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Abstract
Interpolation-basedmethods are well-established and effective approaches for the effi-
cient generation of accurate reduced-order surrogate models. Common challenges for
such methods are the automatic selection of good or even optimal interpolation points
and the appropriate size of the reduced-order model. An approach that addresses the
first problem for linear, unstructured systems is the iterative rational Krylov algo-
rithm (IRKA), which computes optimal interpolation points through iterative updates
by solving linear eigenvalue problems. However, in the case of preserving internal
system structures, optimal interpolation points are unknown, and heuristics based on
nonlinear eigenvalue problems result in numbers of potential interpolation points that
typically exceed the reasonable size of reduced-order systems. In our work, we pro-
pose a projection-based iterative interpolation method inspired by IRKA for generally
structured systems to adaptively compute near-optimal interpolation points as well as
an appropriate size for the reduced-order system. Additionally, the iterative updates
of the interpolation points can be chosen such that the reduced-order model provides
an accurate approximation in specified frequency ranges of interest. For such applica-
tions, our new approach outperforms the established methods in terms of accuracy and
computational effort. We show this in numerical examples with different structures.
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1 Introduction

Simulation, control, and optimization of dynamical systems are essential for many
applications. In this work, we consider structured linear dynamical systems in the
frequency (Laplace) domain of the form

� :
{
K(s)X(s) = B(s)U(s), Y(s) = C(s)X(s), (1)

where K : C → C
n×n describes the system dynamics, B : C → C

n×m the system’s
input, and C : C → C

p×n the system’s output behavior; see [1] for the motivation
of (1) and example systems of this form. The functions X : C → C

n , U : C → C
m ,

and Y : C → C
p denote the internal states, inputs, and outputs, respectively. For all

s ∈ C for which K is invertible, and B and C can be evaluated, the corresponding
transfer function H : C → C

p×m directly relates the system’s inputs to outputs:

H(s) = C(s)K(s)−1B(s). (2)

The most commonly considered structure of dynamical systems is given by equa-
tions that are linear in the frequency variable

� :
{
(sE − A)X(s) = BU(s), Y(s) = CX(s), (3)

with the system matrices A, E ∈ R
n×n , B ∈ R

n×m , and C ∈ R
p×n . Systems of the

form (3) are also commonly referred to as unstructured systems due to them being
considered as the standard case. Considering the general system class (1), we have

K(s) = (sE − A)−1, B(s) = B, C(s) = C,

and the corresponding transfer function H(s) = C(sE − A)−1B. On the other hand,
the modeling of specific physical phenomena hands down other differential structures
into dynamical systems. The modeling of mechanical structures, structural vibrations,
wavemovement, or electrical circuits classically leads to transfer functions of the form

H(s) = (Cp + sCv)(s
2M + sD + K )−1B; (4)

see, for example, [2–4] and references therein. A different structure occurs in the mod-
eling of incomplete systems resulting in delays, which are expressed as exponential
terms in the frequency domain, e.g., with the transfer function

H(s) = C(sE − A0 − e−τ s Ad)
−1B, (5)
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for some constant delay τ > 0; see, e.g., [5]. Many other structures exist in the
literature, which are used to model, for example, poroelasticity [6], viscoelasticity [7],
or interior acoustic problems [8].While some structures, like second-order systems (4),
can be reformulated into standard form (3), this is not necessarily possible for all
occurring structures, including time-delay systems (5). Also, by reformulation into
unstructured form, the number of states increases and structure-inherent properties
are typically lost in subsequent computational procedures.

In general, there is a demand for highly accurate models in practical applications.
As a result, the number of equations describing (1) vastly grows and the computational
efficient solution of (1) in terms of resources such as time and memory is often impos-
sible. Model order reduction methods are a remedy to this problem as they aim for
the construction of cheap-to-evaluate yet accurate surrogate models that approximate
the systems’ input-to-output behavior while being described by a significantly smaller
number of equations r � n, which eases the demand on computational resources
required for the evaluation of the systems. Many model reduction techniques have
been developed for unstructured systems (3); see, for example, [9]. In addition, the
preservation of internal system structures such as (4) and (5) is desired as this typically
yields more accurate approximations as well as the preservation of structure-inherent
properties. Also, if the reduced-order model is to be coupled to other systems, pre-
serving the structure is advantageous because the same coupling conditions as for the
full-order model can be applied to the reduced surrogate [10].

Several structure-preserving model order reduction methods have been developed
in recent years. Many of these have been tailored to particular structures that occur,
for example, in vibrational problems [3, 11–13], network systems [14, 15], or sys-
tems with Hamiltonian structure [16–18]. The framework in [1] allows the reduction
of dynamical systems with arbitrary internal structures based on transfer function
interpolation. The quality of reduced-order models obtained by interpolation strongly
depends on the choice of interpolation points. Therefore, a variety of strategies has
been developed to perform successive greedy searches for suitable interpolation points
based on estimating the approximation error [19–25] or computing the exact error in,
for example, the L∞-norm [26, 27].

On the other hand, the iterative rational Krylov algorithm (IRKA) is a well-
established interpolation method for unstructured systems (3) that iteratively updates
the interpolation points [28]. At convergence, the interpolating reduced-order model
satisfies the necessaryH2-optimality conditions. Several extensions of IRKA for struc-
tured systems using similar ideas have been proposed. For second-order systems (4),
the SO-IRKAmethod from [29] aims for an iterative process similar to IRKA. In [30],
this has been considered the basis for a method to choose the resulting approximation
order adaptively. The Transfer Function IRKA (TF-IRKA) [31] can be applied to
arbitrarily structured systems and yields H2-optimal but unstructured reduced-order
models. A structure-preserving variant of TF-IRKA has been proposed in [32].

A different take on structured model order reduction is data-driven methods. Since
here onlymeasurements of the transfer function (2) are used to compute realizations of
dynamical systems, the original structure can be arbitrary. One of themost well-known
approaches of this type is the Loewner framework, which constructs a reduced-order
model that interpolates provided data samples [33]. The original formulation of the
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Loewner framework only considers the construction of unstructured systems (3), but
it has been extended to find structured realizations in [34]. Recently, structured exten-
sions of the barycentric form for second-order systems (4) have been proposed that
allow the extension of further data-driven frequency domain methods to the structure-
preserving setting [35, 36].

In this work, we present a new approach to compute accurate reduced-order mod-
els that preserve the internal structure of the original system. Based on an IRKA-like
iteration scheme, the new method computes in every step a new set of interpolation
points (and tangential directions) which are then employed in the structure-preserving
interpolation framework [1]. Instead of considering nonlinear eigenvalue problems
corresponding to the resolvent terms of the structured systems, the Loewner frame-
work allows us to solve linear eigenvalue problems in each step and to determine
the approximation order adaptively and with respect to limited frequency regions of
interest if desired.

The remainder of thismanuscript is structured as follows:After introducing themat-
hematical preliminaries in Section 2, we revisit the structure-preserving transfer func-
tion IRKA and extend that method to the case of multiple-input/multiple-output sys-
tems in Section 3.1. Our newmodel reduction method is then described in Section 3.2.
In Section 4, a number of numerical experiments are used to compare the new method
to established model reduction techniques. The paper is concluded in Section 5.

2 Mathematical preliminaries

2.1 Structure-preserving interpolation via projection

We consider here interpolation-based model order reduction methods, which compute
surrogate models approximating the dynamics of the high-fidelity system (1) while
having much smaller dimensions r � n. Structure-preserving model order reduction
methods construct approximations of (1) with the same internal structure

�̂ :
{
K̂(s)X̂(s) = B̂(s)U(s), Ŷ(s) = Ĉ(s)X̂(s), (6)

where K̂ : C → C
r×r , B̂ : C → C

r×m , Ĉ : C → C
p×r , and X̂ : C → C

r , Ŷ : C →
C

p. Additionally, the compositions of the matrix-valued functions in (1) and (6) are
the same: If the center term in (1) is given in frequency-affine form

K(s) =
nK∑
j=1

g j (s)K j , (7)

with g j : C → C and constant matrices K j ∈ C
n×n , for j = 1, . . . , nK, then the

center term of the reduced-order model must have the form

K̂(s) =
nK∑
j=1

g j (s)K̂ j , (8)
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where K̂ j ∈ C
r×r , for j = 1, . . . , nK. Since the scalar functions in (7) and (8) are

identical, the internal system structure is preserved and the system matricesK j of the
full-order system can be replaced by their reduced-order counterparts K̂ j . The same
relations must hold for the input and output termsB andC. Consider as an example the
second-order system with transfer function (4) from Section 1. A structure-preserving
reduced-order model will be of the form

Ĥ(s) = (Ĉp + sĈv)(s
2M̂ + s D̂ + K̂ )−1 B̂.

To act as a suitable surrogate, the reduced-order model must approximate the input-
to-output behavior of the original system at least for some s ∈ C, which are important
for the application in question. In other words, the outputs of (1) and (6) should match
up to a specified tolerance τ in appropriate norms for a given input:

‖Y − Ŷ‖ ≤ τ · ‖U‖.

The relation above can be reformulated in terms of the transfer functions of the original
and reduced-order model such that

‖H − Ĥ‖ ≤ τ

holds.
Following [1], any matrix-valued function of the form (2) can be interpolated by

a reduced-order transfer function Ĥ , while preserving the internal system structure
using the projection approach. Given two reduction spaceswith basismatrices V ,W ∈
C
n×r , the reduced-order model is computed by

K̂(s) = WHK(s)V , B̂(s) = WHB(s), Ĉ(s) = C(s)V . (9)

While there aremany potential choices for the basismatrices V andW , we concentrate
here on transfer function interpolation, i.e., the matrices V ,W are constructed such
that the transfer function Ĥ corresponding to (9) interpolates the full-order transfer
function (2) at chosen points. The following proposition gives a concise overview.

Proposition 1 (Structured interpolation [1, Thm. 1]) Let H be the transfer function (2)
of a linear system, described by (1), and Ĥ the reduced-order transfer function con-

structed via projection (9). Let the matrix functions C, K−1, B, and K̂−1
be analytic

in the interpolation point σ ∈ C. Then, the following statements hold.

(a) If span
(K(σ )−1B(σ )

) ⊆ span(V ) holds, then H(σ ) = Ĥ(σ ).
(b) If span

(K(σ )−HC(σ )H
) ⊆ span(W) holds, then H(σ ) = Ĥ(σ ).

(c) If V and W are constructed as above, then additionally H ′(σ ) = Ĥ ′(σ ) holds.

Overall, only linear systems of equations need to be solved for the construction of
the basis matrices V and W in Proposition 1. However, the interpolation point σ has
to be known beforehand, and its choice has a large influence on the approximation
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quality of the resulting reduced-order model. Traditionally, points are chosen linearly
or logarithmically equidistant on the frequency axis iR in frequency ranges of interest
to reduce the worst case approximation error of the transfer function given by theL∞-
norm. This typically leads to a reasonable approximation behavior over the considered
frequency range but easily misses features of the system, which are not close enough
to the interpolation points, or may result in unnecessarily large reduced-order models.

2.2 Unstructured interpolation via the Loewner framework

Independent of the structure of the original system, theLoewner framework canbe used
to construct unstructured systems from transfer function evaluations [33, 37]. As we
will use this framework at several points throughout this manuscript, it is summarized
below following the description in [37].

Given 2q transfer function measurements Hk := H(sk) ∈ C
p×m at some locations

sk ∈ C, for k = 1, . . . , 2q, the data is partitioned into two sets

{
(κi , r i ,wi ) , where κi = si , wi = H i r i , for i = 1, . . . , q,(
μ j , � j , v j

)
, where μ j = sq+ j , vHj = �Hj Hq+ j , for j = 1, . . . , q,

with right and left tangential directions r i ∈ C
m and � j ∈ C

p, for i, j = 1, . . . , q.
In practice, it has been shown to be beneficial for numerical reasons to partition the
data in an alternating way with respect to the ordering of the absolute values of the
sampling points. Under the assumption that the sets of sampling points are disjoint,
{κi }qi=1 ∩ {μ j }qj=1 = ∅, the partitioned data is arranged in the Loewner and shifted
Loewner matrices

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

v
H

1 r1 − �
H

1w1

μ1 − κ1
· · · v

H

1 rq − �
H

1wq

μ1 − κq
...

. . .
...

v
H

q r1 − �
H

qw1

μq − κ1
· · · v

H

q rq − �
H

qwq

μq − κq

⎤
⎥⎥⎥⎥⎥⎥⎦

, (10)

Lσ =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1v
H

1 r1 − κ1�
H

1w1

μ1 − κ1
· · · μ1v

H

1 rq − κq�
H

1wq

μ1 − κq
...

. . .
...

μqv
H

q r1 − κ1�
H

qw1

μq − κ1
· · · μqv

H

q rq − κq�
H

qwq

μq − κq

⎤
⎥⎥⎥⎥⎥⎥⎦

. (11)

If the matrix pencil Lσ − λL is regular, i.e., there exists a λ ∈ C such that
det (Lσ − λL) �= 0, assuming that the sampling points {κi }qi=1 and {μ j }qj=1 are not
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eigenvalues of the matrix pencil Lσ − λL, and given the matrices

WL = [
w1 . . . wq

]
and VL =

⎡
⎢⎣

vH1
...

vHq

⎤
⎥⎦ , (12)

the transfer function of the form HL(s) = WL(Lσ − sL)−1VL tangentially inter-
polates the given data such that HL(κi )r i = wi and �Hj HL(μ j ) = vHj hold, for
i, j = 1, . . . , q. The corresponding state-space realization of the underlying dynami-
cal system is then given by

EL := −L, AL := −Lσ , BL := VL, CL := WL, (13)

using the matrices from (10), (11), and (12).

In the case that nL = rank (ζL − Lσ ) = rank
([
L Lσ

]) = rank

([
L

Lσ

])
holds

for all ζ ∈ {κi }qi=1 ∪ {μi }qi=1, the number nL is the minimal order of the model, to
which the realization needs to be truncated to satisfy the regularity condition [33,
37]. In practice, it is reasonable to truncate any redundant data, which might have
been collected into (−L,−Lσ , VL,WL). The required truncation matrices V and
W can be chosen based on the left and right singular vectors obtained from singular

value decompositions (SVDs) of
[
L Lσ

]
and

[
L
H
L
H
σ

]H
. Truncating the matrices of

singular vectors at nL columns and projecting the Loewner realization (13) yields
a model interpolating the given data. Truncating after rL < nL results in a model
approximating the provided data.

In general, without further modifications, the models obtained from the Loewner
framework may have complex matrices. However, many systems are described by
real matrices in practical applications. Under the assumption that the original transfer
function follows the reflection principle, i.e., H(s) = H(s) holds for all s ∈ C for
which H is defined, sampling points as well as transfer function data and tangential
directions can be chosen closed under conjugation, i.e., if κ is a sampling point so is
κ , and H(κ) and H(κ) = H(κ) are the corresponding complex conjugate transfer
function measurements. In this case, there exists a state-space transformation for (13)
that yields real matrices. Assuming that all given data is complex, closed under conju-
gation, and ordered into complex pairs, then the transformation to obtain real matrices
is given by

J = Iq ⊗
(

1√
2

[
1 −i
1 i

])
,

and the transformed system (−JHLJ, −JHLσ J, JHVL, WL J) has real matrices
and satisfies the same interpolation conditions as the original Loewner system (13);
see [37].
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2.3 UnstructuredH2-optimal interpolation

A different approach for the construction of reduced-order models for structured
systems is the Transfer Function IRKA (TF-IRKA) from [31]. Like the original
IRKA [28], this method computesH2-optimal approximations but can also be applied
to structured systems like (1), because only evaluations of the transfer function and
its derivative are needed for the algorithm. However, TF-IRKA computes a reduced-
order model of first-order form (3), i.e., the approach can be applied to structured
systems but does not preserve the structure in the reduced-order model.

The procedure of TF-IRKA is as follows: Instead of computing an interpolat-
ing realization of the reduced-order model by projection, an interpolating first-order
realization is obtained using the Loewner framework [33] in every iteration step. In
contrast to the variant of the Loewner framework described in the previous section,
the two sets of interpolation points are chosen to be identical. This leads to a modifi-
cation of the formulas (10) and (11) involving the derivative of the sampled transfer
function. Given a transfer function H(s), its derivative H ′(s), interpolation points{
σ j

}r
j=1, and right and left tangential directions

{
b j

}r
j=1 and

{
c j

}r
j=1, with b j ∈ C

m

and c j ∈ C
p, this variant of the Loewner framework constructs a first-order model

HL(s) = CL (sEL − AL)−1 BL satisfying the following tangential Hermite interpo-
lation conditions:

H(σ j )b j = HL(σ j )b j , cHj H(σ j ) = cHj HL(σ j ), cHj H
′(σ j )b j = cHj H

′
L
(σ j )b j ,

for all j = 1, . . . , r . The entries of the matrices in the Loewner realization are con-
structed via

(EL)i, j :=

⎧⎪⎨
⎪⎩

− cHi
(
H(σi ) − H(σ j )

)
b j

σi − σ j
if i �= j,

−cHi H
′(σi )bi if i = j,

(14)

(AL)i, j :=

⎧⎪⎨
⎪⎩

− cHi
(
σiH(σi ) − σ jH(σ j )

)
b j

σi − σ j
if i �= j,

−cHi
(
sH(s)

)′(σi )bi if i = j,
(15)

BL :=
⎡
⎢⎣
cH1 H(σ1)

...

cHr H(σr )

⎤
⎥⎦ and CL := [

H(σ1)b1 . . . H(σr )br
]
. (16)

Similar to the classical IRKA method, the eigenvectors and mirror images of the
eigenvalues of AL − λEL with respect to the imaginary axis are used as interpolation
points and tangential directions in the next iteration step of TF-IRKA. At convergence,
the algorithm yields a reduced-order model with a first-order state-space realization
satisfying the first-order interpolatory H2-optimality conditions [28, 31]. Note that
in the case that the high-dimensional system also has first-order structure, IRKA and
TF-IRKA are equivalent and converge to the same reduced-order model [31]. The
main steps of TF-IRKA are summarized in Algorithm 1. Since the reduced-order
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Algorithm 1 Transfer function IRKA (TF-IRKA).

Input: Transfer function H(s), initial interpolation points
{
σ j

}r
j=1, and tangential directions{

b j
}r
j=1 and

{
c j

}r
j=1.

Output: Reduced first-order model �̂ : (EL, AL, BL,CL).
1 while no convergence do
2 Construct EL, AL, BL, and CL as in (14), (15), and (16) using the interpolation points{

σ j
}r
j=1 and tangential directions

{
b j

}r
j=1 and

{
c j

}r
j=1.

3 Compute the generalized eigenvalues and eigenvectors
{(

λ j , x j , y j
)}r

j=1
from

ALx j = λ j ELx j and yHj AL = λ j y
H
j EL.

4 Update the interpolation points and tangential directions via

σ j ← −λ j , bHj ← yHj BL and c j ← CLx j ,

for j = 1, . . . , r .
5 end

model is directly obtained from the underlying Loewner framework, the realness of
the original model can be preserved using the technique described in Section 2.2.

3 Structure-preserving near-optimal interpolation

In the following, we consider two iteration schemes similar to IRKA for finding near-
optimal interpolation points for structure-preserving model reduction in the case of
general systems (1) with transfer functions of the form (2). Before we derive our
new approach in Section 3.2, we generalize the H2-norm based method from [32]
to the case of multiple-input/multiple-output (MIMO) systems. As it follows similar
concepts, we use this method as the main benchmark for the performance of our new
approach in the numerical experiments.

3.1 Structure-preserving transfer function IRKA

The problem of constructing heuristically near-optimal interpolants for general struc-
tured systems has been considered before in [32]. Therein, the authors present an
H2-norm inspired strategy based on TF-IRKA in combination with the structured
interpolation framework from Proposition 1 to compute structure-preserving reduced-
order models. SPTF-IRKA, as sketched in Algorithm 2, can in general be seen as a
two-step approach: First, a structured reduced-order model is computed via projec-
tion using Proposition 1; then, the transfer function of this structured reduced-order
model is approximated by TF-IRKA, which yields anH2-optimal first-order realiza-
tion, from which the mirror images of the poles of its transfer function are then used
to update the interpolation points for the next iteration. The resulting reduced-order
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Algorithm 2 Structure-preserving transfer function IRKA (SPTF-IRKA).

Input: Dynamical system � : (K,B,C), initial interpolation points
{
σ j

}r
j=1, and tangential

directions
{
b j

}r
j=1 and

{
c j

}r
j=1.

Output: Reduced-order system �̂ : (K̂, B̂, Ĉ).
1 while no convergence do
2 Compute the orthogonal basis matrices V ,W via

V ← orth
([K(σ1)

−1B(σ1)b1 . . . K(σr )
−1B(σr )br

])
,

W ← orth
([K(σ1)

−HC(σ1)
Hc1 . . . K(σr )

−HC(σr )
Hcr

])
.

3 Project the system matrices such that

K̂(s) ← WHK(s)V , B̂(s) ← WHB(s), Ĉ(s) ← C(s)V .

4 Compute an order-r approximation

Sr (s) = CL (sEL − AL)−1 BL,

by applying TF-IRKA (Algorithm 1) to Ĥ(s) = Ĉ(s)K̂(s)−1B̂(s).

5 Compute the generalized eigenvalues and eigenvectors
{(

λ j , x j , y j
)}r

j=1
from

ALx j = λ j ELx j and yHj AL = λ j y
H
j EL.

6 Update the interpolation points and tangential directions via

σ j ← −λ j , bHj ← yHj BL and c j ← CLx j ,

for j = 1, . . . , r .
7 end

model is structure-preserving due to the employed projection framework; the unstruc-
tured realization obtained from TF-IRKA is only used to update the interpolation
points.

Originally,SPTF-IRKA has been formulated for single-input/single-output (SISO)
systems in [32]. The extension to the MIMO case in Algorithm 2 follows directly
from the observation that TF-IRKA yields tangential interpolation conditions for
MIMO systems. Consequently, basis matrices ensuring tangential interpolation are
constructed in Line 2 of Algorithm 2. Similar to the interpolation points, the tangen-
tial directions are updated in every step of the iteration in Line 6 of Algorithm 2 by
computing additionally to the eigenvalues also the corresponding left and right eigen-
vectors of the matrix pencil of the H2-optimal approximation in Line 5. Note that
also the tangential version of TF-IRKA is used in Line 4 as given in Algorithm 1.
Realness of reduced-order models computed with SPTF-IRKA can be preserved sim-
ilarly to the procedure used in the original IRKA and stated in [28, Cor. 2.2]: Given a
set of interpolation points with tangential directions, which is closed under complex
conjugation, the basis matrices V ,W can be chosen to be real-valued. Using these
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matrices in a projection (9) preserves the realness of the original system matrices,
while enforcing the tangential interpolation conditions.

In terms of computational effort for the choice ofH2-optimal interpolation points,
the two-step approach in Algorithm 2 can be seen as beneficial. Applying TF-IRKA
(Algorithm 1) directly to the full-order system requires the solution of r linear sys-
tems of equations of order n in each step of the iteration. In SPTF-IRKA however,
TF-IRKA is only applied to transfer functions for which linear systems of dimension
r have to be solved. In this situation, the outer loop of SPTF-IRKA (Algorithm 2) can
also be seen as a pre-reduction step that reduces the computational costs of TF-IRKA.
Similar ideas to reduce the computational costs of iterative model order reduction
methods have been used, for example, in [30, 38, 39].

SPTF-IRKA uses unstructured H2-optimality as heuristic for choosing suitable
interpolation points in the next iteration step. However, it cannot provide H2-
optimality for the structured case. Another important difference between TF-IRKA
and SPTF-IRKA lies in the requirements of the methods on the availability of the
original system. TF-IRKA is a true black-box approach, where only access to trans-
fer function evaluations are required. In contrary, SPTF-IRKA requires access to the
systemmatrices to construct the basis matrices V ,W as well as for the projection step.

3.2 Structure-preserving adaptive iterative Krylov algorithm

In addition to accuracy problems already observed in the original publication [32],
a flexible application of SPTF-IRKA and TF-IRKA is limited by the fact that the
final reduced order r has to be fixed before the algorithm is started. The choice of
a reasonable r is highly problem-dependent and an a priori choice can often only
be based on heuristics or in-depth knowledge about the system dynamics. In the
cases where a maximum r is not given by implementational restrictions, it needs to
be determined by several independent runs of TF-IRKA or SPTF-IRKA followed
by system evaluations to estimate the approximation errors. Another limitation of
many IRKA-like methods is that the user has no influence on the distribution of the
interpolation points. For some applications, surrogates that approximate the high-
fidelity model in a specific frequency range only are more interesting than global
approximations. While frequency-limited variants of IRKA exist [40], these methods
rely on the first-order realization of the full- as well as the reduced-order model and
are computationally costly for large-scale systems.

Here,we present a new approach for the structure-preserving realization of reduced-
order models building on similar concepts as SPTF-IRKA, but also addressing the
issues raised above. We call this new method the Structure-preserving Adaptive
IterativeKrylovAlgorithm (StrAIKA). The approach is summarized in Algorithm 3.

3.2.1 Computational procedure

Comparing Algorithms 2 and 3, the main computational procedures look similar.
Structure-preserving reduced-order models are computed via Proposition 1, which
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Algorithm 3 Structure-preserving adaptive iterative Krylov algorithm
(StrAIKA).
Input: Dynamical system � : (K,B,C), initial interpolation points

{
σ j

}r
j=1, tangential

directions
{
b j

}r
j=1 and

{
c j

}r
j=1, frequency range �, Loewner sampling points

{
θ j

}2q
j=1

such that |Im (
θ j

)| ∈ � for j = 1, . . . 2q, maximum reduced order rmax.
Output: Reduced-order system �̂ : (K̂, B̂, Ĉ) of order r ≤ rmax.

1 while no convergence do
2 Compute the orthogonal basis matrices V ,W via

V ← orth
([K(σ1)

−1B(σ1)b1 . . . K(σr )
−1B(σr )br

])
,

W ← orth
([K(σ1)

−HC(σ1)
Hc1 . . . K(σr )

−HC(σr )
Hcr

])
.

3 Project the system matrices such that

K̂(s) ← WHK(s)V , B̂(s) ← WHB(s), Ĉ(s) ← C(s)V .

4 Compute the Loewner interpolant (13), �L : (EL, AL, BL,CL), via (10), (11) and (12) with

samples of Ĥ(s) in the points
{
θ j

}2q
j=1.

5 Compute the generalized eigenvalues and eigenvectors
{(

λ j , x j , y j
)}k

j=1
from

ALx j = λ j ELx j and yHj AL = λ j y
H
j EL.

6 Choose eigentriples according to frequency region of interest

�
 ←
{(

λ j , x j , y j
) ∣∣∣ |Im (

λ j
)| ∈ �, for j = 1, . . . , k

}
.

7 if |�
| > rmax then
8 Compute dominance (17) for all poles in �
 with respect to �L.
9 Keep only the r = rmax most dominant poles in �
.

10 else
11 Set r ← |�
|.
12 end
13 Update the interpolation points and tangential directions via

σ j ← −λ j , bHj ← yHj BL and c j ← CLx j ,

such that (λ j , x j , y j ) ∈ �
, for j = 1, . . . , r .
14 end

are then used to construct Loewner surrogates that are used to update the interpolation
points and tangential directions for the next iteration step. Themain difference between
SPTF-IRKA andStrAIKA lies in the constructionof theLoewner interpolants during
the iteration. While SPTF-IRKA employs a complete run of TF-IRKA to construct
an order-r unstructured approximation of the structured reduced-order model �̂, in
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StrAIKA, the transfer function Ĥ is sampled in the frequency range of interest �

to reveal all essential system dynamics. Similar to the methods discussed in [30, 38],
the intermediate models �̂ and �L are used to leverage the computational costs of
different tasks.

In Line 4 of Algorithm 3, we use the variant of the Loewner framework described in
Section 2.2 that only relies on the evaluation of the low-dimensional transfer function
Ĥ rather than its derivatives as needed in TF-IRKA. However, this can be arbitrarily
replaced by other approaches for the identification of unstructured first-order sys-
tems (3) from frequency domain data. This includes other variants of the Loewner
framework such as the one described in Section 2.3, its block version [33], and varia-
tions in these for choosing the dominant dynamics [41], but also completely different
methods can be employed such as vector fitting [42, 43], RKFIT [44] or the AAA
algorithm [45]. The additional computational cost of evaluating Ĥ , which is of order
r ≤ rmax, is negligible compared to updating the basis matrices V ,W , which requires
decompositions of large-scale matrices of dimension n, if cases with rmax � n are
considered. The advantages of considering Line 4 detached from the desired reduced
order are that, first, concepts such as oversampling and localized sampling can be
used to influence the accuracy of the approximation �L in the frequency range � of
interest, and second, that the amount of poles in the frequency range of interest � is a
strong indicator for the reduced order needed to well approximate the original transfer
function in this region.

In the case of irrational transfer functions, the Loewner framework in Line 4 of
Algorithm 3 will recover parts of the potentially infinite number of poles of the full-
order transfer function. Depending on the size of the Loewner approximation, the
frequency range of interest may contain significantly more poles than effectively
needed for the reduced order of the structured approximation. In the following section,
we propose to use a dominance measure, in addition to the frequency range of interest,
to assess the relevance of the poles retrieved from the Loewner approximation. This
allows to select only a subset of the potential interpolation points for the next com-
putational step. Additionally, one needs to note that if multiple interpolation points
are selected that do not contribute to the accuracy of the reduced-order model due to
the system structure, the orthogonalization step in Line 2 of Algorithm 3 will result in
basis matrices with less columns than selected poles, which leads to an adjustment of
the reduced order accordingly.

Realness of the original systemmatrices can be preserved in the reduced-ordermoel
throughout the iteration using similar ideas as for the previously discussed methods.
Under the assumption that the initial interpolation points and tangential directions are
closed under complex conjugation, and the original model has a reflective transfer
function, real matrices V ,W can be computed in Line 2 of Algorithm 3 by splitting
basis contributions corresponding to complex conjugate interpolation points and by
concatenating

VR = [
Re (V ) Im (V )

]
and WR = [

Re (W) Im (W)
]
.
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Thereby, the matrices of the reduced-order model computed in Line 3 are also real.
Using the realification of the Loewner framework as described at the end of Section 2.2
leads to sets of eigenvalues and eigenvectors in Line 5 closed under conjugation.

3.2.2 Interpolation point selection

Reduced-order models computed with the structure-preserving framework presented
in Section 2.1 approximate the full-order model well in the vicinity of chosen inter-
polation points. This observation can be used to compute reduced-order models,
which approximate the original model in a specific frequency region only. Addi-
tionally, IRKA-like methods aim for interpolation at the mirror images of transfer
function poles with respect to the imaginary axis. Figure 1 illustrates the combi-
nation of these two ideas. The part of the spectrum of the matrix pencil of the
model close to the imaginary axis is shown in Fig. 1a and all eigenvalues λ j with
3000 < |Im (

λ j
)| < 4000 are marked, which corresponds to the frequency region of

interest � = [3000, 4000] rad s−1. The mirror images of these eigenvalues are con-
sidered interpolation points in StrAIKA for the structure-preserving interpolation
framework. The transfer function of the interpolating structured reduced-order model
is shown in Fig. 1b with the pointwise relative approximation error in Fig. 1c. It can be
seen that the reduced-order model is an accurate approximation of the original system

Fig. 1 Approximation of a model in a specified frequency region �. Only mirror images with respect to
the imaginary axis of poles in the specified frequency region are considered leading to an accurate local
approximation of the transfer function
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in the vicinity of the interpolation points σ j . Choosing only interpolation points in
the frequency region �, which is important for the application of the reduced-order
model, can therefore be a strategy to decrease the required size of the reduced-order
model.

Note that there are no limitations for the choice of �. For the global approach, it
can be chosen to be the complete positive real axisR≥0, but in other applications, only
subintervals might be of interest such that

� =
k⋃
j=1

[ω1, j , ω2, j ],

where ω1, j , ω2, j ∈ R≥0 and ω1, j ≤ ω2, j . In Line 6 of Algorithm 3, the absolute value
of the imaginary part of the eigenvalues is considered, which implies a certain symme-
try in the importance of positive and negative frequency regions; see also Fig. 1a. For
certain applications, it may be advantageous to select eigenvalues using other criteria,
for example, their distance to the imaginary axis.

In principle, the reduced-order model might grow too large if all interpolation
points inside a defined region are considered. Especially in cases where the global
dynamics are approximated, the order r can grow fast and even approach n. For such
cases, StrAIKA chooses eigenvalues up to a defined maximum rmax as locations
for interpolation points. In this case, the rmax interpolation points, which will result
in a suitably good approximation of the original model, have to be selected from all
potential interpolation points. To this end, the dominance of all poles given by the
eigenvalues in � is computed and, for the rmax most dominant poles, the interpolation
points for the next iteration are set as their mirror images. The systems constructed in
Line 4 of Algorithm 3 are in first-order unstructured form (3). For such systems, the
dominance of a pole λ j with corresponding right and left eigenvectors x j and y j is
defined as

d j =
∥∥∥(CLx j )( yHj BL)

∥∥∥
2

|Re (
λ j

)| ; (17)

where CL and BL are the output and input matrices constructed in Line 4 of
Algorithm 3, respectively, and the eigenvectors are normalized such that y

H

j ELx j = 1.
A pole λ j is called dominant, if d j > dk for all j �= k; see [46].

To ensure a high approximation quality in the frequency range of interest �, it is
often beneficial to include also the first potential interpolation points located outside
both ends of �. While having only a small impact on the size of the reduced-order
model, this can greatly increase the accuracy of the reduced-order model, especially,
if the full-order model’s transfer function has poles near the boundaries of �.

Note that similar to SPTF-IRKA, the StrAIKA method relies on the H2-
optimality of the classical IRKA as its main heuristic for choosing and updating
interpolation points. This is supplemented by the dominance measure in (17). As for
SPTF-IRKA, optimality cannot be guaranteed for structured systems but occurs for
unstructured ones as StrAIKA resembles the classical IRKA method in this special
case.
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Remark 1 In some cases, the constructed Loewner approximation may not have any
transfer function poles in the frequency range of interest that could be used for the
selection as new interpolation points. This can occur if in the frequency range of
interest, the full-order transfer function does not contain any peaks or sinks such
that its behavior is solely determined by poles lying outside this range. As mentioned
previously, a potential strategy in this situation is to choose the two poles that lie closest
to the two boundaries of the frequency range of interest as these are the predominant
factors of the observed transfer function behavior. A different strategy is making use
of the fact that the lack of poles in the frequency range of interest indicates a very
smooth behavior of the transfer function in this region such that it is enough to choose
the two end points of the frequency range on the imaginary axis as interpolation points
to provide an accurate approximation.

For the discussion above, we have implicitly assumed that the matrix pencil of the
Loewner approximation has finite, distinct eigenvalues that do not lie on the imaginary
axis as this is a typical situation in model reduction for dynamical systems. First,
note that in general, the descriptor matrix EL in the Loewner approximation does
not need to be invertible as the proposed method only selects finite poles as potential
interpolation points. In the case of a singular EL, the approximation contains algebraic
constraints, which indicates that such constraints have also been present in the original
full-order system. While in most cases, interpolation at finite points is sufficient since
the algebraic constraints can be eliminated, this might not be desired by the user.
We refer the reader to [47] for a detailed discussion about interpolation-based model
reduction for systems with differential-algebraic equations.

In the case of identical poles, there might exist an underlying higher-order Jordan
block such that the matrix pencil is not diagonalizable. In this case, it is necessary in
the classical IRKA method to include additional derivative information at the mirror
images of these poles. This can also be included in the StrAIKAmethod by comput-
ing the derivatives of the three transfer function factors C, K, and B. However, this
casemay numerically only occur in the Loewner frameworkwhen the full-ordermodel
had a rational transfer function with such higher-order Jordan blocks and is exactly
recovered in the Loewner approximation. Similar to the original IRKA method, the
only assumption about the placement of the transfer function poles of the Loewner
approximation is that they should not lie on the imaginary axis such that the interpo-
lation points that are chosen as mirror images of the poles are different from the poles.
As in IRKA, we do not differentiate between stable and anti-stable poles as it has been
observed that these will occur and persist naturally for unstable models [48].

4 Numerical experiments

Wenowdemonstrate the performance of StrAIKA in comparisonwith the established
IRKA-like methods TF-IRKA and SPTF-IRKA. Where applicable, the classical
IRKA is also included in the comparison. The numerical experiments have been
performed on a laptop equipped with an AMD Ryzen™ 7 PRO 5850U and 12 GB
RAM running on Linux Mint 21 as an operating system. All algorithms have been
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implemented and run with MATLAB® version 9.11.0.1837725 (R2021b Update 2).
The results for IRKA have been computed with M-M.E.S.S. version 2.2 [49]; for
TF-IRKA and SPTF-IRKA, we used the implementation from [3] in combination
with an implementation of the Loewner method by the authors of [37]. The source
code, data, and computed results of the numerical experiments are available at [50].
Note that the numerical results may vary depending on the hardware and software
specifications of the computational environment.

In all experiments, we use a maximum number of iterations: niter,max = 50 for
StrAIKA and the outer iterations of SPTF-IRKA, and niter,max = 100 for TF-IRKA
and the inner iterations of SPTF-IRKA. The algorithms terminate, if the relative
difference between the interpolation points in two consecutive iterations falls under
the threshold of ε = 1 · 10−3. To compare the accuracy of the methods, we plot the
pointwise relative approximation errors, given by

relerr(ω) := ‖H(iω) − Ĥ(iω)‖2
‖H(iω)‖2

in specified frequency intervals of interest ω ∈ [ωmin, ωmax]. We also approximate the
local, relative errors in the closed frequency range � under the L∞-norm via

relerrL∞,� =
max
ω∈�

‖H(iω) − Ĥ(iω)‖2
max
ω∈�

‖H(iω)‖2 ≈ ‖H − Ĥ‖L∞,�

‖H‖L∞,�

,

using equidistant discretizations of �. In addition to the accuracy of the reduced-
order models, we also compare the number of solutions of full-order n linear systems
performed by each method and the overall resulting computation time. Note that
these values are influenced by the chosen implementation and hardware and do not
necessarily reflect properties of the method itself.

4.1 Unstructured first-order system example

In the first example, we consider a system modeling the structural response of the
Russian Service Module of the International Space Station (ISS) [51]. The system is
given via first-order differential equations (3) and has n = 270 states, m = 3 inputs,
and p = 3 outputs. The transfer function is given by

H(s) = C (sE − A)−1 B.

The model is evaluated for frequencies in the range � = [
1 · 10−2, 1 · 103] rad s−1.

Because of the first-order structure of the full-order model, IRKA can be applied
in this case. Additionally, TF-IRKA, SPTF-IRKA, and StrAIKA are employed to
compute real-valued reduced-order models of size r = 20 each. Sigma plots of the
transfer functions and relative approximation errors for all models are given in Fig. 2.
Table 1 summarizes the performance of the algorithms.
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Fig. 2 First-order system example: All applied methods provide a similar approximation behavior since
no special structure needs to be preserved in the example. Insignificant differences are revealed by the
pointwise relative errors

All employed methods succeed in computing surrogates, which approximate the
original system up to the same degree of accuracy; StrAIKA, TF-IRKA, and
SPTF-IRKA even converge to the same interpolation points. Only IRKA obtains a dif-
ferent local optimum, which results in an insignificantly larger relative approximation
error (cf. Table 1). This meets expectations, as the first-order structure of the origi-
nal system can be represented well by the realization TF-IRKA yields. TF-IRKA
converges after only ten iterations, while the other methods require more. IRKA
performs the fewest decompositions of the full-order matrices and has the shortest
runtime; however, the significance of the runtime is limited for this small example.
StrAIKA requires the most iterations, however not the most matrix decompositions.
The noticeably longer runtime compared to the other methods is related to computing
the intermediate Loewner interpolant in each iteration. In most cases, the computa-
tional cost of this step can be neglected. In this example, however, n is relatively
small compared to q, so the Loewner step has a measurable impact on the runtime of
StrAIKA.

4.2 Time-delayed heated rod

Here, we consider a model of a heated rod with distributed control and homogeneous
Dirichlet boundary conditions, which is cooled by delayed feedback. This system

Table 1 First-order system
example: comparison of the
relative, local L∞-error, the
required number of iterations
niter , the number of solutions of
full-order n linear systems nls,
and the computation time tc

Algorithm relerrL∞,� niter nls tc (s)

StrAIKA 3.67 · 10−2 20 212 1.94

TF-IRKA 3.67 · 10−2 10 660 0.26

SPTF-IRKA 3.67 · 10−2 12 132 0.34

IRKA 4.22 · 10−2 13 130 0.22
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Fig. 3 Time-delay system example: The unstructured approximation computed by TF-IRKA is around
two orders of magnitude less accurate than the structure-preserving reduced-order models computed by
StrAIKA and SPTF-IRKA for smaller to medium frequencies. Overall, StrAIKA provides the most
accurate approximation

has also been analyzed in [52]. A discretization of the underlying partial differential
equation leads to the transfer function

H(s) = C
(
sE − A0 − e−τ s Ad

)−1 B,

with n = 1 000 000 states,m = 5 inputs, and p = 4 outputs. The delay is τ = 1 in this
example. The inputmatrix B has a block structure such that the rod is heated uniformly
at different sections by the inputs. The outputs are the average temperatures on these
sections. For this example, the frequency range � = [

1 · 10−4, 1 · 104] rad s−1 is
considered. For the experiments, we fix the reduced order to r = 10 and compute
reduced-order models with StrAIKA, TF-IRKA, and SPTF-IRKA. The system
cannot be transformed into an equivalent system with first-order structure; therefore,
IRKA cannot be applied in this case. The initial interpolation points are distributed
logarithmically equidistant in i

[
1 · 10−4, 1 · 102] and its complex conjugate. Figure 3

plots the maximum singular values of the transfer functions and the error systems.
Further results are given in Table 2.

In this example, StrAIKA and SPTF-IRKA compute reduced-order models with
comparable accuracy. However, StrAIKA provides the smallest worst-case error of
all methods as shown in Table 2. As expected, the first-order realization computed
by TF-IRKA cannot capture the dynamics of the delay system well and, therefore,

Table 2 Time-delay system
example: comparison of the
relative, local L∞-error, the
required number of iterations
niter , the number of solutions of
full-order n linear systems nls,
and the computation time tc

Algorithm relerrL∞,� niter nls tc (s)

StrAIKA 1.01 · 10−4 37 190 245.07

TF-IRKA 2.06 · 10−2 73 2220 365.24

SPTF-IRKA 2.38 · 10−4 3 29 35.96
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provides an approximation that is around twoorders ofmagnitude less accurate than the
models computed by StrAIKA and SPTF-IRKA. Because of its rapid convergence,
the runtime of SPTF-IRKA is considerably lower than for the other two algorithms.
But also the runtime of StrAIKA is significantly shorter than that of TF-IRKA. Note
thatmost of the systemdynamics happen in the considered frequency range. Therefore,
the intermediate Loewner realizations inside the StrAIKA iterations reach early an
order of r = 150 in this example. StrAIKA chooses the 10 most dominant poles
from all available poles in the frequency region of interest to keep the final reduced-
order model at the desired size. However, the computational effort of StrAIKA is
dominated by solving the linear systems for the construction of the projectionmatrices.
In this example, the subsequent choice of dominant poles hinders a fast convergence
that was observed when applying SPTF-IRKA.

4.3 Viscoelastic beam

This example models a flexible beam with viscoelastic core. The beam of length
l = 0.21m has a symmetric sandwich structure consisting of two layers of cold
rolled steel surrounding a viscoelastic ethylene-propylene-diene core [7]; the beam is
clamped at one side. After discretization, the transfer function of the system is given
by

H(s) = C
(
s2M + K + G0 + G∞ (sτ)α

1 + (sτ)α
G

)−1

B.

The model has n = 3 360 states, m = 1 input, and p = 1 output. The beam is excited
by a single load at its free end, and the displacement is measured at the same location,
resulting in output and input mappings C = 100 · BT = [

0 · · · 0 1
]
. The matrices

M, K , and G are available from [53], and the parameters are chosen as in [53] to be
G0 = 350.4, G∞ = 3.062, τ = 8.230, and α = 0.675. In this example, we limit the
frequency range of interest to� = [

10, 1 · 104] rad s−1. Note that the system’s transfer
function has poles, which lie outside of this range. No maximum reduced order r is set
in this case, so StrAIKA determines it in an adaptive way. The initial interpolation
points are a single complex conjugate pair, where the absolute value of its imaginary
part is located near the mean of the boundaries of the frequency range of interest �.
The automatically determined order is used for the experiments with TF-IRKA and
SPTF-IRKA, where the �r/2� initial expansion points and their complex conjugates
are distributed logarithmically equidistant in �. The sigma plots for the frequency
responses of the reference and the reduced-order models as well as the corresponding
errors are given in Fig. 4. The performance of the methods is shown in Table 3.

StrAIKA converges after ten iterations to a model of size r = 15, i.e., the reduced-
order models computed by TF-IRKA and SPTF-IRKA have order r = 16. All three
algorithms produce reasonably accurate models regarding the reference, while the
model computed by StrAIKA is around three orders of magnitude more accurate
for most frequencies (cf. Figure 4b). Also, the worst-case approximation error of
StrAIKA is around one order of magnitude better than SPTF-IRKA; see Table 3.
This can be explained by the fact that StrAIKA places all interpolation points in
�, while some of the interpolation points obtained by the other two algorithms are
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Fig. 4 Viscoelastic beam example: All methods succeed in computing reasonably accurate reduced-order
models. The relative approximation error of the reduced-order model obtained by StrAIKA is around three
orders of magnitude smaller compared to the other methods for most frequencies

located in the frequency region above 1 · 104 rad s−1, leading to a higher error in �.
SPTF-IRKA did not converge after 50 iterations, resulting in a high computation time.
In terms of computational effort, StrAIKA is clearly advantageous in this example.

4.4 Radio frequency gun

As the last example, we consider a radio frequency gun as described in [54]. Discretiz-
ing the system leads to the transfer function

H(s) = C
(
s2M + i

(
s2 − σ 2

1

) 1
2
W1 + i

(
s2 − σ 2

2

) 1
2
W2 + K

)−1

B,

where σ1 = 0 and σ2 = 108.8774. The full-order model has n = 9 956 states and
the matrices M,W1,W2, and K are taken from [53]. We consider m = 1 input and
p = 1 output. The input vector is populated with values drawn from the standard
normal distribution and the system output is measured at the first degree of freedom,
corresponding to C = [

1 0 . . . 0
]
. These vectors are also part of the code package

supplementing this article [50]. One structural feature of this model is that its system
matrices are real while its transfer function is not reflective, i.e., H(s) = H(s) does

Table 3 Viscoelastic beam
example: comparison of the
relative, local L∞-error, the
required number of iterations
niter , the number of solutions of
full-order n linear systems nls,
and the computation time tc

Algorithm relerrL∞,� niter nls tc (s)

StrAIKA 9.14 · 10−4 10 74 0.71

TF-IRKA 1.04 · 10−3 18 912 0.94

SPTF-IRKA 9.60 · 10−3 50 457 6.83 ∗
The ∗ marks experiments, where the maximum number of iterations
has been reached without convergence
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Fig. 5 Radio frequency gun example: The reduced-order model computed by StrAIKA shows a relatively
uniform accuracy in �, while the surrogate obtained form SPTF-IRKA is only accurate for less than
120 rad s−1. The first-order system computed by TF-IRKA is not able to approximate the dynamics of the
original system at all

not hold for all s ∈ C. Since our interest in approximation accuracy lies here only
in the positive imaginary axis, we use the realification approach from Section 3.2.1
to guarantee the projection bases to be real. The reduced-order models are computed
to approximate the original system in � = [1, 160] rad s−1 and the necessary order
r for the surrogate is automatically determined by StrAIKA. One initial complex
conjugate pair of interpolation points is placed in the middle of �. The initial �r/2�
pairs of interpolation points for TF-IRKA and SPTF-IRKA are distributed linearly
equidistant in �. The sigma plots for the frequency responses of the reference and the
reduced-order models as well as the corresponding relative approximation errors are
shown in Fig. 5. The local, relative L∞-errors and computational costs are presented
in Table 4.

StrAIKA automatically determines a reduced order of r = 15 and computes a
reduced-order model, which is more accurate in terms of the local maximum error
compared to the reduced-order models computed by the other two algorithms. Placing
the interpolation points only inside� leads to a higher accuracy in this region,while the
approximation deteriorates for higher frequencies. StrAIKA converges after 26 iter-
ations and the worst-case approximation error is several orders of magnitude smaller
than for the other methods; see Table 4. SPTF-IRKA reaches convergence after only
4 iterations but the resulting reduced-order model fails to approximate the full-order

Table 4 Radio frequency gun
example: comparison of the
relative, local L∞-error, the
required number of iterations
niter , the number of solutions of
full-order n linear systems nls,
and the computation time tc

Algorithm relerrL∞,� niter nls tc (s)

StrAIKA 2.71 · 10−8 26 216 63.35

TF-IRKA 1.00 100 4848 1481.25 ∗
SPTF-IRKA 1.00 4 54 14.49

The ∗ marks experiments, where the maximum number of iterations
has been reached without convergence
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model for frequencies larger than 120 rad s−1. The unstructured method TF-IRKA
does not converge in the maximum number of iterations and fails to compute an
accurate reduced-order model. The comparison to TF-IRKA again shows the impor-
tance of structure-preserving model order reduction strategies. Note that although
StrAIKA starts with a single complex conjugate pair of interpolation points, the
resulting reduced-order model is able to capture all important system dynamics in
the required frequency range by determining a reasonable size for the reduced-order
model.

5 Conclusions

In this paper, we proposed StrAIKA, a new algorithm that computes structure-
preserving reduced-order models of systems with arbitrary transfer function structure
in an iterative way. Similar to other IRKA-likemethods,StrAIKA usesmirror images
of the poles of intermediate reduced-order model transfer functions as interpolation
points for the next iteration. In each iteration, the Loewner framework is used to
compute first-order realizations of transfer function data collected from the current
reduced-order model, whose matrix pencil eigenvalues are the basis for the inter-
polation points in the next iteration. StrAIKA automatically determines a size for
the reduced-order model by considering the eigenvalues located in a given frequency
range of interest. This ensures a reasonable approximation of the system dynamics at
least in these regions. StrAIKA is completely agnostic to the actual transfer function
structure of the original model and does not require any transfer function derivatives.

We demonstrated the versatility and effectiveness of StrAIKA in four numerical
examples with different internal structures. The benchmark systems model structural
vibration, heat transfer with internal delay, viscoelasticity, and radio wave propaga-
tion. While StrAIKA cannot guarantee optimality similar to other projection-based
approaches for structured systems, it showed comparable or even significantly better
accuracy with respect to established IRKA-like methods. In the case of a structured
transfer function and if only a limited frequency range is of interest for the application,
StrAIKA easily outperforms methods that optimize the approximation error under
theH2-norm in terms of accuracy and often also in terms of the required computational
effort.

An open question that has not been covered in this paper is the preservation of
additional system properties like stability. However, the preservation of such system
properties has only been solved for particular system structures such as first-order
systems or second-order systems with a mechanical matrix structure. For the case of
generally structured systems as considered in this paper, no solution to this problem for
projection-based model reduction is known yet. Another idea for future investigations
is the reduction of the computational costs of StrAIKA by considering an additional
layer of approximation as it has been done for IRKA-like methods in [30, 38].
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