
Stabilized bi-cubic Hermite Bézier finite element method
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Abstract

Development of a numerical tool based upon the high-order, high-resolution Galerkin finite el-
ement method (FEM) often encounters two challenges: First, the Galerkin FEMs give central
approximations to the differential operators and their use in the simulation of the convection-
dominated flows may lead to the dispersion errors yielding entirely wrong numerical solutions.
Secondly, high-order, high-resolution numerical methods are known to produce high wave-number
oscillations in the vicinity of shocks/discontinuities in the numerical solution adversely affecting
the stability of the method. We present the stabilized finite element method for plasma fluid
models to address the two challenges. The numerical stabilization is based on two strategies:
Variational Multiscale (VMS) and the shock-capturing approach. The former strategy takes
into account (the approximation of) the effect of the unresolved scales onto resolved scales to
introduce upwinding in the Galerkin FEM. The latter adaptively adds the artificial viscosity
only in the vicinity of shocks. These numerical stabilization strategies are applied to stabilize
the bi-cubic Hermite Bézier FEM in the computational framework of the nonlinear magnetohy-
drodynamics (MHD) code JOREK. The application of the stabilized FEM to the challenging
simulation of Shattered Pellet Injection (SPI) in JET-like plasma is presented. It is shown that
the developed numerical stabilization model improves the stability of the underlying numerical
algorithm and the computational cost required to reveal the complex physics is reduced. The
physical and numerical models presented can be used to perform expensive simulations of the
plasma applications in large computational domains such as JET, and ITER.
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1 Introduction

We are interested in the numerical modeling of strongly magnetized plasmas in tokamaks, partic-
ularly the MHD instabilities occurring in the tokamak plasmas. We assume that the compressible
MHD equations describe the characteristic time scales of the MHD simulations under concern.
Finite element methods (FEM) provide a flexible setup for developing a computational tool for
partial differential equations (PDEs). Galerkin FEM codes developed for simulation of MHD
instabilities in tokamak plasma include NIMROD[1], M3D-C1[2] and JOREK[3, 4]. One of
the motivations for choosing the numerical method for MHD is the divergence-free constraint
(∇ · bbb = 0) on the magnetic field (bbb). In the physical model we consider, the magnetic vector
potential (aaa) formulation is used such that the divergence-free magnetic field constraint is auto-
matically satisfied: ∇· (∇×aaa) = 0. However, the magnetic vector potential formulation leads to
higher-order (more than 2) derivatives in the MHD equations (particularly reduced MHD equa-
tions). Therefore, a design of Galerkin FEM to provide C1-regularity across the finite elements
is desired.

JOREK uses mixed Fourier spectral bi-cubic Hermite Bézier FEM that provides C1-regularity.
It has been extensively used to simulate a range of tokamak plasma applications, including Edge
localized modes (ELMs) and their control, disruptions and their control, and vertical disruption
events (VDEs) [5]. A tokamak is an axisymmetric device whose geometry is torus-shaped, and the
3D domain Ω (see Fig. (1)) is considered as the tensor product of a 2D poloidal domain Ωξ with
a 1D periodic domain in the toroidal direction ϕ = [0, 2π[. JOREK uses high-order isoparametric
bi-cubic Hermite Bézier FEM in Ωξ [3] while Fourier Spectral method in ϕ. Recently, higher-order
extensions of Hermite Bézier FEM in Ωξ have been implemented in JOREK [6]. Historically,
the numerical setup of JOREK has been used to solve reduced MHD equations, while the full
MHD equations are a relatively recent addition. The full MHD model is expected to provide
more complete modeling of plasma flows. It was implemented in JOREK and validated for simple
geometries in [7]. Later, it has been extended for the realistic tokamak geometries in [8]. JOREK
provides an excellent setup to perform comparative studies of the numerical solutions of full and
reduced MHD models. Such investigations can improve the understanding of a region of validity
of the full MHD models. However, full MHD models accommodate fast magnetosonic waves, as
opposed to reduced MHD models, and hence they may demand higher resolution. Further, we
face severe stability restrictions while using the full MHD model when shocks/discontinuities are
involved in the numerical solution.

MHD instabilities play a critical role in magnetic confinement fusion power plants. Large-
scale instabilities, often called disruptions, are the most critical obstacle in the path toward
smooth functioning of a magnetic confinement fusion power plant [9, 10]. Unmitigated dis-
ruptions can shut down a fusion power plant during which sudden loss of plasma energy is
transferred to the tokamak wall damaging plasma-facing components. The disruption mitigation
system (DMS) is currently under design for International Thermonuclear Experimental Reac-
tor (ITER) intending to detect disruption and trigger a harmless artificial disruption. ITER
DMS injects a massive amount of material into the tokamak plasma to trigger such harmless
disruption. Several techniques for massive material injection (MMI) have been developed/are
under development: Massive material injection (MGI) [9], Pellet injection (PI), Shattered pel-
let injection (SPI) [11, 12] etc. At present, SPI is considered to be a favorable candidate for
The ITER DMS [13]. A typical disruption has distinct phases: thermal quench (TQ), current
quench (CQ), and formation of runaway electrons (RE). Each of these phases involves complex
physics, and its lack of deep understanding motivates the disruption-related investigations. The
simulation codes such as JOREK are under development to predict such complex physics and
validate against theory and experiments. The development of a realistic impurity model is also
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Figure 1: Sketch illustrating the geometry and coordinate system to describe the problem. The
geometry of a tokamak device is axisymmetric and can be represented as the tensor product of a
2D poloidal domain ΩX = (r, z)T with a 1D periodic domain in the toroidal direction ϕ = [0, 2π[.
The major radius (radius of the tokamak device) is denoted by r0 while ‘a’ denotes the plasma
radius.

one of the ongoing development to study disruptions numerically [5]. On the other hand, with
the existing models, MMI simulations for the realistic physical parameters are computationally
expensive to perform [14] due to the lack of a proper numerical stabilization mechanism. The
use of the full MHD model further increases the cost of computations. MMI simulations for large
devices such as Joint European Torus (JET), ITER, and DEMO are expected to face further
severe numerical challenges. The goal of this work is to develop a numerical stabilized mechanism
for the underlying Galerkin FEM to reduce the computational cost of MHD simulations.

Numerical schemes for convection-dominated flows must consider the effects of unresolved
scales to ensure the stability of the numerical approach. In the context of compressible hydrody-
namics, the pioneering work of von Neumann and Richtmyer [15], and its 2D extension by Wilkins
[16, 17] the effects of unresolved scales are formulated as artificial viscosity. Godunov[18] was
the first to introduce an explicit evaluation of the subscale effects on the resolved scales via Rie-
mann problems. However, these popular formulations are mainly associated with finite volume
and discontinuous Galerkin (DG) methods. Continuous Galerkin finite element methods (FEM)
provide a flexible numerical setup for computational applications of partial differential equations
(PDE)s. These methods give rise to centered approximations of differential operators and can
lead to dispersion errors while solving for the convection-dominated flows. Indeed, Galerkin
FEMs do not provide mechanisms to control the subscale effects on the resolved scales: stabi-
lization. The vast literature exists for stabilized Galerkin FEM such as Taylor-Galerkin methods
[19, 20], bubble functions [21, 22], Streamline Upwind Petrov-Galerkin (SUPG) methods [23],
Variational Multiscale (VMS) [24, 25] methods etc. The VMS approach provides attractive
guidelines for developing stabilized FEMs where numerical stabilization is achieved by an addi-
tional contribution to Galerkin’s weak formulation. This contribution mimics the effect of the
unresolved scales over the resolved scales. In this way, an upwinding process is introduced that
leads to numerical diffusion essentially in the flow direction and avoids crosswind diffusion effects
in the multidimensional flows. The critical point of developing VMS-based stabilization is the
design of a stabilization (intrinsic time-scale) matrix that controls the numerical stabilization
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added. The order of the accuracy of the underlying Galerkin FEM is preserved.
VMS-stabilized FEM gives an excellent approximation to smooth solutions. However, it does

not provide a mechanism for Bounded Variation (BV ) stability. High-order numerical methods
often lack robustness in the vicinity of shocks where the numerical solution may develop Gibbs
oscillations and severely affect the numerical method’s stability. Shock-capturing stabilization
strategies are often used to enforce the total variation stability where the numerical solution
develops sharp gradients. The idea is to introduce the artificial viscosity adaptively only in
the regions surrounding shocks. Several strategies have been developed for shock capturing
stabilization [26, 27, 28, 29, 30] which are often dependent on the physical problem and mesh
topology. In MMI applications, strong and localized mass sources can give rise to hydrodynamic
shocks. As MHD equations are nonlinear and can admit discontinuous solutions, the shock-
capturing technique is needed to stabilize the underlying numerical method.

This work aims to develop a numerical stabilization strategy for mixed Fourier spectral bi-
cubic Hermite Bézier FEM applied to plasma fluid models based on VMS formulation and shock-
capturing technique. Similar approaches have been successfully used in [31, 32] where high order
Powell-Sabin FEM is stabilized using SUPG and shock-capturing stabilization to solve Euler’s
equations. VMS and SUPG stabilized FEM is used to solve the reduced MHD equations in
[33, 34] and [35] respectively. In [36] VMS formulation and discontinuity capturing technique
are used to stabilize the underlying FEM to solve non-equilibrium plasma with the application
to industrial problems. The numerical stabilization for the reduced MHD models in JOREK
has been achieved by Taylor-Galerkin stabilization. Sometimes, fourth-order diffusive terms are
also used to damp very high wave-number oscillations in the numerical solution. In this work,
we develop numerical stabilization techniques for the underlying FEM and demonstrate their
use to simulate gas-plasma interactions in the tokamak plasma. The manuscript is organized as
follows. Section 2 presents the fluid models for the magnetized plasma extended for MMI. The
description of the FEM used in JOREK and the formulation of the stabilized FEM is the subject
of Section 3. In Section 4, we demonstrate the verification of stabilized FEM algorithm on a
wide range of challenging numerical problems. An application of the stabilized FEM to MMI in
tokamak plasma is presented in Section 4. Finally, Section 5 outlines the conclusions and opens
future perspectives.

2 Governing equations

A plasma consists of charged and uncharged particles (atoms, molecules, ions, and electrons)
and exhibits a collective behavior due to the interactions among these particles. ‘Kinetic plasma
theory’ describes the collective behavior of constituent charged particles of the plasma. In the
kinetic models, the information of a collection of charged particles is expressed in terms of
the distribution functions fα of a species α and their evolution is governed by the Boltzmann
or Vlasov equations. For plasma applications of interest here, characteristic length and time
scales of the kinetic models, Debye length and the electron plasma frequency take the values
of order ≈ 10−5 m and ≈ 1012 Hz respectively. These scales are very restrictive from the
computational application point of view. In this context, the fluid models offer an attractive
choice for computational applications with large domains such as ITER. The fluid models are
obtained from the Vlasov/Boltzmann equations by taking their first three velocity moments
and bringing closure to the fluid equations under the assumption that the distribution function
fα is close to the Maxwellian distribution [37]. The resulting fluid models describe a plasma
reasonably well when the plasma is dominated by Coulomb collisions [38]. Unfortunately, the
prohibitive cost of the kinetic approach often leads to the use of the fluid approach even for
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weakly collisional plasmas. Even then the fluid models have been proven to be a powerful tool
to study MHD instabilities.

Tokamak plasma mainly consists of ions of hydrogen isotopes (deuterium) and electrons. In
MMI experiments neutral gases (such as deuterium, neon, argon, etc.) are injected into tokamak
plasma and the atomic processes occurring between gas and plasma give rise to the charged ions
at different ionization levels. To study such applications, a physical model needs to be accounted
for gas-plasma interactions among the multiple fluid species. The visco-resistive MHD model
used in this work treats the ‘impurities’ as an additional fluid species which is assumed to be
convected with the main plasma velocity, independently of its charge state. Furthermore, the
impurities are assumed to be at coronal equilibrium, the consequences of which are discussed
along with the impurities modeling in [39] in the context of reduced MHD. The reduced MHD
model with impurities transport has been implemented in JOREK and used to study MMI in
tokamak plasma [40, 41, 14, 39, 42, 43]. In this work, we extend the visco-resistive full MHD
model implemented in [8] to include impurity transport.

The full MHD model extended to include transport of the impurity species is written as:

∂aaa

∂t
+ v × bbb = −η(jjj− jjj⋆) +∇Φ (1)

ρ
∂v

∂t
+ ρv · ∇v +∇p− jjj× bbb = µ∇2v − SSSv (2)

∂ρ

∂t
+∇ · (ρv) = ∇ · (D∇ρ) + Sρ + Sρf (3)

∂p

∂t
+ v · ∇p+ γp∇ · v + L (∂,nf,ne,te) = (γ − 1)∇ ·

(
(K+ nfDκ)∇t

)
+ Sp (4)

∂ρf
∂t

+∇ · (ρfv) = ∇ · (Df∇ρf) + Sρf (5)

These equations govern the evolution of model variables: the magnetic vector potential (aaa), the
plasma velocity (v), the total density (ρ), the internal energy (but written in terms of the total
pressure (p)) and the partial density (ρf) of impurity species at all the levels of ionization.

The above system of equations is a single fluid, single temperature model where the assump-
tion is made that main plasma ions and electrons are at the same temperature. Without this
assumption, one would get the single fluid, two-temperature model where Eq. (4) in the above
system of PDEs is replaced by the equations for the internal energies of ions and electrons.

∂pe
∂t

+ v · ∇pe + γpe∇ · v + L (∂,nf,ne,te) = (γe − 1)∇ ·
(
(Ke + nfDκ)∇te

)
+ Spe (6)

∂pi
∂t

+ v · ∇pi + γpi∇ · v = (γi − 1)∇ · (Ki∇Ti) + Spi (7)

The ratio of specific heats γ is assumed to be the same for both electron and ion species and is
chosen as 5/3 which corresponds to a monoatomic gas. The absence of the permeability of the
free space µ0 from the MHD equations is due to the choice of the normalization [5]. The total
density ρ is the sum of the partial densities for the main tokamak plasma and impurities species.

The potential vector aaa and the velocity v are written into the cylindrical (or toroidal) coor-
dinate system:

aaa = Arer +Azez +
ψ

r
eϕ and v = vrer + vzez + vϕeϕ (8)
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where r and z are the poloidal coordinates defining the poloidal plane and ϕ is the toroidal
angle that denotes the direction perpendicular to the poloidal plane (see Fig. (1)). The vectors
(er, ez, eϕ) form an orthonormal basis which from now on will be designated by the cylindrical
basis. The toroidal component of the magnetic potential (Aϕ) is written in terms of the magnetic
flux (ψ = rAϕ) [7]. The magnetic field (bbb) and the current (jjj) are given by the following relations

bbb =
F

r
eϕ +∇×aaa and jjj = ∇× bbb (9)

where F is a given function associated with the axisymmetric ideal MHD equilibrium such that
the magnetic field remains divergence-free. The induction Eq. (1) is written for the evolution of
aaa rather than bbb which requires the inversion of the curl operator and the specification of a gauge
(Φ). A convenient choice of the Weyl’s gauge is made in the induction equation [7] such that:

∇Φ ≡ 0. (10)

The total particle density is denoted by n0. The impurities species contains the neutral atoms
and the ions at different ionization levels. The total impurity particle density (nf) is the sum of
the particle densities (nz) with different ionization levels (z):

nf ≡
ρf
mf

=

nz∑
z=0

nz

where nz denotes the maximum possible levels and mf denotes the effective mass of the impurities
species. The quasi-neutrality assumption (the mass of electrons is negligible compared to the
mass of ions) allows us to write the mean charge (zf) for the impurities species as:

zf =

nz∑
z=1

zz
nz
nf

(11)

where zz = ze is the charge associated with the ionization level z. The equation of state formulates
a link between the plasma temperature (t), pressure, and partial and total densities. The total
pressure is the sum of partial pressures. In addition to the quasi-neutrality of the plasma and
the assumption that the electrons, ions, and impurities are at the thermal equilibrium, the total
pressure in the normalized units is written as:

p = (ρ+ αf ρf)t with αf =
mi

mf

zf + 1

zi + 1
− 1, (12)

where mi and zi denote the mass and the electric charge of the main ion species (ions in the
tokamak plasma). To compute the total pressure, the ratio nz

nf
is required which is given by a

probability function of the local electron temperature (te) and the particle density of electrons
(ne) under the assumption of coronal equilibrium [39] as:

nz
nf

≃ P (z,ne,te) where te = t/2 and ne ≃ n0

The function P is obtained from Atomic Data and Analysis Structure (ADAS) database [44].
The variation of P (z,ne,te) according to the electron density ne is negligible, such that we can
use a constant density ne ≃ n0 in our applications. Note that, if the injected gas is the hydrogen
isotope from which the tokamak plasma is generated, then we have mi = mf and zf = zi. In this
case, αf = 0 and the definition of the total pressure reduces to p = ρ t.
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We assume that the atomic reactions weakly affect the partial pressures of each species.
The coronal equilibrium assumption results in an instantaneous change in the ionization states
resulting in difficulties in treating the ionization energy and the corresponding recombination
radiation which would not be present in a self-consistently evolving non-equilibrium model. To
avoid such artificial recombination radiation, the ionization energy is treated as a potential energy
[39] and the associated contribution L (∂, ρf,te) is added to the equation of the internal energy.

L (∂,nf,ne,te) = (γ − 1)

(
∂

∂t
(nf κf) +∇ · (nf κf v)

)
with κf ≡ κf (ne,te) (13)

In the case of the two-temperature model, using conservation of the total energy, this potential
energy contribution is added to the electron energy equation as can be seen from Eq. (6). The
function κf (ne,te) denotes the potential energy of atomic ionization and recombination and is
evaluated as:

κf (ne,te) =

nz∑
z=0

κz
nz
nf

=

nz∑
z=0

κzP (z,ne,te) where κz =

z∑
k=0

κk+1
k

The potential energy κf is the energy required to ionize an atom from the neutral state to the
ionized state with level z, while κk+1

k denotes the energy needed to move an electron from the

level k up to level k + 1. The database ADAS [44] provides the potential energies κk+1
k for

the species under consideration. The tensor Dκ is symmetric positive definite and is obtained
by applying Fick’s law to the fluctuations of the convection velocity, about the average plasma
velocity (v), associated with nfκf.

The resistivity (η) and viscosity (µ) can be specified as anisotropic tensors [5]. However,
in this work, a simplistic choice of assuming these parameters as scalars is made. The resis-
tivity is specified with Spitzer-like temperature dependence as well as the effective charge (zeff)
dependence [45]:

η = η0 f(t, zeff) with zeff =

nz∑
z=1

z2zP (z,ne,te)

nz∑
z=1

zzP (z,ne,te)

(14)

The scalar viscosity is also implemented with Spitzer-like temperature dependence µ = µ0 t−3/2

where η0 and µ0 are the respective values at the magnetic axis.
The tensors D, Df and K (in the case of the two-temperature model Ke and Ki ) are all

symmetric positive definite. Fick’s law applied to the fluctuations of velocities about the average
velocity (v) introduces the tensors D and Df. Fourier’s law of thermal conduction introduces
the thermal conductivity tensors K, Ke, and Ki. Each of these tensors (denoted by X) is always
decomposed into the parallel and perpendicular components to the magnetic field as:

X = X∥ (bbb⊗ bbb) +X⊥ (I− bbb⊗ bbb) where bbb =
bbb

∥bbb∥
and I is the identity matrix.

since in a strongly magnetized plasma, the dynamics parallel and perpendicular to the magnetic
field are generally very different. The scalar coefficients X∥ and X⊥ control the diffusions parallel
and perpendicular to the magnetic field and can be modeled to have temperature dependence.
The perpendicular coefficients can also be modeled to mimic the kinetic turbulent transport [8].
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The term jjj⋆ denotes a current source term. It can be used to preserve the equilibrium current
profile approximately throughout the simulation. The current source term can also be used to
model a consistently evolving bootstrap current [5]. The source terms Sρ and Sρf denote the
mass sources of the tokamak plasma and externally injected impurities, respectively. The source
term in the momentum equation contains the contribution of the diffusion terms, density sources
as well as the momentum source term Sm:

SSSv = Sm − (Sρ + Sρf +∇ · (D∇ρ) )v

The source terms in the equation of the internal energy contain the Ohmic heating term, thermal
energy source (Se ), particle source effects, and radiation losses.

Sp = (γ−1)
(
η(jjj− jjj⋆) · jjj+ Se − v · Sm +

v · v
2

(
Sρ + Sρf +∇ · (D∇ρ)

)
− ne nf Lrad(te)

)
,

where Lrad(te) denotes the radiation power function obtained under coronal equilibrium assump-
tion [46, 39].

The system of equations (1)-(5) with closure relation (12) can be written in a compact form
as:

∂www

∂t
+Lwww (∂,www)− swww (www) = 0 with www = ( aaa, ρv, ρ, p+ (γ − 1)ρfκf, ρf )

t
(15)

wherewww denotes the vector of physical variables, Lwww denotes the differential operator while swww is
the vector of the terms at the right-hand side in the equations including sources. For the above
system of equations to be well-posed, it must be supplemented by the initial and boundary
conditions. In the numerical simulations of tokamak modeling, usually, the aim is to investi-
gate the MHD instabilities around the plasma equilibrium configuration. Therefore, the initial
condition is given by the equilibrium configuration of the ideal MHD equations, to which small
perturbations are added, and the MHD equations evolved using the numerical approximation.
Physics-based boundary conditions are supplied to the numerical solver.

Initial conditions: In an ideal situation, the tokamak plasma should remain confined within
a reactor under the equilibrium configuration, however, the plasma instabilities disturb such a
configuration. We are primarily concerned with the evolution of plasma instabilities around the
equilibrium; hence, the plasma equilibrium configuration gives the initial conditions. For the
steady (v = 0) and stationary (∂t = 0) ideal MHD equations and the axis-symmetric configura-
tion the plasma equilibrium is governed by the famous Grad-Shafranov equation (GSE) [47, 48]
and is written as:

r2∇ ·
(

1

r2
∇ψ
)

= −F dF

dψ
− dp

dψ

where F is an axisymmetric equilibrium function of ψ and does not evolve in time. The magnetic
field is defined in terms of F as bbb = ∇ × aaa + (F/r) eϕ such that the condition ∇ · bbb = 0
is satisfied exactly. The GSE is a nonlinear elliptic PDE and JOREK solves it numerically
using the bicubic Hermite Bézier finite element method (see Section 3). The numerical solution
requires the specification of the boundary data and the profiles F (ψ) and p(ψ). For the numerical
tests considered here, we impose Dirichlet boundary conditions on ψ at the boundaries of the
computational domain. Usually, the boundary data and the profiles F (ψ) and p(ψ) are specified
analytically for simple cases or can be extracted from ‘geqdsk’ files [5].

Then the initial conditions are specified using the numerical solution of GSE. The magnetic
vector potential is initialized as aaa = (0, 0, ψ/r)T. All the velocity components are initialized
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to zero. The density and temperature are initialized by using the equilibrium profile p(ψ). In
a typical JOREK simulation, small perturbations are added in the initial conditions that are
evolved using the discretized MHD equations. In the simulations presented in this work, the
perturbations are provided by the source terms.

Boundary conditions. The boundary conditions can be set in a flexible way such that the
decomposition of the boundary for Dirichlet and Neumann conditions can be different for each
variable. In most situations, boundaries are identified whether they are aligned to the magnetic
flux surfaces (constant ψ surfaces) or not. By default, all the variables are kept constant in time
at the boundaries that are aligned to the flux surfaces (Dirichlet boundary conditions). At the
boundaries intersecting with the flux surfaces (e.g., in the divertor region or for the multi-block
grids extended to the true physical wall [49]) the sheath boundary conditions are applied as
commonly done in divertor physics codes [50]. The velocity is forced to be equal to the ion sound
speed: v · n = ±√

γ t while the temperatures are constrained by the following condition on the
heat flux:(

ρ
v · v
2

+
γ ρ t

γ − 1

)
v · n− (K+ nfDκ) ∇t · n = γsh ρ t v · n

where γsh is the total sheath transmission factor that has typical values of 7-8.
Although the full MHD equations (15) written above have been described from the tokamak

modeling point of view, in general, they govern gas-plasma interactions that occur in a wide
range of fields such as Astrophysics, industrial plasma application, etc. The numerical approach
used to solve these MHD equations is the topic of the next section.

3 Stabilized Finite Element Method

The full MHD model described in Section 2 is the system of nonlinear PDEs given by Eq. (15)
in the unknowns www(t,x) for t ⊂ R+ defined over the spatial domain x ∈ Ω ⊂ R3. This system is
compactly written in the residual form as:

RRR (www) = 0 where, RRR (www) :=
∂www

∂t
+Lwww (∂,www)− swww (www) = 0 (16)

In the numerical approach considered here, the Galerkin FEM is applied to the above system
which is re-written in terms of another set of the physical variables uuu(t,x):

uuu = (Ar, Az, ψ, vr, vz, vϕ, ρ, t, ρf)
t

and the corresponding residual form becomes:

RRR (www) = M (uuu) RRRu (uuu) = 0 where, RRRu (uuu) :=
∂uuu

∂t
+L (∂,uuu)− s (uuu) = 0 (17)

where L (∂,uuu) denotes the differential operator of the system given byRRRu (uuu) while s (uuu) denotes
the terms at the right-hand side along with the sources. The mass matrix M is given by:

M =


I 0 0 0 0
0 ρI 0 0 0
0 0 1 0 0
0 0 t ρ̃ t̃f

0 0 0 0 1

 (18)
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where ρ̃ and t̃f comes from the definition of the extended pressure which is given by: p =
(ρ+ αfρf)t+ (γ − 1)ρfκf as follows:

ρ̃ = ρ+ αfρf + ρft
∂αf

∂t + (γ − 1)ρf
∂κf

∂t

t̃f = αft+ (γ − 1)κf

The initial condition is given by uuu(t = 0,x) = uuu0 (x) ∀x ∈ Ω. The boundary conditions are
expressed as:

uuu(t,x) = uuuD ∀x ∈ ΓD and
∂uuu

∂n̂
(t,x) = uuuN ∀x ∈ ΓN

where the boundary of the domain is denoted by ∂Ω ≡ ΓD ∪ΓN with ΓD ∪ΓN = ∅. The symbols
ΓD and ΓN denote the parts of the boundary where Dirichlet and Neumann boundary conditions
are to be applied while n̂ denotes a unit vector normal to the boundary ∂Ω. The boundary
conditions can be specified differently for different variables and hence the decomposition of ∂Ω
can also be different for each variable. The initial and boundary conditions to be supplemented
to this system are described in Section 2.

In the context of the Galerkin FEM, the variational or weak formulation of the problem (17)
is written as: Find the trial functions uuu ∈ V := {uuu|uuu(t,x) ∈ H(Ω)nv} such that for all test
functions uuu∗ ∈ V := {uuu∗|uuu∗(x) ∈ H(Ω)nv} the following holds:∫

www∗ · RRR (www) dΩ =

∫
uuu∗ · RRRu (uuu) dΩ = 0 (19)

where RRR (www) = M (uuu) RRRu (uuu), the modified test functions are uuu∗ = Mt www∗ and nv denotes the
number of variables of the system of PDEs. In Galerkin FEM the test functions (www∗) and the
trial functions (uuu) are sought from the same space of functions. Such a formulation gives rise
to the central approximation of the differential operators and can lead to dispersion errors in
the numerical solution for convection-dominated problems. The Galerkin FEM does not provide
any inherent mechanism for numerical stabilization that can stabilize the spurious waves due to
dispersion errors. Furthermore, the high-order methods can develop high wave-number Gibbs
oscillations in the vicinity of shocks and can lead to severe stability problems.

The fluid plasma models of interest in this work contain a weakly hyperbolic operator that
governs the convection-driven nonlinear dynamics and any central approximation of such fluid
models needs additional treatments to mitigate numerical instabilities. Therefore we need a
numerical model to stabilize the underlying Galerkin FEM that can remove the spurious waves
from the numerical solution without compromising the accuracy of the numerical solution. We
present the numerical stabilization model based on the VMS formulation in subsection 3.1. The
applications of interest in this work can also have a presence of shocks in the numerical solution of
the fluid plasma models. Therefore, we need a numerical technique that can detect the shocks and
add artificial viscosity in their vicinity to stabilize the underlying high-order FEM. We present
such a shock-capturing stabilization method in subsection 3.2. The two stabilization models are
applied to the bi-cubic Hermite Bézier FEM whose description is presented in subsection 3.3.

3.1 Variational multiscale formulation : VMS

In the VMS framework, the weak formulation (19) is decomposed into coarse and fine scales. The
coarse scales (uuu) are assumed to lie in the finite-dimensional finite element subspace Vh while
the fine scales (uuu′) in an infinite dimensional subspace Z with V = Vh ⊕ Z. The numerical
solution is assumed to be decomposed as into resolved scales (uuu ∈ Vh) and unresolved scales
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(uuu′ ∈ Z) such that uuu = uuu + uuu′. The similar decomposition is applied to the test functions:
uuu∗ = uuu∗ + uuu′∗. Using the scale decomposition, the variational weak form given by Eq. (19)
becomes: Find uuu ∈ Vh and uuu′ ∈ Z such that the following holds:∫

(uuu∗ +uuu′∗) · RRRu(uuu
′ +uuu′) dΩ = 0 ∀uuu∗ ∈ Vh, ∀uuu′∗ ∈ Z (20)

The primary purpose of the VMS formulation is to derive an estimation of the unresolved scales
uuu′ which will be used to model the numerical stabilization for the resolved scales. This process
is similar to an up-winding mechanism that stabilizes finite volume schemes when applied to
convection-dominated flows [51, 52, 53, 54, 55]. The variational weak from (20) is then split into
the problems for coarse and fine scales as:∫

uuu∗ ·
(
RRRu(uuu+uuu′)

)
dΩ = 0 ∀uuu∗ ∈ Vh (21)∫

uuu′∗ ·
(
RRRu(uuu+uuu′)

)
dΩ = 0 ∀uuu′∗ ∈ Z (22)

The residual is approximated using Taylor’s series expansion about uuu as:

RRRu(uuu+uuu′) ≈RRRu(uuu) +L (uuu′) where L ≃ ∂RRRu

∂uuu
(uuu) . (23)

where the operator L is the full Jacobian of RRRu(uuu) with respect to uuu. Inverting the above
equation gives uuu′ ≃ −τττ RRRu(uuu) where τττ is an approximation of L−1. Substituting uuu′ in Eq. (22)
and using the adjoint duality, Eq. (21) can be written as:∫

uuu∗ · RRRu (uuu) dΩ−
∫ (

Lt(uuu∗)
)
· (τττ RRRu (uuu) ) dΩ = 0 ∀uuu∗ ∈ Vh (24)

The first term in the above equation is the classical Galerkin finite element approximation that
solves for the resolved scales uuu. The second term is the effect of the unresolved scales (subscales)
on the resolved scales.

The evaluation of the exact stabilization matrix (L−1) is the main ingredient of the VMS
stabilized FEM [24, 25]. For linear operators, it is possible to express the stabilization matrix
(L−1) without any approximation [24]. However, in general, evaluating the exact form of L−1

poses a more difficult problem than the original one. For nonlinear problems, an optimal way
to obtain L−1 is still an open question. Often, the derivation of an approximated stabilization
matrix τττ is based upon heuristic arguments and some physical properties of the physical model
[56, 36, 57]. In this work, we use a diagonal stabilization matrix given by:

τττ =
he
λemax

diag
(
Caaar , Caaaz , Caaaϕ

, Cvr , Cvz , Cρ, Ct, Cρf
)

(25)

where he is a local mesh size and λemax is the local maximum wave speed of the physical model
over a finite element denoted by e. To estimate he approximately, we assume that each element e
is formed by linear edges and he is taken as the minimum of lengths of two line segments formed
by joining midpoints of the linear edges of e. The local wave speed is estimated as the maximum
speed of the magneto-sonic wave over each element. Hence, it is clear that the stabilization matrix
τττ is defined elementwise. The free parameters Ci ≥ 0, ∀i ∈ 1, ..., nv in the above expression are
the constant coefficients that control the amount of the numerical stabilization added in each
equation of a system of PDEs. The ratio (he/λ

e
max) denotes a time-scale and goes to zero as the
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mesh size he → 0 since λemax is independent of the mesh size. We note that if L is symmetric
and when RRRu (uuu) is approximated as L(uuu), the resulting stabilization term is dissipative. Then
the numerical stabilization model is written as the sum of dissipative contributions:∫ (

Lt(uuu∗)
)
· (τττ RRRu (uuu) ) dΩ ≃

∑
ℓ

∫ (
Lt
ℓ (uuu

∗)
)
· (τττ ℓLℓ(uuu)) dΩ (26)

It is a common practice to use approximations of the residual by excluding the terms of the
higher-order derivatives [58, 59, 36] to reduce the computational cost and complexity. We follow
here a similar strategy to write the VMS-based numerical stabilization model:

Dvms

(
uuu,uuu⋆

)
=
(
Lt
a(uuu

∗)
)
· (τττ La (uuu) ) (27)

where La (uuu) denotes approximation of the residual such that the second-order derivative terms
are excluded. The operator La for the full MHD equations considered here is written as:

La =



−v ×∇× 0 0 0 0

0 v · ∇ T
ρ∇ ∇ 0

0 ρ ∇T v · ∇ 0 0

0 (γ − 1) T ∇T 0 v · ∇ 0

0 0 0 0 v · ∇


(28)

In the further simplified option, the VMS-based numerical stabilization model can written as:

Dvms

(
uuu,uuu⋆

)
=
(
Lt
d(uuu

∗)
)
· (τττ Ld (uuu) ) (29)

where Ld denotes the diagonal part of the operator L:

Ld =



−v ×∇× 0 0 0 0

0 v · ∇ 0 0 0

0 0 v · ∇ 0 0

0 0 0 v · ∇ 0

0 0 0 0 v · ∇


(30)

Furthermore, it is assumed that the small scales in the above equation vanish at the element
boundaries meaning that the operator L (or any of its simplified version) is piecewise defined on
each finite element of a mesh.

3.2 Shock-capturing stabilization

Shock-capturing stabilization introduces artificial viscosity only in the vicinity of shocks such
that high wave-number Gibbs oscillations near shocks are removed from the numerical solutions
and at the same time discontinuities in the variables are captured. Such an adaptive numerical
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stabilization to be added in the Galerkin weak formulation as an additional contribution is written
as follows:

Dsc

(
uuu,uuu⋆

)
= ∇uuu⋆ :

(
τscτscτsc∇uuu

)
(31)

where τscτscτsc is solution-dependent shock-capturing symmetric positive definite stabilization matrix.
In the application of interest here, we primarily deal with the hydrodynamic shock arising due to
the MMI in tokamak plasma and hence we write the shock-capturing strategy for hydrodynamic
variables only.

In strongly magnetized plasma, the magnetic field introduces a strong anisotropy in plasma
flows and for generality, the anisotropic shock-capturing stabilization matrix (τscτscτsc) formulated
here is written as:

τscτscτsc = τsc

(
c∥ bbb⊗ bbb + c⊥ (I− bbb⊗ bbb)

)
where bbb =

bbb

∥bbb∥

where τsc is a solution-dependent scalar function that detects shocks. Such an approach is
similar to that used in [27, 28, 32] where anisotropic directions are mostly pressured gradient-
based. Using the anisotropic stabilization matrix in Eq. (31) the shock-capturing stabilization
method takes the form:

Dsc

(
uuu,uuu⋆

)
= τscc

⊥∇uuu⋆ : ∇uuu+ τsc

(
c∥ − c⊥

) (
bbb · ∇uuu⋆

)
· (bbb · ∇uuu)

where c∥ and c⊥ are the user-defined parameters to control the amount of the shock-capturing
stabilization to be added in the parallel and perpendicular direction to the magnetic field. Fixing
optimum values of these parameters requires some tuning and in general, their values depend
upon the physical parameters and local mesh size. The isotropic shock-capturing stabilization
method is recovered if one sets c∥ = c⊥. The function τsc used here is motivated by the shock-
capturing stabilization technique used in [28] for the discontinuous Galerkin method applied to
2D Navier-Stokes equations. A similar technique has also been used in [32] for C1 Galerkin FEM
applied to 2D Euler equations. The form of τsc used in this work is written as:

τsc = h2e
(dp + ds)

p
fp with fp = he

||∇p||
p

(32)

where p denotes the total pressure of the plasma given by (12). The dimensionless quantity
fp acts as a shock detector. The numerical solution dependent multiplier term he (dp + ds)
denotes the shock-strength and modulates the value of τsc. Another mesh-dependent multiplier
he implies that stabilization goes to zero as the mesh is refined. The shock-strength terms dp
and ds are defined as:

dp =

∣∣∣∣∂p∂ρL(ρ) + ∂p

∂ρf
L(ρf) +

∂p

∂t
L(t)

∣∣∣∣ and ds =

∣∣∣∣∂p∂ρS(ρ) + ∂p

∂ρf
S(ρf) +

∂p

∂t
S(t)

∣∣∣∣ (33)

where the quantities S(ρ), S(ρf) and S(t) denote the source terms in the density, impurity
density and temperature equations respectively.

To this point, we have developed the numerical strategies to stabilize a Galerkin FEM but
we have not specified the finite element subspaces yet. Hence the formulation of the numerical
stabilization remains valid for any Galerkin FEM. We aim to stabilize the mixed Fourier-spectral
bi-cubic Hermite Bézier FEM [3] that has been implemented in the computational framework
of JOREK. This FEM has been extensively used to simulate many plasma flow applications to
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tokamaks using reduced MHD models and most of the simulations use Taylor-Galerkin stabiliza-
tion [5, 60]. The objective of this work is to implement the developed numerical stabilization
strategies in JOREK for simulating plasma flows using the reduced and full MHD models. Next,
we briefly describe the high-order Galerkin FEM that has been implemented in JOREK, the
solution strategy for the time integration, and the weak form of the full MHD model.

3.3 Finite element method

High-order continuity is particularly needed when dealing with physical models that include high-
order spatial derivatives, for example, the reduced MHD models implemented in JOREK [5] have
third-order derivative terms. In addition, it is desired that unperturbed ideal MHD equilibrium
should be accurately preserved for a long time. Moreover, numerical precision is vital in solving
nonlinear problems where high-order FEM provides obvious advantages. Isoparametric bi-cubic
Hermite Bézier (C1) FEM has been implemented in the poloidal plane while Fourier spectral
method in the periodic toroidal direction.

In the Galerkin finite element framework, the vector of the variables (uuu) lies in the finite-
dimensional finite element subspace VVVh such that:∫

uuu∗ · RRRu (uuu) dΩ = 0 with uuu∗ = Mtwww∗ ∈ VVVh and for any www∗ ∈ ṼVVh (34)

where

RRRu (uuu) ≡RRR (www(uuu)) =RRRt

(
∂uuu

∂t
,uuu

)
+RRRx (uuu) (35)

and RRRt(.) denotes the time derivative terms while RRRx(.) denotes the remaining terms in the
strong form of the system (17). The weak form of the equations in this system is obtained by
applying the following projections:

www⋆
aaar

= ( nieeer, 0, 0, 0, 0)
t

www⋆
aaaz

= ( nieeez, 0, 0, 0, 0)
t

www⋆
ψ = (rnieeeϕ, 0, 0, 0, 0)

t

www⋆
ρ = ( 0, 0, ni, 0, 0)

t

www⋆
t = ( 0, 0, 0, ni, 0)

t

www⋆
vr

= (0, nieeer, 0, 0, 0)
t

www⋆
vz

= (0, nieeez, 0, 0, 0)
t

www⋆
vϕ

= (0, nieeeϕ, 0, 0, 0)
t

www⋆
ρf

= (0, 0, 0, 0, ni)
t

(36)

where ni ∈ Vh denote scalar test functions and the corresponding transformed test functions are
denoted as uuu⋆aaar

, uuu⋆aaaz
and so on. Using these projections the weak form is compactly written in

the residual form as:

AtAtAt

(
∂uuu

∂t
,uuu,ni

)
+AxAxAx (uuu,ni) = 0 ∀ni ∈ Vh (37)

with

AtAtAt

(
∂uuu

∂t
,uuu,ni

)
=

∫ (
RRRt ·uuu⋆aaar

, RRRt ·uuu⋆aaaz
, RRRt ·uuu⋆ψ, RRRt ·uuu⋆vr

, RRRt ·uuu⋆vz
,

bbbrRRRt ·uuu⋆vr
+ bbbzRRRt ·uuu⋆vz

+ bbbϕRRRt ·uuu⋆vϕ
, RRRt ·uuu⋆ρ, RRRt ·uuu⋆t, RRRt ·uuu⋆ρf

)t
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AxAxAx (uuu,ni) =

∫ (
RRRx ·uuu⋆aaar

, RRRx ·uuu⋆aaaz
, RRRx ·uuu⋆ψ, RRRx ·uuu⋆vr

, RRRx ·uuu⋆vz
,

bbbrRRRx ·uuu⋆vr
+ bbbzRRRx ·uuu⋆vz

+ bbbϕRRRx ·uuu⋆vϕ
, RRRx ·uuu⋆ρ, RRRx ·uuu⋆t, RRRx ·uuu⋆ρf

)t

The projection for the toroidal component of the momentum equation uses a linear combination
with the components of the magnetic field. This approach, proposed in [7], removes noisy Lorentz
force terms (jjj × bbb) by eliminating fast waves from the toroidal component of the momentum
equation. The interpolation of the variable uuu in the finite element space takes the following
form:

uuu (t,X, ϕ) =
∑
j

uuuj (t) nj (X, ϕ) (38)

The index j runs over the number of basis functions Nj , uuuj(t) denotes the degrees of freedom
(coefficients of the interpolation) and X denotes the poloidal coordinates (r, z)T.

For any test function ni ∈ Vh, the VMS based numerical stabilization model (27) applied to
the full MHD equations (17) is written as:

DDDvms (uuu,ni) =

∫ (
Dvms

(
uuu,uuu⋆aaar

)
, Dvms

(
uuu,uuu⋆aaaz

)
, Dvms

(
uuu,uuu⋆ψ

)
, Dvms

(
uuu,uuu⋆vr

)
,

Dvms

(
uuu,uuu⋆vz

)
, bbbrDvms

(
uuu,uuu⋆vr

)
+ bbbzDvms

(
uuu,uuu⋆vz

)
+ bbbϕDvms

(
uuu,uuu⋆vϕ

)
, (39)

Dvms

(
uuu,uuu⋆t

)
+Dvms

(
uuu,uuu⋆ρ

)
, Dvms

(
uuu,uuu⋆t

)
, Dvms

(
uuu,uuu⋆t

)
+Dvms

(
uuu,uuu⋆ρf

))t

dΩ

The test functions ni are described in detail below. The shock-capturing stabilization scheme
applied to the full MHD equation (17) is written as:

DDDsc (uuu,ni) =

∫ (
0, 0, 0, Dsc

(
uuu,uuu⋆vr

)
, Dsc

(
uuu,uuu⋆vz

)
,

bbbrDsc

(
uuu,uuu⋆vr

)
+ bbbzDsc

(
uuu,uuu⋆vz

)
+ bbbϕDsc

(
uuu,uuu⋆vϕ

)
, (40)

Dsc

(
uuu,uuu⋆t

)
+Dsc

(
uuu,uuu⋆ρ

)
, Dsc

(
uuu,uuu⋆t

)
, Dsc

(
uuu,uuu⋆t

)
+Dsc

(
uuu,uuu⋆ρf

))t

dΩ

The weak form of the full MHD model with the VMS and shock-capturing stabilization terms
are compactly written as:

AtAtAt

(
∂uuu

∂t
, uuu, ni

)
+AxAxAx (uuu, ni) = DDDvms (uuu, ni) +DDDsc (uuu, ni) ∀ni ∈ Vh (41)

All the operators in the equation above are linear in uuu⋆ and nonlinear in uuu. The first contribu-
tion on the left-hand side comes from the time derivative terms while the second contribution
comes from the rest of the terms in the physical model. Contributions on the right-hand side
denote the VMS-based and shock-capturing terms respectively. Hence, the implementation of
the stabilized FEM consists of the addition of two new contributions to the existing numerical
algorithm. It involves computations at the local element level and no additional communications
associated with the parallel programming are involved. Similar strategies have been used for
3D non-equilibrium plasma simulations in [36] of some industrially-relevant plasma flows where
L2 stabilization is achieved using VMS formulation and BV stabilization is achieved using the
discontinuity capturing method. In [32] stabilized Powell-Sabin FEM is validated for 2D Euler’s
equations where upwinding is achieved using SUPG and the shock-capturing stabilization uses
a similar strategy as described above.
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Time integration. The semi-discrete form of the system given by Eq. (37) is discretized in
time by a general three-level implicit second-order backward difference (also known as Gear’s)
[61] method. The method has been adapted for variable time stepping and is written as:

AtAtAt

(
(1 + rnζ)uuu

n+1 − (1 + ζ(1 + rn))uuu
n + ζuuun−1

∆tn
,uuun, ni

)
+AxAxAx

(
θuuun+1 + (1− θ)uuun, ni

)
= DDDvms

(
θuuun+1 + (1− θ)uuun, ni

)
+DDDsc

(
θuuun+1 + (1− θ)uuun, ni

)
(42)

where rn is the ratio of successive time steps ∆tn−1/∆tn. The choice of parameters ζ = 0 and
θ = 1/2 gives Crank-Nicolson method. Gear’s method is given by ζ = 1/2 and θ = 1 while the
first order implicit Euler method corresponds to ζ = 0 and θ = 1. When θ > 0, the numerical
scheme is implicit, and at each step, we solve a nonlinear system using a Newton procedure. In
practice, one Newton iteration with an approximated Jacobian is found to be enough, and the
resulting linear system is solved by a preconditioned GMRES method implemented via external
libraries (see [5] for details).

3.3.1 Poloidal and Toroidal decomposition of Vh.

Since tokamak geometry is axisymmetric, the computational domain considered is a tensor prod-
uct of a 2D poloidal domain and 1D toroidal periodic domain. The finite element space Vh is
therefore written as the product of the function spaces in the poloidal plane and toroidal direc-
tion.

Ω = ΩX ⊗ [0, 2π] =⇒ Vh = VX
h ⊗ Vϕh =⇒ ni (X, ϕ) = nX

i (X)nϕi (ϕ)

Due to the periodicity of the domain in the toroidal direction, a natural choice of the Fourier
Spectral method is made where the space Vϕh is spanned by Fourier modes.

Vϕh = {1}
⋃

span

{
cos (kϕ) , sin (kϕ) , k ∈ ϑ ⊂ N⋆

}
and nϕi (ϕ) ∈ Vϕh

where ϑ is a set of positive integers and the test functions nϕi (ϕ) have high-order regularity.
With the Fourier method chosen in the toroidal direction, it is up to the design of the space of
poloidal basis functions that will give C1 continuous FEM.

3.3.2 bi-cubic Hermite Bézier FEM

To achieve C1-regularity in a 2D poloidal plane, the isoparametric bi-cubic Hermite Bézier FEM
with the curved quadrangular elements in the physical space is designed [3]. The mapping
from the reference element τ̂ = [0, 1] × [0, 1] to the physical element (e) is expressed using the
third-order Bernstein polynomials basis as:

X = Xe (s, t) =

3∑
i=0

3∑
j=0

Pe
ij Bi,j(s, t) , X =

(
r
z

)
∈ e, (43)

where Pe
ij denote the control points for an element e and Bi,j are bi-cubic Bézier basis functions.

We introduce the following nomenclatures: the reference element τ̂(s, t), the parametric space
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ζζζ ≡ (ζ1, ζ2)
t and the arc-length space ξξξ ≡ (ξ1, ξ2)

t. The mapping among these spaces is defined
as:

X(ξ1, ξ2) = X (ξ1(ζ1(s)), ξ2(ζ2(t))) (44)

In the physical space, a finite element e has curved edges along which ξ1 and ξ2 take constant
values. The curves defined by the constant values of ξ1 and ξ2 are the straight lines in the para-
metric space ζζζ which is decomposed into a set of structured trapezoidal elements. A trapezoidal
finite element Qe in the parametric space is defined by the boundaries:

ζe+1 (s) = ζ1,kl + s δζek, ζe−1 (s) = ζ1,k+1,l+1 − s δζek+1

ζe+2 (t) = ζ2,kl + t δζel , ζe−2 (t) = ζ2,k+1,l+1l − t δζel+1

such that the four vertices of a trapezoidal element Qe are

ζζζk,l =

(
ζe+1 (0)

ζe+2 (0)

)
, ζζζk+1,l =

(
ζe+1 (1)

ζe−2 (1)

)
, ζζζk+1,l+1 =

(
ζe−1 (0)

ζe−2 (0)

)
, ζζζk,l+1 =

(
ζe+1 (1)

ζe−2 (1)

)
,

There exist linear relations between the control points Pe
ij , the coordinates of the vertices

Xv and the derivatives of ∂ζ1X, ∂ζ2X and ∂2ζ1ζ2X at the vertices. However, these derivatives
in the parametric space do not have any physical meaning. Nevertheless, we can derive linear
relations between these derivatives and the derivatives with respect to arc-length coordinates
∂ξ1X, ∂ξ2X and ∂2ξ1ξ2X at the vertices. To enforce the C1-regularity in the physical space, arc-
length derivatives are shared at any vertex sharing four elements. These linear relations can be
used to re-write the interpolation in Eq. (43) as [3]:

X = Xe (s, t) =

4∑
v=1

3∑
o=0

Xo
v β

o,e
v Hov(s, t) (45)

where index v and o denote the vertex number of an element and the degrees of freedom associated
with that vertex v and Hov(s, t) are bi-cubic Hermite-Bézier basis functions. These functions
associated with the first vertex are written as:

Xo
v = Xv βo,ev = 1 H0

1(s, t) = Ho(s)Ho(t)

X1
v =

(
∂X

∂ξ1

)
v

β1,e
v = ±

(
dξ1
dζ1

dζe1
ds

)
v

H1
1(s, t) = H1(s)Ho(t)

X2
v =

(
∂X

∂ξ2

)
v

β2,e
v = ±

(
dξ2
dζ2

dζe2
dt

)
v

H2
1(s, t) = Ho(s)H1(t)

X3
v =

(
∂2X

∂ξ1∂ξ2

)
v

β3,e
v = β1,e

v β2,e
v H3

1(s, t) = H1(s)H1(t)

with Ho(z) = (1 + 2z)(1− z)2 and H1(z) = z(1− z)2.

The basis functions for other vertices can be obtained from Ho1 (s, t) using following replacements:

Ho2 (s, t) = Ho1 (1− s, t) , Ho3 (s, t) = Ho1 (1− s, 1− t) , Ho4 (s, t) = Ho1 (s, 1− t) , ∀o

The scale factors βo,ev associated with a given vertex are different for each element e sharing the
vertex v. The signs of βo,ev depend upon the orientation of each element with respect to the
reference element. In the isoparametric framework, the interpolation of any scalar function f (X)
in terms of bi-cubic Hermite Bézier basis functions is written as:

f (X) = f (Xe (s, t) ) =

4∑
v=1

3∑
o=0

fov β
o,e
v Hov(s, t) (46)
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Figure 2: An example of annular mesh in the parametric (left) and in the physical (right) spaces.
The color map in both cases denotes the values of the small radius (r).

3.3.3 Meshing for bi-cubic Hermite Bézier FEM

As a demonstration, let us consider the example of an annular domain ΩA with the center given
by (r0, z0)

t
:

ΩA =

{
X =

(
r0 + r cos θ
z0 + r sin θ

)
, r0 ≤ r ≤ r⋆, θ0 ≤ θ ≤ θ⋆

}
where the subscripts 0 and ⋆ denote minimum and maximum values respectively. Then the
definitions of arc-length and parametric space become:

ξ1 = r, ξ2 = rθ, ζ1 = r, ζ2 = θ

The vertices of a trapezoidal element in the parametric space are given by:

ζe1 = r0 + s δrk, ζe2 = θ0 + t δθl

where indices k and l denote the discretization in r and θ with possibly unequal spacing δrk and
δθl respectively. The arc-length derivatives are given by:

∂X

∂ξ1
=

(
cos θ
sin θ

)
,

∂X

∂ξ2
=

(
− sin θ
cos θ

)
,

∂2X

∂ξ1∂ξ2
=

1

r

(
− sin θ
cos θ

)
The scale factors associated with an element e are written as:

β1,e
k,l = δrk, β1,e

k+1,l = −δrk, β2,e
k,l = rkδθl β2,e

k,l+1 = −rkδθl

The application of the above definitions to construct a finite element grid in the parametric
and physical spaces is shown in Fig. (2) for the chosen domain in the parametric space (shown
in the left frame in Fig. (2)). The bi-cubic Hermite Bézier FEM leads to the curved elements in
the physical space as shown in the right frame and is used to generate grids that are isomorphic
to polar grids in the poloidal plane. Polar grids aligned to poloidal magnetic flux surfaces
are commonly used for MHD simulations using JOREK. These surfaces define the ideal MHD
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equilibrium configuration and can be described as Morse functions. Topological features of a
Morse function are used to decompose the physical domain into several subdomains connected
by the singular points, out of which at least one is polar [62]. This polar subdomain is discretized
using bi-cubic Hermite Bézier formulation to construct a polar grid. Figure (13c) shows an
example of such an advanced multi-block grid with two singular points: one magnetic axis and
one saddle point. Sophisticated meshing in JOREK uses the bi-cubic Hermite-Bézier formulation
for an accurate representation of the vacuum chamber of tokamaks devices [5] as well. We can see
that the polar grids constructed using the bi-cubic Hermite Bézier formulation have a geometric
singularity as r0 → 0 which is a point of concern numerically. The numerical treatment to be
applied for such a singularity has been developed in [63].

3.3.4 Weak formulation of the full MHD model

The discrete weak form of the system of the full MHD equations is written as: Find the uuu given
by the equation (38) such that, for all scalar functions ni ∈ Vh the following holds (34):∫

uuu∗ · RRRu (uuu) dΩ = 0 for any uuu∗ ∈ VVVh (47)

The projections of the scalar equations are straightforward. For the induction equations, the
projections are obtained using the cylindrical basis. For the momentum equation, the projections
are obtained using eR, eZ , and bbb. The discrete weak form of each component equation in the
full MHD system (41) written below:

∫ (
∂aaa

∂t
− v × bbb

)
· erni = −

∫ (
bbb · ∇ × (ηerni)− er · jjj⋆ni

)
+DDDaaaR∫ (

∂aaa

∂t
− v × bbb

)
· ezni = −

∫ (
bbb · ∇ × (ηezni)− ez · jjj⋆ni

)
+DDDaaaZ∫ (

∂aaa

∂t
− v × bbb

)
· eϕrni = −

∫ (
bbb · ∇ × (ηreϕni)− reϕ · jjj⋆ni

)
+DDDψ∫ (

(ρDtv)−∇ (p+ π) + bbb · ∇bbb
)
· erni = −

∫ (
∇v : ∇ (µerni) + SSSv · erni

)
+DDDvR∫ (

(ρDtv)−∇ (p+ π) + bbb · ∇bbb
)
· ezni = −

∫ (
∇v : ∇ (µezni) + SSSv · ezni

)
+DDDvZ∫ (

ρ (Dtv)−∇p
)
· bbbni = −

∫ (
∇v : ∇ (µbbbni) + SSSv · bbbni

)
+DDDvϕ∫ (

∂ρ

∂t
+∇ · (ρv)

)
ni = −

∫
((Dρ) · ∇ni − Sρni +−Sρfni) +DDDρ∫ (

∂p

∂t
+∇ · (vp) + (γ − 1) p∇ · v

)
ni = −

∫ (
(Kf∇t) · ∇ni − Spni

)
+DDDp∫ (

∂ρf
∂t

+∇ · (ρfv)
)
ni = −

∫
((Df∇ρf) · ∇ni − Sρfni) +DDDρf

For conciseness, we have used the notation for the material derivative Dtv = ∂v
∂t +v ·∇v, omitted

the volume integrals dΩ, denoted byDDDi the sum of boundary integrals, VMS and shock-capturing
stabilization terms. We use the following notations in the above equations:

π =
bbb · bbb
2

, p = (ρ+ αfρf)t+ (γ − 1)ρfκf and Kf = (γ − 1) (K+ nfDκ)
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4 Numerical tests

In the previous section, we presented the stabilized bicubic Hermite Bézier FEM applicable
to a class of hyperbolic PDEs. This section presents some numerical tests in simplified yet
challenging contexts to verify the stabilized algorithm. In subsection 4.1 we show verification
of the underlying bicubic Hermite Bézier FEM. In subsection 4.2 we apply a VMS-stabilized
algorithm to convection-dominated problems with smooth solutions. In subsection 4.3 we apply
a VMS and shock-capturing stabilized algorithm to highly nonlinear problems with shocks and
discontinuities.

4.1 Verification of bicubic Hermite Bézier FEM

The bi-cubic Hermite Bézier FEM has been extensively used to solve the reduced MHD equations
for a range of tokamak applications (see [5] and the references therein). Its application to full
MHD models was demonstrated in [7] for simple geometries and in [8] for the production-level
tokamak simulations with realistic geometries. Application of the FEM to simple linear PDEs
was also demonstrated in [63]. For completeness, we present here the application of the FEM on
a fourth-order elliptic problem. The biharmonic equation along with the boundary conditions
written as:

Ee3

12(1− ν2)
∆2u = f ∀X ∈ ΩX (48)

u =
∂u

∂n
= 0 ∀X ∈ ∂ΩX (49)

where E, e, and ν are constants. The forcing function f is chosen:

f =
2Ee3

3(1− ν2)

[
3r2(1− r)2 + 3z2(1− z)2 + (1− 6r+ 6r2)(1− 6z+ 6z2)

]
such that the exact solution to the above biharmonic equation is given by:

ue = r2(1− r)2z2(1− z2)

The bi-cubic Hermite Bézier FEM is used to compute the numerical solution of the biharmonic
equation on the series of grids with Nr = Nz = 4, 8, 16 and 32 where Nr and Nz denotes the
number of points in the r and z direction respectively. Figure (3a) shows the numerical solution
plotted on the finest grid used. In Fig. (3b) estimates of the numerical error are plotted vs
element size he. As expected, L2 and H1-norms of the numerical error follow 4th and 3rd order
convergence respectively.

4.2 Verification of VMS stabilized FEM

In this subsection, we present some numerical tests to demonstrate the application of the VMS
stabilized algorithm for hyperbolic problems with smooth solutions.

4.2.1 2D linear advection equation

Here, we apply VMS-stabilized bicubic Hermite Bézier FEM to a linear hyperbolic PDE. The
linear advection equation in 2D with an initial condition is written as:

R(u) :=
∂u

∂t
+ c · ∇u = 0 ∀X ∈ ΩX (50)

u(0,X) = e−α[(r−r0)
2+(z−z0)

2] (51)
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(a) Numerical solution
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Figure 3: (a) Numerical solution of biharmonic equation computed using bicubic Hermite-Bézier
FEM. (b) Estimates of the numerical error plotted vs element size he showing that L2 and
H1-norms of the error follow 4th and 3rd order convergence respectively.

where the constant vector c denotes the advection speed. We consider a periodic square domain
ΩX = [−0.5, 0.5]2 is discretized using Nr and Nz equidistant points in r and z directions
respectively. The chosen parameters for the numerical tests are as follows: c = {1, 0}t, α = 64,
r0 = 0 and z0 = 0.

VMS stabilized bicubic Hermite-Bézier FEM is used with the stabilization coefficient equal
to 0.1 and the numerical solution is computed until t = 1. For this test, we use explicit Euler’s
method for time integration and the time step is evaluated from the Courant number (Nc) such
that ∆t = Nche/||c||. A series of grids is used with Nr = Nz = 10, 20, 30, and 40 and Nc is
specified as 0.2. Continuous Galerkin FEMs are unconditionally unstable for the linear advection
equation when used with explicit Euler’s method. Without numerical stabilization, dispersion
errors quickly dominate giving entirely wrong solutions. Figure (4a) shows the comparison of the
exact and numerical solution obtained with the VMS stabilized method on the gridNr = Nz = 40
at t = 1. Both the exact and numerical solutions look almost identical.

Estimates of the numerical error are plotted in Fig. (4b) to show the convergence of the
stabilized algorithm. L2 and H1-norm of the error show at least 3rd-order convergence. This
numerical test shows that the VMS-stabilized algorithm improves the stability of the underlying
FEM for hyperbolic problems.

4.2.2 Isentropic Vortex

This standard test with the availability of the exact solution is useful to verify the numerical
solvers for Euler’s equations. We consider 2D Euler’s equations on a periodic domain ΩX =
[5, 15]× [5, 15]. The equations are obtained by dropping the unwanted terms from the full MHD
model and the vector of variables is uuu = {v, ρ, t}t, where v = {vr, vz}t. The initial conditions
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Figure 4: Numerical solution of 2D linear advection equation computed using VMS-stabilized
bicubic Hermite-Bézier FEM and explicit Euler’s method. (a) Comparison of the exact (dashed
solid lines) and numerical (solid dashed lines) solution at t = 1 computed on the grid with
Nr = Nz = 40. (b) Estimates of the numerical error plotted vs element size (h).

are given as:

v =
β

2π
exp

[
(1− r2)

2

]
{−U∞(z− z0), V∞(r− r0)}t

t = 1− β2

8γπ
exp [1− r2]

ρ = t
1

γ−1

where r =
√
(r− r0)2 + (z− z0)2. The vortex is characterized by β = 5 and free stream velocity

is specified as U∞ = V∞ = M∞ cos(α) where M∞ =
√
2 and α = 0.25π. The initial position of

the vortex is specified by r0 = z0 = 10 and the specific heat ratio γ is set to 5/3.
The numerical solution is computed using VMS-stabilized algorithm on the series of grids

with Nr = Nz = 10, 20, 30, and 40. Gear’s method is used for the time integration with the
fixed time step ∆t = 10−3. VMS stabilization terms based on the operator La (Eq. (29)) are
added in each equation with the stabilization coefficients specified as Ci = 10−3. Each simulation
is run until t = 10 units such that the vortex advects through one period. Figure (5a) shows
a comparison of the numerical solution obtained with the non-stabilized and VMS-stabilized
algorithm on the grid with Nr = Nz = 10. Both algorithms give comparable numerical results.
L2-norm of the error in the isentropic vortex test at t = 10 in the variables vr, ρ and t is plotted
vs element size (h) in Fig. (5b). The error converges with 4th order at coarse grids and 2nd

order at fine grids. These simulations are performed using a fixed time step and the algorithm is
eventually limited by the accuracy of the time integration method. On would recover expected
4th order convergence by taking smaller time steps or by using a suitable CFL criterion to fix
the time steps. Nevertheless, we can conclude that the VMS stabilized algorithm preserves the
underlying physics.
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(a) ρ at t = 10
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Figure 5: Isentropic vortex test with 2D Euler’s equations. (a) Comparison of the numerical
solution at t = 10 obtained using non-stabilized (dashed solid lines) and VMS-stabilized (solid
dashed lines) algorithm computed on the grid with Nr = Nz = 10. (b) L2-norm of the numerical
error in the variables vr, ρ, and t plotted vs element size (h).

4.2.3 Resistive internal kink modes

We now demonstrate the use of the VMS-stabilized algorithm for the full MHD model in 3D
(Eq. (41)) implemented in JOREK to compute the canonical internal kink mode instability.
Theoretical scaling is available for the growth rates of the energies of the internal kink mode
instability. To numerically compute these growth rates, a simulation is run by keeping n = 0 mode
fixed and only n = 1 mode is allowed to evolve. This simulation test is useful to validate tokamak
modeling codes and such validation for bicubic Hermite Bézier FEM is already performed in [8].
Here, we present similar tests computed with the non-stabilized and VMS-stabilized algorithms.

We consider a circular plasma with a major radius (r0) of 10 m and a plasma radius (a) of
1 m (See Fig. (1)). Initial conditions are given by the numerical solution of GSE for which the
required profiles are specified analytically as:

F (ψ)2 = F 2
0 + 4(ψe − ψ0)(ψ − 0.35ψ

2
) with ψ =

ψ − ψ0

ψe − ψ0

where F0 = 10, ψ0 and ψe are the flux values at the magnetic axis and the plasma edge respec-
tively while ψ is the normalized flux such that ψ is scaled to zero at the magnetic axis and 1
at the plasma boundaries. The pressure profile is specified from the density and temperature
profiles:

ρ

ρ0
= 1− 0.9ψ,

t

t0
= 1− 0.8ψ

where ρ0 and t0 are the values of plasma density and temperature at the magnetic axis. We
choose ρ0 = 3.34 × 10−7 kg m−3 and t0 = 1.15 × 106 K. The plasma beta for this case is
βN = 0.425%. The resistivity (η) is set to a constant value (independent of t) and a scan in (η)
is performed. All other diffusivities such as viscosity, thermal, and particle diffusivities are set
to zero.
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We use a polar grid with 90 and 130 points in the radial and azimuthal directions respectively.
Small perturbations are added to the initial condition whose evolution in n = 1 is simulated using
full MHD equations. Dirichlet boundary conditions are applied to all the variables. Gear’s time
integration method is used with the constant time step of ∆t ≈ 0.065 ms. The simulations are run
using VMS stabilization terms based on the diagonal part of the operator La (Eq. (29)) with the
coefficient Ci = 0.1 in all the equations. As an example, in Fig. (6a) we show the perturbations
in ψ for η = 1.938×10−6 Ohm-m at t ≈ 0.09 ms obtained using the VMS-stabilized FEM. Figure
(6b) shows the growth rates in the magnetic energies plotted for different simulations differing in
values of η. Both stabilized (Ci = 0.1) and non-stabilized (Ci = 0) algorithms give comparable
growth rates that agree with the theoretical scaling η1/3. Once again this test suggests that the
VMS stabilized algorithm preserves the underlying physics.

(a) Perturbations in ψ
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Figure 6: Numerical simulation of the internal kink mode instability : (a) Perturbations in ψ
at t ≈ 0.09 ms in the simulation with η = 1.938 × 10−6 Ohm-m (b) Growth rates in magnetic
energies plotted vs η. The parameter Ci denotes the values of VMS stabilization coefficients in
each equation of the full MHD model.

4.3 Verification of VMS and shock-capturing stabilized FEM

In this subsection, we present some challenging numerical tests to demonstrate the application
of the entire stabilized FEM including shock-capturing. The chosen problems are nonlinear
hyperbolic PDEs with the presence of shocks and complex wave structures.

4.3.1 KPP rotating wave

The Kurganov–Petrova–Popov (KPP) rotating wave problem was formulated in [64] and is known
to pose challenges to many high-order methods. The problem is written as a nonlinear scalar
conservation law:

R(u) :=
∂u

∂t
+∇ · [sinu, cosu]T = 0 ∀X ∈ ΩX (52)
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with the initial conditions:

u(0,X) =

{
3.5 π, r2 + z2 ≤ 1
1
4 π, else

While the problem was originally formulated on a periodic square domain, we use a circular
domain of radius 2 with Dirichlet boundary conditions. The bicubic Hermite Bézier FEM with
isoparametric mapping allows the construction of grids with curved elements. Such grids when
aligned with curved flow features can help reduce computational costs. The domain is discretized
using a polar grid with curved elements such that the discontinuity in the initial condition is
aligned with one of the grid lines. Further, the grid resolution is increased in the radial direction
near the location of the initial discontinuity (see the grid in the background of Fig. (7b)). We
construct a polar grid with 100 points in the radial and azimuthal directions each. Gear’s method
is used for the time integration with ∆t = 5× 10−5. The stabilized bicubic Hermite Bézier FEM
is used with the VMS-based stabilization coefficient equal to 1. The anisotropic shock-capturing
stabilization is used with the coefficient c∥ = 10 and c⊥ = 10−4 where the quantity τsc is
computed as:

τsc = h2e
|∇ · [sinu, cosu]t|

u

||∇u||
u

he

In Fig. (7a) the numerical solution of the KPP rotating wave is plotted at t = 1 showing
the expected composite wave structure. In Fig. (7b) the quantity τsc is plotted at the same
time instant to highlight the locations at which shock-capturing stabilization is active. The
algorithm detects the discontinuities and adds the numerical stabilization only near them. This
test demonstrates the robustness of the proposed stabilized algorithm and that it can be used
for nonlinear hyperbolic PDEs with shocks and discontinuities.

4.3.2 2D Burgers equation

Next, we consider the nonlinear Burgers equation in 2D which is written as:

R(u) :=
∂u

∂t
+∇ ·

(
1

2
u2c

)
= 0 ∀X ∈ ΩX

The constant vector c is specified as {1, 1}T and the initial condition is specified as:

u(0,X) =


3.5 π, 0.5 ≤ r ≤ 1, 0.5 ≤ z ≤ 1
1
4 π, 0.5 ≤ r ≤ 1, 0.5 ≤ z ≤ 1

3.5 π, 0.5 ≤ r ≤ 1, 0.5 ≤ z ≤ 1
1
4 π, 0.5 ≤ r ≤ 1, 0.5 ≤ z ≤ 1

The exact solution to the above problem can be evaluated at t = 0.5 [29] and is used to compute
the numerical error. The domain is discretized using Nr and Nz points in r and z direction each.
Gear’s method is used for the time integration with ∆t = 10−4. The stabilized bicubic Hermite
Bézier FEM is used on a series of grids with Nr = Nz = 25, 50, 100, 150 and 200. Figure (8)
shows the convergence behavior of the stabilized FEM where both VMS and anisotropic shock-
capturing stabilization coefficient c∥ are specified to 1. L2 and L∞-norm of the numerical error
shows the first and second-order convergence respectively for the stabilized algorithm.

Figure (9) shows some visualizations of the numerical solution of the 2D Burgers equation
at t = 0.5 obtained on the grid with Nr = Nz = 200. In Fig. (9a) the numerical solution
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(a) Numerical solution at t = 1 (b) τsc(t = 1,X)

Figure 7: Numerical solution of Kurganov–Petrova–Popov (KPP) rotating wave computed using
stabilized bicubic Hermite Bézier FEM. (a) Visualization of the numerical solution at t = 1
exhibiting the expected composite wave structure. (b) The quantity τsc at t = 1 highlights the
location at which the shock-capturing stabilization is active.

computed using only VMS stabilization is shown. This stabilization method already shows the
capability of the method to capture the numerical solution with high wavenumbers however, the
wave structures are not accurate. In addition to VMS stabilization, the use of anisotropic shock-
capturing gives a visually comparable solution to that in [29] and is shown in Fig. (9b). For the
latter case, we plot τsc at the same time instant in Fig. (9c) and it shows that the shock-capturing
stabilization acts only at the locations of the discontinuities. From this test also, the ability of
the stabilized FEM to simulate nonlinear problems is seen. We show that the shock-capturing
strategy can be used to correctly capture the discontinuous solutions and the stabilized algorithm
converges with first-order accuracy.

4.3.3 Orszag–Tang Vortex

This is a canonical and challenging test for ideal MHD equations in 2D [65]. The initial condition
is smooth but the solution in time develops shocks that interact with each other. The problem
is defined on the periodic domain Ωx = [1, 2]2. We consider 2D ideal MHD equations obtained
by dropping the unwanted terms from the full MHD model and the vector of variables is uuu =
{ψ,v, ρ, t}t, where v = {vr, vz}t. Since we use magnetic vector potential formulation, the
initial condition is specified as [66]:

ψ(0,X) =
B0

π

[
1

2
cos(2πr) +

1

4
cos(4πz)

]
v(0,X) = v0{− sin(2πz), sin(2πr)}t

ρ(0,X) =
25

36π

p(0,X) =
5

12π
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Figure 8: Estimates of the error in the numerical solution of 2D Burgers equation computed
using VMS and shock-capturing stabilized FEM are plotted vs element size (he).

(a) VMS (b) VMS and shock-capturing (c) τsc(t = 0.5,X)

Figure 9: Numerical solution of 2D Burgers equation computed using stabilized bicubic Hermite-
Bézier FEM on the grid with Nr = Nz = 200 at t = 0.5.

The magnetic vector potential formulation satisfies the divergence-free condition on bbb at
the discrete level. Gear’s method is used for the time integration with ∆t = 10−4. First, we
present the comparison of two simulations performed on the grid Nr = Nz = 100, with and
without shock-capturing stabilization. In both simulations, VMS stabilization terms based on
the operator La (Eq. (29)) are included with the stabilization coefficients Ci = 10−3 in each
equation. Shock-capturing stabilization is used only in one of the two simulations with c∥ = 1 and
c⊥ = 10−8. Figure (10) shows a comparison ρ field plotted at t = 0.18 for the two simulations.
Only VMS-stabilized simulation (Fig. (10a)) shows numerical noise near the discontinuities in
ρ and fails after t = 0.18. The addition of shock-capturing stabilization removes the numerical
noise (Fig. (10b)) and allows the simulation to proceed in physical time.

Without further tuning the stabilization coefficients we perform simulations on two more
grids with 75 and 150 points in each direction. In Fig. (11) we show visualizations of all three
simulations using both VMS and shock-capturing stabilizations. The top row of the figure shows
the ρ field at t = 0.5 on all three grids. As the grid is refined, the numerical solution shows
convergence behavior with better prediction of ρ field and crisp discontinuities. The solution
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(a) VMS stabilized (b) VMS and shock-capturing stabilized

Figure 10: Numerical solution of 2D Orszag–Tang vortex test computed using stabilized bicubic
Hermite Bézier FEM on the grid Nr = Nz = 100. Visualizations of ρ field plotted at t = 0.18.

Figure 11: Numerical solution of 2D Orszag–Tang vortex test computed using stabilized bicubic
Hermite Bézier FEM. The top and bottom row shows a visualization of ρ and τsc at t = 0.5
respectively. Left, middle and right columns show the visualization obtained with the grid
Nr = Nz = 75, 100, and 150 points respectively.
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structure looks identical to those obtained in [67] using a Riemann solver and grids of the
order 103 points in each direction. The bottom row shows the quantity τsc plotted at the same
time instants for each simulation. Each figure shows that the stabilized algorithm detects the
discontinuities and adds the stabilization only near them. As the grid is refined the maximum
value of τsc and hence the added shock-capturing stabilization is reduced.

Note that the shock-capturing strategy used here is based on hydrodynamic pressure and
acts only in the momentum, continuity, and energy equations. Our target applications are fusion
plasma which may not contain magnetic shocks and hence we have not included the shock-
capturing strategy for the induction equation. Yet, the stabilized algorithm is successful in
simulating the challenging Orszag–Tang vortex simulations even on low resolutions.

Summary: In this section, we demonstrated the use of the stabilized algorithm for a wide
range of challenging numerical problems. Numerical errors obtained with the underlying bicubic
Hermite Bézier converge with the expected order of accuracy. VMS-based numerical stabi-
lization provides the stability to the underlying FEM and preserves the physics being simulated.
Shock-capturing stabilized FEM also converges with the expected first-order accuracy and brings
robustness to the algorithm.

Our target application of the stabilized FEM is the full MHD models for fusion plasma.
Full MHD modeling is needed in the regime where the reduced MHD fails. As opposed to
reduced models, the full MHD models include the fastest magnetosonic waves and hence demand
higher resolutions. The resolution requirements become further stringent in presence of shocks
or discontinuities in the numerical solution. In the next section, we present the application of the
stabilized FEM to extended full MHD equations to simulate gas-plasma interactions occurring
in a tokamak plasma during MMI experiments where the plasma flows are highly nonlinear and
contain strong discontinuities.

5 Application to Shattered Pellet Injection in tokamak
plasma

The developed stabilized bi-cubic Hermite Bézier FEM is applied to the simulation of MMI
in the JET-like plasma. In the context of the reduced MHD models, the neutrals modeling
have been developed in JOREK and applied in [68, 40, 41, 14, 42] and the impurities modeling
in [39]. Similar studies for MMI in tokamak plasma have also been performed using M3D-C1
in [69] and using NIMROD in [70, 71, 72, 73]. The physics involved in such applications are
highly complex and include distinct phases such as TQ, CQ, production of REs, etc. Numerical
simulation of such physics for realistic values of the physical parameters is a challenging and
computationally expensive task due to severe stability restrictions on the numerical methods.
In [14], to save computational time, most numerical simulations presented for SPI in ASDEX
Upgrade use parameters higher than their realistic values. Furthermore, the plasma volume for
ASDEX Upgrade, JET, and ITER respectively are about 13, 100, and 840 m3. Given the size of
the computational domains of present-day and future tokamaks, it is desirable to develop stable,
computationally efficient, and robust simulation tools.

In the subsections below, we present numerical simulations for SPI into JET-like plasma
using stabilized bi-cubic Hermite Bézier FEM where the plasma is modeled with the reduced or
full MHD model (see Section (3)). The physical setup of the problem is similar to the JET-like
simulation presented in [39] and is described briefly below.
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5.1 Problem Description: JET pulse No. 85943

We consider a JET-like plasma that resembles JET pulse No. 85943 at time 62.4 s with the
toroidal magnetic field Bϕ ≈ 3 T, total plasma current Ip ≈ 2 MA, core electron temperature
te(ψN = 0) ≈ 3.28 keV and core electron density ne(ψN = 0) ≈ 2.1 × 1019 m−3. The profiles
corresponding to the plasma equilibrium are shown in Figure (12a).
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Figure 12: JET-like plasma equilibrium : (a) The profiles characterizing plasma equilibrium b)
boundary conditions on ψ to be specified for a polar grid plotted vs azimuthal direction θ.
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Figure 13: a) The contours for the numerical solution of GSE plotted on the top of the polar grid
used. The solution field shows one minimum and one saddle point where ψ = 0. b) Multi-block
grid with grid lines of the each block is aligned to the numerical solution of GSE. Red contours
denote the surfaces where safety factor q takes rational values equal to 1 to 7 (radially outwards).
(c) A schematic of SPI into JET-like plasma: JOREK grid denoting JET-like computational
domain. The SPI fragments are shattered into a curved tube before releasing into the tokamak
plasma. The red lines show the cone in which SPI fragments travel in the tokamak plasma.

The initial condition is obtained by numerically solving the GSE using bi-cubic Hermite Bézier
FEM on a polar grid. The data required to solve GSE: FF ′, density and temperature is shown
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in Figure (12a) as the profiles with respect to the normalized magnetic flux (ψ) where ψ = ψ−ψ0

ψe−ψ0

with ψ0 and ψe as the values of ψ at the magnetic axis and the plasma edge respectively. The
boundary conditions on ψ to be specified on the polar grid are shown in Figure (12b). Contours
of the numerical solution of GSE (ψeq) are shown in Figure (13a) on the top of the polar grid
used. This ψ-field has one minimum which is the location of the magnetic axis and one saddle
point, also known as X-point. For computational efficiency purposes, JOREK uses a strategy to
construct multi-block grids whose curves are aligned to constant ψ-surfaces on which the MHD
equations are evolved. Such a multi-block grid used for simulations presented here is shown in
Figure (13b). The figure also shows ψ contours at which the safety factor q takes rational values
q = 1 to 7 (marked radially outwards). q = 1 surface lies close to the magnetic axis, while q = 6,
7 surfaces are close to each other and the plasma edge. In MHD instability theory, the rational
q surfaces are probable locations at which MHD instabilities occur.

The solution (ψeq) of GSE also forms the initial conditions for the MHD problem:

aaa(X, 0) =

(
ψeq(X)

R
+ ϵ

)
êϕ, v(X, 0) = 0, ρ(X, 0) = ρ(ψeq(X)), t(X, 0) = t(ψeq(X))

(53)

We consider Dirichlet boundary conditions except at parts of the boundaries that are not aligned
to ψeq, where physics-based Mach-1 and Sheath boundary conditions are applied to the velocity
and temperature respectively (see Section 2).

The aim is to simulate plasma response to neon or argon SPI. The sketch in Fig. (13c)
shows a cone (projected in the poloidal plane) in which SPI fragments exist in the computational
domain. The cone’s apex (O) denotes the location where a pellet is shattered to form SPI
fragments. The point P denotes the location around which the fragments are assumed to appear
in the computational domain at time t = tspi. Simulations presented here assume that a solid
pellet of neon or argon gas with the total number of atoms Na is shattered into Nf number
of spherical fragments. The initial velocities VVV ⋆i and positions XXX ⋆

i of each fragment are chosen

randomly about a fixed velocity VVV spi and position vector
−−→
OP = XXX spi, such that:

∥VVV ⋆i ∥ = ∥VVV spi∥+ νi
(δv)spi

2
and XXX ⋆

i = XXX spi + ℓspi
VVV ⋆i

∥VVV spi∥

where νi denotes a random number in the interval [−1, 1]. Magnitudes of fragment velocities VVV ∗
i

are distributed randomly around the magnitude of VVV spi in the interval [− (δv)spi /2, (δv)spi /2].
The directions of VVV ∗

i are spread randomly around that of VVV spi such that the angle between VVV ∗
i

and VVV spi does not exceed (δα)spi radians. The vector XXX spi is given in the cylindrical coordinates
and VVV spi is defined in the Cartesian coordinates as:

XXX spi = rxspieeer (ϕ
x
spi) + zxspieeez + ϕxspieeeϕ (ϕ

x
spi) and VVV spi = V xspieeex + V yspieeey + V zspieeez

For all the simulations presented here, we use Nf = 100 and specify that the fragments are
injected into the plasma at the time tspi = 0.03564 ms. Furthermore, we specify XXX spi and VVV spi

using following parameters:

rxspi = 3.05, zxspi = 1.7, ϕxspi = 4.51

V xspi = −89.44, V yspi = −178.885, V zspi = 0

ℓspi = 0.15, (δv)spi = 200 and (δα)spi = 0.349/2
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The initial size of each fragment follows the statistical fragmentation model (see [39]). The
evolution of the position XXX i(t) and size ri ≡ ri(t) of each fragments is governed by the following
set of equations [74, 75, 76]:

dXXX i

dt
= VVV i and

d

dt

(
r

5
3
i

)
= −Ri n

1
3
e t

5
3
e with XXX i (t

⋆
i ) = XXX ⋆

i , ri (t
⋆
i ) = r⋆i (54)

where Ri denotes the ablation coefficient and te ≡ te (t,XXX i) and ne ≡ ne (t,XXX i) denotes the
electron temperature and particle density respectively. The injection velocity is assumed to be
constant in time and hence the trajectories of SPI fragments are straight lines. The ablation
process begins once the injected fragments interact with the main tokamak plasma. Since we
assume spherical fragments, the infinitesimal variation of the ablated volume of each fragment
is given by −4πr2i dri. Therefore, ‘the ablation rate’ is given by:

ρ̇f,i(t) = −4πr2i
dri
dt
ρ⋆i =

12πRiρ
⋆
i

5
r

4
3
i n

1
3
e t

5
3
e

where ρ⋆i denotes the density of the solid pellet. The source term in the impurity density equation
is specified as a Gaussian function around the position of each fragment (XXX i). As a result, the
impurities deposited into the main plasma are given by the sum of all fragments:

Sρf (t,XXX ) =

Nf∑
i=1

ρ̇f,i(t)

ωi
exp

(
− (r− ri)

2 + (z− z2i )

δℓ2i

)
exp

(
− (ϕ− ϕi)

2

δϕ2i

)
(55)

where δℓi and δϕi denote the parameters to control the shape of a Gaussian cloud. The spreading
volume ωi is integral in the entire domain of the spatial Gaussian profiles of the particle. The
forward Euler’s method is used to solve the ODE (54) for the position and the radius of each
particle at a given time during the simulation.

5.2 Numerical results for SPI in JET-like plasma

In this subsection, we present the application of stabilized FEM to simulate SPI in JET-like
plasma. First, we take a simplified situation where the SPI source is assumed axisymmetric and
demonstrate the use of the shock-capturing method for reduced as well as full MHD modeling of
the plasma. Later, we mainly focus on the full MHD model to demonstrate the use of numerical
stabilization to simulate 3D SPI sources in the plasma described by somewhat realistic values
of the parameters. The current source jjj⋆ is removed from these simulations. The numerical
results obtained are discussed with the help of some visualizations and integrated quantities.
Computations of the integrated quantities such as thermal energies, plasma current, and magnetic
energies are shown in Appendix A.

5.2.1 Axisymmetric sources

The axisymmetric source term is modeled by specifying a high value δϕi = 1000 in Eq. (55)
that flattens the shape of the source term in its toroidal extent. While poloidal shape of the
source term is specified by δℓi = 0.08. The resistivity is modeled with the dependence te and
zeff (Eq. (14)) and is specified by the value at the magnetic axis η0 = 4.22× 10−8 Ohm.m. The
current source jjj⋆ is removed from these simulations. The simulations are performed with the
different values of the isotropic shock-capturing stabilization coefficients to discuss the effect of
the numerical stabilization. Specifying coefficients c∥ = c⊥ = c implies the use of isotropic shock-
capturing stabilization while their values are used to control the amount of the stabilization.
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5.2.1.1 Reduced MHD Axisymmetric SPI source is introduced in the JET-like plasma
modeled by the single temperature reduced MHD model [39]. The source term is assumed to be
formed by shattering a argon pellet, with total number of Na = 1.5×1022 atoms, into Nf = 100.
The temperature-dependent coefficient of viscosity is specified with the value at the magnetic
axis µ = 1.18 × 10−8 kg.m−1.s−1. The perpendicular and parallel particle diffusivities are set
to 13.45× 10−5 and 6.7264 m2.s respectively. The perpendicular and parallel heat conductivity
is set to 4.72 × 10−7 and 946.44 kg.m−1.s−1 respectively. The simulations use the multi-block
grid similar to that shown in Fig. (13b) with 4130 elements in the poloidal plane and toroidal
harmonics 0, 1, 2, 3. Gear’s time integration method is used with ∆t = 0.00148 ms and the
simulations are performed using isotropic shock-capturing stabilization terms with the coefficient
c∥ = c⊥ = c in all equations except the induction equation.

Figure (14a) and (14b) shows the evolution of the ablation rates and thermal energies
respectively in the reduced MHD simulations. Without shock-capturing terms (denoted by
c∥ = c⊥ = c = 0) the linear solver for finite element matrix fails to converge around 0.59
ms. Indeed, the development of discontinuities brings high wave-numbers into the numerical
solution that can not be resolved with the grid used. Stabilized simulations however go further
in time as discontinuities are smeared. The difference between the results obtained with non-
stabilized and stabilized simulation with c∥ = c⊥ = c = 0.1 is insignificant as can be seen in
figures (14a) and (14b). With the use of higher numerical stabilization (c∥ = c⊥ = c = 1)
simulation runs for the longer times and the numerical solution starts to deviate from that in
the non-stabilized simulations.
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Figure 14: Numerical results axisymmetric source term modeling argon SPI in JET-like plasma
computed with different shock-capturing stabilization coefficient c∥ = c⊥ = c. Evolution of (a)
ablation rates (b) thermal energies for argon SPI simulations with the axisymmetric source.

Figure (15a) shows the snapshot of the total particle density (n0) in [1020] plotted on ϕ = 0
plane and at t ≈ 0.562 ms. The straight line shown in black color joins two points (2.02, -0.56)
and (3.02, 1.67) in the poloidal plane and passes through the location of the impurity source at
t ≈ 0.562 ms. Trajectories of SPI fragments are spread about this line. Figure (15b) shows the
comparison of the pressure plotted along this straight line in ϕ = 4.51 plane obtained with the
simulations using different values of shock-capturing stabilization coefficients. Peaks in pressure
lineout plots are due to the impurity sources at that location. As the impurity source travels
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inside the tokamak plasma a discontinuity in the pressure is developed (see Fig (15b)). The use
of the shock-capturing terms adds the numerical stabilization locally near the shock to smear the
discontinuity while everywhere else does not significantly affect the numerical solution. Figure
(15b) shows that an increase in the amount of stabilization further smears the discontinuity.
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Figure 15: Numerical results axisymmetric source term modeling argon SPI in JET-like plasma
computed with different shock-capturing stabilization coefficient c∥ = c⊥ = c. (a) The total
particle density n0 [1020] plotted at ϕ = 0 plane and t ≈ 0.562 ms. The line is traced approxi-
mately along the direction of SPI velocity and passing through the location of the source term.
(b) The pressure plotted along this line at the same time instant.

Note that the simulations presented in this subsection use a low-resolution grid. The purpose
of this test was to demonstrate that the shock-capturing stabilization terms act locally to improve
the stability of the underlying FEM. At the same time, the test also points out the difficulties in
choosing optimal values of the stabilization coefficients c∥ = c⊥ = c. Analyzing such non-linear
numerical methods is often very difficult and fixing optimum values of the stabilization coefficients
is based on experience. Furthermore, in the applications of interest here, these coefficients depend
upon the physical parameters such as η, µ, D, K as well as the grid resolution.

5.2.1.2 Full MHD Here, an axisymmetric SPI source is introduced in the JET-like plasma
modeled by the single temperature full MHD model (Section 2). The source term is assumed
to be formed by shattering a neon pellet, with total number of atoms Na = 1.5 × 1021 atoms,
into Nf = 100. The temperature-dependent coefficient of viscosity is specified with the value at
the magnetic axis µ = 2.36× 10−7 kg.m−1.s−1. The perpendicular particle diffusions are set to
67.264×10−5 m2.s while parallel particle diffusions are set to zero. The simulations use the multi-
block grid shown in Fig (13b) with 7645 elements in the poloidal plane and toroidal harmonics
0, 1, 2, 3 while Gear’s time integration method with ∆t = 0.000297 ms. The simulations are run
using VMS stabilization terms based on the diagonal part of the operator La (Eq. (29)) with the
coefficient Ci = 10−2 in all the equations. Additionally, the shock-capturing stabilization terms
with included with the coefficients c∥ = c⊥ = c in all equations except the induction equation.

Figure (16a) and (16b) shows comparison of the evolution of ablation rates and thermal
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Figure 16: Numerical results for the axisymmetric source term modeling of argon SPI in JET-like
plasma computed with different shock-capturing stabilization coefficient c = c∥ = c⊥. Evolution
of (a) ablation rates (b) thermal energies for argon SPI simulations with the axisymmetric source.

energies respectively in the non-stabilized and stabilized full MHD simulations under discussion
here. Without shock-capturing terms (denoted by c∥ = c⊥ = 0) the linear solver fails to converge
around 1.4 ms. Use of the shock-capturing stabilization with c∥ = c⊥ = c = 1 allows simulation
to run beyond 1.4 ms. In the stabilized simulations the ablation rates show strong variations
after 1.4 ms due to increased MHD dynamics that non-stabilized simulation fails to capture with
the prescribed resolution. The evolution of the thermal energies in the two simulations looks
almost identical. A decrease in thermal energies coincides with sudden variations in the ablation
rates. The stabilized simulation continues to run beyond 2.5 ms.

Figure (17a) shows the snapshot of the total particle density (ρ0) in [1020] plotted on ϕ = 0
plane and at t ≈ 0.095 ms. The straight line shown in black color joins two points (2.02, -0.56)
and (3.02, 1.67) in the poloidal plane and passes through the location of the impurity source.
Trajectories of SPI fragments are spread about this line. Figure (17b) shows the comparison of
the pressure plotted along this straight line in ϕ = 4.51 plane obtained with the simulations using
different values of shock-capturing stabilization coefficients. Peaks in pressure lineout plots are
due to the impurity sources at that location. As the impurity source travels inside the tokamak
plasma a discontinuity is developed in the pressure field (see Fig (17b). Once again, the shock-
capturing terms add the numerical stabilization locally near the discontinuity to smear it without
significantly affecting the numerical solution elsewhere.

The purpose of this test is to demonstrate that the shock-capturing stabilization terms act
locally to improve the stability of the underlying FEM. With an appropriate choice of the sta-
bilization coefficient, it may be possible to run well-resolved simulations with improved stability
where the ablation rates do not differ much from the non-stabilized simulation.

5.3 3D sources

Simulations presented in this subsection assume that a pellet of neon is shattered into Nf = 100
fragments which appear at tSPI = 0.03564 ms in the computational domain. Localized 3D
impurity source is used by specifying δℓi = 0.08 and δϕi = 2.0. The constant coefficient of
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Figure 17: Numerical results axisymmetric source term modeling argon SPI in JET-like plasma
computed with different shock-capturing stabilization coefficient c = c∥ = c⊥. (a) The particle
density nf [1020] plotted at ϕ = 0 plane and t ≈ 0.562 ms. The line is traced approximately
along the direction of SPI velocity and passing through the location of the source term. (b) The
pressure plotted along this line at the same time instant.

viscosity is set to µ = 2.36 × 10−7 kg m−1 s−1. The perpendicular particle diffusions are set
to 67.264 × 10−5 m2.s while parallel particle diffusions are set to zero. The perpendicular and
parallel heat conductivity is set to 1.18× 10−6 and 946.44 kg.m−1.s−1 respectively. Simulations
use the multi-block grid as shown in Fig (13b) with 7645 elements in the poloidal plane and the
toroidal harmonics 0, ..., 7 while Gear’s method for time integration.

The stabilized FEM is used to simulate 3D SPI sources in tokamak plasma modeled with
the single temperature full MHD model presented in Section 2 and a comparison with the non-
stabilized simulation (without any numerical stabilization) is discussed. The stabilized simula-
tions use the VMS-based stabilization based on the diagonal part of the operator La (Eq. (29))
with Ci = 10−2 in all the equations and additionally the shock-capturing stabilization in all the
equations except in the induction equation with coefficients c∥ = c⊥ = c. The numerical results
are discussed below with a focus on shock-capturing stabilization as it is found to be effective in
improving the stability of the underlying FEM.

5.3.1 Effect of numerical stabilization

For the full MHD simulations performed with and without numerical stabilization, the resistivity
is specified with the dependence on te and zeff (Eq. (14)) with the value at the magnetic axis
η0 = 4.22 × 10−8 Ohm.m. Three stabilized simulations differ by the values of the isotropic
shock-capturing stabilization coefficient equal to 1, 10, and 50.

Figure (18) shows the plasma equilibrium configuration at the time when the impurity source
just appears in the computational domain. Figure (18a) shows the initial temperature field plot-
ted in the poloidal plane and the neon SPI fragments (shown by black dots) near the boundary
of the computational domain. The fragments are distributed such that initially some of them
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(a) (b)

Figure 18: (a) At the beginning of SPI simulations some fragments (denoted by black dots) are
spatially distributed (they may even be outside the plasma). The colors of the contours denote
the magnitude of t in keV. (b) 3D temperature field at the beginning of the simulation showing
axisymmetry.

are even outside the computational domain. As the fragments are far away from the tokamak
plasma core region, their effect is not yet felt by the plasma core and the temperature field
remains axisymmetric (see Figure (18b)). During the simulations, SPI fragments travel inside
the tokamak plasma core with the prescribed constant velocity and neutral atoms of neon from
SPI fragments begin to ablate. Modeling of the atomic reactions (ionization, recombination, and
radiation) between ablated atoms and the tokamak plasma is included in the MHD equations.
Such gas-plasma interactions lead to complex physical phenomena that are challenging to simu-
late numerically. Moreover, they demand restrictive time steps due to the development of shocks
as discussed in the subsections above.

Figure (19a) shows the number of time steps taken by the different simulations vs t in ms where
changes in the slopes denote the reduction in time steps. For the sake of presentation, the time
steps are marked in the normalized units in Fig. (19a). During simulations, the development of
discontinuities and increased MHD dynamics introduce high wavenumbers in the solutions which
restrict the stability and lead to failure of convergence of the linear solver. Typically, a simulation
is restarted from the time instants before such failures by reducing ∆t. Such reduction of ∆t
brings the numerical method to a stable region and allows longer simulations. However, without
any numerical stabilization mechanism, ∆t required is practically very small which makes a
simulation computationally very expensive. To reach the physical time of almost 1.7 ms the
non-stabilized simulation (c = 0) takes more than 9000-time steps and demands further smaller
time steps to advance. This simulation was not pursued further to save computational time. The
use of numerical stabilization, in particular shock-capturing stabilization, is seen to improve the
stability of the method and allows the use of larger ∆t. To reach the physical time of almost 1.7
ms, stabilized simulations take less than 5000-time steps, depending upon the coefficient (c). The
simulation with c = 1 takes more than 20000-time steps to reach physical time t ≈ 3 ms. With
c = 10 however, the simulation reaches almost the same physical time in less than 6000-time
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steps. A further advantage in terms of time steps is seen with c = 50. The ability to use larger
time steps in the stabilized simulations allows us to capture complex dynamics beyond 2 ms in
less computational time. Figure (19b) and (19c) shows the evolution of the ablation rates and
total number of neon atoms ablated into the plasma. It can be seen that the shock-capturing
terms do not significantly affect the ablation process up to 2 ms. After 2 ms large variations in
the ablation rates, which are associated with the increased nonlinear MHD dynamics, are seen.
These variations are associated with the rapid deposition of impurities (neon atoms) in plasma
(Fig. (19c)).
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Figure 19: Comparison of the simulations of Neon SPI in JET-like plasma without and with
numerical stabilization. The following quantities are plotted vs t [ms] (a) The number of time
steps (Nt) taken by the simulations. The labels to the curves are the values of the time step ∆t⋆
written in the normalized units for the sake of the presentation. The scale to convert ∆t⋆ in ms
is = 2.973 × 10−4 and hence ∆t = ∆t∗ × 2.97 × 10−4 ms. (b) The ablation rate. (c) The total
number of impurity atoms ablated in the plasma.

Figure (20) shows the evolution of the magnetic energies in the different toroidal modes
in all simulations. The non-stabilized simulation does not proceed beyond t ≈ 1.75 ms with
∆t∗ = 0.5 normalized units and shows the sign of the failure at the end where the magnetic
energies increase suddenly. In this simulation, at initial time instants, the energy cascading
shows unphysical behavior (Fig. (20a)) where magnetic energies in mode n = 7 dominate the
energies in the lower modes. Such cascading denotes a lack of resolution where higher modes
cannot transfer their energies to lower modes. Up to the same resolution, one needs to take into
account the effect of the unresolved scales on the resolved scales via a numerical stabilization
mechanism. In the stabilized simulations the energy cascading becomes acceptable where the
lower modes are seen to dominate the higher modes (Fig. (20b), (20c) and (20d)). Beyond
t = 2 ms a sharp increase in magnetic energies is seen which is associated with the increase in
the MHD activities. During this highly nonlinear phase, further reductions in the time steps
are needed for simulations to be within the numerical stability limits. All stabilized simulations
show a sharp rise of the magnetic energies in all modes which is associated with SPI fragments
crossing rational q = 2 surface (marked in Fig. (13b)) to destabilize MHD modes.

Top row in Fig. (21) shows snapshots of nf [10
20 m−3] plotted in the poloidal plane ϕ = 0

at t ≈ 1.6 ms and obtained using different amount of the numerical stabilization. The difference
between the numerical solution obtained without numerical stabilization and with c∥ = c⊥ =
c = 1 is not significant. Increase in the amount of the shock-capturing stabilization however
increases the difference from the non-stabilized results. The particle densities are underestimated
in the simulations with c = 10 and 50. Bottom row in Fig. (21) shows nf snapshots at t ≈ 2.73
ms in a highly non-linear phase of MHD dynamics. The non-stabilized simulation has not been
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Figure 20: Evolution of the magnetic energies (ME) in each toroidal harmonic in the SPI simu-
lation with η0 = 4.22× 10−8 [Ohm.m] and c∥ = c⊥ = c.

run until this physical time. Visualizations of the numerical solution obtained with c = 1 and 10
look alike while the dynamics with c = 50 look different. The shock-capturing stabilization is the
numerical solution dependent and hence a non-linear technique to achieve stability. When used
more than required, it can be sensitive to nonlinear dynamics. Visualization for the simulation
with c = 50, in comparison to those with c = 1 and 10, shows that the stabilization has altered
the dynamics and is more than required. Below we discuss the numerical results obtained with
c = 10 to highlight the complex dynamics of thermal quench occurring in disruptions.

Figure (22) shows 3D visualizations at some time instants from the simulation with the shock-
capturing stabilization coefficient c∥ = c⊥ = c = 10. The color map denotes the magnitude of
t in keV while iso-surfaces marked by green and red colors denote the impurity particle density
(nf) 35 % and 70 % of its maximum value respectively. In Fig. (22a) the impurity density cloud
at t ≈ 0.17 ms is seen to be highly localized in the poloidal plane and does not affect the tokamak
plasma core significantly. At this time instant t-field is almost axisymmetric. At t ≈ 2.31 ms
the impurity density cloud has moved inside the tokamak plasma core (Fig. (22b)) and has
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(a) c = 0 (b) c = 1 (c) c = 10 (d) c = 50

(e) c = 1 (f) c = 10 (g) c = 50

Figure 21: Snapshots of the impurity particle density nf [10
20 m−3] plotted in the poloidal plane

ϕ = 0 with the shock-capturing stabilization coefficient c∥ = c⊥ = c. Top and bottom rows
show visualization at t ≈ 1.6 and 2.73 ms respectively.

expanded as a result of its transport modeling. The plasma temperature is seen to drop up to
locations of SPI fragments and the temperature field is no more axisymmetric. At t ≈ 2.61 ms
the impurity density is seen to have further spread in the plasma core and the temperature field
has developed small-scale structures (Fig. (22c)). This rapid spread is due to the crossing of
fragments on the q = 2 surface which triggers MHD activities and strong convection carries the
impurities into the plasma core. Figure (22d) shows that the impurities have spread almost in
the entire plasma core further cooling the plasma. These 3D visualizations show an overview of
the complex processes that occur in the gas-plasma interactions.

Figure (23) shows the snapshots of the impurity particle density (nf) in 1020 m−3 (in first
row) and Poincaré plots of the magnetic field (in second row) plotted at the poloidal plane ϕ = 0
and some time instants. These visualizations are from the simulation with the shock-capturing
stabilization coefficient c∥ = c⊥ = c = 10. Positions of the SPI fragments are marked using
black dots in the Poincaré plots. At t = 2.18 ms the nf-field shows that the impurities are
being convected in the domain. The corresponding Poincaré plot of the magnetic field suggests
that the plasma temperature has dropped down in the outer region of the tokamak plasma
where ergodization of the plasma has occurred. Such ergodization denotes the loss of magnetic
confinement. In the outer layer of the tokamak plasma, mode structures associated with m = 3,
n = 1 and m = 2, n = 1 are seen which denotes the growth in the corresponding modes. At
t ≈ 2.25 ms nf-field begins to show small scales structures where m = 2, n = 1 mode is seen to
grow. Further, at t ≈ 2.89 ms the impurities are seen to spread in most of the domain showing
many small-scale structures. This is due to the strong convection triggered by the growth of
m = 2, n = 1 mode as fragments reach q = 2 surface. During the fast dynamics over which neon
atoms are spread in the plasma, the plasma temperature drops rapidly in the core region. The
sharp rise seen in the magnetic energies (Fig. (20)) is also associated with this phenomenon.
Such rapid cooling of plasma leads to the loss of its confinement. At t ≈ 2.93 ms m = 1, n = 1
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(a) t ≈ 0.17 ms (b) t ≈ 2.31 ms

(c) t ≈ 2.61 ms (d) t ≈ 2.92 ms

Figure 22: 3D visualizations of SPI in JET-like plasma at some time instants. The pseudo-color
plotted at two planes 180 degrees apart from each other denotes the values of T in keV. The
green and red iso-surfaces denote the impurity particle density nf 35 % and 70 % of its maximum
value respectively.

mode is seen to be growing and plasma remains ergodized.
The third row in Fig. (23) shows the shock-capturing term τsc plotted at the poloidal plane

ϕ = 0 and some time instants. The term is seen to detect the location of discontinuities in
pressure, takes high values only in the vicinity, and therefore highlights the location at which
artificial viscosity is being added. In all figures, the discontinuities in pressure are detected
near boundaries and inside the domain near the high values of the impurities. Detection near
the boundaries is associated with the initial plasma profile in which the pressure has a jump.
Detections inside the domain are associated with the moving shocks arising due to gas-plasma
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interactions during the SPI simulations. The artificial viscosity added with such an adaptive
coefficient improves the stability of the numerical method and allows the simulation to go be-
yond 2 ms with reasonable time steps. Such a stabilization mechanism is not provided by the
underlying FEM or VMS-based stabilization.

(a) t ≈ 2.18 ms (b) t ≈ 2.25 ms (c) t ≈ 2.89 ms (d) t ≈ 2.93 ms

(e) t ≈ 2.18 ms (f) t ≈ 2.25 ms (g) t ≈ 2.89 ms (h) t ≈ 2.93 ms

(i) t ≈ 2.18 ms (j) t ≈ 2.25 ms (k) t ≈ 2.89 ms (l) t ≈ 2.93 ms

Figure 23: Snapshots of the impurity particle density nf [10
20] (first line), Poincaré plots of the

magnetic field (second line), and the shock-capturing parameter τsc (last line) at the mentioned
time instants. The figures in the first and second lines are plotted in the poloidal plane ϕ = 0.
The black dots in the figures with Poincaré plots denote the positions (projected onto the poloidal
plane) of the SPI fragments while the color denotes values of the plasma temperature in keV.
These visualizations are from the simulation with the shock-capturing stabilization coefficient
c∥ = c⊥ = c = 10.

Figure (24a) shows the evolution of the plasma temperature at the magnetic axis (t0) in keV
which decreases suddenly between 2 and 3 ms. The decrease in t0 is associated with the rapid
cooling of plasma, a distinct phase of a typical disruption which is TQ. During this phase large
variations in the ablation rate (Fig. (19b)), sharp rise in the total atoms ablated (Fig. (19c))
and increase in the magnetic energies (Fig. (20c)) is seen. The similar drop in t0 has also been
noted in [14] for deuterium SPI in ASDEX Upgrade and in [39] for neon SPI in ITER plasma.
Figure (24b) shows the comparison of the evolution of the thermal energies in the simulations.
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In the stabilized simulation with c = 10, around t ≈ 2.25 ms, the plasma thermal energy drops
rapidly. This drop corresponds to the rapid decrease in T0 as shown in Figure (24a). It is
important to note here that the thermal energies in stabilized and non-stabilized simulations are
comparable which denotes that the shock-capturing stabilization does not alter the underlying
physics. Figure (24c) shows the evolution of the plasma current Ip where Ip drops slowly during
the simulations and show a sign of a spike in Ip, a phenomenon also seen in experiments, at
the end of TQ. Such behavior of Ip is also seen in the SPI simulations with the reduced MHD
model presented in [39]. Once again it can be seen that Ip evolution in all simulations is almost
identical denoting that the numerical stabilization does not alter the underlying physics. In
experiments, CQ phase follows after Ip spike whose prediction is not an aim of this study, mainly
because the physical model used does not include the Ohmic heating term, which can not be
ignored especially after TQ when plasma temperature drops down and as a result the resistivity
increases. Note that the plasma thermal energy and Ip are the integrated quantities over the
whole plasma domain.
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Figure 24: Evolution of the (a) plasma temperature at the magnetic axis [keV] (b) plasma
thermal energy [MJ] and (c) plasma current Ip [MA].

In Table (1) an estimate of the computational time taken for each simulation to reach t ≈ 1.5
ms is shown. During each time step, the linear system is solved using the GMRES method, and
the average time taken by the GMRES solver at each time step is noted in Table (1). This time
is multiplied by the number of time steps taken by each simulation to reach t ≈ 1.5 ms. It can be
seen that the simulation with c = 10 takes less than twice the time taken by the non-stabilized
simulation to reach t ≈ 1.5 ms to obtain the estimate for the computational time taken. This
estimate is written in hours in the last column of Table (1). As the amount of the numerical
stabilization increases, the average time taken by the GMRES solver also increases however,
due to the ability to use larger time steps in the stabilized simulations, we gain in the overall
computational time required. The stabilized simulation with c = 10 shows more than twice the
speed up as compared to the non-stabilized simulation whereas the simulation with c = 50 takes
higher time than with c = 10 as higher stabilization takes a longer time for GMRES to converge.

5.3.2 Another shock-capturing method

We demonstrated the advantage of the stabilized FEM on the challenging problem above and
now we try to elevate the difficulty of the problem by performing the simulation with further
lower resistivity. By keeping all other parameters and the grid the same as above, we perform
simulations by specifying the resistivity by an order lower i.e. η0 = 4.22×10−9 Ohm.m. Although
grid resolution for this simulation may not be sufficient, we hope that the numerical stabilization
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c no of time steps Average time in [s] re-
quired for one GMERS
solve

Total GMRES
time in hours ≈

0 8096 6.0461 13.6
1 3988 10.6423 11.8
10 1182 15.2078 5
50 1182 17.6222 5.78

Table 1: Time taken by GMRES solver in different simulations with c∥ = c⊥ = c to reach the
physical time t ≈ 1.5 ms using 64 MPI processes.

Simulation η0 [Ohm.m] Shock-strength criterion c∥ = c⊥ = c

A 4.22× 10−8 Eq. (33) 1
B 4.22× 10−8 Eq. (56) 1
C 4.22× 10−9 Eq. (56) 10

Table 2: Parameters to identify the simulations for the discussion the effect of different shock-
capturing methods differing in shock modulations. All other parameters and the grid used in
these simulations are identical.

will include the effect of unresolved scales on the resolved scales. From the numerical experiments,
we found that the shock capturing term given by Eq. (32) does not provide the required stability.
Therefore, based on experience, we use a different strategy for the modulation of the shock sensor
that gives stronger estimates of τsc. The form of τsc used in this subsection is written as:

τsc = h2e βsc fp with βsc =
1

p

∣∣∣∣∂p∂ρL(ρ) + ∂p

∂ρf
L(ρf) +

1

ρ

∂p

∂t
L(p)

∣∣∣∣ (56)

The choice of βsc is motivated by the fact that it gives higher estimates of τsc and hence provides
higher estimates of stabilization near shocks/discontinuities. It helps stabilize the spurious waves
generated by interpolation of Atomic data in the impurities modeling as well. To compare the
effect of different shock-capturing modulations, below we discuss the simulations listed in Table
(2).

In Fig. (25) the evolution of the ablation rates and total impurities deposited are plotted for
simulations A, B, and C. Behavior of the ablation rate, including large variations after 2 ms, is
similar in simulations A and B. In both simulations, these large variations are accompanied by
the rapid deposition of the impurities (see Fig. (25b)). In simulation C, the smooth evolution
of the ablation rate and total ablation rate is seen. This is because the shock-detection criterion
given by Eq. (33) with c∥ = c⊥ = c = 10 gives a very diffusive numerical scheme. This
simulation runs with ∆t∗ = 5 normalized units throughout, which is significantly faster than any
other simulation performed in this work.

Figure (26) shows snapshots of the impurity particle density (nf) [1020 m−3] plotted in the
plane ϕ = 0 for the three simulations at approximately the same time instants. Visualizations
from different physical phases are comparable for simulations A and B which use different shock-
capturing methods. Both simulations show fast dynamics over which neon atoms are spread
rapidly to cool the plasma and lead to thermal quench while the use of very high numerical
stabilization smooths the dynamics in simulation C and no distinct phase of thermal quench is
seen.
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Figure 25: Evolution of a) the ablation rate and b) the total number of impurity atoms ablated
in the plasma during Neon SPI simulations in JET-like plasma with different resistivities and
shock-capturing coefficient c∥ = c⊥ = c.

Figure (27a) and (27b) shows evolution of t0 [keV] at the magnetic axis and thermal energies
[MJ] respectively in the three simulations. In simulation C, t0 does not drop as rapidly as in the
other two simulations. A similar trend is seen in the evolution of thermal energies. Comparable
evolution of t0 and thermal energies are obtained in simulations A and B. Figure (27c) shows
the evolution of Ip in the three simulations where simulation A and B shows a sign of Ip-spike
at the end of the thermal quench. Since high numerical stabilization smooths the dynamics, the
thermal quench and Ip spike are absent in simulation C.

Rows in Fig. (28) shows the visualization of the plasma temperature [keV] in the simulations
A, B, and C respectively, at some time instants. Again the visualizations from simulations A and
B look comparable. The plasma temperature starts to drop from the outer region as neon SPI
fragments travel in the tokamak plasma core. With the rapid spread of the neon atoms in the
tokamak plasma core after 2 ms the MHD dynamics increase which is seen from the small-scale
structures in 3rd and 4th columns of Fig. (28). During this phase, the plasma temperature is
seen to drop rapidly. Such a sequence of dynamics was also expected in simulation C but it
is smoothed out because of the high numerical stabilization used via the new shock-capturing
method (Eq. (56)).

Figure (29) shows the evolution of the magnetic energies in simulations B and C. Comparing
the magnetic energies in simulation B (Fig. (29a)) with those in simulation A (Fig. (20b)) it
can be seen that the sharp rise in the magnetic energies appears nearly at the same time. Effect
due to the lack of grid resolution in simulation C is visible in Fig. (29b) where the magnetic
energies of higher modes are seen to be crossing those of lower modes in Fig. (29). Nevertheless,
a sharp rise in the magnetic energies of about 2 ms is also seen in simulation C. We hope that
lowering the value of c will give the numerical solution that is well resolved for the grid used.
The numerical stabilization methods in this work are designed such that as the grid is refined
(he → 0) the stabilization will go to 0.
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(a) t ≈ 2.18 ms (b) t ≈ 2.25 ms (c) t ≈ 2.89 ms (d) t ≈ 2.93 ms

(e) t ≈ 2.19 ms (f) t ≈ 2.26 ms (g) t ≈ 2.89 ms (h) t ≈ 2.93 ms

(i) t ≈ 2.19 ms (j) t ≈ 2.26 ms (k) t ≈ 2.9 ms (l) t ≈ 2.95 ms

Figure 26: Snapshots of the impurity particle density (nf) [1020] m−3 at some time instants.
Plots in the first, second and third rows are from the simulations A, B and C respectively listed
in Table (2). All the plots show visualizations in the poloidal plane ϕ = 0.
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Figure 27: Evolution of the a) plasma temperature at the magnetic axis T0 [keV] b) plasma
thermal energy [MJ] and c) plasma current Ip [MA] during Neon SPI simulations in JET-like
plasma with different resistivities and shock-capturing coefficient c∥ = c⊥ = c.
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(a) t ≈ 2.18 ms (b) t ≈ 2.25 ms (c) t ≈ 2.89 ms (d) t ≈ 2.93 ms

(e) t ≈ 2.19 ms (f) t ≈ 2.26 ms (g) t ≈ 2.89 ms (h) t ≈ 2.93 ms

(i) t ≈ 2.19 ms (j) t ≈ 2.26 ms (k) t ≈ 2.9 ms (l) t ≈ 2.95 ms

Figure 28: Snapshots of the temperature T [keV] at some time instants. Plots in the first, second
and third rows are from the simulations A, B and C respectively listed in Table (2). All the plots
show visualizations in the poloidal plane ϕ = 0.

6 Summary and Perspectives

Stabilized bi-cubic Hermite Bézier FEM is presented with an application to gas-plasma inter-
action occurring during MMI in a tokamak plasma. The stabilization for the Galerkin FEM
is formulated using two methodologies: first, the VMS formulation that considers the effect
of unresolved scales on the resolved scales to add upwinding in the underlying FEM, and sec-
ond, the shock-capturing method that adaptively adds artificial viscosity only in the vicinity of
the shocks/discontinuities. The stabilization methodologies are applied to the bi-cubic Hermite
Bézier FEM and implemented in the computational set-up of JOREK to solve MHD equations
numerically. The proposed stabilized algorithm is verified using a range of numerical tests and is
found to be very robust and accurate. The MHD equations of interest model complex, nonlinear
gas-plasma interactions arising in the tokamak plasma. In applications considered here, nonlin-
ear modeling of resistivities has strong local variations, and gas-plasma interactions at different
densities produce shocks in the solution. Such phenomena restrict the stability of the numerical
methods severely making the simulations extremely expensive. The use of stabilized bi-cubic
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Figure 29: Evolution of the magnetic energies in each toroidal harmonic during neon SPI simula-
tions in JET-like plasma with different resistivities and shock-capturing coefficient c∥ = c⊥ = c.

Hermite Bézier FEM is demonstrated by simulating SPI in JET-like tokamak plasma. It is seen
that the shock-capturing strategy used can improve the stability of the bi-cubic Hermite Bézier
FEM and reduce the computational cost required in simulating the complex physics of disrup-
tions. Simulations presented here show physical features, including TQ, are similar to those in
the previous studies performed with a reduced MHD model [39].

The numerical strategies presented here address the issues of numerical challenges faced in
the gas-plasma interactions in tokamak plasma and can be applied to other tokamak applica-
tions involving shocks/discontinuities as well. Finding the optimal estimates of the stabilization
matrix/coefficients remains a challenge because of the highly nonlinear plasma flows and the
large number of parameters involved. Furthermore, the full MHD model used here does not
include the Ohmic heating term in the energy equation. At low resistivities, its contribution is
generally negligible. However, during TQ the plasma temperature decreases, and as a result,
the resistivity increases. The effect of the Ohmic heating term can be significant in disruptions
simulations to capture the dynamics of CQ, the phase that follows TQ. Finding better estimates
of the stabilization coefficients for low-resolution meshes and implementation of missing terms
are reserved for future work.

The stabilized FEM presented can be easily extended for the two-temperature reduced and
full MHD models. MMI in tokamak plasma applications involves many parameters such as
the amount of the material injected; the number of fragments; their positions and velocities;
configuration of the main plasma equilibrium; physical diffusivities to name a few. A scan
in these parameters can be performed to gain insight into the MHD instabilities and complex
physics involved. Further, the developed stabilized method can be extended straightforwardly
to recently implemented higher-order Hermite Bézier FEMs [6] in JOREK which are shown to
be more computationally efficient than the original C1 variant. Equipped with the numerical
stabilization strategies developed here, stabilized higher-order FEM can lead to an effective and
robust numerical tool for tokamak applications with large computational domains such as JET
and ITER. While adaptive numerical stabilization is shown to gain computational efficiency, for
larger applications such as ITER or DEMO, this alone may not be sufficient. Other techniques
such as adaptive mesh refinement (for example [35]) and multi-grid (for example [34]) methods
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may be considered for further improvement of the computational efficiency.
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A Computation of integrated quantities

The integrated quantities plotted in the Figures are computed as follows.

• The thermal energy (TE) is computed as

(TE) =

∫
p dΩ

where p is the total pressure given by Eq. (12).

• Magnetic energies (ME)n in each toroidal harmonic n are computed as

(ME)n =
1

2µ0

∫
bbbn · bbbn dΩ

where bbbn denotes the amplitude of nth harmonic of the magnetic field and µ0 denotes the
vacuum permeability.

• The plasma current Ip is the total toroloidal current flux computed as

Ip =
1

2π

∫
jjj · eϕ dΩ
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