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Effective simulations of interacting 
active droplets
Ajinkya Kulkarni , Estefania Vidal‑Henriquez  & David Zwicker  *

Droplets form a cornerstone of the spatiotemporal organization of biomolecules in cells. These 
droplets are controlled using physical processes like chemical reactions and imposed gradients, 
which are costly to simulate using traditional approaches, like solving the Cahn–Hilliard equation. To 
overcome this challenge, we here present an alternative, efficient method. The main idea is to focus 
on the relevant degrees of freedom, like droplet positions and sizes. We derive dynamical equations 
for these quantities using approximate analytical solutions obtained from a sharp interface limit and 
linearized equations in the bulk phases. We verify our method against fully-resolved simulations and 
show that it can describe interacting droplets under the influence of chemical reactions and external 
gradients using only a fraction of the computational costs of traditional methods. Our method can 
be extended to include other processes in the future and will thus serve as a relevant platform for 
understanding the dynamics of droplets in cells.

Phase separation has recently been recognized as a powerful mechanism to organize biomolecules in the interior 
of biological cells1–5. The droplets that spontaneously form via phase separation allow cells to sort molecules 
into compartments, which facilitates different functions, including controlling reactions6,7, storing molecules8, 
and buffering stochastic noise9. To control these processes, cells need to regulate phase separation in space and 
time. Examples for control mechanisms include chemical gradients10–13, chemical modifications of the involved 
molecules14–20, and global parameters, like pH and temperature21–26. Numerical simulations offer an attractive 
way to investigate these physical systems to understand how cells control their many droplets.

The dynamics of droplets are often simulated using the Cahn-Hilliard equation27–29. This fourth-order partial 
differential equation is typically expensive to simulate since it requires fine spatial discretization and small time 
steps. Earlier approaches have improved the computational speed of numerical simulations of the Cahn–Hill-
iard equation using multi-grid methods30, finite element modeling31,32, incorporating mesh-less methods33, and 
adaptive grids34,35, but the fundamental drawbacks still persist. Other approaches, such as Molecular Dynamics 
simulations36,37 and Monte-Carlo methods38, have also been used to simulate phase separation, but are also 
computationally expensive since they resolve details that are often not necessary for predicting the dynamics 
of droplets.

In this paper, we present a fast and efficient numerical method for simulating the dynamics of many interact-
ing droplets. The method is based on analytical results from a thin-interface approximation of the continuous 
Cahn–Hilliard equation39. In our effective model, we describe only the dynamics of the necessary degrees of 
freedom, which are the droplet positions and radii as well as some coarse information about the dilute phase. 
The interaction of the droplets via the dilute phase is captured by discretizing their vicinity into thin annular 
sectors. The dynamics of droplet growth and drift follows from material fluxes exchanged between the droplet 
and the dilute phase, which are obtained from solving a steady-state reaction–diffusion equation inside all sec-
tors. We present the model by first introducing the basic thermodynamic principles of phase separation, then the 
analytical theory behind the effective droplet model, and finally the details of the numerical method describing 
the dynamics of the droplets and dilute background.

Model
The main idea of our model is to replace the detailed description of the entire concentration field by the relevant 
degrees of freedom of the droplets. We focus on the typical situation of well-separated droplets that are spherical 
due to surface tension, and thus describe the droplets by their positions xi and radii Ri . To build up the theory 
systematically, we will next introduce the continuous theory, the analytical description of isolated droplets, and 
then the full effective model.
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Continuous theory of phase separation.  We consider an isothermal, incompressible fluid in a closed 
system of volume Vtot that consists of solvent and droplet material. The composition is described by the volume 
fraction φ(x, t) of the droplet material, while the solvent volume fraction is given by 1− φ . The thermodynamic 
state of the system is governed by the free energy functional F[φ] =

∫ (

f (φ)+ κ
2 |∇φ|2

)

dV  ; see ref.28, where κ 
is a parameter related to the interfacial tension, while phase separation is promoted by the free energy density 
f (φ) . For simplicity, we here consider a polynomial form,

where the minima φ0
in and φ0

out are the equilibrium concentrations in a thermodynamically large system and 
b denotes the energy scale. The dynamics of the system follow from the continuity equation, ∂tφ +∇ · j = s . 
Here, j denotes spatial fluxes, which for simplicity will only be driven by diffusive processes, so hydrodynamic 
fluxes are neglected. Conversely, s is a source term related to chemical reactions that convert droplet material 
into solvent and vice versa39. Chemical reactions are typically local and often described by rate laws that depend 
on composition. Conversely, the non-local diffusive fluxes j are driven by gradients in chemical potential

where ν is the molecular volume of the droplet material. Linear non-equilibrium thermodynamics implies 
j = −�(φ)∇µ , where �(φ) is a positive mobility40. Hence,

is a fourth-order, non-linear partial differential equation requiring two boundary conditions. We here focus on 
the typical choice of no-flux conditions ( n ·∇µ = 0 ) and that solvent and droplet material interact identically 
with the system’s boundaries ( n ·∇φ = 0 ), where n denotes the normal vector at the boundary.

In the case without chemical reactions ( s = 0 ), Eq. (3) reduces to the seminal Cahn–Hilliard equation28, 
which describes passive phase separation. In particular, two bulk phases with composition φ0

in and φ0
out typically 

emerge. These phases are separated by an interface of width w = 2
√
κ/b with surface tension γ = 1

6

√
bκ27,39. 

When chemical reactions are weak, this general structure is typically preserved, although long-term dynamics, 
like Ostwald ripening, can be strongly modified39. Strong chemical reactions can actually destroy droplets39 and 
they might also lead to more complicated patterns41,42, which go beyond the scope of this paper. Instead, we here 
focus on situations where well-defined droplets with a thin interface are typical.

The dynamics given by Eq. (3) adequately describe phase separation, but it can be prohibitively costly to 
simulate due to multiple reasons: (1) The interface needs to be resolved, implying discretizations on the order of 
the typically small interface width w. (2) The equation contains fourth-order derivatives in space, which often 
limits the time steps. (3) Interesting dynamics often take place on very long time scales. For instance, during 
Ostwald ripening43,44, length scales in the system evolve as t1/3 , requiring long simulations to capture relevant 
behaviour. However, since we are interested primarily in modelling dynamics of droplets, we circumvent these 
problems by focusing only on phase separation inside the nucleation and growth regime of the free energy 
density, and assume that sufficiently finite perturbations have already nucleated droplets. We employ the thin-
interface approximation39, which is a coarse-grained analytical formulation of the continuous model Eq. (3) valid 
when the system is subject to strong phase separation, low variation of volume fractions in the droplet phase and 
the dilute phase, and large droplet sizes compared to the interface width. This analytical approach was utilized 
earlier to study kinetics of many-droplet systems and effects of chemical reactions on such systems39.

In the next section, we elaborate on using the thin-interface approximation to build an effective droplet model 
describing the dynamics of droplets and dynamics of the dilute phase separately, instead of the full volume frac-
tion field from the continuous model, thus effectively ‘de-coupling’ the description of phase separated droplets 
from the dilute phase.

Effective description of isolated droplets.  To build the effective model, we next derive approximate 
descriptions of the dynamics of the radius R and position x of an isolated droplet. Since we only consider spheri-
cal droplets with a thin interface ( R ≫ w ) and weak chemical reactions, we can use basic thermodynamics to 
derive the equilibrium concentrations inside and outside of the interface of the droplet, denoted by φeq

in  and 
φ
eq
out , respectively. Due to surface tension effects, they are slightly elevated above the basal values φ0

in and φ0
out 

prescribed by the free energy density; see Eq. (1). To first order in the curvature of the surface, we have 

 where lγ ,out and lγ ,in are capillary lengths27. In our case they read lγ ,in = (κ/b)1/2/[3φ0
in

(

φ0
in − φ0

out

)3] and 
lγ ,out = (κ/b)1/2/[3φ0

out

(

φ0
in − φ0

out

)3] in three dimensions. The dynamics of the volume fraction field φin inside 
the droplet is in principle described by Eq. (3), but since the composition typically hardly varies, we can linearize 
φin around φ0

in to obtain

(1)f (φ) =
b

2
(φ − φ0

out)
2(φ − φ0

in)
2 ,

(2)µ = ν
δF

δφ
= b(φ0

in − φ)(φ0
out − φ)(2φ − φ0

in − φ0
out)− κ∇2φ ,

(3)
∂φ

∂t
= ∇ · [�(φ)∇µ] + s(φ) ,

(4a)φ
eq
in = φ0

in

(

1+
lγ ,in

R

)

and

(4b)φ
eq
out = φ0

out

(

1+
lγ ,out

R

)

,



3

Vol.:(0123456789)

Scientific Reports |          (2023) 13:733  | https://doi.org/10.1038/s41598-023-27630-3

www.nature.com/scientificreports/

where Din = �(φ0
in) b is the diffusivity and kin = −s′(φ0

in) denotes the reaction rate27. Generally, positive rates 
( kin > 0 ) stabilize the volume fraction φin , while negative rates might destabilize it. However, the instability is 
suppressed when the droplet radius R is small compared to the reaction–diffusion length scale, ξin =

√
Din/|kin|

27. Since we here consider weak chemical reactions, ξin will be large, and we thus assume R ≪ ξin in the following. 
We use this to solve Eq. (5) in stationary state in a system with angular symmetry using the boundary conditions 
φin(R) = φ

eq
in  and ∂rφin(0) = 0 . The analytical result allows us to estimate the diffusive flux jin inside the interface,

where d is the space dimension; see Supporting Information, Section III. Production of droplet material inside the 
droplet ( s(φeq

in ) > 0 ) leads to an outward flux jin · n > 0 , which can drive droplet growth. Conversely, destroying 
droplet material ( s(φeq

in ) < 0 ) promotes shrinking droplets. Droplets might also grow if they take up material 
from the surrounding. Similarly to inside of droplets, the volume fraction φout will typically vary only little, so 
we can linearize around the base value φ0

out to obtain the reaction–diffusion equation

where Dout = �(φ0
out) b is the diffusivity outside droplets. Solving this equation and obtaining the corresponding 

flux jout outside the droplet is more difficult since the environment of the droplet might not be isotropic. We thus 
discuss the coupling of droplets to the dilute phase φout in more detail in the next section.

If we know the fluxes jin and jout , we can determine the net accumulation of droplet material at the interface, 
which implies droplet growth. Note that only the normal components of the fluxes affect the shape, while the 
tangential components merely distribute material parallel to the interface. The shape changes of an isolated 
droplet are thus described by the interfacial speed vn in the normal direction27,

see Supporting Information, Section I. General shape changes can result in non-spherical droplets, but since 
surface tension effects typically ensure a near-spherical shape, we project the general shape onto the degrees of 
freedom that we use to describe the droplet, 

 where the integral is over the droplet surface, d is the space dimension, and S is the surface area of the droplet; see 
Supporting Information, Section II. Here, the first equation describes how material accumulates at the interface 
due to sum of all normal fluxes vn , leading to growth. The second equation describes how the weighted sum of 
all vectorial fluxes gives rise to drift. Taken together, Eq. (9) determines how an isolated droplet evolves in time. 
This involves Eqs. (4), (6), (8) as well as an approximation for the fluxes jout outside the droplet interface, which 
is the central part of our method that we discuss next.

Numerical model for many droplets.  The dynamics of many droplets in the same system are coupled 
since they may exchange material via the dilute phase. To describe this exchange, and ultimately derive the flux 
jout at each droplet, we first consider the dynamics of the volume fraction of the dilute phase φout . In principle, 
the dynamics of φout follows from Eq. (7), with appropriate boundary conditions applied at the system’s bound-
ary and at all droplet surfaces. To simplify the description of the dilute phase, we assume that φout is defined in 
the entire system, including where droplets are; see Fig. 1A. In this picture, droplets are local perturbations that 
exchange material with the background field φout.

Dynamics of the background field.  The background field φout changes due to diffusion and reactions, even if 
droplets are absent. To capture this dynamics, we discretize the continuous field φout on a uniform Cartesian grid 
with a distance �x between the neighbouring support points. We then evolve Eq. (7) in time using finite central 
differences and explicit temporal stepping45. Since we do not need to resolve droplets at this scale, the spatial 
discretization can be much larger than in traditional Cahn–Hilliard equations.

Growth of a single droplet in a background field.  To obtain the flux jout in the vicinity of an isolated droplet, 
we need to determine φout in the region surrounding this droplet. We do this by considering Eq. (7) in an 
annular shell of thickness ℓ surrounding the droplet, which we further discretize into N sectors in the angular 
dimensions; see Fig. 1. In two-dimensional systems, we place sectors of equal size uniformly around the circle. 
Such symmetric placement is impossible in three dimensions, where we instead place N points approximately 
uniformly on the sphere and use a spherical Voronoi tessellation 46 to determine the corresponding sectors. In 

(5)
∂φin

∂t
≈ Din∇

2φin + s(φ0
in)− kin(φin − φ0

in) ,

(6)jin ≈
R

d
s(φ

eq
in ) n ,

(7)
∂φout

∂t
≈ Dout∇

2φout + s(φout) ,

(8)vn ≈
jin − jout

φ
eq
in − φ

eq
out

· n ;

(9a)
dR

dt
=

1

S

∫

vn dA and

(9b)
dx

dt
=

d

S

∫

vn n dA ,
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both cases, we assume that fluxes in the angular directions are negligible for simplicity, so we can express the 
volume fraction in the m-th sector as φ(m)

out (r) , where r is a radial coordinate measuring distance from the droplet 
position x . We determine φ(m)

out (r) using Eq. (7) in stationary state with the boundary conditions φ(m)
out (R) = φ

eq
out 

and φ(m)
out (R + ℓ) = φ

(m)
shell . Here, φ(m)

shell is the volume fraction of droplet material in the background field at the 
outer side of the m-th shell sector, which we estimate from a linear interpolation of the discretized background 
field φout ; see Fig. 1. Since φ(m)

out (r) typically varies only marginally in the shell sector, we also linearize the reac-
tion flux, s(φ(m)

out ) ≈ Ŵout − kout φout , by imposing s(φ(m)
out )(R) = s(φ

eq
out) and s(φ(m)

out )(R + ℓ) = s(φ
(m)
shell) . This 

implies Ŵout = [φ(m)
shell s(φ

eq
out)− φ

eq
out s(φ

(m)
shell)]/(φ

(m)
shell − φ

eq
out) and kout = [s(φeq

out)− s(φ
(m)
shell)]/(φ

(m)
shell − φ

eq
out) . 

Taken together, we obtain an analytical approximation of φ(m)
out (r) in each shell sector, from which we determine 

the local normal flux j(m)
out  outside the droplet; see Supporting Information, Section IV. Using these expressions 

together with Eqs. (6), (8) and (9), we find that individual droplets evolve according to 

where R and S are radius and surface area of the droplet, respectively, Am is the inner area of the shell sector 
and nm is the unit vector pointing from the droplet center to the m-th shell center; see Fig. 1. We use Eq. (10) 
to describe how internal reactions and external material exchange with the background affects the dynamics of 
each droplet.

Coupled dynamics of droplets and the background field.  Equation (10) describe how droplets change when they 
exchange droplet material with the background field φout . Due to material conservation, the material flux from 
the droplet toward each sector m, j(m)

out · nAm , needs to accumulate in the background field. We use a linear 
interpolation at the midpoint of the inner boundary of the shell section (red points in Fig. 1B) to add the respec-
tive amount to the background field φout . Note that negative fluxes j(m)

out  distribute material from the background 
field to the droplet and thus lead to growth. Taken together, this procedure ensures material conservation while 
preserving anisotropies of the exchange.

Full simulation.  The full numerical method evolves the state of the system, i.e., the discretized background 
field φout(r) and the positions xi and radii Ri of all droplets, in time. We propose an explicit iteration, where the 
state at t +�t is directly determined from the state at time t. Here, we first evolve the reaction–diffusion equa-
tion Eq. (7) of the background field and then iterate over all droplets. For each droplet, we determine the fluxes 
j
(m)
out · n for all shell sectors m and remove the associated material from the background field. We then update the 

droplet’s position and radius according to Eq. (10). Starting from an initial state at t = 0 , this algorithm allows 
us to evolve the dynamics forward in time.

Choosing simulation parameters.  The algorithm described above has several parameters that need to be 
chosen wisely for an accurate and fast simulation. In particular, we need to specify the discretization �x of the 
background field, the shell thickness ℓ , the typical size �s of a shell sector, and the time step �t . We next discuss 

(10a)
dR

dt
≈

1

φ
eq
in

N
∑

m=1

Am

S

(

R

d
s(φ

eq
in )− j

(m)
out

)

and

(10b)
dx

dt
≈

d

φ
eq
in

N
∑

m=1

Am

S

(

R

d
s(φ

eq
in )− j

(m)
out

)

nm ,

Figure 1.   Schematics of the simulation model, describing droplets and the background field φout . (A) Droplets 
co-exist with the background field φout and interact with it only through material fluxes. For simplicity, φout also 
exists at the location of the droplets, but this has negligible effect on the dynamics. (B) Isolated droplet (yellow) 
with a surrounding shell of thickness ℓ , which is further discretized in N sectors of linear size �s . The exchange 
fluxes between droplet and background are determined in each sector based on the equilibrium fraction φeq

out 
(red dots) and the value φ(m)

out  at the outer side (black dot), which is determined from the background field using 
bilinear interpolation. The background field φout is uniformly discretized on a Cartesian grid (gray grid).
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suitable values for all four parameters using detailed simulation of the continuous model given by Eq. (3) as 
ground truth. We later show that the resulting choice for the parameters can recapitulate many effects that have 
been described previously in the literature.

To calibrate the simulation parameters, we compare our effective model to the established continuous model 
given by Eq. (3). Our test case consists of two passive droplets of initial radius R0 = 20w whose centers are sepa-
rated by Sd = 10R0 . The droplets are placed in a background of vanishing initial volume fraction, φout(r, 0) = 0 , 
so the system is under-saturated and the droplets will shrink. For the continuous model, we exploit the angular 
symmetry of the problem and consider an azimuthally symmetric cylindrical domain where r, z ∈ [0, 682w] . 
Conversely, our effective model is simulated in a 3-dimensional cubic domain of size [0, 1000w]3 . We compare 
the final radii of the droplets after a duration T, where the droplets typically have shrunk by about 20% . The 
deviation of the mean droplet radius �R∗� of our effective model compared to the radius 〈RCM〉 of the continuous 
model allows us to determine the crucial simulation parameters �x , ℓ , and �s.

Grid discretization �x.  The spatial discretization �x determines the resolution at which variations of the back-
ground field φout are resolved. Consequently, the choice of �x is based on the problem: If spatial interactions 
are negligible and a mean-field model is desired, �x can be arbitrarily large. Conversely, if spatial correlations 
between droplets are important, �x needs to be smaller than the droplet separation. Another case are external 
gradients that affect droplets12, where �x needs to be on the order of the droplet radii, so spatial anisotropies can 
be resolved on the droplet level.

Annular shell thickness ℓ.  The most crucial part of our numerical method describes how material exchanges 
between the droplets and the background field. To describe this exchange faithfully, we interpolate the back-
ground field in an annular shell around the droplet. The thickness ℓ of this shell can thus be interpreted as an 
interpolation length scale and its value affects the accuracy of the simulation: If ℓ ≪ �x , the fluxes j(m)

out  are 
overestimated since they scale with ℓ−1 ; see Supporting Information, Section IV. Conversely, if ℓ ≫ �x , the 
background field would not be evaluated in the vicinity of the droplet, so interactions cannot be captured cor-
rectly. Taken together, we conclude that ℓ ∼ �x is a reasonable choice for the shell thickness. Indeed, Fig. 2A 
shows that this choice leads to a faithful estimate of the droplet growth for various values of �x.

Shell sector width �s.  To resolve spatial anisotropies around a droplet, we discretize the shell into N sectors; see 
Fig. 1B. To obtain φshell for each sector, the background field φout is interpolated once per sector. Consequently, a 
larger number of sectors leads to a finer discretization and potentially a higher accuracy at the expense of larger 
computational cost. However, the accuracy is limited by the background discretization �x as increasing N will 
have hardly any benefit if the distance �s between interpolation points is already smaller than �x . For two and 
three dimensions, we respectively use �s ≈ 2πR/N and �s ≈

√

4πR2/N  ; see Fig. 1B. Using �s ∼ �x , we can 
solve these equations for N, so that we can determine the number of sectors for each droplet based on its instan-
taneous radius R . Note that this implies that the dynamics of larger droplets will be described by more sectors 
to faithfully capture the interaction with their surrounding. Fig. 2B shows that the shell sector size �s has only 
marginal effects in simple situations.

Time step �t.  While the three previously discussed parameters affect material fluxes between droplets and 
background, the time step �t determines the accuracy of dynamics of the model. Smaller values of �t imply 
more accurate simulations, while larger values result in faster simulations, although numerical instabilities might 

Figure 2.   Effect of annular shell thickness ℓ and sector size �s in simulations of a passive droplet pair. (A) Mean 
droplet size �R∗� (filled dots) as a function of ℓ for various �x (vertical dotted lines) using �s ≈ R0 . The ground 
truth 〈RCM〉 (black dashed line) is obtained from the continuous model. (B) �R∗� as a function of �s (filled 
dots) for various �x using ℓ ≈ R0 , with 〈RCM〉 shown as the black dashed line. (A, B) Two droplets with radii 
R0 = 20w are placed with their centers 10R0 apart in an empty background, φout(r, t = 0) = 0 . Continuous 
simulations given by Eq. (3) used an azimuthally symmetric cylindrical domain with bounds r, z ∈ [0, 682w] 
with a spatial discretization of 0.5w. Effective simulations used a 3-dimensional cubic domain of size [0, 1000w]3 
and lγ ,in = 0.166w . Additional parameters are s = 0 , � = w2/bτ , φ(0)

out = 0 , φ(0)
in = 1 , τ = w2/Dout , and 

w = 2
√
κ/b.
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also render simulations unstable. We next separately analyze the dynamics of the background field, the shell, and 
the droplet growth to identify the maximal suitable value of �t.

The dynamics of the background are described by the partial differential equation Eq. (7), which we here 
solve using a simple explicit Euler scheme. A standard von Neumann stability analysis shows that this scheme is 
stable if �t < �x2/(2Dout) , where Dout is the diffusivity in the background field. Consequently, a suitable time 
step for evolving the background field is �tbackground = 0.1�x2/Dout , where we chose the constant pre-factor 
conservatively. Similarly, we define �tshell = 0.1ℓ2/Dout for the shell. To ensure faithful dynamics of droplet 
growth, we demand that the relative growth R−1|dR/dt| is small during a single time step �t . Assuming that 
typical droplets are not much smaller than the mean initial droplet radius 〈R〉 , this implies a maximal time step 
�tdrop = 0.1�R�2/Dout . Finally, we also consider the time scale of reactions, �treaction = 0.1/(maxφ |s(φ)|) , based 
on the maximal rate of s(φout) . Taken together, we set the time step of the simulation to the minimal value of the 
four limiting time scales determined above.

Validation
We showed above that �x ≈ ℓ ≈ �s is a sensible choice for the parameters of our algorithm. To see how this 
choice affects accuracy and speed of the simulation, we next present three simulation scenarios, which range 
from single droplets in an heterogeneous environment to coarsening of large dilute emulsions.

Passive droplet in external gradient.  We first consider a single droplet in an external composition gra-
dient, which is maintained via boundary conditions. Biological cells use such a setup to control the position of 
droplets in their interior10,12,47. Fig. 3 shows that the effective droplet model captures the drift and growth of the 
passive droplet quantitatively. While the resulting dynamics are very similar, the run time of the simulations 
are very different: The continuous model took roughly one day to complete, while the effective model finished 
within 10 seconds on identical hardware. Since the continuous model is much slower, we performed some tests 
in the subsequent sections only with the effective model.

Active droplet with logistic growth.  We next test whether our effective model also captures the growth 
of droplets subjected to non-linear chemical reactions. We here consider logistic growth, s(φ) = kφ(1− aφ) , 
where k sets the reaction rate and a determines the chemical equilibrium; the parameter a−1 is often called the 
carrying capacity. In a phase separating system, these reactions produce droplet material outside the droplet 
(where φ < a−1 ) and destroy it inside (assuming φ0

out > a−1 ). These reactions are thus qualitatively similar to 
the active droplets with linear chemical reactions that we discussed above. However, the non-linear chemical 
reactions now lead to a non-monotonous growth of the active droplet; see Fig. 4. Our effective model captures 
this intricate behaviour quantitatively; the deviations to the full simulation of the continuous model are small. 
Taken together, our effective model adequately describes the behaviour of single active droplets, even if the 
chemical reactions are non-linear.

Mean‑field coarsening of passive droplets.  We next consider the interactions of many passive droplets 
in a dilute emulsion. When droplets only interact via the spatially averaged background field, Lifshitz and Slyo-
zov predicted that the average droplet radius 〈R〉 grows as t1/3 in this case43,44,48. Our simulation of 105 droplets 
indeed recovers this scaling (Fig. 5A) when we mimic this situation by setting the discretization �x to the system 
size. Moreover, Fig.  5B shows that the distribution of radii also follows the universal shape 

Figure 3.   Droplet dynamics in external gradients. (A) Droplet radius R as a function of time t compared to the 
analytical prediction (dashed line) from the thin-interface approximation27, the effective droplet model (blue), 
and the continuous model (orange). The inset shows a schematic of the simulation with the gradient imposed 
in the background. (B) Droplet drift speed v as function of t compared to the analytical prediction (dashed 
line) from the thin-interface approximation27. (A, B) The continuous model uses a cylindrical domain with 
r ∈ [0, 400w] , z ∈ [−L2, L2] with L2 = 600w , azimuthal symmetry, and boundary conditions µ(z = −L2) = 0 
and µ(z = L2) = 0.072 bw3 to impose the gradient. The effective model uses a 3-dimensional box of size 
[−L3, L3]3 with L3 = 422w , �x = R0 , ℓ ≈ �s ≈ R0 , and boundary conditions φout(y = −L3) = 0.01483 
and φout(y = L3) = 0.0851 . Note that in the absence of droplets, boundary conditions imply identical linear 
gradient in the continuous model as φ = φ(z) and in the effective droplet model as φout = φout(y) , which were 
also used to initialize the background for both models. Remaining parameters are specified in Fig. 2.
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H(ρ) = 4
9ρ

2
(

1+ ρ
3

)−7/3
(

1− 2ρ
3

)−11/3
exp

(

1− 3
3−2ρ

)

 , where ρ = R/�R� is a scaled droplet size43. Our effec-
tive model thus faithfully captures the dynamics of many droplets, optionally even beyond the Lifshitz-Slyozov 
regime by increasing the spatial resolution to capture correlations in droplet growth.

Mean‑field coarsening of active droplets.  As a final example, we consider the interaction of many 
active droplets in a dilute emulsion. Here, we focus on the simplest case of a first-order reaction between the 
solvent and the droplet material, which is known to suppress Ostwald ripening27,39. We thus solve Eq. (3) using 
the reaction flux s(φ) = kf (1− φ)− kb(φ) . Fig.  6 shows that the emulsions with broad initial sizes quickly 
converge to mono-disperse distributions in 2 and 3 dimensions. The droplet size in stationary state is very close 
to the theoretical prediction, which we obtain numerically from the condition jin = jout using Eqs. (5) and (7). 
Taken together, we thus demonstrated that our effective model faithfully recovers important physical behaviour 
of active droplets.

Outlook and discussion
We showed that our effective method is orders of magnitudes faster than the continuous model while still accu-
rately capturing the dynamics of droplets under the influence of chemical reactions and external gradients. To 
demonstrate that the method also extends to more challenging situations, we finally simulate the combination 
of chemical reactions and external gradients on the dynamics of the droplets. Fig. 7 shows that droplets grow 
as they drift along the gradient and they approach the fixed radius given by R3D , so that this system controls 
droplet drift and size. Taken together, our simulations demonstrate that the novel simulation method captures 
the dynamics of interacting active droplets efficiently.

To gain the significant speed-up, our approach focuses on relevant degrees of freedom and leverages analyti-
cal results. This method can in principle be extended to more challenging situations in the future. For instance, 
droplets embedded in an elastic matrix affect each others growth, which can be described by similar effective 
theories49,50. Similar dynamics will also inform the dynamics of droplets in cells, where for instance chromatin 

Figure 4.   Non-linear growth of a single active droplet. Droplet radius R as a function of time t for the 
continuous model (orange) and the effective droplet model (blue). The continuous model uses a spherically 
symmetric domain with r ∈ [0, 100w] . The effective model uses a 3-dimensional box of size [− L

2 ,
L
2 ]

3 with 
L = 161w , �x ≈ ℓ ≈ �s ≈ R0 = 20w . Model parameters are s(φ) = kφ(1− aφ) , φout(t = 0) = 0.1 , 
k = 10−4τ−1 with a = 2 . Remaining parameters are specified in Fig. 2.

Figure 5.   Ostwald ripening of passive droplets. (A) Mean droplet radius 〈R〉 as a function of time t shows the 
expected43,44 scaling �R� ∝ t1/3 . Inset shows snapshot at t = 2× 108τ . (B) Frequency H(ρ) of the normalized 
radius ρ = R/�R� at t = 2× 108τ compared to the expected universal distribution (black)43,44. (A, B) 
Simulations were carried out in a 3-dimensional periodic cubic domain of size [0, L]3 , where L = 104w . We 
used �x ≈ ℓ ≈ L and a single shell sector to approach the mean field solution. 105 droplets were initialized with 
radii chosen uniformly in [9.5w, 10.5w] in an initial background φout(t = 0) = 0.05 . Remaining parameters are 
specified in Fig. 2.
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and the cytoskeleton suppress coalescence of condensates51–53. Our method can in principle also account for fluid 
flows, which are present in many liquid-like systems 10,54,55. Here, large scale flows will advect the droplets and 
also affect the background field. Finally, we could account for Brownian motion of droplets, their coalescence 
upon contact, and their spontaneous division in sufficiently strongly driven systems 56,57. In particular, droplets 
have shown anomalous coarsening behavior in cells, primarily due to hindrance and physical barriers which 
curb their ability of coalesce51,52,58,59. Extending our effective method to account for these physical processes will 
allow analyzing more and more complex situations, approaching the complexity necessary to understand the 
behavior of many droplets in biological cells.

In summary, we have demonstrated that our effective method faithfully captures the effects of chemical 
reactions and external chemical gradients. The method is several orders of magnitude faster than traditional 
continuous models, making it viable for fast and computationally efficient simulations of systems with many 
droplets. More importantly, our model provides a modular platform, which can be extended with other relevant 
physical phenomena affecting droplets, thus shedding insights on the formation, dissolution, stability, and sizes 
of biomolecular condensates.

Data availability
The source code of the project is freely available under the https://​doi.​org/​10.​5281/​zenodo.​73374​74 and https://​
github.​com/​zwick​er-​group/​agent-​based-​emuls​ions. The datasets generated during the current study are available 
under the https://​doi.​org/​10.​5281/​zenodo.​73724​89.
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Figure 6.   Suppression of Ostwald ripening by first-order chemical reactions. (A, B) Radii R as a function of 
time t of droplets evolving in d = 2 dimensions (A) and d = 3 dimensions (B). The theoretically expected radii 
are indicated by dashed horizontal lines. 100 droplets with radii chosen uniformly in [10w, 50w] were placed 
in a periodic cubic domain of size [0, L]d with L = 1000w . Model parameters are s(φ) = kf (1− φ)− kbφ , 
φout(t = 0) = kf /(kf + kb) , kf = 10−5τ−1 , kb = 10−4τ−1 , �x ≈ ℓ ≈ L , and a single shell sector for all 
droplets. Remaining parameters are specified in Fig. 2.

Figure 7.   Active droplets in an external gradient. (A, B) Snapshots of two-dimensional projections of the 
three-dimensional system at times indicated above the frame, showing droplets drift up the gradient (black 
arrow). White circles denote droplets while color indicates the volume fraction in the background field. 
(C) Droplet radius R as a function of time t indicating that all droplets reach R3D (dashed line); compare to 
Fig. 6. (A–C) Four droplets with radii chosen uniformly from [0.8R0, 1.2R0] were placed in a cubic Cartesian 
domain of size [− L

2 ,
L
2 ]

3 with boundary conditions φout(x = − L
2 ) = 0 and φout(x = L

2 ) = 0.1 to impose 
the gradient and no-flux boundary conditions at the remaining system boundaries. Model parameters are 
L = 103w , �x ≈ ℓ ≈ �s ≈ R0= 40w , s(φ) = kf (1− φ)− kbφ , φout(t = 0) = kf /(kf + kb) , kf = 10−5τ−1 and 
kb = 10−4τ−1 . Remaining parameters are specified in Fig. 2.

https://doi.org/10.5281/zenodo.7337474
https://github.com/zwicker-group/agent-based-emulsions
https://github.com/zwicker-group/agent-based-emulsions
https://doi.org/10.5281/zenodo.7372489
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