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Abstract: In this article, we consider vibrational systems with semi-active damping that
are described by a second-order model. In order to minimize the influence of external inputs
to the system response, we are optimizing some damping values. As minimization criterion,
we evaluate the energy response, that is the H2-norm of the corresponding transfer function
of the system. Computing the energy response includes solving Lyapunov equations for
different damping parameters. Hence, the minimization process leads to high computational
costs if the system is of large dimension.
We present two techniques that reduce the optimization problem by applying the reduced

basis method to the corresponding parametric Lyapunov equations. In the first method,
we determine a reduced solution space on which the Lyapunov equations and hence the
resulting energy response values are computed approximately in a reasonable time. The
second method includes the reduced basis method in the minimization process. To evaluate
the quality of the approximations, we introduce error estimators that evaluate the error in
the controllability Gramians and the energy response. Finally, we illustrate the advantages
of our methods by applying them to two different examples.

Keywords: reduced basis method, damping optimization, vibrational systems, error esti-
mation, model order reduction

Novelty statement: In this paper, we propose methods to reduce the problem of mini-
mizing the energy response of a vibrational system by optimizing corresponding damping
gains. Additionally, we propose error estimators that are mandatory for the methods to
evaluate the quality of the approximated controllability Gramian and the corresponding
energy response.

1 Introduction

When constructing large civil engineering infrastructure such as buildings or bridges, external vi-
brational forces like wind perturbations or earthquakes need to be taken into account. Due to the
continuous improvement in engineering construction, which provides for lighter and finer structures,
corresponding infrastructures have become more susceptible to large deflections and fatigue when ex-
ternal forces with dominant frequencies close to the natural frequencies of the structure are applied.
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To prevent this effect, dampers are designed in order to remove critical energies from the physical
system. We consider the vibrational system

Mẍ(t) +D(g)ẋ(t) +Kx(t) = Bu(t),

y(t) = Cx(t)
(1)

where M ∈ R
n×n is the mass matrix, D(g) ∈ R

n×n is the damping matrix and K ∈ R
n×n the

stiffness matrix. We assume, that M and K are symmetric and positive definite, and that D(g) is
symmetric and positive semidefinite for all parameters g ∈ D, where D ⊆ R

ℓ is the parameter set.
Additionally, the matrix B ∈ R

n×m is the input matrix and C ∈ R
p×n the output matrix. The

vectors u(t) ∈ R
m, x(t) ∈ R

n and y(t) ∈ R
p describe the input, the state and the output of the system,

respectively. The damping of the system consists of two parts: an internal damping of small magnitude
and external dampers designed to limit the influence of the input to the output of the system. Hence,
the parameter-dependent damping matrix D(g) is composed of D(g) = Dint + Dext(g), where Dint

describes the internal damping and Dext(g) describes the external damping.

The internal damping can be modeled in different ways. In this work we use a multiple of the critical
damping

Dint := 2αM
1

2

(
M− 1

2KM− 1

2

) 1

2

M
1

2 , (2)

for α ≪ 1, which is a widely used convention, and was applied, for example, in [5, 7, 27, 43, 47].
However, our theory holds for every modal damper, i.e., every damping matrix that is simultaneously
with M and K diagonalizable. Other methods to model the internal dampings are presented in [21, 25].

External dampers typically depend on two variables, the position and the damping values. In this
paper, we will focus on the optimization of the damping values to attenuate the effects from the external
forces. Hence, the external damping matrix Dext(g) depends on the damping gains g =

[
g1, . . . , gℓ

]
,

that represent the friction coefficients, and the matrix F ∈ R
n×ℓ that describes the position of the

dampers such that

Dext(g) := FG(g)FT, G(g) := diag (g1, . . . , gℓ) .

We assume that the number of dampers ℓ is significantly smaller than the dimension n. Additionally,
we assume that the damping gains are fixed over time and lie in given intervals [g−i , g

+
i ] ⊂ R+, for

all i = 1, . . . , ℓ. We collect these bounds by setting g ∈ D = [g−1 , g
+
1 ] × · · · × [g−ℓ , g

+
ℓ ] ⊂ R

ℓ
+, where

the parameter set D contains all restricting intervals. However, it is also possible that no a priori
knowledge of the parameter set is given, then we define D = R

ℓ
+.

Our goal is to design the damping values based on some optimization of an objective function. The
problem of finding optimal external dampers was widely investigated in the literature, see [14, 20, 22,
26, 37, 47]. The objective of this work, is to solve the problem of semi-active damping, i.e., for a
given vibrational system of the form (1), to determine the best damping D(g) that ensures optimal
attenuation of the output y. Since we want to minimize the maximum response gain for the entire
range of time, we minimize the L∞-norm of the output y. For that, we can make use of the following
bound

‖y‖L∞
≤ ‖G(·, g)‖H2

‖u‖L2
,

where G(s, g) := C(s2M + sD(g) + K)−1B is the transfer function associated to the viabrational
system in (1) that describes input to output behavior in the frequency domain. We see that the norm
of y is bounded by the H2-norm of the transfer function G(·, g) that is also called the energy response
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and defined as

J(g) := ‖G(·; g)‖H2
=

(
1

2π

∫ ∞

−∞
trace(G(iw; g)HG(iw; g))dw

) 1

2

.

In this article, we will optimize the damping values in such a way that the H2-norm of the transfer
function, and hence the energy response, is minimized. This criterion was also used in [3, 15, 39].

The vibrational system (1) can be represented as a first order system

ż(t) = A(g)z(t) + Bu(t),
y(t) = Cz(t) (3)

with

A(g) :=

[
0 I

−M−1K −M−1D(g)

]
, B :=

[
0

M−1B

]
, C :=

[
C 0

]
and z(t) :=

[
x(t)
ẋ(t)

]
.

The latter is a linearization of (1), and we emphasize that there are many other useful linearizations
that could be used here. We use (3) for simplicity. As described in [48], the H2-norm of the transfer
function can be computed as

J(g) = tr
(
CP(g)CT

) 1

2 = tr
(
CP11(g)C

T
) 1

2 , (4)

where the matrix P(g) is called controllability Gramian and is defined in the time domain or the
frequency domain as

P(g) =

[
P11(g) P12(g)
P12(g)

T P22(g)

]
:=

∫ ∞

0

eA(g)tBBTeA(g)Ttdt

:=
1

2π

∫ ∞

−∞
(iωI −A(g))−1BBT(−iωI −A(g))−Tdω.

(5)

The upper left block P11(g) of the Gramian P(g) is called position controllability Gramian and en-
codes the reachabillity space of the state x(t) of the corresponding second-order system (1). The
controllability Gramian P(g) is computed by solving the Lyapunov equation

A(g)P(g) + P(g)A(g)T = −BBT. (6)

In order to find the damping gains g ∈ D that minimize the energy response J(g), we have to solve a
Lyapunov equation (6) in every step of the optimization method. Since the Lyapunov equation solves
are very demanding if the matrices are of large dimensions, the minimization process would lead to high
computational cost and hence be inefficient or unfeasible in a large-scale setup. In the literature, several
approaches have been developed to accelerate the minimization process. The authors in [3] utilize the
dominant pole algorithm in order to build a reduced minimization problem that is fast solvable. On
the other hand, in [39], an efficient optimization approach using structure-preserving parametric model
reduction based on the iterative rational Krylov algorithm (sym2IRKA) is used to derive an efficient
optimization algorithm. In [2], a sampling-free approach is presented that reduces the system (1) for
all admissible parameters. Alternatively, in [40] the H∞-norm of the transfer function G is minimized.
In [6, 41, 43], the authors present different reduction techniques to optimize the related problem of
minimizing the total average energy for the system (1) with no input. It is worth mentioning that the
problem of optimizing damping positions is investigated in [5, 11, 16, 23, 38]. This is a challenging
problem especially for large-scale systems and it is not the focus of this work.

In this paper, we apply the reduced basis method (RBM) and modifications of it, in order to reduce the
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Lyapunov equation (6) such that the surrogate equation can be solved in a reasonable time. The RBM
is a well-established method to reduce parameter-dependent partial differential equations [18, 30, 44–
46]. Later, it was used for Riccati equations [33] and finally the RBM was applied to Lyapunov
equations by Son an Stykel in [36]. In [29], the authors use the RBM in order to reduce parametric
differential-algebraic systems. The method is decomposed into an offline and an online phase. In the
offline phase of the RBM, a reduced space is determined that approximates the solution space of the
original Lyapunov equation for all parameters g ∈ D. To evaluate the quality of the approximated
reduced space, we suggest two error estimators that evaluate the error in the controllability Gramians
and in the corresponding energy responses for different damping values. The approximated solution
space is then used in the online phase to solve the corresponding reduced Lyaponv equations, leading
to an approximation of the energy response determined by Equation (4) for all requested parameters
g ∈ D. To avoid adding informations into the basis that are not needed during the optimization, we
introduce an adaptive method that enriches the basis within the optimization process.

The rest of this paper is structured as follows: In Section 2, we describe the reduced basis method, and
introduce error estimators that are suitable for our method. The adaptive enrichment method is then
introduced in Section 3. Afterwards, we describe some implementation details in Section 4. In order
to illustrate the effectiveness of our methods, in Section 5, we apply our methods to two examples,
and finally Section 6 concludes the manuscript.

2 Reduced basis method

As described above, we want to find the damping values that minimize the energy response J(g).
The optimization procedure requires the evaluation of this energy for several parameters g ∈ D. To
accelerate the optimization, we want to speed up the computation of the Gramian P(g) or P11(g),
which contains the numerically most costly step. The reduced basis method (RBM) has been found
to be an effective tool to deal with this problem, see [36]. We apply the RBM in order to reduce the
optimization problem in Section 2.1. Afterwards, in Section 2.2, we derive error estimators that are
needed in the RBM to evaluate the quality of the approximations.

2.1 Reduction using the reduced basis method

In order to accelerate the computation of the position controllability Gramians P11(g), we aim to find
a space VD that spans the controllability space of the second-order system (1) and hence the columns
of the Gramians P11(g), i.e.

span {P11(g)} ⊂ VD = span {VD} ,
for all admissible parameters g ∈ D, where VD is a basis that spans the space VD. Then, for all
g ∈ D, there exists a matrix X11(g) with P11(g) = VDX11(g)V

T
D . Since such a space is in general

not available, the idea of the RBM is to find a reduced space V = span {V1}, V1 ∈ R
n×r so that the

position controllability Gramian P11(g) can be approximated as

P11(g) ≈ P̃11(g) = V1P̂11(g)V
T
1 (7)

for suitable P̂11(g) ∈ R
r×r, and for all damping parameters g ∈ D. The matrices P̂11(g) are determined

by solving Lyapunov equations of dimension 2r, which are fast computable if r is small enough.

The RBM is decomposed into an offline and an online phase. The offline phase consists of the compu-
tation of the basis V1 ∈ R

n×r, which is rather time consuming but needs to be performed only once.
In the online phase, on the other hand, Lyapunov equations are solved on the reduced space V , which
is fast and can be performed multiple times. This phase involves performing the optimization, which
requires evaluating the approximated energy response for multiple damping parameters. In order to
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describe the two phases in more detail, we need a criterion to evaluate the quality of the reduced space
V . Thus, we assume that we have an error estimator ∆(g) that provides a criterion to determine how
well the solution space for a parameter g is approximated by the current basis V1. The used error
estimators are described later in Section 2.2.

Offline phase: In this phase, we aim to find an approximation V of the space VD and the corresponding
basis V1, which will be used later to define an approximation of the position controllability Gramians
P11(g) for the required parameters g ∈ D. Since we can not evaluate and investigate an infinite number
of parameters that are given in D, we define a test-parameter set DTest ⊂ D that is finite and well
distributed in D. Finding a good sampling strategy for the test-parameter set is a challenging task,
which was addressed in [8, 12, 19, 32] for partial differential equations. In the following, we derive
a space V that includes approximations of the solution spaces corresponding to all test-parameters
g ∈ DTest. Then, if DTest is well-chosen, the space V approximates the solution space for all parameters
in D.

Because of the low-rank structure of the right-hand side in (6), we can assume that the solution P(g)
of the Lyapunov equation in (6) is well approximated by a low-rank factor Z(g) such that

P(g) ≈ Z(g)Z(g)T, P11(g) ≈ Z1(g)Z1(g)
T, where Z(g) =

[
Z1(g)
Z2(g)

]
, (8)

for g ∈ D. In order to build a first basis V1, we choose one arbitrary test-parameter g0 ∈ DTest and
solve the Lyapunov equation in (6) to obtain the low-rank factor Z(g0) that includes Z1(g0). Using
the low-rank factor Z1(g0), we define the basis

V1 := orth(Z1(g0)).

The operator orth(·) describes the orthonormalization of the columns of a given matrix. After forming
our first basis, we evaluate the quality of the approximation of the position controllability Gramian
P11(g) for all remaining parameters g ∈ DTest. To this aim, we compute the error estimate ∆(g) for
all these parameters and define the largest error estimate as

∆max := ∆(g1) := max
g∈DTest

∆(g),

where g1 is the parameter that leads to the largest estimate. If ∆max is larger than a given tolerance
tolf , we know that the current basis does not approximate the solution space good enough for at least
one parameter g1. Hence, we need to enlarge the basis V1. An obvious candidate to enrich the basis
are the columns of the Gramian P11(g1) for the parameter g1 that results in this largest error estimate.
We compute the low-rank factor Z1(g1) by solving the Lyapunov equation in (6) and set

V1 = orth([V1, Z1(g1)])

to build the new basis. We continue with this procedure until the error estimate ∆(g) is smaller than
the tolerance tolf for every damping value g ∈ DTest.

This method is described in Algorithm 1. In Step 3 and 10 we define the set of already used parameters
M so that we do not evaluate their error estimates in Step 6 and 12.
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Algorithm 1 Offline Phase - RBM

Input: A : D → R
n×n asymptotically stable, B ∈ R

n×m, test-parameter set DTest, tolerance tolf
Output: Orthonormal basis V1

1: Choose any g0 ∈ DTest.

2: Solve the Lyapunov equation in (6) at g0 to obtain Z1(g0).

3: Set M := {g0}.
4: Set V1 := orth(Z1(g0)).

5: Set k = 1.

6: Determine g1 := argmaxg∈DTest\M∆(g).

7: Set ∆max = ∆(g1).

8: while ∆max > tolf do

9: Solve Lyapunov equation in (6) at gk to obtain Z1(gk).

10: Set M := M∪ {gk}.
11: Set V1 := orth([V1, Z1(gk)]).

12: Determine gk+1 := argmaxg∈DTest\M∆(g).

13: Set ∆max := ∆(gk+1).

14: Set k = k + 1.

15: end while

Online phase: After the basis V1 is computed, it can be used to determine an approximation of the
position controllability Gramian P11(g) as described in (7). For that, define the basis

V :=

[
V1 0
0 V1

]

corresponding to the first-order system in (3) and define the by V reduced matrices

Â(g) := V TA(g)V, B̂ := V TB and Ĉ := CV.

We compute the reduced Gramian P̂11(g) that is used in (7) by solving the reduced Lyapunov equation

ÂP̂(g) + P̂(g)ÂT = −B̂B̂T, (9)

where P̂(g) =
[

P̂11(g) P̂12(g)

P̂12(g)
T P̂22(g)

]
= Ẑ(g)Ẑ(g)T and Ẑ(g) =

[
Ẑ1(g)

Ẑ2(g)

]
. Note that the projected Lyapunov

equation in (9) is of dimension 2r and can therefore be solved cheaply compared to the original
Lyapunov equation in (6).

In practice, we make use of the low-rank structure of the Gramians described in (8) so that we obtain
the approximations

Z1(g) ≈ Z̃1(g) = V1Ẑ1(g) or Z(g) ≈ Z̃(g) = V Ẑ(g).

Optimization: Finally, we include the online phase of the RBM into our optimization problem. We
assume that the bases V1 and V were computed in the offline phase, beforehand. Then, in any step of
the optimization process (in a parameter g), we solve the reduced Lyapunov equation from (9) so that

the reduced Gramians P̂(g) and P̂11(g) are available. Afterwards, we define the approximated energy
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response

J̃(g) := tr(CV1P̂11(g)V
T
1 CT)

1

2 = tr(CV P̂(g)V TCT)
1

2 (10)

that is minimized. The computation of the reduced energy response in (10) includes the solving of
a Lyapunov equation from (9) of dimension 2r which is performed in every step of the optimization
process. This is a significant acceleration compared to the optimization of the original energy response
in (4) where the Lyapunov equation from (6) of dimension 2n needs to be solved in every iteration
step.

2.2 Error estimator

For the reduced basis method presented above, as well as for the adaptive method presented in the
following section, error estimators are needed to evaluate the quality of the resulting approximations.
In this section, we will derive error estimators of two different quantities.

The first one is the approximation error of the position controllability Gramians, defined as

‖E11(g)‖ := ‖P11(g)− P̃11(g)‖,

where P̃11(g) is an approximation of P11(g). The position controllability Gramian error E11(g) is the
upper left block of the corresponding error

E(g) =
[
E11(g) E12(g)
E12(g)T E22(g)

]
=

[
P11(g) P12(g)
P12(g)

T P22(g)

]
−
[
P̃11(g) P̃12(g)

P̃ (g)T P̃22(g)

]
= P(g)− P̃(g).

In the literature there are various upper bounds for ‖E(g)‖, i.e. for the error in the solution of the
Lyapunov equation in (6), see e.g. [29, 36]. These bounds use the corresponding residual

R(g) := BBT +A(g)P̃(g) + P̃(g)A(g)T (11)

divided by the coercivity constant of the Lyapunov equation in (6) which is the minimal eigenvalue
of the corresponding linear system matrix. For vibrational systems with small internal damping, the
smallest eigenvalues are close to the imaginary axis, and hence, the coercivity constant is small so that
the error estimators lead to large, very conservative values and are not feasible for our application.
Additionally, we only want to evaluate the approximation of the controllability space of x(t) encoded
in P11(g), while evaluating the approximation of the complete Gramian P(g) contains information that
are not used.

The second quantity that we consider is the approximation error of the function values of the energy
response, i.e.

EJ(g) :=
∣∣∣J(g)− J̃(g)

∣∣∣ =
∣∣∣tr

(
CP(g)CT

)
− tr

(
CP̃(g)CT

)∣∣∣ =
∣∣tr

(
CE(g)CT

)∣∣ =
∣∣tr

(
CE11(g)CT

)∣∣ .

We notice that the error E(g) or E11(g) is required for both, the evaluation of the error ‖E11(g)‖ as
well as for the computation of the error EJ(g). Since it is costly to compute the error E(g) for every

requested parameter g, we require an approximate Ẽ(g) ≈ E(g). We aim to find such an Ẽ(g) in the
following. Firstly, notice that the error E(g) is the solution of the following Lyapunov equation

A(g)E(g) + E(g)A(g)T = −R(g) (12)

that is also called error equation. Hence, a second RBM that follows the same scheme as presented in
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Section 2.1 can be applied to determine a basis V1,err and to approximate the error as

E11(g) ≈ Ẽ11(g) = V1,errÊ11(g)V T
1,err.

To avoid confusion, we denote the second reduced basis method that determines the basis V1,err for the
error estimation as EE-RBM. The basis V1,err can be constructed using the solutions of (12) for some
parameters. However, the right-hand side R(g) of the error equation in (12) does not consist of low-
rank factors, and hence, solving this Lyapunov equation is generally numerically costly, since solution
algorithms cannot exploit such a low-rank factor structure. Hence, in order to avoid having do solve
the error equation in (12), we investigate the error E11(g) and the structure of the corresponding error
spaces in more detail to simplify its computation. For this purpose, we write the position controllability
Gramian as P11(g) = VDX11(g)V

T
D , where VD is a basis spanning the (complete) solution space VD of

the second-order system in (1) for all parameters g ∈ D. The error is then given as

E11(g) = VDX11(g)V
T
D − V1P̂11(g)V

T
1

and hence we obtain, that the error E11(g) lies in the space spanned by the basis VE = orth([V1, VD])
for all parameters, which was investigated in [9] for linear systems. Since V1 is known already from the
first RBM, the remaining task is to determine VD. However, obviously, the basis VD is not available,
otherwise we would have a basis that spans the solution space of the Lyapunov equation in (6) for
all parameters without any error. This is why we apply the second reduced basis method (EE-RBM)
and derive an approximation of VE that is called V1,err. However, because of the structure of the basis
VE , we can solve a second Lyapunov equation from (6) instead of the error equation in (12), which
is of a more advantageous structure because of the low-rank factor structure of the right-hand side.
Hence, in every step of EE-RBM, we solve the Lyapunov equation from (6) in a certain parameter gr

to obtain the corresponding solution Z1(g
r) and to enrich the basis of the error equation in (12) as

V1,err = orth([V1,err, V1, Z1(g
r)]), and therefore build a basis that approximates VE . Adding V1 and

Z1(g
r) is equivalent to solving the error equation from (12) in gr and adding the resulting solution to

the basis V1,err.

In order to include the computation of the basis V1,err into the first RBM, we run both methods, the
RBM and the EE-RBM in parallel. The first parameters g0 and gr0 are chosen arbitrarily in DTest with
gr0 6= g0. We refer to [13] for a mathematical analysis why gr0 should be chosen different from g0. We
compute the basis V1 = orth (Z1(g0)) as described in the previous subsection and, in addition, solve
the Lyapunov equation from (6) in gr0 to obtain Z1(g

r
0) such that our first error space basis is given as

V1,err = orth ([V1, Z1(g
r
0)]) = orth ([Z1(g0), Z1(g

r
0)]) .

As described above, the next parameter g1 is the one that leads to the largest error estimate ∆(g) and
we use the corresponding solution Z1(g1) to enrich the basis V1. Next, the parameter gr1 is chosen to
be that one that results in the largest residual of the error equation in the Frobenius norm, i.e. the
parameter gr1 that leads to the largest value

‖Rr(g)‖F := ‖A(g)Ẽ(g) + Ẽ(g)A(g)T + BBT +A(g)P̃ (g) + P̃ (g)A(g)T‖F. (13)

We use the parameters gr1 to generate the next error equation basis

V1,err = orth ([V1,err, V1, Z1(g
r
1)]) = orth ([V1,err, Z1(g1), Z1(g

r
1)]) .

We continue with this process until the maximum error estimator ∆(g) is smaller than a certain
tolerance for all parameters and the overall RBM is finished.

After we have determined an error equation basis V1,err, this basis is used to derive the corresponding
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error estimators. For that, we define

Verr :=

[
V1,err 0
0 V1,err

]
,

where Verr spans an approximation of the solution space of the error equation in (12). Using this basis,

we define the reduced matrices Âerr(g) := V T
errA(g)Verr and R̂err(g) := V T

errR(g)Verr that lead to the
reduced error equation

Âerr(g)Ê(g) + Ê(g)Âerr(g)
T = −R̂err(g) (14)

that is solved by the reduced error matrix Ê(g), similar to the step in (9) for the RBM. The approxi-

mation of the position controllability Gramian error Ẽ11(g) is then built as

Ẽ(g) =
[
Ẽ11(g) Ẽ12(g)
Ẽ12(g)T Ẽ22(g)

]
=

[
V1,errÊ11(g)V T

1,err V1,errÊ12(g)V T
1,err

V1,errÊ12(g)TV T
1,err V1,errÊ22(g)V T

1,err

]
= VerrÊ(g)V T

err. (15)

Using the error approximation Ẽ(g) and Ẽ11(g) from (15), we define the two error estimators

∆1(g) :=
∣∣∣tr

(
CẼ(g)CT

)∣∣∣ =
∣∣∣tr

(
CẼ11(g)CT

)∣∣∣ and ∆2(g) :=
∥∥∥Ẽ11(g)

∥∥∥
F
. (16)

We use the expression ∆(g) in the following and leave it to the user to choose the more appropriate
one. The first RBM combined with the EE-RBM results in Algorithm 2. We observe that the first
steps of the RBM with the EE-RBM lead to rough error estimates since the basis V1,err includes only
a few solutions. However, the larger and therefore better the basis V1 is, the larger and more detailed
is the basis V1,err.

Remark 1. Numerical experiments suggest that adding the solution vectors of Z1(0) corresponding to
the undamped system to our basis V1 leads to more robust results. Since this basis is independent of
the damping values, we compute it beforehand and initialize the basis V1 = orth(Z1(0)).

Remark 2. In practice, the computation of Rr(g) can be performed efficiently as follows. We make

use of the trace formulation of the Frobenius norm and utilize the low-rank representations Ẽ(g) =

VerrÊ(g)V T
err and P̃ (g) = V P̂ (g)V T and the trace properties to obtain the fast computable residual

representation:

‖Rr(g)‖2F = 2 tr
(
V T
errA(g)VerrÊ(g)V T

errA(g)VerrÊ(g)
)
+ 2 tr

(
V T
errA(g)TA(g)VerrÊ(g)V T

errVerrÊ(g)
)

+ 4 tr
(
V T
err(g)BBTA(g)VerrÊ(g)

)
+ 2 tr

(
V TA(g)V P̂ (g)V TA(g)V P̂ (g)

)

+ 2 tr
(
V TA(g)TA(g)V P̂ (g)V TV P̂ (g)

)
+ 4 tr

(
V TBBTA(g)V P̂ (g)

)

+ 4 tr
(
V TA(g)VerrÊ(g)V T

errA(g)V P̂ (g)
)
+ 2 tr

(
V TVerrÊ(g)V T

errA(g)TA(g)V P̂ (g)
)

+ tr
(
BTBBTB

)
.

3 Adaptive basis building

In the previous section, we proposed an RBM leading to a space V that approximates the controllability
space of the state x(t) of system (1) for all parameters in D. This space is then used to derive a
reduced optimization problem. However, if the parameter set is equal to D = R

ℓ
+, i.e., there is no
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Algorithm 2 Error estimation within the RBM

Input: A : D → R
n×n asymptotically stable, B ∈ R

n×m, test-parameter set DTest, tolerance tolf
Output: Orthonormal bases V1, V1,err

1: Choose any g0, gr0 ∈ DTest, g0 6= gr0.

2: Solve the Lyapunov equation (6) at g0 to obtain Z1(g0).

3: Set M := {g0}.
4: Set V1 := orth(Z1(g0)).

5: Solve Lyapunov equation (6) for gr0 to obtain Z1(g
r
0).

6: Set V1,err := orth([Z1(g0), Z1(g
r
0)]).

7: Set k := 1.

8: Determine g1 := argmaxg∈DTest\M∆(g).

9: Set ∆max := ∆(g1).

10: Determine gr1 := argmaxg∈DTest\M‖Rr(g)‖F.
11: while ∆max > tolf do

12: Solve Lyapunov equation (6) at gk to obtain Z1(gk).

13: Set M := M∪ {gk}.
14: Set V1 := orth([V1, Z1(gk)]).

15: Solve Lyapunov equation (6) for grk to obtain Z1(g
r
k).

16: Set Verr := orth([V1,err, Z1(gk), Z1(g
r
k)]).

17: Determine gk+1 := argmaxg∈DTest\M∆(g).

18: Set ∆max := ∆(gk+1).

19: Determine grk+1 := argmaxg∈DTest\M‖Rr(g)‖F.
20: Set k := k + 1.

21: end while
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prior knowledge about the parameter set, the method is not applicable. Additionally, the optimization
process might only use parameters from a subset of D such that the basis V1 of the space V from
Section 2 contains controllability space information corresponding to parameters g that are not used
throughout the optimization process and therefore the basis V1 might be of too large dimension. This
motivates an adaptive scheme, i.e. a procedure, that enriches the basis V1 within the optimization
process based on the quality of the approximation in the considered parameters. To find out whether
the current basis V1 is adequate for the current parameter g, we again need an error estimator ∆(g).
In what follows, we will firstly describe this adaptive RBM in Section 3.1 assuming an error estimator
is provided. Then, in Section 3.2, an error estimator is proposed for this adaptive procedure.

3.1 Reduction using the adaptive reduced basis method

The idea of the adaptive RBM is to enrich the basis V1 within the optimization process. Consequently,
there is no offline phase for this methodology, since the reduced bases are constructed within the
optimization steps. Firstly, we select a parameter g0 ∈ D as the initial value for the optimization
process and solve the Lyapunov equation in (6) for this parameter to obtain the low-rank factor
Z1(g0). We set the first basis to be V1 = orth(Z1(g0)) that is used to define the reduced optimization
problem in (10), which depends on the solution of the reduced Lyapunov equation in (9). In contrast
to the previous method, we add an additional stopping criterion within the optimization process that
interrupts the procedure whenever the solution space corresponding to the current parameter g is not
well-approximated by the basis V1. To achieve this stopping, we modify the goal function as described
by Algorithm 3. In every iteration of the minimization, we query the error estimate ∆(g) of the current
parameter g as described in Step 2. If the error estimate is smaller than a given tolerance, we proceed
with the function evaluation in Steps 5 and 6 to obtain the resulting function value J̃(g) and continue
with the minimization. On the other hand, if the error estimate is larger than the tolerance, this means
that the current basis V1 does not approximate the solution space of the Lyapunov equation (6) for
the current parameter g sufficiently well. Hence, we return that the minimization did not converge. In
this case, we need to enrich the basis V1. Therefore, we solve the Lyapunov equation from (6) in this
parameter g to obtain Z1(g) and define the updated basis

V1 = orth([V1, Z(g)]).

Consequently, we obtain a new optimization problem (10) that is defined by the new basis V1 and the
new projected Lyapunov equation from (9). Since the optimized function depends on the current basis
V1, which changes during the optimization procedure, convergence problems may occur. In this case,
we restart the optimization procedure after we enrich the basis and use the current parameter g as
initial value. We continue with this procedure until the optimum is reached.

3.2 Error Estimator

Finally, we have a closer look at the error estimator ∆(g) for the adaptive RBM. We follow the same
idea as in Section 2.2 and run a second reduced basis method to generate a basis V1,err that spans an
approximation of the error space. The equation in (16) defines then the error estimators ∆1(g) and
∆2(g) corresponding to the bases V1 and V1,err. In this adaptive procedure, the basis V1,err is enlarged
whenever the basis V1 is expanded. In this way, the error approximation, and thus the error estimator,
becomes more accurate the closer we get to the optimizing parameter.

The detailed procedure is described in Algorithm 4. When we determine the first basis V1 = orth(Z1(g0)),
we solve a second Lyapunov equation in an arbitrary parameter gr0 ∈ D with gr0 6= g0 to obtain the
solution Z1(g

r
0). To limit the possibilities of choosing gr0, we again define a finite subset DTest ⊂ D

and pick the parameter gr0 from this finite set DTest. However, we can select the parameter gr0 and the
following parameters gr randomly if we want to avoid confinement to a parameter set D. We use the
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solution Z1(g
r
0) and the basis V1 to obtain the first error equation basis

V1,err = orth([V1, Z1(g
r
0)]) = orth([Z1(g0), Z1(g

r
0)]).

With the bases V1 and V1,err, we define the error estimate ∆(g) as in (16). The basis computation
is described in Steps 1 to 5 of Algorithm 4. After computing the first bases V1 and V1,err, we start
the optimization process of the reduced problem defined by Algorithm 3. This optimization yields
either the minimizer g∗ or, if conv = false holds, the information that the optimization process did
not converge and we need to enrich the bases. If the bases need to be expanded, in Steps 8 to 12 we
enlarge the bases V1 and V1,err as

V1 = orth([V1, Z1(g)]), and V1,err = orth([V1,err, Z1(g), Z1(g
r)]),

where we choose in Step 12 the parameter gr ∈ DTest that results in the largest residual

gr = argmaxg∈DTest
‖Rr(g)‖F

with Rr(g) defined as in (13). Afterwards, in Step 13 we compute the approximated energy response
value and proceed with the minimization process.

Algorithm 3 Reduced energy response

Input: A : D → R
n×n asymptotically stable, B ∈ R

n×m, g ∈ D, basis V1, tolerance tolf .

Output: Energy response J̃(g), variable conv that shows whether the algorithm converged.

1: Set conv = true.

2: if ∆(g) > tolf then

3: Set conv = false, J̃(g) = ∞.

4: else

5: Solve the reduced Lyapunov equation (9) to obtain P̂11(g).

6: Set J̃(g) = tr(CV1P̂11(g)V
T
1 CT).

7: end if

Remark 3. As in the previous section, we solve the Lyapunov equation (6) in g = 0 ∈ R
ℓ (undamped

system) to obtain Z1(0). The vectors of Z1(0) are then added to the basis V1 which turns out to lead
to a more robust basis.

4 Implementation details

In this section, we specify some implementational details. First, in Section 4.1, we describe a trans-
formation that leads to a numerically advantageous system. Then, in Section 4.2 we make use of this
structure that accelerates the sign-function method that is used to solve the Lyapunov equations.

4.1 Modal representation

In order to simplify the computations and the numerical effort, we describe briefly an useful transfor-
mation, that is used in the following. As shown in [42], there exists a transformation Φ, called modal
matrix, such that

ΦTMΦ = I, ΦTKΦ = Ω2 = diag
(
ω2
1 , . . . , ω

2
n

)
.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-05-23



J. Przybilla, I. Pontes Duff, P. Benner: Damping optimization of vibrational systems 13

Algorithm 4 Adaptive reduced basis method

Input: A : D → R
n×n asymptotically stable, B ∈ R

n×m, initial parameters g, gr ∈ DTest with g 6= gr,
tolerance tolf .

Output: Minimizer gopt, energy response J̃(gopt).

1: Choose g0, gr0 ∈ DTest, g0 6= gr0.

2: Solve the Lyapunov equation from (6) in g0 to obtain Z1(g0).

3: Set V1 := orth(Z1(g0)).

4: Solve the Lyapunov equation from (6) in gr0 to obtain Z1(g
r
0).

5: Set V1,err = orth([Z1(g0), Z1(g
r
0)]).

6: Apply an optimization method to optimize the function given by Algorithm 3 to obtain the mini-

mizer gopt, J̃(gopt) and conv.

7: while conv = false do

8: Solve the Lyapunov equation from (6) in gopt to obtain Z(gopt).

9: Set V1 := orth([V1, Z1(g
opt)]).

10: Determine gr := argmaxg∈DTest
‖Rr(g)‖F.

11: Solve the Lyapunov equation from (6) in gr to obtain Z1(g
r).

12: Set V1,err = orth([V1,err, Z1(g
opt), Z1(g

r)]).

13: Apply an optimization method to optimize the function given by Algorithm 3 to obtain gopt,

J̃(gopt) and conv.

14: end while

The values ω1, . . . , ωn are the eigenvalues of the undamped system and are called eigenfrequencies, see
[43]. The transformation matrix Φ is given by the spectral decomposition of M− 1

2KM− 1

2 as

Φ := M− 1

2U, UΩUT = M− 1

2KM−1

2 ,

where Ω is as above. It holds that ΦTDintΦ = 2αΩ. That means that Φ diagonalizes the internal
damping Dint. Hence, this damping is called modal damping. The transformed mass matrix is the
identity matrix, the transformed stiffness and internal damping matrix are diagonal matrices and the
external damping matrix is written using its low rank factors as (ΦTF )G(g)(ΦTF )T. Hence, the second
order system (1) is equivalent to the first order system (3) with the matrices

A(g) := Ã − UG(g)UT, Ã =

[
0 I

−Ω2 −2αΩ

]
, U =

[
0

ΦTF

]
, B :=

[
0

ΦTB

]
, C :=

[
CΦ 0

]
. (17)

4.2 Solving Lyapunov equations using sign function method

As described in the previous sections, we need to solve Lyapunov equations from (6) in order to
compute the desired energy response from (4) for specific parameters g ∈ D. Hence, in this section,
we briefly review some numerical methods to solve the parameter-independent Lyapunov equation

AP + PAT = −BBT. (18)

There are multiple methods for solving this kind of equations. If the matrix dimensions are sufficiently
small, dense direct solvers such as the Hammarling method [17] or the Bartels-Steward algorithm [1]
are available. There are also dense iterative solvers such as the sign function method introduced in [4].
However, these methods are unfeasible if the matrix dimensions are large. In this case, the alternating-
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direction implicit (ADI) method [24, 28] and Krylov subspace methods [35] are the state of the art.
Moreover, for certain matrix structures, the sign function method can be applied, which exploits these
structures to solve the Lyapunov equations efficiently. In this work, the latter method is the one of
choice, since numerical experiments indicate that it leads to the fastest results in our setting.

Within the sign-function method, which was derived in [10], the structure presented in (17) is used to
solve the Lyapunov equations more efficiently. The sign function method determines a low-rank factor
Z, such that P ≈ ZZT is an approximative solution of the Lyapunov equation in (18). We exploit the
fact, that the Lyapunov equation in (18) is equivalent to the equation

[
I 0

−P I

] [
AT 0
0 −A

] [
I 0
P I

]
=

[
AT 0
BBT −A

]
=: W and that sign(W) =

[
−I 0

2P I

]

where sign(·) denotes the sign function of a matrix. We observe that the sign function of W provides
the solution P ≈ ZZT of the Lyapunov equation from (18) in its lower left block. The sign function
can be computed by applying Newton’s method:

A0 := A, Ak+1 =
1

2
ckAk +

1

2ck
A−1

k → sign(A), (19)

where ck is an acceleration factor and can be chosen as ck =
√
‖A−1

k ‖F‖Ak‖−1
F . The convergence of

this method is shown in [31].

The Newton’s method described in (19) is applied to compute sign(W). In order to improve the
efficiency while computing the inverseA−1

k , the decomposition presented in (17) as well as the Sherman-
Morrison-Woodbury formula is applied as described in [10]. The initial values are set to be

Ã0 = Ã, U0 = U , V0 = U , G0 = G, B0 = B

and the iteration is defined as

Ãk+1 =
1

2

(
ckÃk +

1

ck
Ã−1

k

)
, Uk+1 =

[
Uk, Ã−1

k Uk

]
, Vk+1 =

[
Vk, Ã−T

k Vk

]
,

Gk+1 =
1

2
diag

(
ckGk, −

1

ck
(G−1

k − VT
k Ã−1

k Uk)
−1

)
, Bk+1 =

1√
2

[√
ckBk

1√
ck
A−1

k Bk

]

so that Bk+1 converges to 1√
2
Z for k → ∞. We stop this method if ‖Ak+I‖2 ≤ tol since Ak converges

to −I, or if a maximum number of iterations itermax is exceeded.

One disadvantage of this method is the high growth rate of the dimension of the low-rank factor Bk+1.
Therefore, even with internal truncation techniques, the method becomes rather slow if it does not
converge after a few steps. Hence, in this work, we set the maximum number of iterations itermax to be
quite small, so that the method is interrupted before the low-rank factors are of too large dimensions.
Hence, the low-rank factor approximation is not guaranteed to be accurate, however, it still spans a
space that is a good enough approximation of the solution space as we will show in the numerical
examples.

5 Examples and numerical results

In this section, we illustrate the accelerations that arise when we apply the methods presented in this
paper. Therefore, we consider two examples that are presented in [39]. The computations have been
done on a computer with 2 Intel Xeon Silver 4110 CPUs running at 2.1 GHz and equipped with 192
GB total main memory. The experiments use MATLAB®2021a.
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5.1 Example 1

The first example was introduced in [39] and arises in mechanical constructions with n consecutive
masses. Each mass mj is connected to the direct neighbor masses mj−1 and mj+1 by springs with
stiffness values kj and kj+1. Additionally, each mass is connected by springs with stiffness values
kj−1 and kj+2 to the masses next to the neighbor masses mj−2 and mj+2. The outermost masses are
connected to fixed objects via springs with constants 2k1 and 2kn. This construction results in the
following mass and stiffness matrix

M := diag (m1, . . . , mn) ,

K :=




2k1 + 2k2 −k2 −k3
−k2 2k2 + 2k3 −k3 −k4
−k3 −k3 2k3 + 2k4 −k4 −k5

. . .
. . .

. . .
. . .

2kn−2 + 2kn−1 −kn−2 −kn−1

−kn−1 2kn−1 + 2kn −kn
−kn−2 −kn 2kn + 2kn+1




.

We consider an example of dimension n = 1900 with stiffness constants kj = 500, j = 1, . . . , n. The
mass values are chosen as

mj =

{
144− 3

20j, j = 1, . . . , 475,
j
10 + 25, j = 476, . . . , 1900.

The internal damping Dint is built as described in Equation (2) where the scaling factor is α = 0.005.
We consider external disturbance forces that attack at the sequential masses fromm471 tom480. Hence,
in the input matrix B the values at positions 471 to 480 are set to be

B(471 : 480, 1 : 10) = diag (10, 20, 30, 40, 50, 50, 40, 30, 20, 10) .

The other entries of B are equal to zero. Consequently, we have an (n× 10)-dimensional input matrix
B where the highest magnitude of disturbance is applied to the mass in the center, whereby the
disturbance magnitude gets smaller in the outer masses. To observe the system behavior, we consider
the displacement of the states x100(t), x200(t), . . . , x1800(t). Hence, the output matrix C is 18 × n-
dimensional and has zero entries everywhere except at the positions (1, 100), (2, 200), . . . , (18, 1800)
where the entries are equal to one.

Now, we consider the external dampers that we want to optimize. We consider four dampers at the
positions j, j + 1, k, k + 1 where j and k can take the following values

{(j, k) | j ∈ {50, 150, 250, 350}, k ∈ {850, 950, . . . , 1850}}

such that we obtain 44 possible damping configurations. For each damping configuration, we optimize
the damping values individually. The damping gains g consist of two values g1 and g2, where the
dampers at the j-th and the (j + 1)-st position have the damping value g1 and the dampers at the
k-th and the (k + 1)-st position the damping value g2. We assume that the damping values g1 and g2
lie in the interval [500, 4000].

To optimize the damping gains for the different damping configurations, we use the MATLAB-function
fminfun, where we stop the minimization process if the difference between two successive function
values or damping gains is smaller than a tolerance of 10−4. We start the optimization process

at g0 =
[
1000 1000

]T
for all damping configurations. To solve the Lyapunov equations from (6),

we use the sign-function method that is presented in Section 4.2 with tol = 10−6 and a maximum
iteration number of itermax = 10 because of the fast dimension growth within the method. The
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tolerance for the function value error that indicates whether a basis is sufficiently detailed is set to be
tolf = 10−3. As test-parameter set DTest for the RBM, we use 36 uniformly distributed parameters in
[500, 4000]× [500, 4000].

After the first step of the RBM for the 11-th damper configuration, we display the quality of the
error estimator in Figure 1. We observe that the relative error in the position controllability Gramian
‖E11(g)‖F/‖P̃11(g)‖F and the corresponding estimate ‖Ẽ11(g)‖F/‖P̃11(g)‖F are very close, so the error is
well approximated. On the other hand, the energy response is underestimated since we are considering
an error estimator and not an error bound. However, for our purpose the quality was good enough,
since the energy response error and its approximate are of a similar magnitude.
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‖Ẽ11(g)‖F/‖P̃11(g)‖F
‖E11(g)‖F/‖P̃11(g)‖F

Figure 1: Errors estimator for Example 1 for the first damping configuration and the first step of the
RBM.

Since the initial value g0 is known, we choose this parameter as first one that is evaluated within
the RBM. The first parameter gr0 that is used to obtain a first error equation basis is chosen to be
gr0 =

[
100 100

]
within the RBM and the adaptive RBM. Within the state of the art methods, the

symmetric IRKA approach for second-order systems (sym2IRKA) leads to the highest acceleration rates
in the optimization of external dampers and their viscosities. Hence, we will compare in the following
our approach to the sym2IRKA method from [39]. Since its code is not available, we implemented the
method ourselves and compare the results to the best implementation and configurations we were able
to generate using the sym2IRKA method. This method is a projection method as well that enriches the
corresponding basis by vectors that are generated using an IRKA approach. This method starts the
optimization processes at g0 as well. For every enriched basis a new optimization process is started.
In every iteration, 60 vectors are added to the basis and the method stops if the relative error between
two consecutive optima is smaller than the tolerance tolIRKA = 10−3 . The relative errors between the
optimal damping gain and the approximations obtained using the methods presented in the previous
sections are presented in Figure 2. We observe that all errors are smaller than 10−2 and hence that
the damping values are for our purposes sufficiently detailed.

Now, we evaluate the optimization times, that include for the RBM the offline and the online phase.
Offline, we determine a low-rank factor of the solution of the Lyapunov equation (6) for the undamped
system. This low-rank factor is included into the bases in the RBM, the adaptive RBM, and the
sym2IRKA approach. Since this low-rank factor is computed beforehand, the computation time of 5.2
seconds is not taken into account in any of these methods. We compare the times in Figure 3 and
the acceleration rates for the different methods in Figure 4. The MATLAB-solver lyapchol is used
to solve the Lyapunov equations from (6). We observe, that the reduced optimization procedures lead
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Figure 2: Errors example 1

to significantly faster results so that the acceleration rates are in average 339 for the reduced basis
method and 208 for the adaptive procedure. These results are comparable with those from [39]. Here
the acceleration rate is in average 78 in our sym2IRKA implementation, that is less improvement than
with our method. However, we note that in [39] the acceleration rate for this example was 346. We also
observe that the adaptive reduced basis method is slower than the one where offline and online phase
are decoupled. This is because already the first basis that is equal for both methods is sufficiently
good while for the adaptive method there are additional computational cost for the evaluations of the
error estimators. We want to mention, that the adaptive method can still be advantageous since we
do not need a parameter set D in advanced for it. Only for the error estimator the test-parameter set
DTest ⊂ D is needed that can be replaced by choosing arbitrary parameters in a certain range around
the damping values that are attained during the optimization process.

In Figure 5, the function values for all 44 damping configurations are evaluated. We see that the
optimal damping configuration is the 34-th one that has the damping positions j = 350, k = 850.
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Figure 3: Optimization times example 1

5.2 Example 2

The second example contains a mass oscillator with 2d + 1 = n masses and n + 2 springs. We have
two lines of d consecutive masses m1, . . . ,md and md+1, . . . ,m2d that are connected by springs. The
springs of the first line all have the stiffness value k1 and the springs in the second line the stiffness
value k2, where the first masses are connected with these springs to a fixed object. The last masses
md and m2d are connected to a mass m2d+1 = mn by springs with stiffness constants k1 and k2 while
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Figure 4: Acceleration rates example 1
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Figure 5: Function values obtained in Example 1

the mass mn is connected to a fixed object via a spring with a constant k1+k2+k3. This construction
results in the stiffness matrix

K =



K11 κ1

K22 κ2

κT
1 κT

2 k1 + k2 + k3


 , Kjj = kj




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



, κj =




0
...
0
kj


 ,

for j = 1, 2. We choose the dimension to be d = 1000, n = 2001 and set k1 = 400, k2 = 100, k3 = 300.
The n = 2d+ 1 mass values are chosen as follows

mj =





100− j
10 , j = 1, . . . , 500,

j

30 + 33, j = 501, . . . , 1000,

100− (j − 99) 5
20 + (j−999)2

5000 , j = 1001, . . . , 2000,

m2001 = 100.

The internal damping Dint is built as described in Equation (2) with the scaling α = 0.003. Addition-
ally, there are disturbances, that effect 21 masses. The effect to the masses is described by the matrix
B ∈ R

n×21 that consists of zero entries except the following

E(1 : 10, 1 : 10) = diag (1000, 900, . . . , 100) ,

E(1001 : 1010, 11 : 20) = diag (1000, 900, . . . , 100) ,

E(2001, 21) = 2000.

As output, we observe 42 masses, or more detailed the displacements of the masses 490 to 510 and
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those of the masses on positions 1490 to 1510. This is described by the output matrix C ∈ R
42×n:

C(490 : 510, 1 : 21) = I21, C(1490 : 1510, 1 : 21) = I21.

In this example, we consider four damping values that are optimized. We consider two dampers in the
first row that are between the masses mj and mj+5 and between the masses mj+20 and mj+25. For
the second row we follow the same pattern and add two dampers between the masses mk and mk+5

and between mk+20 and mk+25. Consequently, we optimize four damping values g1, g2, g3, g4 that
are saved in g ∈ R

4. The corresponding damping position matrix is then of the form

F =
[
ej − ej+5 ej+20 − ej+25 ek − ek+5 ek+20 − ek+25,

]

where j and k are taken from the sets

{(j, k) | j ∈ {250, 450, 650, 850}, k ∈ {1150, 1250, 1350, 1450, 1550, 1650, 1750}} .

This setting leads to 28 different damping configurations. We assume that the damping values
g1, g2, g3, g4 lie in the interval [350, 7000]. For the optimization process, we set a tolerance of

5 · 10−4 and start at g0 =
[
1000 1000 1000 1000

]T
for all damping configurations. The toler-

ance for the function value error that indicates whether a bases is sufficiently detailed is set to be
tolf = 10−2. As test-parameter set DTest for the RBM we use 21 uniformly distributed parameters in
[350, 7000]4. The first parameter gr0 that is used to obtain a first error equation basis is chosen to be
gr0 =

[
100 100 100 100

]
within the RBM and the adaptive RBM.

We evaluate the quality of the error estimate after the first step of the RBM for the fifth damper
configuration in Figure 6. We observe that the relative error in the position controllability Gramian
and the corresponding estimate are very close, so the error is well approximated. In this example, it
can be observed that the error in the energy response is also well approximated.
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‖Ẽ11(g)‖F/‖P̃11(g)‖F
‖E11(g)‖F/‖P̃11(g)‖F

Figure 6: Errors estimator for Example 2 for the first damping configuration and the fifth step of the
RBM.

We compare again the results generated by the methods presented above with the symmetric IRKA
approach for second order systems (sym2IRKA) [39]. In every iteration, 120 vectors are added to the
basis and the method stops if the relative error between two consecutive optima is smaller that the tol-
erance tolIRKA = 10−3 . The relative errors between the optimal damping gain and the approximations
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we obtain using the methods presented in the previous sections are shown in Figure 7. Additionally,
we evaluate the optimization times. Outside of the applied methods, we determine a low-rank factor
of the solution of the Lyapunov equation (6) for the undamped system. This low-rank factor is in-
cluded into all the bases and is not taken into account in the time measures. This solving takes 54
seconds. We compare the optimization times and the acceleration rates for the different methods in
Figure 8 and Figure 9, respectively. They are in average 89 for the reduced basis method and 51 for
the adaptive procedure. These results are comparable with those from [39]. Here the acceleration rate
is in average 4 in our implementation, that is less improvement than with our method. However, in
[39], acceleration rates of up to 208 were achieved for this example, which we could not reproduce.

In Figure 10 the function values for all 28 damping configurations are evaluated. We see that the
optimal damping configuration is the 25-th one that has the damping positions j = 850, k = 1450.
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Figure 7: Errors example 2
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Figure 8: Optimization times example 2

6 Conclusion

In this article, we have dealt with the damping optimization problem in a large-scale vibrational system.
We have presented two different approaches based on the reduced basis method (RBM), which can be
used to find optimal damping values in a reasonable time. In the first method, the RBM for Lyapunov
equations has been integrated into the calculation of the energy response, and, subsequently a reduced
objective functional has been optimized. In the second method, we have integrated the RBM into the
optimization process so that the basis is only enriched when necessary. In addition, we derived new
error estimators that were used to evaluate the quality of the reduced energy response and the reduced
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Figure 9: Acceleration rates example 2
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Figure 10: Function values obtained in Example 2

position controllability Gramian. Finally, we have applied our methods to some mechanical systems
and have observed that our approaches improve on or at are least comparable to existing methods.
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hulst, and J. T. Sawicki, editors, Vibration Problems ICOVP 2011, volume 139, Part 5 of

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-05-23

https://doi.org/10.1145/361573.361582
https://doi.org/10.1007/s10444-020-09825-8
https://doi.org/10.1002/zamm.201400158
https://doi.org/10.1023/A:1019191431273


J. Przybilla, I. Pontes Duff, P. Benner: Damping optimization of vibrational systems 22

Springer Proceedings in Physics, pages 297–305, Prag, Czech Republic, 2011. Springer-Verlag.
doi:10.1007/978-94-007-2069-5_41.
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[42] N. Truhar and K. Veselić. Bounds on the trace of a solution to the Lyapunov
equation with a general stable matrix. Systems Control Lett., 56(7–8):493–503, 2007.
doi:10.1016/j.sysconle.2007.02.003.
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