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We study the quantum Hall effect in a two-dimensional homogeneous electron gas coupled to
a quantum cavity field. As initially pointed out by Kohn, Galilean invariance for a homogeneous
quantum Hall system implies that the electronic center of mass (CM) decouples from the electron-
electron interaction, and the energy of the CM mode, also known as Kohn mode, is equal to the
single particle cyclotron transition. In this work, we point out that strong light-matter hybridization
between the Kohn mode and the cavity photons gives rise to collective hybrid modes between the
Landau levels and the photons. We provide the exact solution for the collective Landau polaritons
and we demonstrate the weakening of topological protection at zero temperature due to the exis-
tence of the lower polariton mode which is softer than the Kohn mode. This provides an intrinsic
mechanism for the recently observed topological breakdown of the quantum Hall effect in a cavity
[Appugliese et al., Science 375, 1030-1034 (2022)]. Importantly, our theory predicts the cavity sup-
pression of the thermal activation gap in the quantum Hall transport. Our work paves the way for
future developments in cavity control of quantum materials.

Interaction and topology give rise to rich exotic phases
of matter, among which the integer quantum Hall (IQH)
effect and the fractional quantum Hall (FQH) effect stand
out [1–4]. On the other side, great progress has been
achieved in the manipulation of quantum materials with
the use of cavity vacuum fields [5–15]. Specifically, for
two-dimensional (2d) materials in magnetic fields, ultra-
strong coupling of the Landau levels to the cavity field
and the observation of Landau polariton quasiparticles
have been achieved [16–20]. Recently, modifications of
the magnetotransport properties inside a cavity due to
Landau polaritons were reported [21, 22] and most sig-
nificantly cavity modifications of the IQH transport was
demonstrated [23, 24]. The experimental phenomena
was argued to originate from a disorder-assisted cavity-
mediated long-range hopping [25].

In this work, given that in experiments the GaAs sam-
ples have low disorder and that the cavity field is ho-
mogeneous in the bulk of the cavity [23], we study the
quantum Hall system in the homogeneous limit with van-
ishing disorder and we propose an alternative theory for
the observed cavity modified IQH transport [23]. Our
theory highlights the importance of the hybridization be-
tween cavity photons and the collective Kohn mode in the
quantum Hall system, and provides the exact solution for
the polariton modes. In connection to the experimen-
tal findings [23], our theory draws the picture that the
transport in the hybrid system is strongly influenced by
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the polariton states, in contrast to the standard quan-
tum Hall transport which is purely electronic. Crucially,
the low energy physics is dictated by the lower polariton
mode which is softer than the cyclotron mode. The soft-
ening of the cyclotron mode signals the weakened topo-
logical protection and provides an intrinsic mechanism
for the recently observed topological breakdown [23]. Im-
portantly, our theory predicts that the cavity suppresses
the thermal activation gap which can be studied experi-
mentally in the temperature dependence of the quantum
Hall transport in the cavity.

Model Hamiltonian.—Our model considers a two-
dimensional electron gas coupled to a strong magnetic
field and a single-mode homogeneous cavity field, as
schematically depicted in Fig. 1(a). The system is de-
scribed by the Pauli-Fierz Hamiltonian [26–28]

H =

N∑
i=1

(
πi + eA

)2
2m

+ ℏω
(
a†a+

1

2

)
+
∑
i<j

W (ri − rj),

(1)
where πi = iℏ∇i+eAext(ri) are the dynamical momenta
of the electrons, and Aext(r) = −exBy describes the ap-
plied magnetic field B = ∇×Aext(r) = Bez. The cavity

field A =
√

ℏ
2ϵ0Vωex

(
a+ a†

)
is characterized by the in-

plane polarization vector ex and the photon’s bare fre-
quency ω. The V and ϵ0 are the effective mode volume
and the dielectric constant, respectively. The operators
a and a† represent photonic annihilation and creation
operators which satisfy bosonic commutation relations
[a, a†] = 1. Further, W (ri − rj) = 1/4πϵ0|ri − rj | is the
Coulomb interaction between the electrons. We have pa-
rameterized the bare electron dispersion by an effective

ar
X

iv
:2

30
5.

10
55

8v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
0 

O
ct

 2
02

3

mailto:vasil.rokaj@cfa.harvard.edu
mailto:jiewang.phy@gmail.com
mailto:angel.rubio@mpsd.mpg.de


2

mass m and assumed Galilean invariance. With Galilean
invariance in a homogeneous system, the CM is decou-
pled from the relative motion of the electrons, regardless
of the interaction strength [29]. The kinetics of the CM
and its coupling to light is best described in terms of the

CM coordinate R = (X,Y ) =
∑N

i=1 ri/
√
N where N is

the total particle number. Following the derivation pre-
sented in the Supplementary Material (SM) we obtain
the Hamiltonian describing the coupling of the CM to
light

Hcm =
1

2m

(
Π+ e

√
NA

)2
+ ℏω

(
a†a+

1

2

)
(2)

where Π = iℏ∇R + eAext(R) is the dynamical momen-
tum of the CM. It is important to mention that if we
break Galilean invariance or consider a spatially inho-
mogeneous cavity field, the relative degrees of freedom
will couple to quantum light. The CM Hamiltonian has
the form of two coupled harmonic oscillators, one for the
Landau level transition and one for the photons. Such a
Hamiltonian is known as the Hopfield Hamiltonian which
can be solved by the Hopfield transformation [30]. The
Hopfield model has been employed in previous works for
the description of single-particle Landau level transitions
coupled to cavity photons [19, 22]. Here, it shows up
for the collective coupling of the electrons which emerges
naturally through the CM. After the Hopfield transfor-
mation we find

Hcm = ℏΩ+

(
b†+b+ +

1

2

)
+ ℏΩ−

(
b†−b− +

1

2

)
(3)

where {b†±, b±} are the creation and annihilation op-
erators of the Landau polariton quasiparticles satisfy-

ing bosonic commutation relations [bl, b
†
l′ ] = δll′ with

l, l′ = ±. The details about the diagonalization of Hcm

are given in the SM. The Ω± are the upper and lower
Landau polariton modes respectively,

Ω2
± =

ω2 + ω2
d + ω2

c

2
±

√
ω2
dω

2
c +

(
ω2 + ω2

d − ω2
c

2

)2

(4)

where ωd =
√
e2N/mϵ0V is the diamagnetic frequency

originating from the A2 term which depends on the num-
ber of electrons N and the effective mode volume V, and
ωc = eB/m is the cyclotron frequency [31]. To define
the polariton operators we represent {a, a†} in terms of a
displacement coordinate q and its conjugate momentum
∂q as a = (q + ∂q)/

√
2 with a† obtained via conjuga-

tion [26, 27]. The polariton operators then are written in

terms of mixed coordinates as S± =
√
ℏ/2Ω±

(
b± + b†±

)
with

S+ =

√
mȲ + qΛ

√
ℏ/ω√

1 + Λ2
and S− =

−q
√

ℏ/ω +
√
mΛȲ√

1 + Λ2

where Ȳ = Y + ℏKx

eB is the guiding center and Kx is
the electronic wave number in the x-direction. Also

we introduced the parameter Λ = α −
√
1 + α2 with

α =
(
ω2
c − ω2 − ω2

d

)
/2ωdωc which quantifies the mixing

between electrons and photons.

FIG. 1: (a) Two-dimensional material confined in a cav-
ity. The distance between the cavity mirrors is Lz. The
system is placed perpendicular to a homogeneous mag-
netic field B. (b) Imaginary part of the response func-
tion χyy(w) for IQH system in the cavity. The radial
cavity frequency ω = 2π × 0.14THz, the 2d electron
density n2d = 2 × 1011cm−2, the effective electron mass
m = 0.07me and the temperature T = 50mK are chosen
according to the experiment in Ref. [23]. We observe the
upper Ω+ and lower Ω− polariton, with normalized Rabi
splitting ΩR/ω = 0.33. The lower polariton is softer that
the cyclotron mode ωc = eB/m. This signals the weak-
ened topological protection of the hybrid system.

Behavior of polaritons.—The polariton modes Ω± de-
pend on the cavity frequency ω, the cyclotron frequency
ωc, and the number of electrons through ωd. The be-
havior of the polariton modes as a function of the mag-
netic field strength can be understood from their ex-
act expressions Eq. (4) also shown in Fig. 1(b). Be-
fore the avoided crossing Ω+ follows the cavity frequency
ω while Ω− follows the cyclotron frequency ωc. After
the avoided crossing the situation is inverted. On reso-
nance ω = ωc the two modes are separated by the Rabi
splitting ΩR = Ω+ − Ω− which is approximately pro-
portional to ωd. For the geometry considered in Fig.1,
ωd can be estimated through the electron density n2d

as ωd =
√
e2N/mϵ0V =

√
e2n2dω/πcmϵ0 where we

used the expression for the fundamental cavity frequency
ω = πc/Lz [20]. Given the experimental parameters in
Ref. [23] for the cavity frequency ω = 2π × 0.14THz,
the 2d electron density n2d = 2 × 1011cm−2, and the
effective electron mass m = 0.07me in GaAs, we find
the normalized Rabi splitting ΩR/ω = 0.33 which is in
good agreement with the experimentally observed value
ΩR/ω|exp = 0.3 [23]. We note that ω = ωc for magnetic
field strength Bres = 0.35T as it is also observed exper-
imentally [23]. The normalized Rabi splitting is above
10% signaling ultrastrong light-matter coupling [9, 10].
The lower polariton is decisive for the low energy physics
of the system and we will show that its behavior controls
the IQH transport. Approaching the limit ω → 0, the
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lower polariton becomes gapless reproducing the result
in Refs. [15, 20]. In addition, Ω− decreases as a function
of the light-matter coupling strength, controlled via ωd,
i.e., Ω− < ωc when ωd > 0. In what follows, we discuss
the implications of the polariton states for the quantum
Hall transport at zero and finite temperature.

Fragility of topological protection against polariton life-
times and ultrastrong light-matter coupling.—A clean or
weakly disordered quantum Hall system at zero temper-
ature, as long as it is gapped, is expected to be topolog-
ically protected [32]. However, the softening of the cy-
clotron mode, due to the lower polariton, indicates that
the topological protection of the system is weakened. Due
to the gap reduction, the transport of the system can be
more easily affected by disorder, which leads to a finite
lifetime for the polariton quasiparticles. The polariton
lifetimes will be included phenomenologically and we will
see that their effect combined with ultrastrong coupling
enables the breakdown of topological protection [23, 24].

The gauge-invariant current operator for homogeneous
fields solely depends on the CM dynamical momentum

and the cavity field [15, 31] J = − e
√
N

m

(
Π+ e

√
NA

)
.

Due to this property and the separability of Hcm from
the electronic correlations we can compute the trans-
port of the system by focusing only on the states of
Hcm. At T = 0 the system is in the polariton vacuum
|Ψgs⟩ = |0+⟩|0−⟩ which is annihilated by both polariton
operators b±. Given this state, we employ the standard
Kubo formalism [33] for the computation of the current
correlators χab(t) = −iΘ(t)⟨Ψgs|[Ja(t), Jb]|Ψgs⟩/ℏ in the
time domain which we transform to the frequency domain
in order to obtain the optical conductivities [33] σab(w) =

i
w+iδ

(
e2n2d

m δab +
χab(w)

A

)
where A and n2d = N/A are

the area and the electron density of the 2d material re-
spectively, δ is the broadening parameter, and δab the
Kronecker delta with a, b ∈ {x, y}. The optical conduc-
tivities σab(w) are given in the frequency domain in terms
of the frequency w. The full details for the transport
computations are provided in the SM. The poles of the
response functions χab(w) identify the optical responses
of the system and its excitations. As we show in Fig. 1(b)
the optical excitations correspond to Landau polariton
modes, which have been observed in a multitude of ex-
periments [17, 18, 23, 34]. Note that in Fig. 1(b) we use
the parameters reported in Ref. [23] which we described
previously. In addition, using the Kubo formula we find
the Hall and longitudinal DC (w = 0) conductivities

σxy =
e2ν

h(1 + Λ2)

[
Λ(Λ + η)

Ω2
−/ω

2
c + δ2/ω2

c

+
1− ηΛ

Ω2
+/ω

2
c + δ2/ω2

c

]
σyy = σD

[
1− 1

1 + Λ2

(
Ω2

+

Ω2
+ + δ2

+
Λ2Ω2

−
Ω2

− + δ2

)]
(5)

where η = ωd/ωc. Note that σD = e2n2d/mδ is the
Drude DC conductivity, and that in σxy we introduced
the Landau level filling factor ν = n2dh/eB [35, 36]. For
δ → 0 we find the Hall conductance perfectly quantized

σxy = e2ν/h, consistent with the Thouless flux insertion
argument [32]. In the last step we used two properties of
the mixing parameter 1− ηΛ = Ω2

+/ω
2
c and Λ(Ω2

−/ω
2
c −

1) = η which are deduced from the definition of Λ.

The polariton lifetimes are responsible for the broad-
ening in the transmission spectra observed experimen-
tally [17, 18, 23, 34]. The total lifetime is a result of
several mechanisms: scattering by impurities, radiative
decay [27], coupling to phonons, as well as to the sub-
strate. Here, we phenomenologically model the polariton
lifetime as τ = 1/δ by keeping a finite broadening δ which
enables to model the experimental optical spectra as for
example in Fig. 1(b).

0.05 0.10 0.15 0.20 0.25 0.30

-0.0002
-0.0001
0.0000
0.0001
0.0002

ω /2π [THz]

Transport in Cavity
σx y

8 e2  h
-1 , B 1 T

σy y σD , B 1 T

σx y

4 e2  h
-1 , B 2 T

σy y σD , B 2 T

FIG. 2: Quantum Hall transport in a cavity at T = 0
with a finite broadening δ = 2π × 5 × 10−3THz for
two different values of magnetic field strength B = 1T
and B = 2T which correspond to the filling factors
ν = 8 and ν = 4 respectively. The 2d electron den-
sity is n2d = 2× 1011cm−2 as in Ref. [23]. The Hall and
the longitudinal conductivities deviate from the topolog-
ically expected values. For the smaller value of the mag-
netic field (higher filling factor) the deviations of the IQH
transport due to the cavity are enhanced.

Motivated by the experiments in Refs. [18, 21, 23] we
choose δ = 2π×5×10−3THz and in Fig.2 we plot σxy and
σyy under ultrastrong light-matter coupling for different
values of the magnetic field strength, corresponding to
different filling factors. In Fig.2 we see that σxy/(νe

2/h)
deviates from unity and σyy deviates from zero. Both
phenomena signal the breakdown of topological protec-
tion. For B = 2T we observe that the cavity effects are
suppressed in comparison to B = 1T . This is physi-
cally expected as for larger magnetic fields the vacuum
field fluctuations become a small perturbation to the sys-
tem. The deviations from the expected values occur off-
resonance, for a small cavity frequency, because in this
regime the lower polariton gap Ω− is significantly reduced
(see Fig. 1(b)). This relates to the fact that for fixed elec-
tron density and small ω the normalized Rabi splitting
ΩR/ω is enhanced. Thus, it is the interplay between the
ultrastrong light-matter coupling and the finite polari-
ton lifetime that causes the effects on transport. This
intuitive physical picture is in agreement with the ob-
served breakdown of topological protection in Ref [23],
and the disorder-assisted cavity-mediated hopping mech-
anism [25].
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The above analysis is consistent with the result in the
long-wavelength limit ω → 0 and δ = 0 [37]. The Hall
conductivity for δ = 0 is quantized for all ω > 0 (finite
gap) but drops to e2ν/h/(1+η2) for ω → 0 (gapless) [37].
At this point the canonical transformation to the polari-
ton basis becomes singular. In this sense, the broadening
δ regularizes the long-wavelength limit result.

Cavity suppression of the thermal activation gap.—
Finite temperature transport properties are also strongly
influenced by coupling the electrons to the cavity. This
can be understood from the formula for the thermal
behavior of the longitudinal transport σyy(T )/σyy(T =
0) ≈ exp (−β∆) where ∆ is the activation gap of the
system and β = 1/kT . For the hybrid system, ∆ = Ω−.
Thereby for the IQH effect, the coupling to the cavity
generally speaking reduces the activation gap from ωc to
Ω− and makes the Hall transport easier to be modified
by temperature.

FIG. 3: Low temperature transport at magnetic field
strength B = 1T . In (a) and (b) n2d = 2 × 1011cm−2

while in (c) and (d) n2d = 4 × 1011cm−2. The light-
matter coupling strongly affects the quantum Hall trans-
port. For the smaller cavity frequency ω = 2π × 0.1THz
and the larger electron density the deviation from the
topologically protected values maximizes. This relates
to the behavior of Ω− which controls the thermal activa-
tion in the system. The broadening parameter is chosen
very small δ = 2π× 10−4THz to avoid influencing trans-
port, but guarantee numerical convergence.

The quantitative description of the thermal activation
gap is obtained from the finite temperature Kubo for-
mula [33], through χαβ(w) which is the retarded current
correlation function,

χab(w) =
∑
M,Q

e−βEM − e−βEQ

Z
⟨ΨM |Ja|ΨQ⟩⟨ΨQ|Jb|ΨM ⟩
w + (EM − EQ)/ℏ+ iδ

(6)
where |ΨM ⟩, |ΨQ⟩ are the many-body states with
eigenenergies EM , EQ respectively, and Z is the parti-
tion function Z =

∑
M exp(−βEM ). The details of the

temperature dependent transport are given in the SM.
For the temperature dependent computations presented
in Fig. 3 we use two set of parameters for the cavity fre-
quency ω = 2π×{0.14, 0.1}THz and the 2d electron den-
sity n2d = {2, 4} × 1011cm−2. The first ones correspond
to the parameters reported in Ref. [23] and the second
are used for comparison. The magnetic field strength is
B = 1T . Figure 3 demonstrates that the finite tempera-
ture transport of the IQH system can be modified by the
cavity. From the behavior of both conductivities it is ev-
ident that the dependence of transport on temperature is
enhanced for the lower cavity frequency ω = 2π×0.1THz.
This is directly connected to the gap reduction in the
system as Ω− takes a smaller value for a smaller ω. Ad-
ditionally, we observe that the temperature effect is also
enhanced by the electron density by comparing Figs.3 (a)
and (b) to Figs.3 (c) and (d). This is to be expected since
the electron density controls the Rabi splitting ΩR. It is
important to mention that in comparison to Fig. 2, the
broadening parameter in Fig. 3 is one order of magnitude
smaller δ = 2π × 10−4THz such that effect from the po-
lariton lifetime becomes negligible. In the SM we provide
the finite temperature transport for the parameters used
in Fig. 2. The low temperature transport is consistent
with the T = 0 results in Fig. 2.

Connections to Experiments and Future Directions.—
The above analysis suggests that the activation gap of
the hybrid system is strongly suppressed by coupling to
cavity modes. Importantly, our model enables the theo-
retical estimate of the activation gap and direct compar-
ison to experiment.

Additionally, we discuss the difference reported exper-
imentally between the odd and the even plateaus [23].
The odd plateaus in the IQH effect are due to the Zee-
man gap. In the experiment [23] the Zeeman gap is 20%
of the cyclotron gap. Thus, we can think of the Zee-
man gap effectively as a cyclotron gap with an effective
magnetic field strength reduced by the factor 1/5 as com-
pared to the actual magnetic field, i.e., ∆Zeeman = ωc/5 =
eBeff/m where Beff = B/5. Under this assumption we
compute the deviations of IQH transport in the cavity
for the odd plateau. The deviation of the longitudinal
transport from zero for ω = 2π× 0.14THz, at T = 0 and
B = 1T is σyy/σD|B = 1.7× 10−4 (see also Fig. 2) while
for the respective odd plateau with Beff = 0.2T is one or-
der of magnitude larger, σyy/σD|Beff

= 4.3 × 10−3. The
Hall conductivities behave similarly as it can be under-
stood from Fig. 2. This analysis shows that odd plateaus
are much more vulnerable to the cavity than the even
ones. A more rigorous treatment of this effect requires
the inclusion of the spin degrees of freedom. This is an
interesting problem for future investigation.

Further, we comment on the FQH effect. In samples
with low disorder, the activation gap of the FQH ef-
fect is given by the many-body gap, closely related to
the magneto-roton energy [38], which we assume to be
smaller than Ω− and therefore protected from cavity ef-
fects. This picture is consistent with the experimental
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observations that FQH plateaus are relatively immune
to the cavity [23]. From this analysis we anticipate that
the FQH effect can be modified at low temperature when
Ω− becomes softer than the many-body gap.

To summarize, using a Galilean invariant quantum
Hall model coupled to a homogeneous single-mode cav-
ity field, we provide the exact solution for the polari-
ton states and discuss their experimental implications
for quantum Hall transport in cavities. The lower po-
lariton is softer than the cyclotron mode and leads to
the weakening of topological protection. This provides
an intrinsic mechanism for the recently observed break-
down of the topological protection of the IQH effect due
to cavity vacuum fluctuations [23]. Having understood
analytically the homogeneous setting, our work paves
the way for future investigations going beyond this limit,
such that the interaction between the polaritons and the
electron correlations comes into play. In this setting the
interplay between polaritons and anyons is an interest-
ing future research question, with potential applications
to quantum computing [39]. It is important to mention
that in Ref. [23] in the edges of the sample the cavity
field is not perfectly homogeneous. Despite this fact the
bulk polariton modes are observed in the transmission
spectrum. This proves the robustness of the polaritons
against the field inhomogeneities. Nevertheless, it is an
interesting future direction to study the influence of the
inhomogeneities of the cavity field to edge modes in dis-
ordered samples. The inclusion of impurities will be im-

portant for a more precise understanding of transport.
Incorporating leakage and the multimode structure of the
cavity will enable a more realistic description of transport
phenomena in general electromagnetic environments [40].
Finally, we highlight that the quantum Hall system has
played a crucial role in redefining units in terms of con-
stants of nature [41]. Thus, the cavity induced phenom-
ena could potentially have implications for metrology as
pointed out in Ref. [23].
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M. Ruggenthaler, J. Faist, and A. Rubio, “Engineering
quantum materials with chiral optical cavities,” Nature
Materials 20, 438–442 (2021).

[8] F. Schlawin, D. M. Kennes, and M. A. Sentef, “Cavity
quantum materials,” Applied Physics Reviews 9, 011312
(2022).

[9] A. F. Kockum, A. Miranowicz, S. De Liberato,
S. Savasta, and F. Nori, “Ultrastrong coupling between
light and matter,” Nature Reviews Physics 1, 19–40
(2019).

[10] P. Forn-Dı́az, L. Lamata, E. Rico, J. Kono, and
E. Solano, “Ultrastrong coupling regimes of light-matter
interaction,” Rev. Mod. Phys. 91, 025005 (2019).

[11] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio,
“Atoms and molecules in cavities, from weak to strong
coupling in quantum-electrodynamics (QED) chemistry,”
Proceedings of the National Academy of Sciences 114,
3026–3034 (2017).

[12] J. Flick, M. Ruggenthaler, H. Appel, and A. Ru-
bio, “Kohn-sham approach to quantum electrodynami-
cal density-functional theory: Exact time-dependent ef-
fective potentials in real space,” Proc. Natl. Acad. Sci.
U. S. A. 112, 15285–15290 (2015).

[13] M. Ruggenthaler, D. Sidler, and A. Rubio, “Un-
derstanding polaritonic chemistry from ab initio
quantum electrodynamics,” arXiv preprint (2022),
10.48550/ARXIV.2211.04241.

[14] D. Sidler, M. Ruggenthaler, C. Schäfer, E. Ronca, and
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SUPPLEMENTARY MATERIAL

I. PAULI-FIERZ HAMILTONIAN IN THE CENTER OF MASS FRAME

In this section we would like to give the details about the transformation of the Pauli-Fierz Hamiltonian in the
center of mass (CM) and relative distances frame. The Hamiltonian of our system is

H =
1

2m

N∑
i=1

(
πi + eA

)2
+

N∑
i<l

W (|ri − rl|) + ℏω
(
a†a+

1

2

)
. (7)

where πi = iℏ∇i+eAext(ri) are the dynamical momenta, and Aext(r) = −exBy describes the homogeneous magnetic

field B = ∇×Aext(r) = Bez. The cavity field A =
√

ℏ
2ϵ0Vωex

(
a+ a†

)
is characterized by the in-plane polarization

vector ex and the photon’s bare frequency ω. Further, W (ri − rj) = 1/4πϵ0|ri − rj | is the Coulomb interaction

between the electrons. For mathematical convenience we utilize a symmetric definition with respect to
√
N for the

coordinates in the CM frame as in Ref. [42]

R =
1√
N

N∑
i=1

ri and r̃j =
r1 − rj√

N
with j > 1. (8)

The original electronic coordinates in terms of the new ones {R, r̃j} are

r1 =
1√
N

R+

N∑
j=2

r̃j

 and rj =
1√
N

R+

N∑
j=2

r̃j

−
√
N r̃j with j > 1.

The momenta of the electrons in the new coordinate system are ∇1 =
(
∇R +

∑N
j=2 ∇̃j

)
/
√
N and ∇j =(

∇R − ∇̃j

)
/
√
N with j > 1. From these expression we can find the form of the electronic kinetic terms in the

new frame

N∑
i=1

∇2
i = ∇2

R +
1

N

N∑
j=2

∇̃2
j +

1

N

N∑
j,k=2

∇̃j · ∇̃k and

N∑
i=1

∇i =
√
N∇R. (9)

The interaction term between the cavity field and the electrons takes the form

A ·
N∑
i=1

iℏ∇i + eAext(ri) =
√
NA · (iℏ∇R + eAext(R)) (10)

To complete our analysis we also give the expression for the purely electronic terms in the new frame. For the
quadrature of the external magnetic field we have

N∑
i=1

A2
ext(ri) = A2

ext(R) +N

N∑
j=2

A2
ext(r̃j)−

 N∑
j=2

Aext(r̃j)

2

(11)

and for the bilinear term between the magnetic field and the momenta we have

N∑
i=1

Aext(ri) · ∇i = Aext(R) · ∇R +

N∑
j=2

Aext(r̃j) · ∇̃j .

(12)

Finally, we give the expression for the interaction term W between the electrons.

N∑
i<l

W (|ri − rl|) =
N∑
1<l

W (
√
N |r̃l|) +

N∑
2≤i<l

W
(√

N |r̃i − r̃l|
)
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Adding together all the different terms we find that the expression of the Hamiltonian in the new frame is the sum of
two parts: (i) the center of mass part Hcom which is coupled to the quantized field A and (ii) the relative distances
Hrel which does not couple to the cavity field, H = Hcm +Hrel where each part looks as

Hcm =
1

2m

(
iℏ∇R + eAext(R) + e

√
NA

)2
+ ℏω

(
a†a+

1

2

)
,

Hrel =
1

2m

N∑
j=2

(
iℏ√
N

∇̃j + e
√
NAext(r̃j)

)2

− ℏ2

2mN

N∑
j,l=2

∇̃j · ∇̃l −
e2

2m

 N∑
j=2

Aext(r̃j)

2

+

N∑
1<l

W (
√
N |r̃l|) +

N∑
2≤i<l

W
(√

N |r̃i − r̃l|
)
. (13)

Lastly, it is important to demonstrate that the center of mass and relative distances degrees of freedom are independent
by checking the commutation relations between their coordinates and momenta. Using the chain rule we have for the
derivatives of the coordinates in the center of mass frame

∇R =

N∑
i=1

∂ri
∂R

∇i =
1√
N

N∑
i=1

∇i, and ∇̃j =

N∑
i=1

∂ri
∂r̃j

∇i =
1√
N

N∑
i=1

∇i −
√
N∇j with j > 1.

From the above expressions it is clear that the momenta in the new coordinate frame commute[
∇R, ∇̃j

]
= 0. (14)

The next property to check is the commutation relations between the momenta and the coordinates.

[∇R, r̃j ] =
1

N

[
N∑
i=1

∇i, r1 − rj

]
= 0, j > 1, (15)

[
∇̃j ,R

]
=

[
1√
N

N∑
i=1

∇i −
√
N∇j ,

1√
N

N∑
l=1

rl

]
=

=
1

N

N∑
i,l=1

[∇i, rl]−
N∑
l=1

[∇j , rl] =
1

N

N∑
i,l=1

δil −
N∑
l=1

δjl =
N

N
− 1 = 0. (16)

We would also like to mention that the separation between the CM and the relative distances holds true also for an
arbitrary amount of photon modes as long as the cavity field is considered to be homogeneous as it was shown in [43].

II. EXACT SOLUTION OF THE CM HAMILTONIAN AND LANDAU POLARITONS

Having demonstrated that only the CM of the electronic system couples to the cavity we will show that Hcm can
be solved analytically. Let us see how this can be done. To proceed we expand the covariant kinetic term

Hcm =
Π2

2m
+

e
√
N

m
A ·Π+

e2NA2

2m
+ ℏω

(
a†a+

1

2

)
︸ ︷︷ ︸

Hp

(17)

For the description of the photon operators we will introduce the displacement coordinate q and its conjugate mo-
mentum ∂q as a = 1√

2
(q + ∂/∂q) and a† defined by conjugation [26, 44]. The part Hp can be brought to diagonal

form by the scaling transformation on the photonic displacement coordinate

u = q

√
ω̃

ω
where ω̃ =

√
ω2 + ω2

d (18)

with ωd =
√
e2N/ϵ0mV is the diamagnetic frequency depending on the electron density in the effective mode volume.

After this transformation the CM Hamiltonian is

Hcm =
Π2

2m
+

e
√
N

m
A ·Π+

ℏω̃
2

(
− ∂2

∂u2
+ u2

)
, (19)
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where the quantized field is now

A =

√
ℏ

ϵ0V ω̃
exu. (20)

In the Landau gauge the Hamiltonian has translational invariance along the X coordinate which implies that the
eigenfunctions in X are plane waves eiKxX . We apply Hcm on the plane wave and we have

Hcm = − ℏ2

2m

∂2

∂Y 2
+

mω2
c

2

(
Y +

ℏKx

eB

)2

− geBu

(
Y +

ℏKx

eB

)
+

ℏω̃
2

(
− ∂2

∂u2
+ u2

)
where we also introduced the coupling constant g = ωd

√
ℏ/mω̃. As a next step we define the coordinate

Ȳ = Y +
ℏKx

eB
(21)

and the Hamiltonian simplifies further

Hcm = − ℏ2

2m

∂2

∂Ȳ 2
+

mω2
c

2
Ȳ 2 − geBuȲ +

ℏω̃
2

[
− ∂2

∂u2
+ u2

]
The Hamiltonian consists of two coupled harmonic oscillators. It is convenient to perform another scaling transfor-
mation on Ȳ and u

V− = −u

√
ℏ
ω̃

and V+ =
√
mȲ . (22)

such that we have both harmonic oscillators in the form of having mass equal to 1. The Hamiltonian then becomes

Hcm = −ℏ2

2

∑
l=±

∂2

∂V 2
l

+
1

2

∑
l,j=±

WljVlVj . (23)

The matrix W

W =

(
ω2
c ωdωc

ωdωc ω̃2

)
(24)

is real and symmetric, and as a consequence can be diagonalized by the orthogonal matrix O [45],

O =

(
1√

1+Λ2

Λ√
1+Λ2

− Λ√
1+Λ2

1√
1+Λ2

)
where Λ = α−

√
1 + α2 and α =

ω2
c − ω̃2

2ωdωc
.

The eigenvalues of the matrix W give the new normal modes of the interacting light-matter system. We find them to
be

Ω2
± =

1

2

(
ω̃2 + ω2

c ±
√
4ω2

dω
2
c + (ω̃2 − ω2

c )
2

)
. (25)

The Hamiltonian after the orthogonal transformation takes the canonical form

Hcm = −ℏ2

2

∑
l=±

∂2

∂S2
l

+
1

2

∑
l=±

Ω2
l S

2
l . (26)

The new coordinates Sl and conjugate momenta ∂Sl
are related to the old ones {Vl, ∂Vl

} through the orthogonal
matrix O,

Sl =
∑
j=±

OjlVj and
∂

∂Sl
=
∑
j=±

Ojl
∂

∂Vj
. (27)
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Due to the fact that the matrix O is orthogonal the canonical commutation relations are satisfied which implies that
we have two independent harmonic oscillators [45]. Thus, the eigenfunctions of the interacting system are Hermite
functions Φ of the coordinates S+ and S−. The full set of eigenfunctions of the system is

ΨKx,n+,n−(X,S+, S−) = eiKxXΦn+
(S+)Φn−(S−) (28)

with eigenspectrum

En+,n− = ℏΩ+

(
n+ +

1

2

)
+ ℏΩ−

(
n− +

1

2

)
. (29)

The frequencies Ω+ (upper) and Ω− (lower) are the two collective Landau polariton modes of the quantum Hall
system in the cavity. For completeness, we note that the solution of the polaritons for the CM can be equivalently

written in terms of annihilation b± and creation b†± operators for the polariton quasiparticles. In this representation
Hcm is written as

Hcm = ℏΩ+

(
b†+b+ +

1

2

)
+ ℏΩ−

(
b†−b− +

1

2

)
(30)

with the polariton operators defined b± = S±

√
Ω±
2 +

√
1

2Ω±
∂S± [44]. It is worth to notice that in the limit ω → 0

the lower polariton frequency goes to zero, Ω− → 0, which means that the system becomes gapless. In this limit the
canonical transformation from the electron and photon basis V± to the polariton basis S± becomes singular.

III. FINITE TEMPERATURE TRANSPORT

In this section we present the general formalism employed for the finite temperature transport of the light-matter
system. As we already showed the Hamiltonian of our system can be written as a sum of a CM and relative part
H = Hcm + Hrel. To proceed we assume that the eigenstates of Hcm are |Φn⟩ and the eigenstates of Hrel are |FI⟩
such that it holds

Hcm|Φn⟩ = En|Φn⟩ and Hrel|FI⟩ = EI |FI⟩ (31)

Then, the eigenstates of the full Hamiltonian H are

|ΨnI⟩ = |Φn⟩ ⊗ |FI⟩, (32)

and the full eigenspectrum is EnI = En +EI . The Kubo formula for the optical conductivity of the system is [33, 46]

σab(w) =
i

w + iδ

(
e2ne

m
δab +

χab(w)

A

)
δ → 0+ (33)

where a, b = x, y, z. The first term in the optical conductivity is the Drude term, while the second term is the current-
current correlator in the frequency domain, which is defined as the Fourier transform of current-current correlator in
the time domain

χab(t) =
−iΘ(t)

ℏ
⟨[Ja(t), Jb]⟩, (34)

with the current operators considered in the interaction picture J(t) = eiHt/ℏJe−iHt/ℏ [33]. In the canonical ensemble
the expectation value of an operator O is defined as [46]

⟨O⟩ = Tr{ρO} =
1

Z
∑
n,I

⟨ΨnI |e−βHO|ΨnI⟩ (35)

where the partition function is Z =
∑

n,I e
−βEne−βEI . We will use these formulas now for the computation of the

current correlation functions. The current response can be splitted into two parts

χab(t) =
−iΘ(t)

ℏ
(⟨Ja(t)Jb⟩ − ⟨JbJa(t)⟩) . (36)
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Let us compute first the first term ⟨Ja(t)Jb⟩. We use the expression for the canonical ensemble and for the current
operator in the interaction picture and we have

⟨Ja(t)Jb⟩ =
1

Z
∑
n,I

e−βEnI ⟨ΨnI |eiHt/ℏJae
−iHt/ℏJb|ΨnI⟩

=
1

Z
∑
n,I

e−βEnIeitEnI/ℏ⟨ΨnI |Jae−iHt/ℏJb|ΨnI⟩.

(37)

We introduce the identity I =
∑

m,J |ΨmJ⟩⟨ΨmJ | in the above expression

⟨Ja(t)Jb⟩ =
1

Z
∑

n,m,J,I

e−βEnIeitEnI/ℏ⟨ΨnI |Jae−iHt/ℏ|ΨmJ⟩⟨ΨmJ |Jb|ΨnI⟩

=
1

Z
∑

n,m,J,I

e−βEnIeit(EnI−EmJ )/ℏ⟨ΨnI |Ja|ΨmJ⟩⟨ΨmJ |Jb|ΨnI⟩ (38)

A. Current in the CM frame

Since we work in the CM frame in order to proceed we need examine how the current operator looks in the CM
frame. The expression for the current operator can be obtained by computing the velocity operator of the electrons
through the Heisenberg equation of motion [31]

vi =
dri
dt

=
i

ℏ
[H, ri] =

1

m
(−iℏ∇i − eAext(ri)− eA) . (39)

Then, the full gauge-invariant current operator is [31]

J = e

N∑
i=1

vi = − ieℏ
me

N∑
j=1

∇j −
e2N

me
A− e2

me

N∑
i=1

Aext(ri).

(40)

We to go to the CM and relative distances frame and we utilize the expressions derived in Appendix I for all the
relevant operators and we find for current operator

J =
√
N

[
− ieℏ

m
∇R − e2

m

√
NA− e2

m
Aext(R)

]
≡ Jcm. (41)

The above result shows that the total current in the system is equal essentially to current of the CM and depends
only on CM related operators. This property has the following important implication

⟨ΨnI |J|ΨmJ⟩ = δIJ⟨Φn|J|Φm⟩ (42)

using the above the expression for the current correlator simplifies

⟨Ja(t)Jb⟩ =
1

Z
∑
n,m,I

e−βEnIeit(En−Em)/ℏ⟨Φn|Ja|Φm⟩⟨Φm|Jb|Φn⟩

(43)

We note to obtain the above we used that EnI −EmI = En −Em. To complete the computation we need to multiply

⟨Ja(t)Jb⟩ with −iΘ(t)
ℏ and Fourier transform into the frequency space

−iΘ(t)

ℏ
⟨Ja(t)Jb⟩ −→ 1

Z
∑
n,m,I

e−βEnI
⟨Φn|Ja|Φm⟩⟨Φm|Jb|Φn⟩
w + (En − Em)/ℏ+ iδ

=

∑
I e

−βEI∑
I e

−βEI
∑

k e
−βEk

∑
n,m,I

e−βEn
⟨Φn|Ja|Φm⟩⟨Φm|Jb|Φn⟩
w + (En − Em)/ℏ+ iδ

=
1∑

k e
−βEk

∑
n,m

e−βEn
⟨Φn|Ja|Φm⟩⟨Φm|Jb|Φn⟩
w + (En − Em)/ℏ+ iδ

with δ → 0+. (44)
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Following exactly the same procedure for the second term in Eq.(36) iΘ(t)
ℏ ⟨JJ(t)⟩ we find the the expression for the

current-current response function

χab(w) =
1∑

l e
−βEl

∑
n,m

(
e−βEn − e−βEm

) ⟨Φn|Ja|Φm⟩⟨Φm|Jb|Φn⟩
w + (En − Em)/ℏ+ iδ

with δ → 0+. (45)

From the above expression we see that current response function solely depends on the CM eigenstates and the CM
eigenenergies. This is a consequence of homogeneity which implies the separability of the full Hamiltonian into CM
and relative parts.

B. Application to Landau Polaritons

Having derived the general formula for the current response function of a homogeneous system, we will now apply
to the Landau polaritons. For the polaritons we have the CM eigenstates eiKxXϕn+

(S+)ϕn−(S−) ≡ |Kxn+n−⟩ and

the eigenergies En+n− = ℏΩ+

(
n+ + 1

2

)
+ ℏΩ−

(
n− + 1

2

)
. Consequently the response functions take the form

χab(w) =
∑

n+,n−,m+,m−,Kx,K′
x

e−βEn+n− − e−βEm+m−

Zcm

⟨n+n−K
′
x|Ja|Kxm+m−⟩⟨Kxm+m−|Jb|K ′

xn+n−⟩
w + (En+n− − Em+m−)/ℏ+ iδ

(46)

where Zcm =
∑

n+,n−,Kx
e−βEn+n− is the CM partition function. To proceed further we need the expressions for the

current operators in the polaritonic basis. The x and y components of the current operator in terms of the polaritonic
coordinates S± are

Jx =
e2
√
NB

m
3/2
e

[√
m

eB
(−iℏ∇X − ℏKx) +

S+(1− ηΛ) + S−(Λ + η)√
1 + Λ2

]

Jy = − ieℏ
m

N∑
j=1

∂yj
=

−ieℏ√
m

√
N

1 + Λ2

[
∂S+

+ Λ∂S−

]
. (47)

Moreover, the current operators can be written using the polaritonic annihilation and creation operators as follows

Jx =
e2
√
NB

m
3/2
e

√
ℏ

2(1 + Λ2)

[√
m

eB
(−iℏ∇X − ℏKx) +

Λ + η√
Ω−

(
b†− + b−

)
+

1− ηΛ√
Ω+

(
b†+ + b+

)]
(48)

Jy = −ie

√
ℏN

2m(1 + Λ2)

[√
Ω+

(
b+ − b†+

)
+ Λ

√
Ω−

(
b− − b†−

)]
(49)

From the above we can obtain the matrix representation of the current operator on the polariton basis

⟨n+n−K
′
x|Jx|Kxm+m−⟩ =

e2
√
NB

m
3/2
e

√
ℏ

2(1 + Λ2)

[
Λ + η√

Ω−
δn+m+

(√
m− + 1δn−,m−+1 +

√
m−δn−,m−−1

)
+

1− ηΛ√
Ω+

δn−m−

(√
m+δn+,m+−1 +

√
m+ + 1δn+,m++1

)]
δK′

xKx
(50)

⟨n+n−K
′
x|Jy|Kxm+m−⟩ = −ie

√
ℏN

2m(1 + Λ2)

[√
Ω+δn−m−

(√
m+δn+,m+−1 −

√
m+ + 1δn+,m++1

)
+ Λ

√
Ω−δn+m+

(√
m−δn−,m−−1 −

√
m− + 1δn−,m−+1

) ]
δK′

xKx
(51)

The current operators are diagonal with respect to the plane-wave states eiKxX and consequently the current response
functions simplifies to

χab(w) =
∑

n+,n−,m+,m−

e−βEn+n− − e−βEm+m−∑
l+,l−

e−βEl+l−

⟨n+n−|Ja|m+m−⟩⟨m+m−|Jb|n+n−⟩
w + (En+n− − Em+m−)/ℏ+ iδ

(52)
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With the use of the above formula for current response functions the temperature dependent transport of the polariton
system can be obtained. The corresponding results are shown in main text of the manuscript.

For completeness and as supporting computation, in Fig. 4 we provide the finite temperature transport of the
polariton system for the experimentally reported parameters in Ref. [23], ω = 2π× 0.14THz and n2d = 2× 1011cm−2,
and broadening δ = 2π×5×10−3THz which we used in Fig. 2 in the main text. In Fig. 4(a) we show the deviation of
the Hall conductance from the topologically expected quantized values for two different plateaus ν = 8, 4 ( B = 1, 2T ).
In Fig. 4(b) we show the thermal behavior of the longitudinal conductance σyy. We observe the exponential thermal
activation as expected. In the low temperature regime, T < 0.4K, we see that the modifications of quantum Hall
transport are consistent with the T = 0 results show in Fig. 2 in the main text. Being more precise, the cavity-induced
transport deviations at T < 0.4K and for B = 1T (ν = 8) are ∼ 2 × 10−4 and for B = 2T (ν = 4) are ∼ 5 × 10−5.
These values agree with the T = 0 transport for ω = 2π × 0.14THz shown in Fig. 2 in the main text.

FIG. 4: Finite temperature quantum Hall transport in the cavity. The cavity frequency is ω = 2π × 0.14THz and
2d electron density n2d = 2× 1011cm−2. The polariton broadening is δ = 2π × 5× 10−3THz as in Fig.2 in the main
text. a) Deviations of the Hall conductance from the expected quantized values for two different plateaus ν = 8, 4
corresponding to B = 1, 2T . b) Thermal activation of the longitudinal conductance σyy normalized by the Drude DC
conductivity σD = e2n2d/mδ. For low temperatures T < 0.4K the finite temperature transport reproduces the T = 0
transport in Fig.2 for ω = 2π × 0.14THz presented in the main text.

C. Zero Temperature Transport

Having derived the general formula for the current correlator χab(w) at finite temperature, we will focus now at
the transport properties at zero temperature, T = 0, where the topological protection and the quantization of the
quantum Hall conductance are expected from the Thouless argument, as long as the system is gapped [32]. At T = 0
the ground state of the system is for n+ = n− = 0 and only the thermal prefactors corresponding to the ground state
e−βE00 contribute to transport.

χab(w) =
∑

m+,m−

⟨00|Ja|m+m−⟩⟨m+m−|Jb|00⟩
w + (E00 − Em+m−)/ℏ+ iδ

− (00 ↔ m+m−) (53)

Furthermore, the current operators are linear in the polaritonic annihilation and creation operators and thus allow
only for single-polariton transitions to occur, which implies that inthe denominator of the response function only
single polariton energies show up Ω±. Finally, using the formulas for the matrix representation of the components of
the current operator we find the following analytically exact expressions for the transverse χxy and longitudinal χyy

response functions

χxy(w) =
Ne3B

(1 + Λ2)m2
e

[
Λ(Λ + η)

i

2

(
1

w +Ω− + iδ
+

1

w − Ω− + iδ

)
+ (1− ηΛ)

i

2

(
1

w +Ω+ + iδ
+

1

w − Ω+ + iδ

)]
,

χyy(w) = − Ne2

(1 + Λ2)m

[
Ω+

2

(
1

w +Ω+ + iδ
− 1

w − Ω+ + iδ

)
+

Λ2Ω−

2

(
1

w +Ω− + iδ
− 1

w − Ω− + iδ

)]
. (54)

With the above results and using the Kubo formula, the expressions for the optical and the CD conductivities can be
straightforwardly obtained.
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