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Abstract: Interpolation-based methods are well-established and effective ap-
proaches for the efficient generation of accurate reduced-order surrogate mod-
els. Common challenges for such methods are the automatic selection of good
or even optimal interpolation points and the appropriate size of the reduced-
order model. An approach that addresses the first problem for linear, unstruc-
tured systems is the Iterative Rational Krylov Algorithm (IRKA), which com-
putes optimal interpolation points through iterative updates by solving linear
eigenvalue problems. However, in the case of preserving internal system struc-
tures, optimal interpolation points are unknown, and heuristics based on non-
linear eigenvalue problems result in numbers of potential interpolation points
that typically exceed the reasonable size of reduced-order systems. In our
work, we propose a projection-based iterative interpolation method inspired
by IRKA for generally structured systems to adaptively compute near-optimal
interpolation points as well as an appropriate size for the reduced-order sys-
tem. Additionally, the iterative updates of the interpolation points can be cho-
sen such that the reduced-order model provides an accurate approximation in
specified frequency ranges of interest. For such applications, our new approach
outperforms the established methods in terms of accuracy and computational
effort. We show this in numerical examples with different structures.

Keywords: dynamical systems, model order reduction, structure preserva-
tion, structured interpolation, projection methods

Mathematics subject classification: 30E05, 41A30, 65D05, 93A15, 93C80

Novelty statement: We propose a new algorithm for the construction of
interpolating, structured, reduced-order models via projection. The method
efficiently determines new interpolation points from the solutions of low-
dimensional linear eigenvalue problems, adaptively chooses an appropriate
size of the reduced-order model, and can be used to obtain high-fidelity ap-
proximations in limited frequency ranges of interest.

Preprint. 2023-05-19

ar
X

iv
:2

30
5.

10
80

6v
1 

 [
m

at
h.

N
A

] 
 1

8 
M

ay
 2

02
3

mailto:aumann@mpi-magdeburg.mpg.de 
https://orcid.org/0000-0001-7942-5703
mailto:steffen.werner@nyu.edu
https://orcid.org/0000-0003-1667-4862


Q. Aumann, S. W. R. Werner: Near-optimal structure-preserving model reduction 2

1 Introduction

Simulation, control and optimization of dynamical systems are essential for many appli-
cations. In this work, we consider structured linear systems in the frequency (Laplace)
domain of the form

Σ:
{
K(s)X(s) = B(s)U(s), Y (s) = C(s)X(s), (1)

where K : C → Cn×n describes the system dynamics, B : C → Cn×m the system’s input
and C : C → Cp×n the system’s output behavior; see [10] for motivation of (1) example
systems. The functions X : C → Cn, U : C → Cm and Y : C → Cp denote the internal
states, inputs and outputs, respectively. For all s ∈ C for which K is invertible, and B and
C can be evaluated, the corresponding transfer function H : C → Cp×m directly relates
the system’s inputs to outputs:

H(s) = C(s)K(s)−1B(s). (2)

The most commonly considered structure of dynamical systems is given by first-order
differential equations in the time domain

Σ:
{
Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (3)

with the system matrices A,E ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Systems of the form (3)
are also commonly referred to as unstructured systems due to them being considered as the
standard case. Applying the Laplace transformation to (3) yields a frequency-dependent
system of the form (1), with

K(s) = (sE −A)−1, B(s) = B, C(s) = C,

and the corresponding transfer function H(s) = C(sE − A)−1B. On the other hand,
the modeling of specific physical phenomena hands down other differential structures into
dynamical systems. The modeling of mechanical structures, structural vibrations, wave
movement or electrical circuits classically leads to differential equations with second-order
time derivatives, which in frequency domain are described by transfer functions of the
form

H(s) = (Cp + sCv)(s2M + sD + K)−1B; (4)

see, for example, [1, 49, 51] and references therein. A different structure occurs when
modeling incomplete systems resulting in time-delay structures, which are expressed as
exponential terms in the frequency domain, e.g., with the transfer function

H(s) = C(sE −A0 − e−τsAd)−1B, (5)

for some constant time delay τ > 0; see, e.g., [27]. Many other structures exist in lit-
erature, which are used to model, for example, poroelasticity [5], viscoelasticity [47], or
interior acoustic problems [21]. While some structures, like second-order systems (4), can
be reformulated into standard form (3), this is not necessarily possible for all occurring
structures, including time-delay systems (5). Also, by reformulation into unstructured
form, the number of states increases and structure inherent properties are typically lost
in subsequent computational procedures.

In general, there is a demand for highly accurate models in practical applications. As a
result, the number of equations describing (1) vastly grows and the computational efficient
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solution of (1) in terms of resources such as time and memory is often impossible. Model
order reduction methods are a remedy to this problem as they aim for the construction
of cheap-to-evaluate yet accurate surrogate models that approximate the systems’ input-
to-output behavior while being described by a significantly smaller number of equations
r � n, which eases the demand on computational resources required for the evaluation
of the systems. Many model reduction techniques have been developed for unstructured
systems (3); see, for example, [3]. In addition, the preservation of internal system struc-
tures such as (4) and (5) is desired as this typically yields more accurate approximations
as well as the preservation of structure inherent properties. Also, if the reduced-order
model is to be coupled to other systems, preserving the structure is advantageous because
the same coupling conditions as for the full-order model can be applied to the reduced
surrogate [22].

Several structure-preserving model order reduction methods have been developed in
recent years. Many of these have been tailored to particular structures that occur, for
example, in vibrational problems [9, 12, 34, 49], network systems [20, 24], or systems with
Hamiltonian structure [13,31,33]. The framework in [10] allows the reduction of dynamical
systems with arbitrary internal structures based on transfer function interpolation. The
quality of reduced-order models obtained by interpolation strongly depends on the choice
of interpolation points. Therefore, a variety of strategies has been developed to perform
successive greedy searches for suitable interpolation points based on estimating the ap-
proximation error [7,17,19,25,26,41,42] or computing the exact error in, for example, the
L∞-norm [2,45].

On the other hand, the Iterative Rational Krylov Algorithm (IRKA) is a well established
interpolation method for unstructured systems (3) that iteratively updates the interpo-
lation points [29]. At convergence, the interpolating reduced-order model satisfies the
necessary H2-optimality conditions. Several extensions of IRKA for structured systems us-
ing similar ideas have been proposed. For second-order systems (4), the SO-IRKA method
from [52] aims for an iterative process similar to IRKA. In [6], this has been considered
as basis for a method to choose the resulting approximation order adaptively. Trans-
fer Function IRKA (TF-IRKA) [11] can be applied to arbitrarily structured systems and
yields H2-optimal but unstructured reduced-order models. A structure-preserving variant
of TF-IRKA has been proposed in [46].

A different take on structured model order reduction are data-driven methods. Since
here only measurements of the transfer function (2) are used to compute realizations
of dynamical systems, the original structure can be arbitrary. One of the most well-
known approaches of this type is the Loewner framework, which constructs a reduced-
order model that interpolates provided data samples [39]. The original formulation of the
Loewner framework only considers the construction of unstructured systems (3), but it
has been extended to find structured realizations in [44]. Recently, structured extensions
of the barycentric form for second-order systems (4) have been proposed that allow the
extension of further data-driven frequency domain methods to the structure-preserving
setting [28,50].

In this work, we present a new approach to compute accurate reduced-order models
that preserve the internal structure of the original system. Based on an IRKA-like iteration
scheme, the new method computes in every step a new set of interpolation points (and
tangential directions) which are then employed in the structure-preserving interpolation
framework [10]. Instead of considering nonlinear eigenvalue problems corresponding to
the resolvent terms of the structured systems, the Loewner framework allows us to solve
instead linear eigenvalue problems in each step and to determine the approximation order
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adaptively and with respect to limited frequency regions of interest if desired.
The remainder of this manuscript is structured as follows: After introducing the math-

ematical preliminaries in Section 2, we revisit the structure-preserving transfer function
IRKA and extend that method to the case of multiple-input/multiple-output systems in Sec-
tion 3.1. Our new model reduction method is then described in Section 3.2. In Section 4,
a number of numerical experiments are used to compare the new method to established
model reduction techniques. The paper is concluded in Section 5.

2 Mathematical preliminaries

2.1 Structure-preserving interpolation via projection

We consider here interpolation-based model order reduction methods, which compute
surrogate models approximating the dynamics of the high-fidelity system (1) while having
much smaller dimensions r � n. Structure-preserving model order reduction methods
construct approximations of (1) with the same internal structure

Σ̂ :
{
K̂(s)X̂(s) = B̂(s)U(s), Ŷ (s) = Ĉ(s)X̂(s), (6)

where K̂ : C → Cr×r, B̂ : C → Cr×m, Ĉ : C → Cp×r and X̂ : C → Cr, Ŷ : C → Cp.
Additionally, the compositions of the matrix-valued functions in (1) and (6) are the same:
If the center term in (1) is given in frequency-affine form

K(s) =

nK∑

j=1

gj(s)Kj , (7)

with gj : C → C and constant matrices Kj ∈ Cn×n, for j = 1, . . . , nK, then the center
term of the reduced-order model must have the form

K̂(s) =

nK∑

j=1

gj(s)̂Kj , (8)

where K̂j ∈ Cr×r, for j = 1, . . . , nK. Since the scalar functions in (7) and (8) are identical,
the internal system structure is preserved and the system matrices Kj of the full-order

system can be replaced by their reduced-order counterparts K̂j . The same relations must
hold for the input and output terms B and C. Consider as an example the second-order
system with transfer function (4) from Section 1. A structure-preserving reduced-order
model will be of the form

Ĥ(s) = (̂Cp + ŝCv)(s2M̂ + ŝD + K̂)−1̂B.

To act as suitable surrogate, the reduced-order model must approximate the input-to-
output behavior of the original system at least for a range of frequencies s ∈ C, which
are important for the application in question. In other words, the outputs of (1) and (6)
should match up to a specified tolerance τ in appropriate norms for a given input:

‖Y − Ŷ ‖ ≤ τ · ‖U‖.

For many time domain models and, in general, frequency domain models, the relation
above can be reformulated in terms of the transfer functions of the original and reduced-
order model such that

‖H − Ĥ‖ ≤ τ
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holds.
Following [10], any matrix-valued function of the form (2) can be interpolated by a

reduced-order transfer function Ĥ, while preserving the internal system structure using
the projection approach. Given two reduction spaces with basis matrices V ,W ∈ Cn×r,
the reduced-order model is computed by

K̂(s) = WHK(s)V , B̂(s) = WHB(s), Ĉ(s) = C(s)V . (9)

While there are many potential choices for the basis matrices V and W , we concentrate
here on transfer function interpolation, i.e., the matrices V ,W are constructed such that
the transfer function Ĥ corresponding to (9) interpolates the full-order transfer func-
tion (2) at chosen points. The following proposition gives a concise overview.

Proposition 1 (Structured interpolation [10, Thm. 1]). Let H be the transfer function (2)
of a linear system, described by (1), and Ĥ the reduced-order transfer function constructed
via projection (9). Let the matrix functions C, K−1, B and K̂−1 be analytic in the inter-
polation point σ ∈ C. Then, the following statements hold.

(a) If span
(
K(σ)−1B(σ)

)
⊆ span(V ) holds, then H(σ) = Ĥ(σ).

(b) If span
(
K(σ)−HC(σ)H

)
⊆ span(W ) holds, then H(σ) = Ĥ(σ).

(c) If V and W are constructed as above, then additionally H ′(σ) = Ĥ ′(σ) holds.

Overall, only linear systems of equations need to be solved for the construction of the
basis matrices V and W in Proposition 1. However, the interpolation point σ has to be
known beforehand and its choice has a large influence on the approximation quality of the
resulting reduced-order model. Traditionally, points are chosen linearly or logarithmically
equidistant on the frequency axis iR in frequency ranges of interest to reduce the worst case
approximation error of the transfer function given by the L∞-norm. This typically leads
to a reasonable approximation behavior over the considered frequency range but easily
misses features of the system, which are not close enough to the interpolation points, or
may result in unnecessarily large reduced-order models.

2.2 Unstructured interpolation via the Loewner framework

Independent of the structure of the original system, the Loewner framework can be used
to construct unstructured systems from transfer function evaluations [4, 39]. As we will
use this framework at several points throughout this manuscript, it is summarized below
following the description in [4].

Given 2q transfer function measurements Hk := H(sk) ∈ Cp×m at some locations
sk ∈ C, for k = 1, . . . , 2q, the data is partitioned into two sets

{
(κi, ri,wi) , where κi = si, wi = H iri, for i = 1, . . . , q,

(µj , `j ,vj) , where µj = sq+j , v
H
j = `Hj Hq+j , for j = 1, . . . , q,

with right and left tangential directions ri ∈ Cm and `j ∈ Cp, for i, j = 1, . . . , q. In
practice, it has been shown to be beneficial for numerical reasons to partition the data in an
alternating way with respect to the ordering of the absolute values of the sampling points.
Under the assumption that the sets of sampling points are disjunct, {κi}qi=1∩{µj}

q
j=1 = ∅,
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the partitioned data is arranged in the Loewner and shifted Loewner matrices

L =




v1r1 − `1w1

µ1 − κ1
· · · v1rq − `1wq

µ1 − κq
...

. . .
...

vqr1 − `qw1

µq − κ1
· · · vqrq − `qwq

µq − κq



, (10)

Lσ =




µ1v1r1 − κ1`1w1

µ1 − κ1
· · · µ1v1rq − κq`1wq

µ1 − κq
...

. . .
...

µqvqr1 − κ1`qw1

µq − κ1
· · · µqvqrq − κq`qwq

µq − κq



. (11)

If the matrix pencil Lσ−λL is regular, i.e., there exist a λ ∈ C such that det (Lσ − λL) 6= 0,
and given the matrices

W L =
[
w1 . . . wq

]
and V L =



vH

1
...
vH
q


 , (12)

the transfer function of the form HL(s) = W L(Lσ − sL)−1V L tangentially interpolates
the given data such that HL(κi)ri = wi and `Hj HL(µj) = vH

j hold, for i, j = 1, . . . , q. The
corresponding state-space realization of the underlying dynamical system is then given by

EL := −L, AL := −Lσ, BL := V L, CL := W L, (13)

using the matrices from (10)–(12).
The rank of the Loewner pencil nL = rank

([
L Lσ

])
directly uncovers the minimal or-

der of a model, which is required to interpolate the given data. In practice, it is reasonable
to truncate any redundant data, which might have been collected into (−L,−Lσ,W L,V L).
The required truncation matrices V and W can be chosen as the right and left singular

vectors obtained from singular value decompositions (SVDs) of
[
L Lσ

]
and

[
LH LH

σ

]H
.

Truncating the matrices of singular vectors at nL columns and projecting the Loewner
realization (13) yields a model interpolating the given data. Truncating after rL < nL
results in a model approximating the provided data.

In general, without further modifications, the models obtained from the Loewner frame-
work may have complex-valued matrices. However, many systems are described by real-
valued matrices in practical applications. Under the assumption that the original transfer
function follows the reflection principle, i.e., H(s) = H(s) holds for all s ∈ C for which H
is defined, sampling points as well as transfer function data and tangential direction can
be chosen closed under conjugation, i.e., if κ is a sampling point so is κ, and H(κ) and
H(κ) = H(κ) are the corresponding complex conjugate transfer function measurements.
In this case, there exists a state-space transformation for (13) that yields real-valued
matrices. Assuming that all given data is complex-valued, closed under conjugation, and
ordered into complex pairs, then the transformation to obtain real-valued matrices is given
by

J = Iq ⊗
(

1√
2

[
1 −i
1 i

])
,

and the transformed system (−JHLJ , −JHLσJ , JHW L, V LJ) has real-valued matrices
and satisfies the same interpolation conditions as the original Loewner system (13); see [4].
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Algorithm 1: Transfer function IRKA (TF-IRKA).

Input: Transfer function H(s), initial interpolation points {σj}rj=1 and

tangential directions {bj}rj=1 and {cj}rj=1.

Output: Reduced first-order model Σ̂ : (EL,AL,BL,CL).
1 while no convergence do
2 Construct EL, AL, BL and CL as in (14)–(16) using the interpolation points

{σj}rj=1, and tangential directions {bj}rj=1 and {cj}rj=1.

3 Compute the generalized eigenvalues and eigenvectors
{(
λj ,xj ,yj

)}r
j=1

from

ALxj = λjELxj and yH
j AL = λjy

H
j EL.

4 Update the interpolation points and tangential directions via

σj ← −λj , bHj ← yH
j BL and cj ← CLxj ,

for j = 1, . . . , r.

5 end

2.3 Unstructured H2-optimal interpolation

A different approach for the construction of reduced-order models for structured sys-
tems is the Transfer Function IRKA (TF-IRKA) from [11]. Like the original IRKA [29],
this method computes H2-optimal approximations but can also be applied to structured
systems like (1), because only evaluations of the transfer function and its derivative are
needed for the algorithm. However, TF-IRKA computes a reduced-order model of first-order
form (3), i.e., the approach can be applied to structured systems but does not preserve
the structure in the reduced-order model.

The procedure of TF-IRKA is as follows: Instead of computing an interpolating real-
ization of the reduced-order model by projection, an interpolating first-order realization
is obtained using the Loewner framework [39] in every iteration step. In contrast to the
variant of the Loewner framework described in the previous section, the two sets of inter-
polation points are chosen to be identical. This leads to a modification of the formulas (10)
and (11) involving the derivative of the sampled transfer function. Given a transfer func-
tion H(s), its derivative H ′(s), interpolation points {σj}rj=1, and right and left tangential

directions {bj}rj=1 and {cj}rj=1, with bj ∈ Cm and cj ∈ Cp, this variant of the Loewner

framework constructs a first-order model HL(s) = CL (sEL −AL)−1 BL satisfying the
following tangential Hermite interpolation conditions:

H(σj)bj = HL(σj)bj , cHj H(σj) = cHj HL(σi), cHj H
′(σj)bj = cHj H

′
L(σj)bj ,

for all j = 1, . . . , r. The entries of the matrices in the Loewner realization are constructed
via

(EL)i,j :=




−cHi

(
H(σi)−H(σj)

)
bj

σi − σj
if i 6= j,

−cHi H ′(σi)bi if i = j,

(14)

(AL)i,j :=




−cHi

(
σiH(σi)− σjH(σj)

)
bj

σi − σj
if i 6= j,

−cHi
(
sH(s)

)′(σi)bi if i = j,

(15)
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BL :=



cH1 H(σ1)

...
cHrH(σr)


 and CL :=

[
H(σi)b1 . . . H(σr)br

]
. (16)

Similar to the classical IRKA method, the eigenvectors and mirror images of the eigen-
values of AL − λEL with respect to the imaginary axis are used as interpolation points
and tangential directions in the next iteration step of TF-IRKA. At convergence, the al-
gorithm yields a reduced-order model with a first-order state-space realization satisfying
the first-order interpolatory H2-optimality conditions [11, 29]. Note that in the case that
the high-dimensional system also has first-order structure, IRKA and TF-IRKA are equiva-
lent and converge to the same reduced-order model [11]. The main steps of TF-IRKA are
summarized in Algorithm 1. Since the reduced-order model is directly obtained from the
underlying Loewner framework, the realness of the original model can be preserved using
the technique described in Section 2.2.

3 Structure-preserving near-optimal interpolation

In the following, we consider two iteration schemes similar to IRKA for finding near-optimal
interpolation points for structure-preserving model reduction in the case of general sys-
tems (1) with transfer functions of the form (2). Before we derive our new approach in
Section 3.2, we generalize the H2-norm based method from [46] to the case of multiple-
input/multiple-output (MIMO) systems. As it follows similar concepts, we use this method
as the main benchmark for the performance of our new approach in the numerical exper-
iments.

3.1 Structure-preserving transfer function IRKA

The problem of constructing near-optimal interpolants for general structured systems has
been considered before in [46]. Therein, the authors present an H2-norm inspired strategy
based on TF-IRKA in combination with the structured interpolation framework from Propo-
sition 1 to compute structure-preserving reduced-order models. SPTF-IRKA, as sketched in
Algorithm 2, can in general be seen as a two-step approach: First, a structured reduced-
order model is computed via projection using Proposition 1; then, the transfer function
of this structured reduced-order model is approximated by TF-IRKA, which yields an H2-
optimal first-order realization, from which the mirror images of its poles are then used to
update the interpolation points for the next iteration. The resulting reduced-order model
is structure-preserving due to the employed projection framework; the unstructured real-
ization obtained from TF-IRKA is only used to update the interpolation points.

Originally, SPTF-IRKA has been formulated for single-input/single-output (SISO) sys-
tems in [46]. The extension to the MIMO case in Algorithm 2 follows directly from the
observation that TF-IRKA yields tangential interpolation conditions for MIMO systems.
Consequently, basis matrices ensuring tangential interpolation are constructed in Line 2
of Algorithm 2. Similar to the interpolation points, the tangential directions are updated
in every step of the iteration in Line 6 of Algorithm 2 by computing additionally to the
eigenvalues also the corresponding left and right eigenvectors of the H2-optimal approxi-
mation in Line 5. Note that also the tangential version of TF-IRKA is used in Line 4 as
given in Algorithm 1. Realness of reduced-order models computed with SPTF-IRKA can be
preserved similarly to the procedure used in the original IRKA and stated in [29, Cor. 2.2]:
Given a set of interpolation points with tangential directions, which is closed under com-
plex conjugation, the basis matrices V ,W can be chosen to be real valued. Using these
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Algorithm 2: Structure-preserving transfer function IRKA (SPTF-IRKA).

Input: Dynamical system Σ: (K,B,C), initial interpolation points {σj}rj=1 and

tangential directions {bj}rj=1 and {cj}rj=1.

Output: Reduced-order system Σ̂: (̂K,̂B,̂C).
1 while no convergence do
2 Compute the orthogonal basis matrices V ,W via

V ← orth
([
K(σ1)−1B(σ1)b1 . . . K(σr)

−1B(σr)br
])
,

W ← orth
([
K(σ1)−HC(σ1)Hc1 . . . K(σr)

−HC(σr)
Hcr
])
.

3 Project the system matrices such that

K̂(s)←WHK(s)V , B̂(s)←WHB(s), Ĉ(s)← C(s)V .

4 Compute an order-r approximation

Sr(s) = CL (sEL −AL)−1 BL,

by applying TF-IRKA (Algorithm 1) to Ĥ(s) = Ĉ(s)̂K(s)−1̂B(s).

5 Compute the generalized eigenvalues and eigenvectors
{(
λj ,xj ,yj

)}r
j=1

from

ALxj = λjELxj and yH
j AL = λjy

H
j EL.

6 Update the interpolation points and tangential directions via

σj ← −λj , bHj ← yH
j BL and cj ← CLxj ,

for j = 1, . . . , r.

7 end

matrices in a projection (9) preserves the realness of the original system matrices, while
enforcing the tangential interpolation conditions.

In terms of computational effort for the choice of H2-optimal interpolation points, the
two-step approach in Algorithm 2 can be seen as beneficial. Applying TF-IRKA (Algo-
rithm 1) directly to the full-order system requires the solution of r linear systems of
equations of order n in each step of the iteration. In SPTF-IRKA however, TF-IRKA is only
applied to transfer functions for which linear systems of dimension r have to be solved.
In this situation, the outer loop of SPTF-IRKA (Algorithm 2) can also be seen as a pre-
reduction step that reduces the computational costs of TF-IRKA. Similar ideas to reduce
the computational costs of iterative model-order reduction methods have been used, for
example, in [6, 14,18].

Besides losing H2-optimality in SPTF-IRKA, an important difference between TF-IRKA

and SPTF-IRKA lies in the requirements of the methods on the availability of the original
system. TF-IRKA is a true black-box approach, where only access to transfer function
evaluations are required. In contrary, SPTF-IRKA requires access to the system matrices
to construct the basis matrices V ,W as well as for the projection step.
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3.2 Structure-preserving adaptive iterative Krylov algorithm

In addition to accuracy problems already observed in the original publication [46], a flexible
application of SPTF-IRKA and TF-IRKA is limited by the fact that the final reduced order
r has to be fixed before the algorithm is started. The choice of a reasonable r is highly
problem dependent and an a priori choice can often only be based on heuristics or in-depth
knowledge about the system dynamics. In the cases where a maximum r is not given by
implementational restrictions, it needs to be determined by several independent runs of
TF-IRKA or SPTF-IRKA followed by system evaluations to estimate the approximation
errors. Another limitation of many IRKA-like methods is that the user has no influence
on the distribution of the interpolation points. For some applications, surrogates that
approximate the high-fidelity model in a specific frequency range only are more interesting
than global approximations. While frequency-limited variants of IRKA exist [48], these
methods rely on the first-order realization of the full- as well as the reduced-order model
and are computationally costly for large-scale systems.

Here, we present a new approach for the structure-preserving realization of reduced-
order models building on similar concepts as SPTF-IRKA, but also addressing the issues
raised above. We may call this new method the Structure-preserving Adaptive Iterative
Krylov Algorithm (StrAIKA). The approach is summarized in Algorithm 3.

3.2.1 Computational procedure

Comparing Algorithms 2 and 3, the main computational procedures look similar. Struc-
ture-preserving reduced-order models are computed via Proposition 1, which are then used
to construct Loewner surrogates that are used to update the interpolation points and tan-
gential directions for the next iteration step. The main difference between SPTF-IRKA and
StrAIKA lies in the construction of the Loewner interpolants during the iteration. While
SPTF-IRKA employs a complete run of TF-IRKA to construct an order-r unstructured ap-
proximation of the structured reduced-order model Σ̂, in SPTF-IRKA the transfer function
Ĥ is sampled in the frequency range of interest Ω to reveal all essential system dynamics.
Similar to the methods discussed in [6,18] the intermediate models Σ̂ and ΣL are used to
leverage the computational costs of different tasks.

In Line 4 of Algorithm 3, we use the variant of the Loewner framework described in
Section 2.2 that only relies on the evaluation of the low-dimensional transfer function
Ĥ rather than its derivatives as needed in TF-IRKA. However, this can be arbitrarily
replaced by other approaches for the identification of unstructured first-order systems (3)
from frequency domain data. This includes other variants of the Loewner framework
such as the one described in Section 2.3, its block version [39], and variations in these
for choosing the dominant dynamics [36], but also completely different methods can be
employed such as vector fitting [23, 32], RKFIT [16] or the AAA algorithm [40]. The
additional computational cost of evaluating Ĥ, which is of order r ≤ rmax, is negligible
compared to updating the basis matrices V ,W , which requires decompositions of large-
scale matrices of dimension n, if cases with rmax � n are considered. The advantages
of considering Line 4 detached from the desired reduced order are that, first, concepts
such as oversampling and localized sampling can be used to influence the accuracy of the
approximation ΣL in the frequency range Ω of interest, and second, that the amount of
poles in the frequency range of interest Ω is a strong indicator for the reduced order needed
to well approximate the original transfer function in this region.

Realness of the original system matrices can be preserved in the reduced-order model
throughout the iteration using similar ideas as for the previously discussed methods. Un-
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Algorithm 3: Structure-preserving adaptive iterative Krylov algorithm (StrAIKA).

Input: Dynamical system Σ: (K,B,C), initial interpolation points {σj}rj=1,

tangential directions {bj}rj=1 and {cj}rj=1, frequency range Ω, Loewner

sampling points {θj}2qj=1, maximum reduced order rmax.

Output: Reduced-order system Σ̂: (̂K,̂B,̂C) of order r ≤ rmax.
1 while no convergence do
2 Compute the orthogonal basis matrices V ,W via

V ← orth
([
K(σ1)−1B(σ1)b1 . . . K(σr)

−1B(σr)br
])
,

W ← orth
([
K(σ1)−HC(σ1)Hc1 . . . K(σr)

−HC(σr)
Hcr
])
.

3 Project the system matrices such that

K̂(s)←WHK(s)V , B̂(s)←WHB(s), Ĉ(s)← C(s)V .

4 Compute the Loewner interpolant (13), ΣL : (EL,AL,BL,CL), via (10)–(12)

with samples of Ĥ(s) in the points {θj}2qj=1 and random left and right

tangential directions.

5 Compute the generalized eigenvalues and eigenvectors
{(
λj ,xj ,yj

)}k
j=1

from

ALxj = λjELxj and yH
j AL = λjy

H
j EL.

6 Choose eigentriples according to frequency region of interest

ΛΘ ←
{(
λj ,xj ,yj

) ∣∣∣ |Im (λj)| ⊂ Ω, for j = 1, . . . , k
}
.

7 if |ΛΘ| > rmax then
8 Compute dominance (17) for all poles in ΛΘ with respect to ΣL.
9 Keep only the r = rmax most dominant poles in ΛΘ.

10 else
11 Set r ← |ΛΘ|.
12 end
13 Update the interpolation points and tangential directions via

σj ← −λj , bHj ← yH
j BL and cj ← CLxj ,

such that (λj ,xj ,yj) ∈ ΛΘ, for j = 1, . . . , r.

14 end
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Figure 1: Approximation of a model in a specified frequency region Ω. Only mirror images
with respect to the imaginary axis of poles in the specified frequency region are
considered leading to an accurate local approximation of the transfer function.

der the assumption that the initial interpolation points and tangential directions are closed
under complex conjugation, and the original model has a reflective transfer function, real-
valued matrices V ,W can be computed in Line 2 of Algorithm 3 by splitting basis con-
tributions corresponding to complex conjugate interpolation points and by concatenating

V R =
[
Re (V ) Im (V )

]
and W R =

[
Re (W ) Im (W )

]
.

Thereby, the matrices of the reduced-order model computed in Line 3 are also real-valued.
Using the realification of the Loewner framework as described at the end of Section 2.2
leads to sets of eigenvalues and eigenvectors in Line 5 closed under conjugation.

3.2.2 Interpolation point selection

Reduced-order models computed with the structure-preserving framework presented in
Section 2.1 approximate the full-order model well in the vicinity of chosen interpolation
points. This observation can be used to compute reduced-order models, which approximate
the original model in a specific frequency region only. Additionally, IRKA-like methods
aim for interpolation at the mirror images of system poles with respect to the imaginary
axis. Figure 1 illustrates the combination of these two ideas. The part of the spectrum
of the model close to the imaginary axis is shown in Figure 1a and all eigenvalues λj
with 3000 < |Im (λj)| < 4000 are marked, which corresponds to the frequency region of
interest Ω = [3000, 4000] rad s−1. The mirror images of these eigenvalues are considered
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as interpolation points in StrAIKA for the structure-preserving interpolation framework.
The transfer function of the interpolating structured reduced-order model is shown in
Figure 1b with the pointwise relative approximation error in Figure 1c. It can be seen
that the reduced-order model is an accurate approximation of the original system in the
vicinity of the interpolation points σj . Choosing only interpolation points in the frequency
region Ω, which is important for the application of the reduced-order model, can therefore
be a strategy to decrease the required size of the reduced-order model.

Note that there are no limitations for the choice of Ω. For the global approach, it
can be chosen to be the complete positive real axis R≥0 but in other applications, only
subintervals might be of interest such that

Ω =

k⋃

j=1

[ω1,j , ω2,j ],

where ω1,j , ω2,j ∈ R≥0 and ω1,j ≤ ω2,j . In Line 6 of Algorithm 3, the absolute value of
the imaginary part of the eigenvalues is considered, which implies a certain symmetry
in importance of positive and negative frequency regions; see also Figure 1a. For certain
applications, it may be advantageous to select eigenvalues using other criteria, for example,
their distance to the imaginary axis.

In principle, the reduced-order model might grow too large if all interpolation points
inside a defined region are considered. Especially in cases where the global dynamics are
approximated, the order r can grow fast and even approach n. For such cases, StrAIKA
chooses eigenvalues up to a defined maximum rmax as locations for interpolation points. In
this case, the rmax interpolation points, which will result in a suitably good approximation
of the original model, have to be selected from all potential interpolation points. To this
end, the dominance of all poles given by the eigenvalues in Ω is computed and, for the rmax

most dominant poles, the interpolation points for the next iteration are set as their mirror
images. The systems constructed in Line 4 of Algorithm 3 are in first-order unstructured
form (3). For such systems, the dominance of a pole λj with corresponding right and left
eigenvectors xj and yj is defined as

dj =

∥∥∥λj(CLyj)(x
H
j BL)

∥∥∥
2

|Re (λj)|
; (17)

where CL and BL are the output and input matrices constructed in Line 4 of Algorithm 3,
respectively. A pole λj is called dominant, if dj > dk for all j 6= k; see [38].

To ensure a high approximation quality in the frequency range of interest Ω, it is often
beneficial to include also the first potential interpolation points located outside both ends
of Ω. While having only a small impact on the size of the reduced-order model, this can
greatly increase the accuracy of the reduced-order model, especially, if the full-order model
has poles near the boundaries of Ω.

4 Numerical experiments

We now demonstrate the performance of StrAIKA in comparison with the established
IRKA-like methods TF-IRKA and SPTF-IRKA. Where applicable, the classical IRKA is also
included in the comparison. The numerical experiments have been performed on a laptop
equipped with an AMD Ryzen™ 7 PRO 5850U and 12 GB RAM running on Linux Mint 21
as operating system. All algorithms have been implemented and run with MATLAB®
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Table 1: First-order system example: Comparisons of the relative, local L∞-errors, the
required number of iterations niter, the number of solutions of full-order n linear
system nls and the computation time tc.

Algorithm relerrL∞,Ω niter nls tc [s]

StrAIKA 3.67·10−2 21 222 1.92
TF-IRKA 3.67·10−2 10 200 0.18
SPTF-IRKA 3.67·10−2 12 132 0.27
IRKA 4.22·10−2 13 130 0.17

version 9.11.0.1837725 (R2021b Update 2). The results for IRKA have been computed
with M-M.E.S.S. version 2.2 [43]. The source code, data and results of the numerical
experiments are available at [8].

In all experiments, we use a maximum number of iterations: niter,max = 50 for StrAIKA
and the outer iterations of SPTF-IRKA, and niter,max = 100 for TF-IRKA and the inner
iterations of SPTF-IRKA. The algorithms terminate, if the relative difference between the
interpolation points in two consecutive iterations falls under the threshold of ε = 1·10−3.
To compare the accuracy of the methods, we plot the pointwise relative approximation
errors, given by

relerr(ω) :=
‖H(iω)− Ĥ(iω)‖2

‖H(iω)‖2
in specified frequency intervals of interest ω ∈ [ωmin, ωmax]. We also we approximate the
local, relative errors in Ω under the L∞-norm via

relerrL∞,Ω =
max
ω∈Ω
‖H(iω)− Ĥ(iω)‖2
max
ω∈Ω
‖H(iω)‖2

≈ ‖H − Ĥ‖L∞,Ω

‖H‖L∞,Ω
,

using equidistant discretizations of Ω.

4.1 Unstructured first-order system example

In the first example, we consider a system modeling the structural response of the Russian
Service Module of the International Space Station (ISS) [30]. The system is modeled
using first-order differential equations (3) and has n = 270 states, m = 3 inputs and p = 3
outputs. The transfer function is given by

H(s) = C (sE −A)−1 B.

The model is evaluated for frequencies in the range Ω =
[
1·10−2, 1·103

]
rad s−1. Because of

the first-order structure of the full-order model, IRKA can be applied in this case. Addition-
ally, TF-IRKA, SPTF-IRKA and StrAIKA are employed to compute real-valued reduced-order
models of size r = 20 each. Sigma plots of the transfer functions and relative approxima-
tion errors for all models are given in Figure 2. Table 1 summarizes the performance of
the algorithms.

All employed methods succeed in computing surrogates, which approximate the original
system up to the same degree of accuracy. Only IRKA obtains a different local optimum
than the other methods, which yields an insignificantly larger relative approximation error;
cf. Table 1. This meets expectations, as the first-order structure of the original system
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Figure 2: First-order system example: All applied methods provide a similar approxima-
tion behavior since no special structure needs to be preserved in the example.
Insignificant differences are revealed by the pointwise relative errors.

can be represented well by the realization TF-IRKA yields. TF-IRKA converges after only
ten iterations, while the other methods require more. IRKA performs the fewest decompo-
sitions of the full-order matrices and has the shortest runtime; however, the significance
of the runtime is limited for this small example. StrAIKA requires the most iterations
and therefore the most matrix decompositions. The runtime is longer than for the other
methods. This is a result of the additional sampling step performed in each iteration of
StrAIKA, which has a measurable influence on the runtime, as n is relatively small in
comparison to r in this example.

4.2 Time-delayed heated rod

Here, we consider a model of a heated rod with distributed control and homogeneous
Dirichlet boundary conditions, which is cooled by delayed feedback. This system has also
been analyzed in [15]. A discretization of the underlying partial differential equation leads
to the transfer function

H(s) = C
(
sE −A0 − e−τsAd

)−1
B,

with n = 1 000 000 states, m = 5 inputs and p = 4 outputs. The time delay is τ = 1 in this
example. The input matrix B has a block structure such that the rod is heated uniformly
at different sections by the inputs. The outputs are the average temperatures on these
sections. For this example, the frequency range Ω =

[
1·10−4, 1·104

]
rad s−1 is considered.

For the experiments, we fix the reduced order to r = 10 and compute reduced-order
models with StrAIKA, TF-IRKA and SPTF-IRKA. The system cannot be transformed into an
equivalent system with first-order structure, therefore IRKA cannot be applied in this case.
The initial interpolation points are distributed linearly equidistant in i

[
1·10−4, 1·102

]
.

Figure 3 plots the maximum singular values of the transfer functions and the error systems.
Further results are given in Table 2.

In this example, StrAIKA and SPTF-IRKA compute reduced-order models with compa-
rable accuracy. However, StrAIKA provides the smallest worst case error by around a
factor of two as shown in Table 2. As expected, the first-order realization computed by
TF-IRKA cannot capture the dynamics of the delay system well and, therefore, provides
an approximation that is around two orders of magnitude less accurate than the models
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Figure 3: Time-delay system example: The unstructured approximation computed by
TF-IRKA is around two orders of magnitude less accurate than the structure-
preserving reduced-order models computed by StrAIKA and SPTF-IRKA for
smaller to medium frequencies. Overall StrAIKA provides the most accurate
approximation.

Table 2: Time-delay system example: Comparisons of the relative, local L∞-errors, the
required number of iterations niter, the number of solutions of full-order n linear
system nls and the computation time tc.

Algorithm relerrL∞,Ω niter nls tc [s]

StrAIKA 1.01·10−4 37 190 247.10
TF-IRKA 2.06·10−2 73 730 367.24
SPTF-IRKA 2.38·10−4 3 29 37.56

computed by StrAIKA and SPTF-IRKA. Because of its rapid convergence, the runtime of
SPTF-IRKA is considerably lower than for the other two algorithms. But also the runtime
of StrAIKA is significantly smaller than for TF-IRKA. Note, that most of the system dy-
namics happen in the considered frequency range. Therefore, StrAIKA quickly reaches the
maximum reduced order and has to choose the 10 most dominant poles out of approxi-
mately 150 eigenvalues of the Loewner realization in each iteration. This additional effort
directly affects the runtime of StrAIKA. Additionally, the convergence is slow compared
to SPTF-IRKA.

4.3 Viscoelastic beam

This example models a flexible beam with viscoelastic core. The beam of length l = 0.21 m
has a symmetric sandwich structure consisting of two layers of cold rolled steel surrounding
a viscoelastic ethylene-propylene-diene core [47]; the beam is clamped at one side. After
discretization, the transfer function of the system is given by

H(s) = C

(
s2M + K +

G0 +G∞ (sτ)α

1 + (sτ)α
G

)−1

B.

The model has n = 3 360 states, m = 1 input and p = 1 output. The beam is excited
by a single load at its free end and the displacement is measured at the same location,
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Figure 4: Viscoelastic beam example: All methods succeed in computing reasonably ac-
curate reduced-order models. The relative approximation error of the reduced-
order model obtained by StrAIKA is around three orders of magnitude smaller
compared to the other methods.

Table 3: Viscoelastic beam example: Comparisons of the relative, local L∞-errors, the
required number of iterations niter, the number of solutions of full-order n linear
system nls and the computation time tc. The ∗ marks experiments, where the
maximum number of iterations has been reached without convergence.

Algorithm relerrL∞,Ω niter nls tc [s]

StrAIKA 9.14·10−4 10 74 0.71
TF-IRKA 1.04·10−3 18 288 0.97
SPTF-IRKA 9.60·10−3 50 457 8.28 ∗

resulting in output and input mappings C = 100 ·BT =
[
0 · · · 0 1

]
. The matrices M ,

K, G are available from [35]. In this example, we limit the frequency range of interest to
Ω =

[
10, 1·104

]
rad s−1. Note, that the system has poles, which lie outside of this range. No

maximum reduced order r is set in this case, so StrAIKA determines it in an adaptive way.
The initial interpolation points are a single complex conjugate pair, where the absolute
value of its imaginary part is located in the middle of Ω. The automatically determined
order is used for the experiments with TF-IRKA and SPTF-IRKA, where the dr/2e initial
expansion points and their complex conjugates are distributed logarithmically equidistant
in Ω. The sigma plots for the frequency responses of the reference and the reduced-order
models as well as the corresponding errors are given in Figure 4. The performance of the
methods is shown in Table 3.
StrAIKA converges after ten iterations to a model of size r = 15, i.e., the reduced-order

models computed by TF-IRKA and SPTF-IRKA have order r = 16. All three algorithms
produce reasonably accurate models regarding the reference, while the model computed
by StrAIKA is around three orders of magnitude more accurate for most frequencies; cf.
Figure 4b. Also the worst case approximation error of StrAIKA is around one order of mag-
nitude better than SPTF-IRKA; see Table 3. This can be explained by the fact that StrAIKA
places all interpolation points in Ω, while some of the interpolation points obtained by the
other two algorithms are located in the frequency region above 1·104 rad s−1, leading to

Preprint. 2023-05-19



Q. Aumann, S. W. R. Werner: Near-optimal structure-preserving model reduction 18

50 100 150 200 250
10−6

10−2

102

Frequency ω
[
rad s−1

]

M
ag
n
it
u
d
e
‖H

(i
ω
)‖

2

(a) Transfer functions.

50 100 150 200 250
10−15

10−6

103

Frequency ω
[
rad s−1

]

re
le
rr
(ω

)

(b) Relative errors.

Reference StrAIKA TF-IRKA SPTF-IRKA Ω

Figure 5: Radio frequency gun example: The reduced-order model computed by StrAIKA

shows a relatively uniform accuracy in Ω, while the surrogate obtained form
SPTF-IRKA is only accurate for less than 60 rad s−1. The first-order system com-
puted by TF-IRKA is not able to approximate the dynamics of the original system
at all.

a higher error in Ω. SPTF-IRKA did not converge after 50 iterations, resulting in a high
computation time. In terms of computational effort, StrAIKA is clearly advantageous in
this example.

4.4 Radio frequency gun

As the last example, we consider a radio frequency gun as described in [37]. Discretizing
the system leads to a transfer function

H(s) = C
(
s2M + i

(
s2 − σ2

1

) 1
2 W 1 + i

(
s2 − σ2

2

) 1
2 W 2 + K

)−1

B,

where σ1 = 0.0 and σ2 = 108.8774. The full-order model has n = 9 956 states and
the matrices M ,W 1,W 2,K are taken from [35]. We consider m = 1 input and p = 1
output. The input vector is populated with values drawn from the standard normal distri-
bution and the system output is measured at the first degree of freedom, corresponding to
C =

[
1 0 . . . 0

]
. These vectors are also part of the code package supplementing this

article [8]. The reduced-order models are computed to approximate the original system
in Ω = [1, 160] rad s−1 and the necessary order r for the surrogate is automatically deter-
mined by StrAIKA. One initial complex conjugate pair of interpolation points is placed in
the middle of Ω. The initial dr/2e pairs of interpolation points for TF-IRKA and SPTF-IRKA

are distributed linearly equidistant in Ω. The sigma plots for the frequency responses of
the reference and the reduced-order models as well as the corresponding relative approx-
imation errors are shown in Figure 5. The local, relative L∞-errors and computational
costs are presented in Table 4.
StrAIKA automatically determines a reduced order of r = 30 and computes a reduced-

order model, which is more accurate in the frequency range of interest than the reduced-
order models computed by the other two algorithms. Placing the interpolation points
only inside Ω leads to a higher accuracy in this region, while the approximation deterio-
rates for higher frequencies. Although StrAIKA does not converge after 50 iterations, the
reduced-order model is more than reasonably accurate, with its worst case approximation
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Table 4: Radio frequency gun example: Comparisons of the relative, local L∞-errors, the
required number of iterations niter, the number of solutions of full-order n linear
system nls and the computation time tc. The ∗ marks experiments, where the
maximum number of iterations has been reached without convergence.

Algorithm relerrL∞,Ω niter nls tc [s]

StrAIKA 1.73·10−4 50 416 123.33 ∗
TF-IRKA 10.00·10−1 100 3000 2909.54 ∗
SPTF-IRKA 10.00·10−1 50 1316 392.12 ∗

error being four orders of magnitude smaller than for the other methods; see Table 4.
The other two methods also do not converge in the allowed number of iterations. This
example clearly shows the increased computational effort required for TF-IRKA as well as
SPTF-IRKA. In particular, SPTF-IRKA takes more than three times longer than StrAIKA for
the same number of iterations. This is a result of the large number of iterations required
for the inner TF-IRKA inside of SPTF-IRKA leading to a large number of linear solves to
be performed. The unstructured TF-IRKA fails in computing a surrogate that approxi-
mates the transfer function of the full-order model. The reduced-order model computed
by SPTF-IRKA approximates the full-order model well in the lower frequency region, but
the overall accuracy in Ω is lower than observed for the model computed by StrAIKA. The
comparison to TF-IRKA again shows the importance of structure-preserving model order
reduction strategies.

5 Conclusions

In this paper, we proposed StrAIKA, a new algorithm that computes structure-preserving
reduced-order models of systems with arbitrary transfer function structure in an iterative
way. Similar to IRKA-like methods, StrAIKA uses mirror images of intermediate reduced-
order models as interpolation points for the next iteration. In each iteration, the Loewner
framework is used to compute first-order realizations of transfer function data collected
from the current reduced-order model, whose eigenvalues are the basis for the interpolation
points in the next iteration. StrAIKA automatically determines a size for the reduced-order
model by considering the eigenvalues located in a given frequency range of interest. This
ensures a reasonable approximation of the system dynamics at least in these regions.
StrAIKA is completely agnostic to the actual transfer function structure of the original
model and does not require any transfer function derivatives.

We demonstrated the versatility and effectiveness of StrAIKA in four numerical examples
with different internal structures. The benchmark systems model structural vibration, heat
transfer with internal delay, viscoelasticity, and radio wave propagation. StrAIKA showed
comparable or even significantly better accuracy with respect to established IRKA-like
methods. Especially, if only a limited frequency range is of interest for the application,
StrAIKA easily outperforms methods that optimize the approximation error under the
H2-norm both in terms of accuracy and required computational effort.

An open question that has not been covered in this paper is the preservation of additional
system properties like stability. However, the preservation of such system properties has
only been solved for particular system structures such as first-order systems or second-
order systems with mechanical matrix structure. For the case of generally structured
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systems as considered in this paper, no solution to this problem for projection-based
model reduction is known yet. Another idea for future investigations is the reduction of
the computational costs of StrAIKA by considering an additional layer of approximation
as it has been done for IRKA-like methods in [6, 18].
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