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Summary 

The ability to stably maintain visual information over brief delays is central to cognitive 
functioning. One possible way to achieve robust working memory maintenance is by having 
multiple concurrent mnemonic representations across multiple cortical loci. For example, early 
visual cortex might contribute to storage by representing information in a “sensory-like” format, 
while intraparietal sulcus uses a format transformed away from sensory driven responses. As an 
explicit test of mnemonic code transformations along the visual hierarchy, we quantitatively 
modeled the progression of veridical-to-categorical orientation representations in human 
participants. Participants directly viewed, or held in mind, an oriented grating pattern, and the 
similarity between fMRI activation patterns for different orientations was calculated throughout 
retinotopic cortex. During direct perception, similarity was clustered around cardinal 
orientations, while during working memory the obliques were represented more similarly. We 
modeled these similarity patterns based on the known distribution of orientation information in 
the natural world: The “veridical” model uses an efficient coding framework to capture 
hypothesized representations during visual perception. The “categorical” model assumes that 
different “psychological distances” between orientations result in orientation categorization 
relative to cardinal axes. During direct perception, the veridical model explained the data well in 
early visual areas, while the categorical model did worse. During working memory, the veridical 
model only explained some of the data, while the categorical model gradually gained explanatory 
power for increasingly anterior retinotopic regions. These findings suggest that directly viewed 
images are represented veridically, but once visual information is no longer tethered to the 
sensory world, there is a gradual progression to more categorical mnemonic formats along the 
visual hierarchy.  
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Introduction 

Holding images in mind over a brief delay is central to cognition, as it allows for the retention 
and manipulation of information that cannot be viewed directly. Visual working memory (VWM) 
recruits early visual cortex, including primary visual area V1 – as indexed by response patterns 
recorded with fMRI (Harrison & Tong, 2009; Serences et al., 2009; Christophel, Hebart, & Haynes, 
2012; Riggall & Postle, 2012; Ester, Sprague, & Serences, 2015; Bettencourt & Xu, 2016; Lorenc 
et al., 2018; Christophel et al., 2018). Being the first cortical processing site of visual inputs, the 
role of V1 during perception is fundamentally different from its role during visual working memory. 
This is because in the absence of direct visual input, mnemonic information in V1 and other early 
visual areas must necessarily be generated internally. Famously, “sensory recruitment theory” 
posits that higher-order frontal and parietal regions of the brain that are active throughout the 
working memory delay (Fuster & Alexander, 1971; Funahashi, Bruce, & Goldman-Rakic, 1989; 
Funahashi, Chafee, & Goldman-Rakic, 1993; Wilson, Scalaidhe, & Goldman-Rakic, 1993; 
McCarthy et al., 1994; Friedman & Goldman-Rakic, 1994; Goldman-Rakic, 1995; McCarthy et 
al., 1996; Miller, Erickson, & Desimone, 1996; Chafee & Goldman-Rakic, 1998; Courtney, et al., 
1998; Qi et al., 2015), recruit early sensory areas in a top-down manner in order to maintain high 
fidelity sensory memories (Serences, 2016; Gayet, Paffen, & Van der Stigchel, 2018). 
Alternatively, recurrent processes in local circuits could sustain information over a memory delay 
(Compte et al., 2000; Wimmer et al., 2014), but such recurrency is deemed more likely in anterior 
brain areas (Meijas & Wang, 2022). Irrespective of the exact substrate of working memory 
maintenance – with inputs from the external sensory world during perception, and from sources 
within the brain during working memory, it is unlikely that viewed and remembered visual 
information would be represented in an identical manner in early visual cortex. However, it 
remains an open question how a cortical area like V1, specialized for processing visual inputs, 
actually represents visual working memories. Are working memory representations just noisier 
versions of perceptual representations, or do they differ in a fundamental way? And might there 
be representational transformations along the visual hierarchy as top-down influences play an 
increasingly larger role?  

Recent work has claimed that early visual cortex (EVC) represents VWM information in a 
“sensory-like” format that is actually quite similar to representations driven by sensory inputs, 
while more anterior visual areas like the Intraparietal Sulcus (IPS) were said to represent VWM 
information in a format that is transformed away from the sensory driven response (Rademaker 
et al., 2019). This claim of “sensory-likeness” comes from the fact that when participants 
remember an orientation, response patterns in EVC are similar to response patterns during the 
direct perception of that orientation. In parietal cortex such cross-generalization from perception 
to working memory responses fails, despite memories still being decodable when considering 
only the response patterns during working memory themselves (i.e., without cross-
generalization). The idea that visual representations are transformed away from the “sensory-
like” into a different, more abstract format is further supported by work similarly using cross-
generalization to decode VWM contents (Kwak & Curtis, 2022). In this study, participants 
remembered one of two visually distinct features – the orientation of a grating, or the direction 
of a moving dot cloud. During encoding (i.e., perception), the two features evoked distinct 
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response patterns in EVC that did not cross-generalize, likely owing to the distinct retinal inputs 
evoked by the two features. However, these two features share a spatial component (degrees 
on a circle), and during the memory delay the EVC response patterns for orientation and direction 
stimuli did successfully cross-generalize, likely owing to a “line-like” abstraction that is realizable 
for both features.     

However, the possible range of to-be-remembered visual features far outstrips those that can 
be mapped onto a circle (and into a line). For example, surface features such as contrast or color 
are not readily abstracted into a “line-like” representation, let alone more complex features such 
as shapes or objects. This means that a more general principle of abstraction remains to be 
uncovered. Furthermore, we know that retinotopically organized “sensory-like” representations 
or abstractions are not generally observed outside of early visual cortex (Rademaker et al., 2019; 
Kwak & Curtis, 2022; Favila, Kuhl, & Winawer, 2022; Vo et al., 2022). An important step to 
investigate possible abstractions used for working memory is to consider not only response 
patterns, but also the representational geometry. A response pattern (also called a “coding 
scheme”, Stokes, 2015) simply refers to the pattern of responses that is measured during an 
experimental condition. Depending on the measurement technique, this could be a pattern of 
firing rates across multiple neurons, a pattern of BOLD responses across multiple voxels, or any 
other kind of response vector measured over a number of units. When it’s possible to cross-
generalize from one experimental condition to another – for example from perception to memory, 
or from orientation to direction – we know that the response pattern is similar in the two 
conditions. For example, the specific pattern of brain activity in response to a perceived stimulus 
with an orientation of 90º would be similar to the pattern measured when that same 90º stimulus 
is held in working memory. The representational geometry captures a lower-dimensional format 
of a given stimulus set, and can be invariant to changes in the underlying response patterns 
(Kriegeskorte & Wei, 2021). The pairwise distances between patterns of responses 
corresponding to a set of stimuli determine the geometry, meaning that even if the underlying 
response patterns change (e.g., they are inverted, shifted, or undergo some other 
transformation), the geometry can remain stable. For example, in the case of orientation the 
geometry may reveal that adjacent orientations (say 90º and 91º) evoke similar underlying 
response patterns, and that this similarity drops at increasing distances in orientation space. 
Such representational geometry can be shared between perception and working memory, while 
a perceived stimulus of 90º may nevertheless evoke a totally different response pattern 
compared to a 90º stimulus held in working memory. As long as the pattern distances between 
different orientations are the same during perception and memory, so is the geometry. Indeed, 
we know that despite dynamic population responses over time, the representational format of a 
stimulus set can remain remarkably stable (Murray et al., 2016; Spaak, Watanabe, Funahashi, & 
Stokes, 2017).  

By looking at the representational geometry we can investigate the representational formats of 
perception and working memory in a way that does not depend on response patterns 
generalizing from one condition to another. Moreover, it allows us to investigate potential 
systematic differences in the representational geometry between perception and working 
memory, even when underlying response patterns are still similar enough for successful cross-
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generalization. To illustrate, what if abstraction happens by compressing part of the stimulus 
space, making it more categorical? Such compression may warp response patterns for a subset 
of orientations, without necessarily transforming them to a point where the coding scheme 
breaks down. In such a case, cross-generalization from perception to working memory could 
coexist with a change in the representational geometry. Thus, examining the representational 
geometry allows us more freedom to see if perception and working memory are truly represented 
similarly, or if the representational formats perhaps differ in fundamental ways.   

Here, we introduce a principled approach to investigating sensory-to-memory abstractions 
across the visual hierarchy. First, we use representational similarity analysis (RSA) to show a 
clear differentiation between the geometry of perception and working memory representations 
for orientation in human visual cortex. Second, we model the extent to which the representational 
geometry is true to a simulated sensory response (the “veridical” model), or abstracted away 
from the sensory input (the “categorical” model). Our two models are constrained by a single 
principle, namely, the distribution of orientation information in the natural world (Girshick, Landy, 
& Simoncelli, 2011; Wei & Stocker, 2015). By applying these two models, we show that sensory 
inputs are represented in a largely veridical manner in EVC, adapted to the statistics of the natural 
visual world (i.e., efficient coding). By contrast, working memories are represented more 
categorically, in a manner predicted from the same landscape of visual input statistics, but using 
a higher-order metric based on how different any set of orientations may appear to the observer 
(i.e., their “psychological distance”). Critically, we show that during working memory the 
representational format becomes increasingly more categorical along the visual hierarchy, 
uncovering a gradient of abstraction.  
 
Results 

To examine neural representations during perception and working memory, we analyze fMRI 
recordings from six participants who were either directly viewing oriented grating stimuli during 
a sensory task, or remembering orientations for later recall during a memory task (Figure 1A). We 
use cross-validated representational similarity analysis (RSA) – a method that projects neural 
activation patterns into an abstract space that describes the stimulus (here: orientation) 
(Kriegeskorte, Mur, & Bandettini, 2008a; Kriegeskorte et al., 2008b; Walther et al., 2016; 
Kriegeskorte & Wei, 2021). Specifically, we created, for each visual cortical Region of Interest 
(ROI) and each of the two tasks, a matrix capturing the degree of similarity between the neural 
response patterns to all possible orientations using cross-validated correlations (Figure 1B). To 
illustrate: When two orientations are represented in a very similar manner, the pattern of voxel 
responses to the first orientation will correlate strongly with the pattern evoked by the second 
orientation. Conversely, for orientations with very distinct representations, correlations will be 
low. Because orientation space is continuous and circular, physically similar orientations (e.g., 
10º and 11º) will likely correlate more strongly than physically dissimilar orientations (e.g., 10º 
and 40º) in areas of the brain that care about orientation.  

The representational similarity matrices (RSM’s) constructed for our visual ROI’s (Figure 1C; 
Supplementary Figure 1) show striking qualitative differences between how orientation is 
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represented during perception (in the sensory task), and working memory (in the memory task). 
During perception, early visual areas V1–V3 show a strong diagonal component and high degree 
of similarity around cardinal orientations (180º in particular), with notable transformations away 
from this representational pattern primarily along the dorsal stream (V3AB and IPS). During 
working memory, there is a prominent clustering of representational similarity around oblique 
orientations (45º and 135º). This clustering seems to increase along the visual hierarchy and 
appears most pronounced in area IPS0.        

 
Figure 1: Task and main analysis (A) For the sensory task (left), participants viewed a randomly oriented grating for 
9 seconds per trial. Grating contrast was phase-reversed at 5 Hz, with participants reporting brief (200ms) probabilistic 
instances of contrast dimming. For the working memory task (right), participants remembered a briefly presented (500 
ms) randomly orientated grating for 13 seconds, until a 3 second recall epoch (not depicted). On two-thirds of trials a 
visual distractor (filtered noise or another grating) was presented during the delay (11 seconds, not depicted). Because 
there was little-to-no quantifiable difference between the different trial types (Rademaker et al., 2019; Supplementary 
Figure 2), here we analyzed data from all delays combined. For the sensory and memory task, we analyzed average 
voxel responses from 4.8–9.6 and 5.9–13.9 seconds after stimulus onset, respectively. (B) For each Region of Interest 
(ROI) we employed a split-half randomization procedure to create a Representational Similarity Matrix (RSM) for each 
participant. On each randomization fold, voxel patterns from all trials (300–340 for sensory, 324 for memory) were 
randomly split in half. For each half of trials, we averaged the voxel patterns for every degree in orientation space within 
a + 10º window. This resulted in 180 vectors with a length equal to the number of voxels for each split of the data. We 
then calculated the similarity between each vector (or degree) in one half of the data, to all vectors (or degrees) in the 
second half of the data, using a Spearman correlation coefficient. This resulted in a 180x180 similarity matrix on each 
fold. This randomization procedure was repeated 1000 times to generate the final RSM for each ROI and each 
participant. Across all folds, RSM’s are near-symmetrical around the diagonal, give-or-take some cross-validation 
noise. (C) Orientation representation (as indexed by RSM’s) during sensory perception (top row) and working memory 
(bottom row), for retinotopically defined ROI’s (columns) across all participants. During perception, the clear diagonal 
pattern in early visual areas V1–V3 indicates that orientations adjacent in orientation space are represented more 
similarly than orientations further away. Orientations around cardinal (180º in particular) are represented more similarly. 
During working memory, similarity clusters strongly around oblique orientations (45º and 135º), contrasting starkly with 
the similarity patterns during perception. Note that the diagonal represents an inherent noise-ceiling, thanks to the 
cross-validation procedure used. This noise ceiling shows inhomogeneities across orientation space, demonstrating 
how certain orientations may be encoded with more noise than others. RSM’s are scaled to the range of correlations 
within each subplot to ease visual comparison of representational structure between sensory and memory tasks for all 
ROI’s (for exact ranges, see Supplementary Figure 3). Throughout, we use 0º (and 180º) to denote vertical orientations, 
and 90º to denote horizontal ones.    
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To quantify the results in Figure 1C, we contrast two possible models – the “veridical” and the 
“categorical” model. The veridical model intends to capture how orientations are represented in 
a manner that faithfully reflects early visual processing of signals from the physical world. The 
categorical model uses a higher-level concept – the “psychological distance” between 
orientations – as a basis for abstracting a physically continuous space into discrete categories. 
Importantly, these two models are jointly constrained by the known distribution of orientation 
information in the natural world, which has a higher occurrence of cardinal compared to oblique 
orientations (Figure 2A; Girschick, Landy, & Simoncelli, 2011). According to the “efficient coding” 
hypothesis, this inhomogeneity in orientation input statistics leads to adaptive changes in the 
sensory system, with relatively more neural resources dedicated to cardinal compared to oblique 
orientations (Attneave, 1954; Shannon, 1948; Barlow, 1961; Olshausen & Field, 1997; Simoncelli 
& Olshausen, 2001). As a result, observers demonstrate a higher resolution (e.g., improved 
discriminability) around cardinal orientations – a phenomenon paradoxically known as the 
“oblique effect” (Lennie, 1971; Appelle, 1972; Essock, 1980). Orientation reports also tend to be 
biased away from cardinal axes (van Bergen et al., 2015; Wei & Stocker, 2015; Henderson & 
Serences, 2021). Together, this suggests a distinct role for cardinal orientations, both with 
respect to resolution and bias.  

The idea behind the veridical model is that region-wide orientation representations emerge from 
low-level neural responses to sensory inputs. Specifically, the starting point for this model is a 
set of idealized tuning functions that tile orientation-space (Figure 2B, top). The amplitude of 
each orientation tuning function is scaled by the estimated frequency of occurrence for that 
orientation in the natural world (i.e., by the theoretical “input statistics” function, see Figure 2A 
and Materials & Methods). Therefore, tuning functions closer to cardinal orientations have 
relatively higher amplitudes than those closer to obliques. We modulate tuning curve amplitude 
(and not some other property such as tuning width or density) because of known amplitude 
differences in the fMRI signal for cardinals compared to obliques (Furmanski & Engel, 2000). For 
any given stimulus orientation, we can simulate a vector of neural responses by reading out the 
hypothesized activity from every idealized neural tuning function. Such a simulated response 
vector can be correlated against simulated responses to all other possible stimulus orientations 
(analogous to the approach in Figure 1B), to arrive at the veridical model RSM (Figure 2B, 
bottom). Thus, here we model a veridical early visual representation by accounting for known 
inhomogeneities of orientation space, based on the principle of efficient coding (Wei & Stocker, 
2015). Note that our veridical model is a direct consequence of the choice to use amplitude 
modulation (instead of e.g., tuning width) as well as correlation (instead of e.g., Euclidian 
distance), and that there are multiple other possible ways to implement inhomogeneities across 
orientation space (Wei & Stocker, 2015; Kriegeskorte & Wei, 2021; Harrison, Bays, & Rideaux, 
2023). 

The idea behind the categorical model is to discretize the physically continuous orientation space 
into a plausible higher-level psychological abstraction. A principled way to categorize orientation 
is to again rely on the input statistics function (Figure 2A), and consider how inhomogeneities in 
orientation space might affect more experiential measures such as perceptual similarity 
(Schurgin, Wixted, & Brady, 2020). For example, in parts of the orientation space with high 
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resolution (near the cardinals), two physically similar orientations (e.g., 4º apart) can look clearly 
different from one another, while orientations with the same physical similarity in parts of 
orientation space with lower resolution (near the obliques) can look indistinguishable. We 
formalize this “psychological distance” as the distance between any pair of orientations along 
the theoretical input statistics function (Figure 2C, top). Returning to our example, two near-
cardinal orientations (e.g., 88º and 92º) will have a larger psychological distance (i.e., are 
relatively far apart along this function) compared to two near-oblique orientations (e.g., 43º and 
47º) (compare the Figure 2C grating inserts in blue versus red, respectively). The psychological 
distances between all possible orientations make up the categorical model RSM (Figure 2C, 
bottom). This RSM shows how orientations in one category (bound by the obliques) are 
represented similarly to one another, but dissimilarly from orientations in a second category (on 
the other side of the obliques). Thus, here we model how orientation representations can be 
categorized based on where an orientation is relative to cardinal – the cardinal axes effectively 
serving as category boundaries.  

 
Figure 2: Modeling the representational similarity of perceived and remembered orientations (A) The distribution 
of visual orientation in the natural world is inhomogeneous, with higher prevalence of orientations closer to cardinal 
(90º & 180º) compared to oblique (45º & 135º). The function shown here approximates these input statistics, and is 
used to constrain both the veridical (in B) and categorical (in C) models. (B) The veridical model is based on the 
principle of efficient coding – the idea that neural resources are adapted to the statistics of the environment. We model 
this via 180 idealized orientation tuning functions with amplitudes scaled by the theoretical input statistics function (the 
top panel shows a subset of tuning functions for illustrational purposes). A vector of neural responses is simulated by 
computing the activity of all 180 orientation-tuned neurons to a given stimulus orientation. Representational similarity 
is calculated by correlating simulated neural responses to all possible orientations, resulting in the veridical model RSM 
(bottom panel). Note that while we chose to modulate tuning curve amplitude, there are multiple ways to warp the 
stimulus space (e.g., by applying non-uniform changes to gain, tuning width, tuning preference, etc. Kriegeskorte & 
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Wei, 2021; Harrison et al., 2023). (C) In the categorical model, categorization is based on people’s subjective 
experience of relative similarity between orientations in different parts of orientation space: If orientations in part of the 
space appear quite similar, they are lumped together into the same category, while distinctive looking orientations serve 
as category boundaries. This is quantified via the “psychological distance” – the sum of derivatives along the input 
statistics function between any pair of orientations (see top panel). The insert shows an example of orientation-pairs 
near cardinal (in blue) and oblique (in red) that have the same physical distance, but different psychological distances. 
The psychological distance between each possible pair of orientations yields the categorical model’s RSM (bottom 
panel). (D) Fits of the veridical (grey) and categorical (teal) models for the sensory (top) and memory (bottom) tasks. 
During perception, the veridical model explains a significant amount of the data in all visual ROI’s (except IPS1–3), 
indicating a representational scheme that is largely in line with modeled early sensory responses. The categorical model 
explains some of the data in areas V1–V3, but to a lesser extent. During working memory, the categorical model gains 
increasingly more explanatory power over the veridical model along the visual hierarchy, from V1 through IPS0. Weights 
(on the y-axis) represent the unique contribution of each model after removing the variance explained by the other 
model. Dots represent individual participants, and error bars represent + 1 within-participant SEM. Asterisks indicate 
the significance level of non-parametric two-sided post-hoc comparisons (*p < 0.05; ***p < 0.001), with gray and teal 
asterisks indicating tests against zero, and black asterisks indicating paired-sample tests comparing the two models in 
each ROI.    

How well can the representational geometry during the sensory and memory tasks (Figure 1C) 
be explained by our veridical (Figure 2B) and categorical (Figure 2C) models? Because our two 
models are not independent, we evaluated the fit of each model after first removing the variance 
explained by the other. Specifically, to look at the unique contribution of the veridical model, we 
fit the veridical model to the residuals left by the categorical model, and vice versa (minimizing 
the mean squared error; see also Materials & Methods). Model fits are shown in Figure 2D for 
our sensory (top) and memory (bottom) tasks.  

During sensory perception, the veridical model does an overall better job at explaining 
representational similarity than the categorical model (main effect of model: F(1,5) = 40.14, p = 
0.00145). This advantage is not the same in all ROI’s (interaction of model x ROI: F(7,35) = 3.25, p 
= 0.00917), with post-hoc tests showing no difference between the two models in IPS1–3 (where 
neither model explains the data above chance level). The fact that the veridical model 
outperforms the categorical model during sensory perception helps validate our modeling 
approach, given that the veridical model is founded on what we know about early sensory 
processing. This finding partially generalizes to a situation in which oriented gratings are directly 
viewed but ignored by participants (see Supplementary Figure 4).  

During working memory, the categorical model better explains representational similarity than 
the veridical model (main effect of model: F(1,5) = 12.43, p = 0.0168). The extent to which the 
categorical model outperforms the veridical model differs across ROI’s (interaction of model x 
ROI: F(7,35) = 2.785, p = 0.0206), with the categorical model explaining increasingly more of the 
representational geometry along the visual hierarchy. A significant difference between the two 
models emerges in area V3, and persists until area IPS0 – the latter being particularly noteworthy 
for not showing any sign of a veridical model representation. These results corroborate the 
qualitative categorization already apparent from the memory task RSM’s (Figure 1C), and reveal 
a posterior-to-anterior gradient in terms of categorization strength. 

To verify that our modeling results do not critically depend on the exact shape of the theoretical 
input statistics function in Figure 2A, we next used behavioral response frequencies from an 
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independent psychophysical experiment to constrain both our models (Figure 3A). A new set of 
17 participants each completed 1620 trials of an orientation recall task. For every possible 
stimulus orientation that was shown (1º–180º in steps of 1º), we calculate the probability of every 
possible response across all participants. With 27540 total trials in the experiment, this means 
response probability histograms are based on 153 trials for every possible stimulus orientation. 
As expected, response probability functions look inhomogeneous along orientation space, with 
pronounced differences between cardinals and obliques (Figure 3A). We then generated the 
veridical and categorical models anew from this psychophysical input function (Figure 3B), and 
again fit both models to our data RSM’s to see how well they explained the data (as indexed by 
the model weights in Figure 3C). We replicated the difference between the sensory and memory 
tasks, and how their representational geometries are better explained by the veridical and 
categorical models, respectively. During sensory perception, the veridical model outperformed 
the categorical model (main effect of model, F(1,5) = 7.05, p = 0.0454), although this advantage 
did not differ significantly between ROI’s (no interaction of model x ROI F(7,35) = 2.11, p = 0.0683). 
During working memory, the categorical model outperformed the veridical model (main effect of 
model: F(1,5) = 28.57, p = 0.0031), explaining increasingly more of the representational geometry 
along the visual hierarchy (interaction of model x ROI: F(7,35) = 3.63, p = 0.0048). 

 

 
Figure 3: Generating and fitting the veridical and categorical models based on independent behavioral data (A) 
During an independent psychophysical examination, a new set of participants (N=17) reported the orientation of briefly 
presented (200ms) and remembered (2s) single gratings by rotating a response dial with a computer mouse (i.e., via 
method-of-adjustment). For each possible stimulus orientation in the experiment, we calculated the response probability 
of report. For example, for a grating stimulus of 22º the most probable response might be 22º, but a response of 21º or 
23º is also very probable – with response probability tapering off as the distance from the stimulus orientation increases. 
Here, response probability (y-axis) is plotted against reported orientation for a subset of possible stimulus orientations 
shown in red-blue colors (see insert). From this psychophysical input function, the veridical and categorical models 
were generated as described in Figure 2B–C. (B) Veridical and categorical models generated from the psychophysical 
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input function (in A). (C) Fits of the veridical (in grey) and categorical (in teal) models based on the independent 
psychophysical data (i.e., the models shown in A). During perception (top), the veridical model explains a significant 
amount of the data in all visual ROI’s except for IPS regions. The categorical model explains some of the data in areas 
V1–V3, but to a lesser extent. During working memory (bottom), the categorical model explains a significant amount of 
the data in all visual ROI’s, while the veridical model fails in all ROI’s except Lateral Occipital (LO) cortex. Weights (on 
the y-axis) represent the unique contribution of each model after removing the variance explained by the other model. 
Dots represent individual participants, and error bars represent + 1 within-participant SEM. Asterisks indicate the 
significance level of non-parametric two-sided post-hoc comparisons (*p < 0.05; ***p < 0.001), with gray and teal 
asterisks indicating tests against zero, and black asterisks indicating paired-sample tests comparing the two models in 
each ROI.    

How might we reconcile the observed differences in representational geometry between the 
sensory and memory tasks, with the overlap in coding schemes that is implied by the ability to 
cross-generalize from the sensory to the memory task in EVC (Rademaker et al., 2019)? To 
directly relate these two analysis approaches, we applied a minor modification to the typical RSA 
approach by correlating response patterns from every perceived orientation in the sensory task 
to the response patterns from every remembered orientation in the memory task, in what we call 
“across-task RSA” (Figure 4A). As expected, our across-task RSM of V1 (but not IPS) shows a 
clear diagonal component that is indicative of overlap in response patterns between perception 
and working memory, and the ability to cross-generalize. Importantly, this approach also shows 
how the coding scheme for orientation during working memory is warped with respect to coding 
scheme during perception – response patters for orientations held in working memory are biased 
towards what would be patterns associated with obliques during perception (Figure 4B). We 
validate our “across-task RSA” approach against a conventional multivariate analysis approach 
known as the inverted encoding model (or “IEM”, Brouwer & Heeger, 2009). First, we take into 
account the predicted gradual drop in representational similarity for orientations at increasing 
distances from the remembered orientation by creating a “correlation profile” (the sum of 
correlations between patterns for the remembered and perceived orientations, as shown in grey 
on top of the panels in Figure 4B, and for all ROI’s in Figure 4C). A more “peaked” correlation 
profile indicates more information about the remembered orientation. Next, we quantify this 
alternative measure of cross-generalization, the “peakeness” of the correlation profile, with a 
previously established fidelity metric (as in Rademaker et al., 2019, see also the Materials & 
Methods), and show that this aligns closely with the same metric applied to results from an IEM 
using the same data (Figure 4D; Rademaker et al., 2019). 
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Figure 4: Ability to cross-decode using RSA, and clues on how categorization comes about (A) Using across-
task representational similarity analysis, we directly compare orientation response patterns recorded during the 
sensory task (y-axis), to those measured during the working memory task (x-axis). Here we use V1 (left subplot) and 
IPS0 (right subplot) as example ROI’s. The across-task RSM in V1 shows a clear diagonal component, indicating that 
response patters for specific orientations in the sensory task are similar (i.e., correlated) to response patterns to those 
same orientations when they are held in working memory. In IPS0 such pattern similarity for matching orientations in 
the sensory and memory tasks is less evident. (B) We want to quantify the extent to which orientations held in working 
memory evoke response patterns that overlap most strongly with response patterns from those same orientations 
when perceived, and the degree to which this similarity drops as a function of distance in orientation space. First, we 
center our across-task RSM’s on the remembered orientation (notice the different x-axis), and then take the sum of 
correlations relative to the remembered orientation (plotted on top of the across-task RMS’s). We refer to this sum of 
correlations as the “correlation profile” of the remembered orientation. In V1 we see that correlations are highest 
between response patterns from matching perceived and remembered orientations (indexed by 0º on the x-axis), 
which explains the ability to cross-decode between sensory and memory tasks as demonstrated in previous work 
(e.g., Rademaker et al., 2019). By contrast, IPS0 shows a much flatter correlation profile compared to V1. (C) 
Correlation profiles for all retinotopic ROI’s in our study, obtained by performing across-task RSA (left panel). Most 
ROI’s show a peaked correlation profile, indicative of shared pattern similarity between the same orientations when 
perceived and when remembered. The different offsets along the y-axis for different ROI’s reflect the overall 
differences in pattern similarity in different areas of the brain, with pattern similarity being highest in area V1. Shaded 
areas indicate + 1 SEM (D) To further validate the ability to cross-decode using RSA, we directly compare this new 
approach (x-axis) to the multivariate analysis performed by Rademaker et al. in 2019 (y-axis). The latter used an 
inverted encoding model (IEM) that was trained on the sensory task, and tested on the delay period of the memory 
task. Both the correlation profiles from RSA, and the channel response functions from IEM yield more-or-less peaked 
functions over orientation space (relative to the remembered orientation) that can be quantified using a fidelity metric 
(i.e., by convolving with a cosine). Here, we show a high degree of consistency between the fidelity metrics derived 
with both approaches (dots are near the diagonal), and successful cross-generalization from the sensory to the 
memory task (as indexed by >0 fidelities in many ROI’s). Each color represents a different ROI, and for each ROI we 
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plot each of the six participants as an individual dot. (E) To examine the inhomogeneity or representational similarity 
throughout orientation space, we plot the diagonals of the RSM’s from in Figure 1C. During the memory task, oblique 
orientations are represented much more similar, and cardinals much less similar, compared the sensory task. This 
could be a mechanism via which categorization of orientations occurs during working memory. (F) We use 
multidimensional scaling (MDS) to projects high dimensional response patterns into 2 dimensions, in order to better 
visualize of how orientation space is represented. During perception there is an orderly geometrical progression of 
orientation space, with the highest similarity between adjacent orientations (and some clustering around cardinal 
orientations, especially 180º, shown in white and black) in early visual areas V1–V3. There’s also a “pinching” of 
orientation space around the obliques (45º and 135º become very similar) in more anterior visual areas V3AB–IPS and 
LO. During working memory, the orientation space geometry remains circular in all ROI’s, with notable clustering of 
similarity around the obliques (shown in blue and red). 

Might the warping we observe in area V1 during working memory – with biases away from 
cardinals and towards the obliques (Figure 4B, left panel) – be a possible mechanism through 
which categorization is realized? If yes, one prediction is that such a compression of parts of the 
orientation space will make the response patterns around oblique orientations more similar, while 
patterns around cardinals will become less similar. Indeed, when we look at the representational 
similarity along orientation space (i.e., the diagonals of our cross-validated within-task RSM’s in 
Figure 1C), we see systematic changes indicating higher similarity for oblique compared to 
cardinal orientations (Figure 4E). Importantly, this inhomogeneity of pattern similarity across 
orientation space is much exaggerated during working memory compared to perception, 
implying a non-linear compression relative to cardinal orientations, that may contribute to the 
categorization of working memory contents. Multidimensional scaling (Figure 4F) further 
supports this idea, as it shows stronger clustering around obliques (in red and blue) compared 
to cardinals (in white and black) during working memory compared to perception.  

Thus far, we examined the structure of orientation representations during perception and 
working memory in individual visual ROI’s, and find that orientation representations differ 
between sensory and memory tasks. We also find that representational geometry within the 
same task is captured by our models to varying extents in different ROI’s. To move beyond 
information in local ROI’s (e.g., Figure 1C; Supplementary Figure 1), and more formally assess 
representational geometries across visual cortex, we use a 2nd level RSA. In this analysis, 
similarity between different visual cortical areas is calculated by correlating the RSM from every 
ROI with that of every other ROI. To this end, we use more fine-grained ROI’s than in previous 
analyses, allowing us to look at dorsal versus ventral streams, as well as subregions of IPS and 
Lateral Occipital (LO) cortex. We evaluate how orientation information is represented across 
visual cortex in this manner separately for the sensory task and the memory task (Figure 5).  

During sensory perception, there is notable shared representational similarity amongst early 
visual areas (V1–V4) and amongst areas in the intraparietal sulcus (IPS0–3), but low similarity 
between the two (Figure 5A, top). During the working memory task, orientation geometries 
across various ROI’s show a somewhat different inter-areal organization (Figure 5A, bottom). 
First, the overall similarity between ROI’s appears more pronounced during the working memory 
task, with higher overall correlations between ROI’s compared the sensory perception task (as 
also already implicated in Figure 4E). This implies that there are fewer transformations of 
orientation geometry along the visual hierarchy during memory compared to perception. Second, 
the cluster of early visual ROI’s with high representational similarity that was observed during 
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perception (i.e., V1–V4), is shifted “upwards” along the visual hierarchy during memory – with V1 
becoming less similar, and IPS becoming more similar to rest of EVC.  

 

 

Figure 5: Second level RSA (A) To compare how orientation is represented across different regions of visual cortex, 
RSM’s from fine-grained individual ROI’s (Supplementary Figure 1) were correlated in a cross validated 2nd-level 
similarity analysis. For the sensory task (top panel), we see that representational similarity is high among early visual 
areas; high among the various IPS regions; and high among LO regions. However, similarity between these three 
clusters is relatively low. During working memory (bottom panel) there is a slight shift in similarity compared to 
perception, with V1 becoming less similar, and IPS0 becoming more similar, to areas V2–V4. The distinction between 
areas is generally less pronounced. (B) Representational similarity can also be used as an indicator of connectivity 
between ROI’s based on shared representational geometry: When the geometry is similar, the “connection” is stronger 
(indicated here by the width of the grey lines connecting different ROI’s). The sum of the strength of these connections 
in a given ROI (i.e., degree centrality) indicates to which degree a local representational geometry resembles that of 
other ROI’s. Degree centrality is highest in early visual cortex and lowest in IPS regions, indicating a higher conservation 
of geometry across early visual cortical regions. 

Finally, we probe the underlying “representational connectivity” structure in individual 
participants (Kriegeskorte, Mur, & Bandettini, 2008a). Unlike traditional functional connectivity 
analysis, the representational connectivity approach does not target covarying activation per se, 
but rather assumes connections on the basis of shared representational geometry. Visualizing 
these “connections” in a graph (Figure 5B) highlights the dense clustering of early visual cortex, 
weaker connections to LO, and weakest connections to IPS, both during perception and 
memory. Based on this graph, we can compute the degree centrality of each ROI (or “node” in 
this graph) as the sum of connection strengths to other ROI’s. A high degree centrality denotes 
high representational similarity to many –or an especially strong representational similarity with 
some– other brain regions. The highest degree centrality is observed in early visual cortex, 
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suggesting overlap in representational geometry across these regions. More downstream visual 
areas (IPS and LO) show the lowest degree centrality, implying a gradual transformation of 
representational geometry along the visual pathway that results in geometries not present at 
earlier processing stages. This analysis also shows how functional measurements of sensory 
driven responses to oriented gratings, and even responses during working memory when no 
stimulus is on the screen, can approximate known anatomical structure of ROI’s along the visual 
hierarchy. This demonstrates the power of an approach such as RSA, whereby functionally 
measured response patterns are transformed into an abstracted representational space. 

 
Discussion 

Here we compare how a simple visual stimulus is represented when it is either perceived or 
temporarily held in working memory, and show fundamental differences in the representational 
geometry of visual perception and visual working memory throughout human retinotopic cortex. 
By looking at the similarity of response patterns evoked by grating stimuli of different 
orientations, combined with a novel modeling approach, we are able to demonstrate relatively 
veridical representations during perception, and more categorical representations during 
working memory. We also find that the extent to which working memory representations are 
categorical increases along the visual hierarchy from posterior-to-anterior visual areas. 
Importantly, our models make distinct predictions about veridical and categorical 
representations from a single input function based on the statistics of the natural world, which 
can also be implemented by measuring human behavior with a simple psychophysical task. This 
makes our modeling approach a potentially powerful tool to apply in other research contexts as 
well. With clear differences in representational geometry, it seems unlikely that working memory 
representations are merely noisier versions of perceptual representations. Our data imply a 
systematic compression of the coding scheme in parts of orientation space as a basis for 
categorization in working memory. This implies that if noise is involved, it is implemented in a 
non-linear fashion. Finally, by looking at inter-area representational similarity we recover known 
anatomical cortical structure, and observe a high degree of similarity for areas within early visual 
cortex (EVC), intraparietal sulcus (IPS), and lateral occipital cortex (LO) – but relatively low 
similarity between these respective regions. 

Previous work from our group has claimed that visual working memories are represented in a 
“sensory-like” manner in early visual cortex (Rademaker et al., 2019). This conclusion was drawn 
from the ability to cross generalize from sensory evoked responses, to responses recorded 
during the delay of a working memory task, using multivariate decoding techniques. However, 
there are multiple clues that VWM representations can be abstracted away from sensory evoked 
responses (Kwak & Curtis, 2022; Favila, Kuhl & Winawer, 2022; Rademaker et al., 2019; Linde-
Domingo & Spitzer, 2022; Yan et al., 2023), including the considerable differences between 
perceptual and working memory geometries unveiled in the present analyses. From a conceptual 
point of view there may also be good reasons to keep formats distinct, as having identical 
representations for visual inputs and visual memories might make it difficult to distinguish 
external reality from internally generated thought (Bettencourt & Xu, 2016; Xu 2017; 2018). 
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Moreover, some sort of transformation of the information held in mind is often necessary to 
adequately support behavioral goals and motor output (Henderson, Rademaker, Serences, 
2022; van Ede et al., 2019). How can we reconcile the apparent contradiction between 
successful sensory-to-memory cross-generalization on the one hand, and the mounting 
evidence favoring abstraction during VWM on the other?  

To understand how perception and working memory can evoke overlapping response patterns 
(i.e., have an overlapping coding scheme) while also differing in their representational format (i.e., 
the representational geometry), we will examine the relationship between multivariate decoding 
and RSA more closely. First, note that within any kind of task, a high degree of similarity along 
the diagonal of a cross-validated RSM (with lower similarity further away from the diagonal), is a 
prerequisite for successful multivariate decoding, and vice versa. After all, if a particular stimulus 
would evoke uncorrelated response patterns every time it is presented (i.e., no similarity along 
the diagonal), a decoder would not be able to predict such a stimulus from the disparate 
response patterns that make up its training set (i.e., no decoding). Conversely, in areas of the 
brain that care about a certain kind of stimulus, you can expect both a clear diagonal component 
in the RSM, as well as successful within-task decoding. Things are a bit more nuanced for 
continuously varying stimuli such as orientation. To illustrate: Two identical orientations might 
evoke similar patterns of responses, give or take some noise, but so will two orientations that 
are adjacent in orientation space. While two orientations that are further apart are likely to evoke 
dissimilar responses. Based on the gradual transition in physical similarity between continuously 
varying stimuli, one would predict an RSM pattern where also off-diagonal similarity can have 
meaning, albeit with diminishing returns as representational similarity decreases with increasing 
stimulus distance.  

For our data, this means that the clear diagonal component in the RSM’s during both perception 
and working memory (see EVC ROI’s in Figure 1C) are indicative of the ability to decode 
orientation within each of these two tasks. However, such apparent overlap in the 
represenational geometry around the diagonals does not speak to the geometry further away 
from the diagonals, nor does it speak to the ability to decode between the sensory and memory 
tasks (via cross generalization). With respect to the geometry at larger distances from the 
diagonal, we know that even relatively subtle transformations (e.g., shifts or warping) of an 
otherwise fairly stable underlying coding scheme can lead to dynamics in the low-dimensional 
geometry (Wolff et al., 2020; Kriegeskorte & Wei, 2021). Conversely, the representational 
geometry can also remain stable in the presence of dynamics in the coding scheme (Murray et 
al., 2016; Spaak, Watanabe, Funahashi, & Stokes, 2017; Kriegeskorte & Wei, 2021). With respect 
to cross-generalization, high similarity around the diagonals of both perception and working 
memory RSM’s could stem from totally different response patterns in one task compared to the 
next as long as the pairwise distances between response pattern are comparable between tasks. 
We show that in early visual ROI’s the underlying coding schemes during the sensory and 
memory tasks are sufficiently similar to yield a clear diagonal component in an “across-task 
RSA” (Figure 4). Importantly, we validate our across-task RSA approach against a common 
implementation of multivariate decoding for continuous stimulus spaces (the so-called inverted 
encoding model, Brouwer & Heeger, 2009; Rademaker et al., 2019). More interestingly, the 
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across-task RSM also provides some insight into how the coding scheme is warped during 
working memory compared to perception – we observe strong biases away from cardinal 
orientations during working memory, with many orientations resulting in patterns that are similar 
to those of oblique orientations that are directly perceived. To sum up, working memory 
representations in EVC can be “sensory-like” in that there is considerable overlap in the response 
patterns during perception and working memory. At the same time, the systematic warping of 
the coding scheme for orientation during working memory, relative to perception, results in a 
more categorical representational geometry during VWM with high similarity around obliques.   

In addition to using cross-generalization from sensory-to-memory responses to conclude that 
early visual areas store “sensory-like” working memory representations, our previous work drew 
upon the lack of such cross-generalization (in the presence of high within-task decoding 
performance) to conclude that IPS stores working memories in a format “transformed away” 
from sensory-like responses (Rademaker et al., 2019; Iamshchinina et al., 2021). However, our 
current analyses reveal how the representational geometry during working memory is 
predominantly categorical throughout the visual hierarchy: A significant benefit of the categorical 
over the veridical model can be seen in V3–IPS0 when using a theoretical input function (Figure 
2A, 2D bottom panel), and in all retinotopic EVC and IPS regions when using the psychophysical 
input function (Figure 3A, 3B bottom panel). The reason that cross-generalization from the 
sensory to the memory task fails in IPS may therefore not be due to a transformation in the 
representational geometry from earlier-to-later visual areas during working memory.  

Instead, IPS might simply process information quite differently during perception than during 
working memory. Recent recordings from non-human primates reveal that the receptive field of 
an IPS neuron (in lateral intraparietal “LIP” cortex) that was demarcated by showing the animal 
visual stimuli on a screen does not necessarily overlap with the receptive field of that same 
neuron when demarcated by measuring responses during a delayed-match-to-sample task 
(Krug et al., in prep). This implies a distinct mechanism for representing sensory inputs and 
working memory contents at the level of single neurons, which plausibly scales up to the level of 
population recordings as obtained with fMRI. A second reason why cross-generalization from 
perception-to-memory might be lacking in IPS is because the sensory input is represented rather 
weakly in IPS in our sensory task. While the full-field grating stimulus was attended, the feature 
of interest to our analyses (orientation) was not explicitly probed and not directly relevant to the 
participants’ task – which was to monitor and report instances of contrast dimming. It is not yet 
clear how feature-based attention changes the structure of stimulus representations in IPS. 
However, given the central role of IPS in attention (Selemon & Goldman-Rakic, 1988; Corbetta 
& Shulman, 2002; Silver & Kastner, 2009; Bressler & Silver, 2010), and evidence that attention 
improves decoding of task-relevant stimulus features in EVC (Jehee et al., 2012), it would be 
interesting to examine how attending different features of the same stimulus might impact 
stimulus representations, and whether this could explain the relatively noisy RSM’s we observed 
in IPS during our sensory task (Figure 1C, top; Supplementary Figure 1, top). 

A big question in the field of VWM concerns the role of primary visual area V1 during memory 
maintenance. On the one hand, sensory recruitment theory posits that involvement of area V1 is 
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critical to maintaining highly detailed visual representations, as this is the only site thought to 
have the resolution to do so (Serences, 2016; Adam, Rademaker, & Serences, 2022). In support 
of this theory, many fMRI studies have shown that VWM contents can be decoded from V1 
(Harrison & Tong, 2009; Serences et al., 2009), and correlations between behavioral and 
decoding performance imply a functional role for V1 (Ester et al., 2013; Iamshchinina et al., 2021). 
On the other hand, outside of the fMRI literature there is less evidence to support a neural 
correlate of VWM in area V1, with a general failure to find sustained firing in EVC (Mendoza-
Halliday, Torres, & Martinez-Trujillo, 2014; Leavitt, Mendoza-Halliday, & Martinez-Trujillo, 2017, 
but see also: Bisley et al., 2004; Zaksas & Pasternak, 2006), which has led people to conclude 
that V1 decoding could be epiphenomenal (Xu, 2017; 2018). Might our findings speak to this 
discrepancy between fMRI and single cell recording? Receptive fields in V1 are small, so if there 
is a representational shift from “veridical” during perception, to more “categorical” during VWM 
(presumably under the influence of top-down feedback), then working memory contents may be 
coded by a (subtly) different subset of neurons than those that respond to perceptual input. The 
reasoning that the same neurons may not code for the same stimulus under different task 
conditions holds true on several levels. For example, multi-unit activity associated with working 
memory maintenance was restricted to deep and superficial layers in V1, while such activity 
during perception also included the input layer 4 (van Kerkoerle, Self, & Roelfsema, 2017). Thus, 
even small shifts in the neural code (from one layer to the next, or from one orientation column 
to the next) may decrease the chance of finding sustained spiking when a one-to-one mapping 
between perception and working memory is assumed. Only looking at population wide neural 
coding, as we do here, can uncover working memory contents that has undergone a shift in 
representational geometry relative to perception.   

A well-known strength of RSA is that it projects response patterns associated with different task 
conditions (in our case, task conditions are 180 levels of orientation) into an abstracted space 
where representations can be compared between imaging modalities, species, models, or with 
behavior (Kriegeskorte et al. 2008a). Thus, RSA is a powerful tool to sidestep the correspondency 
problem, allowing us to compare the output of systems that differ greatly. For example, one can 
construct an RSM from behavioral responses and correlate it with an RSM constructed from 
neural responses of specific brain regions (Kriegeskorte et al. 2008a, 2008b; Bettencourt & Xu, 
2016). However, visual perception involves a cascade of processes of increasing complexity, 
from simple feature-detectors in primary sensory cortex, to more invariant and category-based 
representations in ventral visual cortex. Behavior is the result of the entire brain working in 
concert to produce one output (Ungerleider, Courtney, & Haxby, 1998), which means that even 
for a very simple stimulus such as orientation the representational geometry can differ between 
areas and tasks. Using a behavior-derived RSM as a model could therefore miss a lot of 
variability in representational geometry across cortex, or produce misleading conclusions about 
an area “X” representing orientation while ignoring other areas that match behavioral output less. 
This is why using behavioral measurements (here: psychophysical input function) in a 
hypothesis-driven manner as the basis for multiple models (here: veridical and categorical), may 
allow for deeper insight into which specific areas of the brain are involved in multiple underlying 
components of a single behavior.  
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Our models are indeed able to quantify notable differences in representational geometry between 
orientation perception and working memory tasks, as well as differences between various 
retinotopic areas within a single task. However, there remain patterns in the data that neither of 
our current models are designed to capture. For example, data recorded during the sensory task 
from area V3AB (and arguably also V4, IPS, and LO) show a representational similarity pattern 
implying that the obliques (45º and 135º) are formatted quite similarly to one another (Figure 1C, 
top row; Figure 4F, top row). This pattern hints at another possible form of (object-level) 
abstraction, where all tilted lines, irrespective of their tilt direction, are represented in a similar 
fashion. This parallels evidence showing that people use the same verbal labeling (“diagonal”) 
for both obliques (Overkott & Souza, 2023). The stronger similarity around vertical (180º) 
compared to horizonal (90º) orientations is another example where our models do not perfectly 
capture the data, and might have to do with the predominance of horizontal orientations in 
natural scenes (Harrison et al., 2023). Given such diversity in RSM patterns, how might we 
compare the geometry within a given task, while remaining agnostic to the precise patterns in 
different regions of interest? To evaluate inter-area representational geometry differences in a 
more hypothesis-free manner, we used a “representational connectivity” analysis, which 
subsumes all possible patterns by simply quantifying degree of overlap. This allows us to 
compare how the visual system orchestrates representations across large swaths of cortex 
during both perception and working memory. One observation that emerges from this approach 
is that during VWM we see a shift in the interplay between areas, as compared to during 
perception. Specifically, during working memory the geometry in V1 becomes more differentiable 
from the geometry in the rest of EVC, and IPS0 becomes more differentiable from the rest of IPS 
(but more similar to EVC). In other words, we see that the inter-areal structuring of 
representational geometry differs between perception and memory. Another observation is that 
compared to perception, geometries during VWM show higher similarity across visual cortical 
areas. Such homogeneity might be expected if a unitary categorical top-down signal dominates 
feedback signals to multiple earlier areas. After all, in the absence of visual input, working 
memory information in V1 must be coming from within the brain itself, either through feedback 
connections or local recurrent processing.  

Using representational similarity, in combination with the novel modeling approach outlined here, 
can be a powerful tool for studying representational formats during perception and working 
memory. Once the input statistics are known, either by deriving them from the environment or 
behavior, these models can be applied to any feature. Thus, in addition to tapping into possible 
abstractions for spatial features in EVC (Kwak & Curtis, 2022), our approach has potential for 
surface-based features such as color or contrast, more complex visual objects such as shapes 
or faces, as well as stimuli in other sensory modalities. Many of the well-known advantages from 
RSA approaches also apply here, such as the potential to fit models across the entire brain in a 
manner that is not restricted to early sensory areas for which the receptive field mapping is 
known. Furthermore, the approach can be used with different measurement techniques that 
have a higher temporal resolution, allowing additional queries about the temporal progression of 
representational geometry as stimuli are encoded, remembered, and recalled. 
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Materials and Methods 

Stimuli and procedures 

We used a publicly available dataset, originally part of a study by Rademaker et al. (2019). This 
dataset contains both a visual perception task (the “sensory task”) and a visual working memory 
task (the “memory task”) performed in the scanner, and presented in the paper as Experiment 1 
(6 participants with mean age = 28.67, sd = 3.675, and 5 females). The dataset also contains an 
independent psychophysical experiment, presented in the paper as Supplementary Figure 9 (21 
participants with mean age = 20.12, sd = 2.01, and 14 females. For this psychophysical 
experiment, only 17 participants were included in the analysis (3 dropped out, and 1 performed 
at chance level). All participants who contributed to the dataset were neurologically healthy, had 
normal or corrected-to-normal vision, received monetary reimbursement, and provided their 
written informed consent. Data were collected at the University of California San Diego.  

In the scanner, both the sensory and memory tasks used full-contrast donut-shaped grating 
stimuli (1.5º and 7º inner and outer radius, respectively) with smoothed edges, a spatial 
frequency of 2 cycles per degree, random phase, a pseudo-randomized orientation. Stimuli were 
presented against a uniform grey background, and participants fixated a 0.4º central dot 
throughout. In the sensory task, donut-shaped gratings were presented in 9 second trials, 
contrast reversing at 5 Hz. Such donut trials were interleaved with trials showing a circular grating 
(1.5º radius), and fixation periods (10% of total). Grating contrast was briefly (200ms) and 
probabilistically reduced to 80% Michelson twice every 9s, and participants’ task was to report 
such contrast changes. Participants completed a total of 300-320 sensory task trials across 3 
separate scanning sessions. The sensory task was also used to localize visually responsive 
voxels (via a donut > circle contrast), and in our current analysis we use this contrast as a mask 
for all EVC ROI’s (but not IPS and LO, where all retinotopically defined voxels are included). In 
the working memory task, a target grating was shown for 500ms, and recalled 13 seconds later 
by rotating a white line (spanning 7º) for 3 seconds to match the remembered orientation. 
Between trials, there could be 3, 5, or 8 second fixation intervals. During the delay of two-thirds 
of memory task trials, a distractor of 50% Michelson contrast could be presented for 11 seconds 
during the middle portion of the delay. Distractors could be a grating (1/3rd of trials) or filtered 
noise (1/3rd of trials), contrast reversing at 4Hz. By ensuring uniform orientations of grating 
distractors with respect to memory targets, we are able to look at the representations of 
remembered and distractors orientations independently. Importantly, due to the negligible 
differences between trials with or without distractors, both in terms of behavior as well as 
decoding, we collapse the data across all working memory trials for our main analyses. Each 
participant completed 324 total working memory trials over the course of 3 different scanning 
sessions.  

The independent psychophysical experiment was completed outside of the scanner, and stimuli 
consisted of gratings presented at 20% Michelson contrast against a uniform grey background. 
Gratings had a 2º radius, spatial frequency of 2 cycles per degree, random phase, and pseudo-
randomized orientation. Each trial started with a 200ms target orientation that was remembered 
over a 3s delay, and recalled by rotating a dial to match the remembered orientation in an 
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unspeeded manner. Intervals between trials were 800-1000ms. Grating distractors were 
presented for 200ms during the middle portion of the delay on 90% of trials. As in the scanner, 
targets and distractors were uncorrelated across trials, allowing for independent analysis of 
responses to the target. Any biases resulting from distractor presentation were small 
(Supplementary Figure 9 of Rademaker et al., 2019) and did not exert much influence on 
responses. Each participant completed 1620 trials over the course of several testing sessions.  

For more detailed information on scanning and psychophysical procedures, please reference 
Rademaker et al. (2019). 

 
Models 

First, the function that constrains both the veridical and categorical models, and emulates the 
frequency distribution of orientations in the natural world, is described by 

𝑓(𝑥) = &|sin 𝓍| −1&! + 𝑏 

Where −𝜋 < 𝓍 < 𝜋, and 𝑏 is any non-zero baseline (due to z-scoring before fitting this function 
is scale-free). This function is loosely based on the function defined in Girshick & Simoncelli 
(2011). Another way to think about this theoretical “input statistics” function, is as the normalized 
amount of Fisher information at each orientation in orientation-space. We ensured that the 
results of our model fits were robust to the specific shape of the input function by not only using 
a theoretical input function based on the statistics of the natural world (Figure 2A), but by also 
using a psychophysical input function (generated from independent psychophysical 
measurements, Figure 3A) as the basis for our two models. Irrespective of the input function 
used (theoretical based on previous literature, or psychophysical based on independent data), 
model generation, as described next, is identical. 

For the veridical model, we assume a set of idealized tuning functions (Figure 2B, top) and use 
it to simulate neural responses to all possible stimulus orientations. From these simulated 
responses we calculate the similarity (rho) between all possible pairs of stimulus orientation (as 
shown in Figure 1B), resulting in a veridical model RSM (Figure 2B, bottom). Each tuning function 
in the veridical model is defined by a von Mises (circular analogue of a Gaussian distribution), 

𝑓(𝑥) = 	𝑎(
𝑒" #$%( '())

2𝜋𝐼+(𝜅)
) 

with a fixed concentration parameter 𝜅, a center defined by	𝜇, and −𝜋 < 𝓍 < 𝜋. 𝐼+(𝜅) is the 
modified Bessel function of order 0. The amplitude 𝑎 of each tuning function varies across 
orientation space as determined by the height of the input statistics function.  
For the categorical model, we calculated the psychological distance between all possible pairs 
of orientation. For any pair of orientations, we sum over the approximated derivatives between 
these two points along the input statistics function as follows, 

9 :
𝑦,-. − 𝑦,
𝑥,-. − 𝑥,

:
/01(.

,234564
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where 𝑥 is an orientation in orientation space (and wraps around a circle), and 𝑦 is the amount 
of normalized y-axis information for that orientation.  
The veridical and categorical models described above were converted from radians to degree 
(spanning the entire orientation space from 1º to 180º, in steps of 1º) to match the dimensions 
of the data (also in degree). To evaluate if the representational structure in the data RSM’s (Figure 
1C) is more or less similar to veridical or categorical model RSM’s (Figure 2B-C), both data and 
model RSM’s were normalized before fitting. Fitting was done via minimization of the mean 
squared errors. Because the veridical and categorical models are not independent, each model 
was fit to the residuals left by the other model. Specifically, to fit model A to the data RSM of a 
given ROI (𝑅𝑆𝑀789), we first fit model B (𝑅𝑆𝑀:) to get its residuals (ℰ:):  

𝑅𝑆𝑀789 = 𝑤:𝑅𝑆𝑀: + ℰ: 
 
Where 𝑤: are the initial weights of model B, and the residuals ℰ: reflect any pattern in the data 
unaccounted for by model B. To illustrate, imagine the extreme case where model B explains 
none of the data 𝑅𝑆𝑀789, then 𝑤: would be 0, and the residuals ℰ: would be equal to the data 
RSM itself.  
Next, model A is fit to the residuals of model B: 

ℰ: 	= 	𝑤;𝑅𝑆𝑀; + ℰ; 
Now, the weights of model A (𝑤;) reflect the amount of variance explained by model A 
independent of model B. To summarize, this procedure ensures that any resemblance (big or 
small) between the data and model B is first soaked out of the data, after which we obtain the 
unique contribution made by model A. Thus, the weights of the veridical model are obtained by 
fitting to the residuals of the categorical model, and the weights of the categorical model by 
fitting to the residuals of the veridical model (Figure 2D). 
 
Statistics  
First, we tested if model fits differed between task (sensory or memory), model (veridical or 
categorical), or ROI’s by running a three-way repeated measures ANOVA using R (version 4.1.1) 
and RStudio (version 1.4.1717). When using the theoretical input statistics function in Figure 2A 
as a basis for the veridical and categorical models and their subsequent fits to the data, we found 
a significant three-way interaction between all factors (F(7,35) = 2.39, p = 0.0415). We followed this 
up with two targeted two-way ANOVA’s – one for the sensory task, and one for the memory task, 
as described in the main text. In addition to the theoretical input statistics function based on 
prior literature (Figure 2A), we also used the behavioral response frequencies from an 
independent psychophysical experiment to construct both the veridical and categorical models 
(Figure 3A). After fitting the models generated in this manner, we again evaluated the impact of 
task, model, and ROI using a three-way ANOVA. This time, the three-way interaction did not 
quite reach significance (F(7,35) = 2.177; p = 0.0607), but there were significant two-way 
interactions between all factors (model x task, F(1,5) = 35.53, p = 0.0019; model x ROI, F(7,35) = 
4.159, p = 0.002; task x ROI, F(7,35) = 12.91, p < 0.001). Based on these interactions, and to keep 
statistical tests consistent with those from the modeling based on the theoretical input function, 
we followed up with two two-way ANOVAs (for the sensory and memory tasks, as described in 
the main text).  
Significant interactions arising from two-way ANOVA’s were further examined via post-hoc tests 
within each task and ROI, performed using permutation tests over 100.000 iterations using 
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custom written code. First, we compared whether the veridical and categorical model differed 
significantly in each ROI using two-sided paired-sample t-tests: On each iteration we shuffled 
the model label assignment (i.e., which weight came from which model) randomly for each 
subject, after which a t-statistic was calculated across all subjects 𝑡 = 	<=!	(	)"

3!	/	√0
 (𝑋CA and 𝑠A denote 

the mean and sd of the pairwise differences, 𝜇+ is the null hypothesis, and 𝑛 the number of 
subjects). The true t-statistic of the intact data was compared to the null distribution of all 
permuted t-statistics to get the p-value. Second, we tested within each model if the weights 
differed significantly from zero by using a two-sided t-test: We randomly permuted the sign (– or 
+) of the model weight for each subject on each iteration and calculated a t-statistic 𝑡 = 	 '̅	(	)"

3	/	√0
  (�̅� 

and 𝑠 denote the mean and standard deviation across subjects, 𝜇+ is the null hypothesis, and 𝑛 
the subject number). Post-hoc tests were not corrected for multiple comparisons. All post-hoc 
tests are reported in Supplementary Table 1. 
 
Analyses of 2nd level RSM and representational connectivity  

To compare the representational geometry across all retinotopic ROI’s during perception and 
working memory, we employed two approaches first described by Kriegeskorte et al. (2008b): A 
2nd level RSA and a ‘representational connectivity’ analysis. Note that for these analyses we used 
the smallest possible ROI’s that were retinotopically defined, meaning we split early visual areas 
into their dorsal and ventral parts, and used the individual sub-areas of IPS and LO. For the 2nd 
level RSA, we calculated the similarity of each across-subject RSM (as shown in Supplementary 
Figure 1) to every other across-subject RSM using spearman correlation (as RSM’s are 
monotonically, but perhaps not linearly related). This resulted in the 2nd level RSM’s in Figure 5A, 
showing representational similarity between all retinotopic ROI’s during perception, and during 
working memory. For the ‘representational connectivity’ we similarly computed Spearman 
correlations between ROI’s but at a within-subject level as is the recommended procedure 
(Kriegeskorte et al., 2008b). Across-subject averages are visualized in a graph (Figure 5B) where 
each node signifies a ROI, and each edge signifies the correlation coefficient to each other ROI. 
Thicker and shorter edges indicate higher similarity. We computed degree centrality for each 
node as the sum of all edges, depicted by the saturation of each node (less saturation indicating 
higher degree centrality). Thus, higher degree centrality indicates that a ROI shares its 
representational geometry either strongly with a few, or somewhat strongly with many, other 
ROI’s.  

 
Across-task RSA fidelity 

To directly relate cross-generalization from decoding (or more specifically, from the inverted 
encoding model, or “IEM”, as used in Rademaker et al., 2019) to our novel “across-task RSA”, 
we calculate a fidelity metric to quantify how much information there is about the remembered 
orientation based on the pattern responses to the perceived orientations. Because orientation is 
a continuous variable, we also take into account the representational similarity to orientations 
nearby the remembered one, and the expected drop in similarity at increasingly larger distances 
in orientation space. For each correlation profile (see Figure 4B–D) we calculate fidelity in a 
manner identical to how this has been calculated for IEM channel reconstructions (in Rademaker 
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et al., 2019”, and shown here as the y-axis in Figure 4D). Specifically, we take the correlation 
value at each degree in orientation space (wrapped onto a 2π circle), and project this vector onto 
the remembered orientation (centered to zero degrees) via cos 𝐴5C3(+º(1) =	

C
E
, where A is the 

angle between the remembered orientation (at 0º) and the degree in orientation space being 
evaluated (d), and h is the correlation value at d (i.e. the hypotenuse of a right triangle). This 
procedure was repeated for all 180 degrees in orientation space, and we then calculate the mean 
of all 180 projected vectors. This fidelity metric captures the amount of information at the 
remembered orientation, and removes additive offsets. 

 
Code accessibility  

The data are public and can be accessed via the Open Science Framework (OSF) at 
https://osf.io/dkx6y which has an accompanying wiki. The code for the analyses in this paper 
can be found at https://osf.io/placeholder. 
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Supplementary Materials 

 
Supplementary Figure 1: Orientation representation (as indexed by RSM’s) during sensory perception and working 
memory for all retinotopically defined ROI’s (across all participants) that were not already shown in Figure 1C. ROI’s 
are organized by whether they are located in the dorsal or ventral stream (top and bottom two rows, respectively). 
Early visual areas V1–V3 were split by their dorsal and ventral portions – used as input to the second-level RSA 
analyses (Figure 3). Areas IPS1–3 (in the dorsal stream) and LO (in the ventral stream) were split based on their 
respective sub-portions – and similarly used as input to the second-level RSA analyses. All RSM’s are scaled to the 
range of correlations within each subplot to ease visual comparison of representational structure.   
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Supplementary Figure 2: Model fits for the 3 different working memory distractor conditions. Overall, the results split 
by condition are qualitatively similar to the main results across all trails (Figure 2D, bottom panel). The two-way 
ANOVA’s comparing model and ROI showed that the categorical model did a better job at explaining the data without 
a distractor (main effect model: F(1,5) = 12.29; p = 0.017), and marginally so with a grating distractor (F(1,5) = 5.55; p = 
0.065) presented during the delay. Both n-distractor and grating-distractor conditions also had significant interactions 
(F(7,35) = 2.778; p = 0.017 and F(7,35) = 4.234; p = 0.002), indicating increasing differences between the veridical and 
categorical models along the visual hierarchy. For the 108 trials during which a noise distractor was presented during 
the delay, neither the main effect of model (F(1,5) = 1.227; p = 0.318), nor the interaction between model and ROI (F(7,35) 
= 1.745; p = 0.13) reached statistical significance. Nevertheless, despite using only 1/3rd of the data in each of these 
sub-plots, the pattern in the data do not change 
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Supplementary Figure 3: Exact ranges of correlations in the RSM’s from Figure 1C. To best show the representational 
structure for sensory and memory representations across ROI’s, and to ease comparison between them, the RSM’s 
in Figure 1C are scaled to the range (min-to-max) of correlations within each subplot. But the minimum and maximum 
correlations are not identical across subplots, therefore, correlation ranges across all participants (black rectangles) 
and individual participants (grey lines) are shown here for sensory (left) and memory (right) RSM’s. 

 

 
Supplementary Figure 4: Orientation representations of viewed gratings shown during the working memory 
delay (A) To test the generalizability of our finding that sensory inputs are represented in a predominantly veridical 
manner (Figure 2D, top), we constructed RSM’s from voxel responses to directly viewed gratings presented as 
distractors during the delay of our memory task (for retinotopically defined ROI’s and across all participants). The 
grating distractor was shown for 11s during the working memory delay on one-third of trials. Importantly, orientations 
of the remembered and distractor gratings were random and independent, allowing us to also examine the 
representational similarity structure of the distractor. In early visual areas, the RSM’s show a diagonal pattern (with 
highest similarity around 180º) combined with some degree of clustering around obliques. Indeed, the modeling results 
in (B) show that both the veridical and categorical models explain the representational pattern to some extent. There 
is a significant interaction between ROI and model (F(7,35) = 5.21; p = 0.025), indicating that the two models capture 
the data differently in different ROI’s. Only in area V4 did the veridical model outperform the categorical model, but 
there was no difference between the two models overall (main effect of model, F(1,5) = 1.054; p = 0.308) in V1, V2, and 
V4 (and an opposite effect in IPS1-3). (C) Here we show RSM’s of viewed orientations under two different contexts 
side-by-side (across all visual ROI’s). During the sensory task, participants had to attend the grating and detect 
contrast changes (left). When the sensory distractor was on the screen, participants had to ignore the grating while 
they were performing a concurrent VWM task (right). In addition to differences in attentional state, the number of trials 
collected in these different settings also differed (300+ for the sensory task, 108 for the sensory distractor shown 
during the memory task), likely causing differences in the signal-to-noise ratios. Thus, the differences between these 
two perceptual contexts may be due to multiple reasons.   
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Supplementary Table 1: Post-hoc statistics for two-sided paired t-tests from the theoretical input function based 
on the statistics in the natural world (in green) and from the psychophysical input function based on independent 
behavioral measurements (in blue). All significant cells are colored in a lighter shade for the purpose of quick 
visualization. 
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