatomical organization in normal and Parkinsonian brains. Mov 
Disord Off J Mov Disord Soc. 23 (Suppl 3), S534–S547. 

A.N. Santos et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.nicl.2023.103432
https://doi.org/10.1016/j.nicl.2023.103432
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0005
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0005
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0005
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0005
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0010
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0010
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0015
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0015
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0015
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0020
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0020
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0020
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0025
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0025
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0025
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0030
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0030
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0030
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0030
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0035
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0035
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0035
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0035
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0040
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0045
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0045
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0045
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0050
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0050
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0050
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0055
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0055
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0055
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0060
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0060
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0060
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0060
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0065
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0065
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0070
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0070
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0070
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0075
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0075
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0075
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0080
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0080
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0080
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0085
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0085
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0085
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0085
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0090
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0090
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0090
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0090
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0095
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0095
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0095
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0095
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0100
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0100
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0100
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0105
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0105
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0105
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0110
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0110
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0110
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0115
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0120
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0120
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0120
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0125
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0125
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0130
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0130
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0130
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0130
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0135
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0135
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0135
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0140
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0140
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0140
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0145
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0145
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0145
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0145
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0150
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0150
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0155
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0155
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0155


NeuroImage: Clinical 38 (2023) 103432

7

Sobesky, L., Goede, L., Odekerken, V.J.J., Wang, Q., Li, N., Neudorfer, C., Rajamani, N., 
Al-Fatly, B., Reich, M., Volkmann, J., de Bie, R.M.A., Kühn, A.A., Horn, A., 2022. 
Subthalamic and pallidal deep brain stimulation: are we modulating the same 
network? Brain J Neurol. 145 (1), 251–262. 

Tabelow, K., Balteau, E., Ashburner, J., Callaghan, M.F., Draganski, B., Helms, G., 
Kherif, F., Leutritz, T., Lutti, A., Phillips, C., Reimer, E., Ruthotto, L., Seif, M., 
Weiskopf, N., Ziegler, G., Mohammadi, S., 2019. hMRI - A toolbox for quantitative 
MRI in neuroscience and clinical research. NeuroImage. 194, 191–210. 

Volkmann, J., Sturm, V., Weiss, P., Kappler, J., Voges, J., Koulousakis, A., Lehrke, R., 
Hefter, H., Freund, H.-J., 1998. Bilateral high-frequency stimulation of the internal 
globus pallidus in advanced Parkinson’s disease. Ann Neurol. 44 (6), 953–961. 

Ward, R.J., Zucca, F.A., Duyn, J.H., Crichton, R.R., Zecca, L., 2014. The role of iron in 
brain ageing and neurodegenerative disorders. Lancet Neurol. 13 (10), 1045–1060. 

Weiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R., Ooi, C., 
Bullmore, E.T., Lutti, A., 2013. Quantitative multi-parameter mapping of R1, PD*, 
MT, and R2* at 3T: A multi-center validation. Front Neurosci. 7. 

Weiskopf, N., Callaghan, M.F., Josephs, O., Lutti, A., Mohammadi, S., 2014. Estimating 
the apparent transverse relaxation time (R2*) from images with different contrasts 
(ESTATICS) reduces motion artifacts. Front Neurosci. 8(SEP):1–10. 

Weitnauer, L., Frisch, S., Melie-Garcia, L., Preisig, M., Schroeter, M.L., Sajfutdinow, I., 
Kherif, F., Draganski, B., 2021. Mapping grip force to motor networks. NeuroImage. 
229, 117735. 

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., 2014. 
Permutation inference for the general linear model. NeuroImage. 92 (100), 381–397. 

Younce, J.R., Campbell, M.C., Hershey, T., Tanenbaum, A.B., Milchenko, M., Ushe, M., 
et al., 2021. Resting-State Functional Connectivity Predicts STN DBS Clinical 
Response. Mov Disord Off J Mov Disord Soc. 36 (3), 662–671. 

Zhang, C., Lai, Y., Li, J., He, N., Liu, Y.u., Li, Y., Li, H., Wei, H., Yan, F., Horn, A., Li, D., 
Sun, B., 2021. Subthalamic and Pallidal Stimulations in Patients with Parkinson’s 
Disease: Common and Dissociable Connections. Ann Neurol. 90 (4), 670–682. 

A.N. Santos et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S2213-1582(23)00121-3/h0160
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0160
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0160
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0160
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0165
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0165
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0165
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0165
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0170
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0170
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0170
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0175
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0175
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0180
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0180
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0180
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0185
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0185
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0185
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0190
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0190
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0190
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0195
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0195
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0200
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0200
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0200
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0205
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0205
http://refhub.elsevier.com/S2213-1582(23)00121-3/h0205

	Parkinson’s disease may disrupt overlapping subthalamic nucleus and pallidal motor networks
	1 Introduction
	2 Materials and methods
	2.1 Participants

	3 MRI acquisition parameters
	4 MRI data quality
	5 MRI data processing
	5.1 Statistical analysis

	6 Results
	6.1 Healthy controls

	7 Patients with Parkinson’s disease
	8 Discussion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Previous presentation
	Sources of funding
	Appendix A Supplementary data
	References


