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Abstract

We give a simple prescription for relating different solutions to the zero-rest-mass field

equations in conformally flat space-time via complex conformal transformations and changes

in reality conditions. We give several examples including linearized black holes. In particular,

we show that the linearized Plebański-Demiański and Schwarzschild fields are related by a

complex translation and a complex special conformal transformation. Similar results hold

for the linearized Kerr and C-metric fields, and for a peculiar toroidal singularity.

1 Introduction

The Newman-Janis complex shift [1] is a method for obtaining the Kerr solution to the Einstein
vacuum equations from the Schwarzschild solution via a complex coordinate transformation. The
apparent arbitrariness in the way in which some of the metric functions must be complexified
makes it difficult to establish whether it has a deep geometric origin [2]. The linear version of it,
however, can be understood as a simple complex translation z → z − ia [3]. The interest in this
shift has been recently renewed in view of its applications to scattering amplitudes [4, 5, 6].

In this note we show that a complex translation followed by a complex special conformal
transformation applied to the linearized Schwarzschild field produces the linearized Plebański-
Demiański field (which is the linear limit of the most general type D vacuum space-time), and
we furthermore show that this is just an example of a general and simple procedure in twistor
space that applies to generic zero-rest-mass fields. This allows us to uncover complex coordinate
transformations between, for example, the (linearized) Kerr and C-metric fields and a curious
toroidal structure, as well as complex transformations applied to constant fields, hopfions/knotted
fields, plane waves, etc., with arbitrary spin and algebraic type, as part of a unified framework.

It is interesting to note that the basic idea in the Newman-Janis shift can be traced back
to at least 1887, when Appell [7] noticed that the point singularity {x = y = z = 0} of the
fundamental solution (x2 + y2 + z2)−1/2 to the Laplace equation in R

3 is mapped to a ring
singularity {x2+y2 = a2, z = 0} under the complex translation z → z− ia. Synge [8] generalized
this to remove the light-cone singularity of the fundamental solution (t2 −x2 − y2− z2)−1 to the
relativistic wave equation in Minkowski space-time. Complex translations, and, more generally,
complex Poincaré transformations, were then recognized by Trautman [9] as a powerful tool for
the generation of new solutions to the scalar, Maxwell, and linearized gravity field equations in
flat space-time; see also [10].
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2 Preliminaries

We will use twistor methods. For background on the aspects of twistor theory relevant to this
work, we refer to [11, 12, 13, 14]. We include appendix A with some spinor conventions.

Let CM be complexified Minkowski space-time, with flat holomorphic metric η = dt2 −
dx2 − dy2 − dz2. The twistor space of CM is PT = CP

3\CP1, with homogeneous coordinates
Zα = (Z0, Z1, Z2, Z3). In 2-spinor notation, space-time coordinates are encoded in a 2×2 matrix
xAA′

, and points of PT are represented by Zα = (ωA, πA′), with Z0 = ω0, Z1 = ω1, Z2 = π0′ ,
Z3 = π1′ . The two spaces are related by the incidence relation

ωA = ixAA′

πA′ . (1)

The CP
1 removed in the definition PT = CP

3\CP1 corresponds to the set {Z2 = Z3 = 0} (i.e.
{πA′ = 0}). This gives a fibration PT → CP

1, where πA′ are inhomogeneous coordinates on the
base, and ωA are coordinates on the fibers.

From (1) one deduces that a point xAA′ ∈ CM corresponds to a holomorphic linear Riemann
sphere Lx = CP

1 ⊂ PT (a twistor line), while a point Zα ∈ PT corresponds to a totally null
2-surface in CM (an α-surface). The set {Z2 = Z3 = 0} removed from PT is a twistor line I in
the twistor space of conformally compactified Minkowski space-time CM

♯. This twistor space is
the compactification CP

3, the line I corresponds to the vertex I of the null cone at infinity and
it can also be represented by the infinity twistor IαβdZ

α ∧ dZβ = 2 dZ2 ∧ dZ3.
Two twistor lines Lx, Ly intersect if and only if the associated space-time points x, y are null-

separated. This means that the conformal structure of space-time is encoded in the intersection
of twistor lines in PT. More generally, twistor theory is conformally invariant, and twistors can
be understood as the spinors of the (complexified) conformal group SL(4,C). In other words,
twistor space carries a representation of SL(4,C): a complex linear transformation

Zα 7→ Tα
βZ

β, Tα
β ∈ SL(4,C), (2)

corresponds to a complex conformal transformation on space-time [15] (that is, to an element of
the 15-complex-dimensional group of complex Poincaré transformations, complex dilations, and
complex special conformal transformations). More precisely, the conformal group acts on the
compactified space CM

♯, since conformal inversions interchange the origin with I. The subgroup
of SL(4,C) that leaves the line I in CP

3 invariant is the Poincaré group.
We can express any Tα

β as a matrix

Tα
β =

(

θAB τAB′

νA′B θ̃A′
B′

)

. (3)

To describe the action on space-time coordinates, we separate into three cases: (i) τAB′

= 0 =
νA′B, (ii) θAB = δAB , θ̃A′

B′

= δB
′

A′ , νAB′ = 0, and (iii) θAB = δAB , θ̃A′
B′

= δB
′

A′ , τAB′

= 0. Then
we find:

(i) x′AA′

= θABx
BB′

(θ̃−1)B′
A′

, (4a)

(ii) x′AA′

= xAA′

+ ξAA′

, ξAA′

= −iτAA′

, (4b)

(iii) x′AA′

=
xAA′ − (xbx

b)sAA′

(xbxb)(scsc)− 2xbsb + 1
, sAA′

= − i
2ν

AA′

(4c)

Thus, we see that θAB and θ̃A′
B′

describe left and right Lorentz transformations and dilations,
τAB′

corresponds to translations and νAB′ to special conformal transformations.
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Let h > 0 be a positive half-integer number. A zero-rest-mass field of helicity (or spin) h is
a totally symmetric spinor ϕA′...K ′ with 2h indices such that

∇AA′

ϕA′...K ′ = 0. (5)

For h = 0, the corresponding equation is �ϕ = 0. The cases h = 1
2 , 1,

3
2 , 2 describe (massless)

Dirac, Maxwell, Rarita-Schwinger, and linearized gravitational fields, respectively. The field
equations (5) are conformally invariant, as long as ϕA′...K ′ has conformal weight −1. A classical
result from twistor theory (see e.g. [13]) establishes that the set of zero-rest-mass fields is
isomorphic to the Čech cohomology group H̆1(PT,O(−2h − 2)), where O(k) is the sheaf of
holomorphic functions on PT that are homogeneous of degree k. An explicit representation of
this isomorphism is the Penrose transform: if xAA′ ∈ CM and Lx = CP

1 is the associated twistor
line, then any solution to (5) can be written as

ϕA′...K ′(x) =
1

2πi

∮

Γ
f(Z)

∣

∣

Lx
πA′ ...πK ′πL′dπL′

, (6)

where the twistor function f is homogeneous of degree −2h − 2 and holomorphic except for a
certain singularity region, and the contour Γ ⊂ Lx is such that it surrounds the singularities
of f , see [12, Section 6.10]. The relationship between ϕA′...K ′ and f is not unique, but f is
just a representative of a cohomology class in H̆1(PT,O(−2h − 2)). For practical calculations,
however, one can work with representatives, as long as the corresponding space-time result is
cohomological invariant. This will be the case for the applications considered in this work.

Main idea

The basic observation in this work is the following. Consider a twistor function f , which generates
a zero-rest-mass field ϕA′...K ′ via the Penrose transform. Consider also a linear transformation
(2) in PT, and put Z ′α = Tα

βZ
β. Define

f ′(Z) := f(Z ′). (7)

The Penrose transform of f ′ will generate a new zero-rest-mass field ϕ′
A′...K ′ (of the same helicity).

But we mentioned that (2) corresponds to a complex conformal transformation on space-time.
Imposing different reality conditions on space-time coordinates before and after the transfor-
mation, this means that the fields ϕA′...K ′ and ϕ′

A′...K ′ will be two different solutions, that can
be mapped to each other via a complex conformal transformation. We will illustrate this with
several examples in the next section. We note that, even though we will apply the prescription
(7) to twistor representatives and not to cohomology classes, this is sufficient for the purposes
of this work, which are simply to use twistor theory as a tool to show how to relate different
solutions via complex coordinate transformations.

3 Complex transformations

For most of our examples of interest, we will need the following identity:

Proposition 1. Let αA′ , βA′ be two arbitrary (non-proportional) spinor fields, and let r, s be
positive integers. Then:

1

2πi

∮

Γ

πA′

1
...πA′

2h
πB′dπB′

(αA′πA′)r(βA′πA′)s
=

k

(αA′βA′)2h+1
β(A′

1
...βA′

r−1
αA′

r
...αA′

2h)
(8)

where k is a constant, 2h = r + s − 2, and the contour Γ separates the poles at πA′ = αA′ and
πA′ = βA′ .
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A simple way to show (8) is to contract the left hand side with n factors of αA′

and 2h − n
factors of βA′

, and then deduce that the integral will be equal to (αA′βA′

)−1 if n = r − 1 and
zero otherwise; the right hand side then follows straightforwardly.

3.1 Constant, elementary, and momentum states

An elementary state in twistor theory [11, 12] is a zero-rest-mass field generated by a twistor
function of the form

f(Z) =
(CαZ

α)l(DαZ
α)m

(AαZα)r(BαZα)s
, (9)

for some Aα, ...,Dα, where l,m, r, s are non-negative integers. The relevance of these functions
comes from their utility as an alternative basis to momentum eigenstates [11, Section 4], [13],
[16]. We will focus on the case l = m = 0, so that (9) takes the form

f(Z) = [χ(Z)]−1, χ(Z) = (AαZ
α)r(BαZ

α)s. (10)

Consider the simple case

χ(Z) = (Z2)r(Z3)s. (11)

The singular region of f = χ−1 is the algebraic set {χ = 0}, which consists of two parallel planes
A = {Z2 = 0}, B = {Z3 = 0}. These are in fact two fibers of the fibration PT → CP

1 (as
such, they do not intersect). The Penrose transform of f = χ−1 is a particular case of (8), with
αA′

= oA
′

, βA′

= ιA
′

(see appendix A for our conventions). Thus we immediately obtain the
constant spinor field ϕA′

1...A
′

2h
= kι(A′

1
...ιA′

r−1
oA′

r
...oA′

2h)
, with 2h = r + s − 2. For example, for

r = s = 2, the corresponding (self-dual) Maxwell field is (see eq. (23) below)

F = dt ∧ dz + idx ∧ dy, (12)

which (assuming t, x, y, z to be real) is a constant electric field in the z direction.
Now, writing (11) as in (10) with Aα = (0, 0, 1, 0), Bα = (0, 0, 0, 1), we apply an SL(4,C)

transformation Zα 7→ Z ′α = Tα
βZ

β and put

χ′(Z) := χ(Z ′) = (A′
αZ

α)r(B′
αZ

α)s, (13)

where A′
β = AαT

α
β = (ν0′B , θ̃0′

B′

), B′
β = BαT

α
β = (ν1′B , θ̃1′

B′

) (Tα
β is given explicitly by

(3)). We see that A′
α, B

′
α are only sensitive to the parts of Tα

β corresponding to right Lorentz
rotations and dilations (contained in θ̃A′

B′

) and special conformal transformations (contained in
νA′B). The singular set of f ′ = χ′−1 is again given by two planes in PT, A′ = {A′

αZ
α = 0},

B
′ = {B′

αZ
α = 0}, but now the planes intersect. This intersection is a twistor line, A′∩B

′ = Lq,
where, putting A′

α = (aA, ã
A′

), B′
α = (bA, b̃

A′

), the point q ∈ CM is given by

qAA′

=
i

(aBbB)
(bAãA

′ − aAb̃A
′

) =
2i

(νcνc)
νAB′

θ̃B′
A′

(14)

(we assume νa to be non-null). The Penrose transform of f ′ = χ′−1 is again a particular case of
(8), where now αA′

= ixAA′

aA + ãA
′

, βA′

= ixAA′

bA + b̃A
′

. The zero-rest-mass field is then given
by the right hand side of (8), with

αA′βA′

= k′(xa − qa)(x
a − qa) (15)
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for some constant k′. The fields represented by the right hand side of (8) with (15) are called
‘spin-h hopfions’ or ‘knotted fields’ [17, 18]. The name comes from the fact that the principal
spinors αA′ , βA′ define in this case Robinson congruences, which are in turn related to the Hopf
fibration (cf. [12, section 6.2]).

From the observation made around eq. (7), we deduce that spin-h hopfions/knotted fields can
be obtained via complex conformal transformations of constant fields. We notice that, for the
case of null fields in electromagnetism, a complex transformation from a constant, null Maxwell
field to a null electromagnetic hopfion was already given in [19], [20], the null condition being
essential. Our approach in this work shows that the complex transformation is valid for fields
of arbitrary spin and arbitrary algebraic type, and it is just a particular example of the general
framework given around eq. (7).

An intuitive interpretation

Even though the above result that parallel spinors, which are simply constant fields on space-
time, and spin-h hopfions/knotted fields, which have a quite complicated topological structure,
are related by a complex conformal transformation may be difficult to anticipate if one only looks
at their space-time description, from the twistor perspective we can get a fairly simple intuitive
understanding of this phenomenon. Constant fields can be generated by two parallel planes
in PT ({Z2 = 0} and {Z3 = 0}), while spin-h hopfions can be generated by two intersecting
planes1. In the former case, the planes do not intersect because we removed the line I from
CP

3 (which corresponds to infinity in space-time), while in the latter, the planes intersect in
the twistor line Lq corresponding to a point q in space-time. If we think of the two parallel
planes as “intersecting at infinity”, then the above two twistor configurations are equivalent, so
the corresponding physical configurations must be appropriately equivalent as well. It is also
clear that the transformation must really be conformal, since Poincaré transformations preserve
the line I (i.e. the infinity twistor Iαβ).

A little more formally, recall that in order for conformal transformations to be well-defined
everywhere in space-time, we must consider compactified Minkowski space CM

♯. As mentioned
in section 2, the twistor space of CM♯ (which is CP

3) does contain I, and the planes {Z2 = 0}
and {Z3 = 0} intersect precisely in I. The special conformal transformation relating parallel
spinors and spin-h hopfions interchanges the line I (defined by Z2 = Z3 = 0) and the line Lq

(defined by Z ′2 = Z ′3 = 0), or equivalently, it interchanges (via conformal inversion) the point
q ∈ CM

♯ with the vertex I of the light-cone at infinity (which is also a point in CM
♯). In other

words, if we interpret the point q as the location of the “source” of the spin-h hopfion, we see
that the source of a constant field is a point at infinity.

Momentum eigenstates

Consider now twistor functions of the form

f(Z) =
exp(CαZ

α/BαZ
α)

(AαZα)(BαZα)2h+1
(16)

where Aα = (0, ãA
′

), Bα = (0, b̃A
′

), Cα = (cA, 0). The corresponding zero-rest-mass fields are
momentum eigenstates (or plane waves; see [11, section 4.4]): choosing ãA′ b̃A

′

= 1, defining
ka := cAãA′ , and applying a slight variation of formula (8), we get the null fields

ϕA′

1...A
′

2h
= eix

aka ãA′

1
...ãA′

2h
. (17)

1Indeed, this elementary observation was one of our basic motivations for this work.
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Now perform an arbitrary linear transformation Zα 7→ Z ′α = Tα
βZ

β, and define A′
β = AαT

α
β =

(a′A, ã
′A′

), and similarly for B′
β, C

′
β. Let f ′(Z) := f(Z ′). Then the Penrose transform of f ′ gives

ϕ′
A′

1...A
′

2h
=

exp

[

αA′γA′

αB′βB′

]

(αC′βC′

)2h+1
αA′

1
...αA′

2h
. (18)

where αA′

= ixAA′

a′A + ã′A
′

, etc. The prefactor can be written as

1
(αC′βC′ )2h+1

exp

[

αA′γA′

αB′βB′

]

= c1
|x−q|2(2h+1) exp

[

c2
|x−p|2
|x−q|2

]

for some constants c1, c2, and some fixed points qa, pa defined analogously to (14). (We also put
|x− q|2 ≡ (xa − qa)(x

a − qa), etc.) Thus, a complex conformal transformation of a plane wave
(17) produces a new null, zero-rest-mass field (18) with hopfion/knotted-like features. We notice
that for the electromagnetic case (h = 1), similar results were obtained in [20] (see also [19]).
The generalization (18) to arbitrary spin appears to be new. The h = 2 case might exhibit some
interesting physical features, as it transforms a plane gravitational wave to a hopfion/knotted-like
gravitational wave (which is different from the gravitational hopfion considered in [17, 18]).

3.2 Linearized black holes

By ‘linearized black hole’ we mean a spin 2 field (h = 2 in (5)) in CM which formally looks the
same as the Weyl curvature spinor of a black hole (Petrov type D) solution [11]. As explained
in [11], such fields are generated by twistor functions of the form

f(Z) = [χ(Z)]−(h+1), χ(Z) = QαβZ
αZβ, (19)

where h = 2, and Qαβ cannot be written as a product A(αBβ) of only two twistors. The h = 1
case of (19) describes electromagnetic analogues such as the Coulomb field, the “magic” [21] (or
“root-Kerr” [4]) field, or others (see examples below). We will however leave h in (19) arbitrary,
so our construction also applies to higher/lower spin analogues.

The facts that Qαβ 6= A(αBβ) and that any conformal transformation of A(αBβ)Z
αZβ gives

A′
(αB

′
β)Z

αZβ suggest that linearized black holes (and higher/lower spin analogues) cannot be
obtained from complex conformal transformations of elementary states. However, we should be
more careful since these are facts about representatives and not about cohomology classes. In
other words, one would need to prove that the cohomology classes of (19) and (10) cannot be
connected by a linear transformation of the twistor variables. We will not attempt to do this,
and will simply study the case (19) separately.

For any (non-negative) integer h, the zero-rest-mass fields generated by (19) can be obtained
as a particular case of formula (8), with r = s = h+ 1. This is because on a generic twistor line
Lx, using the incidence relation (1) we get χ|Lx = KA′B′

πA′πB′ for some symmetric KA′B′

, which
can always be decomposed into principal spinors as KA′B′

= α(A′

βB′), and, assuming the generic
case KA′B′

KA′B′ 6= 0, we have αA′βA′ 6= 0. The spinors αA′ , βA′ contain the information of
the roots of the second order homogeneous polynomial χ|Lx = KA′B′

πA′πB′ . More explicitly, in
terms of a coordinate ζ =

π1′

π0′
on the Riemann sphere of x, we have χ|Lx = (π0′)

2(Aζ2+2Bζ+C),

where A = K1′1′ , B = K0′1′ , C = K0′0′ . The roots are then

ζ± = 1
A(−B ±∆), ∆ :=

√

B2 −AC. (20)
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Putting αA′

=
√
A(oA

′

+ ζ+ι
A′

), βA′

=
√
A(oA

′

+ ζ−ιA
′

), we get KA′B′

= α(A′

βB′) as required.
We also see that αA′βA′

= −2∆. Finally, defining a spin frame α̂A′ = 1
(αB′βB′ )1/2

αA′ , β̂A′ =

1
(αB′βB′ )1/2

βA′ , we can express the field generated by (19) as

ϕA′

1...A
′

2h
=

k

∆h+1
α̂(A′

1
...α̂A′

h
β̂A′

h+1
...β̂A′

2h)
(21)

where α̂A′ β̂A′

= 1 and we redefined the constant k. From the invariant expression

ϕA′

1...A
′

2hϕA′

1...A
′

2h
∝ 1

∆2(h+1)
, (22)

we see that the field is not null, and that it is singular at ∆ = 0. This will be useful for physical
interpretation.

The case h = 1 (Maxwell fields) has a simple description in tensor terms: defining Fab =
ϕA′B′ǫAB , a calculation gives

F =
k

∆3

[

(A−C)
2 (dt ∧ dx+ idy ∧ dz) +B(dt ∧ dz + idx ∧ dy) + (A+C)

2 (dz ∧ dx+ idy ∧ dt)
]

.

(23)

Schwarzschild and Plebański-Demiański

Consider the twistor function (19) with

χ(Z) = Z0Z3 − Z1Z2. (24)

On a generic twistor line Lx, we get A = x+iy√
2

, B = z√
2
, C = − (x−iy)√

2
(we omit an overall factor

of i). The function ∆ in (20) is

∆ = 1√
2
r, r :=

√

x2 + y2 + z2 (25)

and the roots are ζ± = −z±r
x+iy . The singularity region ∆ = 0 of the field (21) is then x = y = z = 0

(t arbitrary), which we can interpret as Coulomb/Schwarzschild-like behavior. For example, for
h = 1 and h = 2:

F =
k

r2
[

dt ∧ dr − ir2 sin θdφ ∧ dθ
]

, ϕA′B′C′D′ =
k

r3
α̂(A′ α̂B′ β̂C′ β̂D′) (26)

where (r, θ, φ) are standard spherical coordinates, defined by x + iy = r sin θeiφ, z = r cos θ.
The field F is precisely the (self-dual) Coulomb field, while the spin 2 field is the linearized
Schwarzschild solution.

Now consider a linear transformation Zα 7→ Z ′α = Tα
βZ

β, with

Tα
β =











1 0 c√
2

0

0 1 0 − c√
2

− 1
c
√
2

0 1
2 0

0 − 1
c
√
2

0 1
2











(27)

for some c ∈ C, c 6= 0. One can check that det(Tα
β) = 1, so Tα

β ∈ SL(4,C). Following the
prescription (7) with (19) and (24), we get

χ′(Z) := χ(Z ′) =
√
2
c

(

Z0Z1 + c2

2 Z
2Z3

)

. (28)
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After some straightforward calculations, the new ∆ (20), now denoted ∆′, is

∆′ = 1
4

√

(xaxa − c2)2 − 4c2(x2 + y2). (29)

In order to have an interpretation of the new field, we must analyze the set of points on space-time
where ∆′ = 0. To this end, we separate c into real and imaginary parts as

c = a+ ib, (30)

with a, b real. Writing also (4∆′)2 = R+ iI (with R, I real), we get

R = (xax
a)2 + a4 + b4 − 6a2b2 + 2(a2 − b2)(z2 − t2 − x2 − y2),

I = 4ab(a2 − b2 + z2 − t2 − x2 − y2),
(31)

so ∆′ = 0 iff R = I = 0. The condition I = 0 gives t2 − z2 + x2 + y2 = a2 − b2. Replacing
in R = 0, we get also t2 − z2 − (x2 + y2) = ±(a2 + b2). The + sign leads to t2 − z2 = a2 and
x2 + y2 = −b2, while the − sign leads to z2 − t2 = b2 and x2 + y2 = a2. Assuming the generic
case a 6= 0, b 6= 0 (see the next example for other cases), we find:

∆′ = 0 ⇔ z2 − t2 = b2 and x2 + y2 = a2. (32)

This is exactly the singular structure of the Plebański-Demiański field [22]: two accelerating ring
singularities x2 + y2 = a2, each moving on one branch of the hyperbola z2 − t2 = b2.

In order to interpret (27) in space-time terms, we express it as a composition of the basic
transformations (3)-(4). We find:

Tα
β = Sα

γU
γ
β, Sα

γ =

(

δAC 0
1
c2
τA′C δC

′

A′

)

, Uγ
β =

(

δCB τCB′

0 δB
′

C′

)

, (33)

where the components of τAB′

are τ00
′

= c√
2
= −τ11

′

, τ01
′

= τ10
′

= 0 (see appendix A for
some useful identities). Using (4), we see that Uα

β corresponds to a translation along the vector
field ξa while Sα

β is a special conformal transformation along sa = 1
c2
ξa, where (recalling the

definition (30))

ξa = (0, 0, 0,−ia + b). (34)

Summarizing:

Proposition 2. The Plebański-Demiański field can be obtained from the Schwarzschild field (for
any spin h, in particular for the linearized black hole solutions) by a complex translation along ξa

followed by a complex special conformal transformation along sa = 1
(a+ib)2 ξ

a, where ξa is given

by (34).

This provides an interpretation for the transformation for Maxwell fields mentioned by Ple-
bański and Demiański in [22, Eq. (4.65)]. To have some intuition about the appearance of two
objects “out of one”, see the Conclusions 5.

Kerr and the C-metric

Let a be a real parameter, and consider

χ(Z) = Z0Z3 − Z1Z2 +
√
2a Z2Z3. (35)
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Note that this function can be obtained from (24) by a linear transformation (2)-(3) corresponding
to a translation: this is the twistor version of the (linearized) Newman-Janis shift. We will,
however, analyze this case independently of (24). On twistor lines, we find A = x+iy√

2
, B = z−ia√

2
,

C = − (x−iy)√
2

, which gives

∆ = 1√
2
rc, rc :=

√

x2 + y2 + (z − ia)2 = r − iaz/r, (36)

where r is defined to be the real part of rc. The singularity region ∆ = 0 of the fields (21) is
now x2 + y2 = a2, z = 0 (t arbitrary). This ring singularity allows us to associate (21) in this
case to the (linearized) Kerr field and its higher/lower spin analogues. For example, introducing
a spheroidal coordinate system (r, θ, φ) by x+ iy =

√
r2 + a2 sin θeiφ, z = r cos θ, we find for the

spin 1 and 2 cases:

F =
k

(r − ia cos θ)2
[

dt ∧ (dr + ia sin θdθ)− sin θdφ ∧ (a sin θdr+ i(r2 + a2)dθ)
]

, (37)

ϕA′B′C′D′ =
k

(r − ia cos θ)3
α̂(A′ α̂B′ β̂C′ β̂D′). (38)

The field (37) is the root-Kerr (or magic) solution [4], while (38) is the linearized Kerr solution.
So we can interpret a as an angular momentum parameter.

Consider now the transformation Zα 7→ Z ′α = Tα
βZ

β with

Tα
β =











λ 0 0 0
0 λ 0 0

− λ
a
√
2

0 1
λ 0

0 λ
a
√
2

0 1
λ











(39)

where λ 6= 0 is a complex parameter. Following the prescription (7) with (19) and (35), we find

χ′(Z) := χ(Z ′) =
√
2
c

(

Z0Z1 + c2

2 Z
2Z3

)

, c =
2a

λ2
. (40)

So the new function χ′ is formally the same as (28), and the new ∆′ is again given by (29)
(although the parameter c is now related to a different conformal transformation (39)-(40)). To
interpret the new field, we analyze the set of points where ∆′ = 0. This was already done below
eq. (31) when c is genuinely complex, in which case the new solution is the Plebański-Demiański
field. So it remains to analyze the cases c real or purely imaginary:

• Suppose first c purely imaginary, c ≡ iα−1, α ∈ R. Then (4∆′)2 = (xax
a + α−2)2 +

4α−2(x2+y2), so ∆′ = 0 iff x2+y2 = 0 = xax
a+α−2. This gives x = y = 0, z2− t2 = α−2.

These are two points moving each on one branch of the hyperbola z2 − t2 = α−2: this is
the C-metric field, with acceleration parameter α.

• Suppose now c real (for concreteness assume c > 0). Then we can write the equation
∆′ = 0 as (x2 + y2 + z2 + c2 − t2)2 = 4c2(x2 + y2). For t = 0, we have a ring singularity
x2 + y2 = c2, z = 0. For fixed t 6= 0, the equation describes a torus, where t is the radius
of the tube and c is the distance from the center of the torus to the center of the tube.
As time progresses, the torus evolves through the three possible tori2: the standard “ring
torus” for t < c, a “horn torus” (no hole) at t = c, and a “spindle torus” (self-intersecting)
for t > c. This toroidal singularity is quite peculiar, and we are not aware of a non-linear
solution in general relativity that can be associated to this field. We note however that
this singularity has also been described in [23].

2See e.g. https://en.wikipedia.org/wiki/Torus.
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Finally, we need to interpret (39) in space-time terms. To this end, we note that

Tα
β = Dα

γS
γ
β, Dα

γ =

(

λδAC 0

0 λ−1δC
′

A′

)

, Sγ
β =

(

δCB 0

νC′B δB
′

C′

)

, (41)

where the components of νA′B are ν0′0 = − λ2

a
√
2
= −ν1′1, ν0′1 = ν1′0 = 0. Using (4), we see that

Dα
β is a dilation with parameter λ, and Sα

β is a special conformal transformation along the
vector field

sa = (0, 0, 0, λ2

2ia). (42)

To summarize:

Proposition 3. The conformal transformation (39), which consists of a complex special confor-
mal transformation along (42) followed by a complex dilation with parameter λ, maps the Kerr
field (for any spin h, in particular for the linearized black hole solutions) to: (i) the Plebański-
Demiański field if λ2 is genuinely complex, (ii) the C-metric field if λ2 is purely imaginary, (iii)
a toroidal singularity if λ2 is real.

Note that the Schwarzschild field can also be transformed to the C-metric field and to the
toroidal singularity (by assuming a = 0 or b = 0 in (30)). On the other hand, given that the
Plebański-Demiański field can be obtained from the Schwarzschild field by a translation followed
by a special conformal transformation, and that the Kerr field is itself obtained from a translation
of Schwarzschild, one might think that to go from Kerr to Plebański-Demiański one only needs
a special conformal transformation. But the above result shows that a complex dilation is also
needed. In view of the definition of c in (40), we see that the action of the dilation is to effectively
complexify the angular momentum parameter (so that it becomes c).

3.3 Spherical scalar waves

As a final example of complex conformal transformations, we can try to combine the twistor
functions of linearized black holes (19) with the ones of plane waves (16). That is, consider

f(Z) =
exp(CαZ

α/BαZ
α)

(QαβZαZβ)h+1
(43)

where Bα = (0, bA
′

), Cα = (cA, 0), and Qαβ cannot be expressed as a product of only two
twistors. For spin other than zero (i.e. h > 0), the calculation of the contour integrals involved
in the zero-rest-mass fields associated to (43) is quite involved. We will, for simplicity, restrict
ourselves to the scalar case h = 0. A calculation shows that the Penrose transform of the twistor
function (43) with h = 0 is

ϕ(xa) =
1

αA′βA′
exp

[

i
xAA′

cAαA′

αB′bB′

]

(44)

(in this and the following expressions we will omit irrelevant overall numerical constants), where
αA′ , βA′ are the spinor fields defined by (QαβZ

αZβ)|Lx = αA′

βB′

πA′πB′ . Choosing cA = oA,
bA

′

= 1√
2
ιA

′

, and recalling the definitions (20) of ∆ and ζ±, we get

ϕ(xa) =
ei(t+z+ζ+(x+iy))

∆
. (45)
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For example, choosing Qαβ , Q′
αβ to be given by (24) and (28) respectively, we get the scalar

waves

ϕ(xa) =
1

r
exp (i(t+ r)) , (46a)

ϕ′(xa) =
1

∆′ exp
[

i(t+ z) + i
2(t−z)

(

−t2 + z2 − x2 − y2 + c2 +∆′)
]

(46b)

where r =
√

x2 + y2 + z2 and ∆′ is defined in (29). We see that (46a) represents a spherical scalar
wave, and (46b) is a much more complicated configuration, but the two solutions (46a)-(46b) are
related by the complex conformal transformation mentioned in proposition 2.

4 Comments on non-linear fields

As emphasized by Newman [24], Flaherty [2], and others, the fact that complex coordinate
transformations produce new solutions to real field equations can be understood (assuming real-
analyticity) via consideration of holomorphic extensions, holomorphic coordinate transforma-
tions, and the imposition of new reality conditions. The coordinate transformations should also
preserve some additional structure, e.g. the Minkowski metric, or the conformal structure in the
current manuscript 3.

While the above works well for linear theories in (conformally) flat space-time and it has
been the topic of this manuscript, the understanding of the fully non-linear Newman-Janis shift
[1] in general relativity is much less satisfactory. In general relativity, one would wish to preserve
the Einstein equations, i.e., to map a solution to another solution. This is guaranteed to be
the case if one considers holomorphic extensions. The non-linear Newman-Janis shift, however,
does not correspond to a holomorphic extension, and the fact that it produces a new solution
does not seem to be an automatic consequence of the procedure. What is more, the transfor-
mation between Schwarzschild and Kerr cannot be holomorphic (at least in the above sense of
analytic continuation), since, as explained by Newman [24], the solutions have different numbers
of holomorphic Killing vectors.

As is well-known, the main ambiguity in the non-linear Newman-Janis shift is in the way in
which some functions in the metric must be complexified. In particular, the function 2m

r must
be replaced by m

r + m
r̄ in order for the trick to work. More generally, see [25], the idea is that a

function f(r) must be replaced by a function F (r, r̄) that reduces to f(r) on the real slice. We
can actually use this to give a very simple version of the trick, as follows. (We are not aware that
this form of the trick has been given before.) Consider a complex manifold with local complex
coordinates (T,X, Y, Z) and a complex non-holomorphic metric

g = dT 2 − dX2 − dY 2 − dZ2 +Φ(R, R̄)(Ladx
a)2, (47)

where R =
√
X2 + Y 2 + Z2 and

Φ(R, R̄) =
m

R
+

m

R̄
(48)

Ladx
a =

1√
2

[

dT +

(

1− |ζ+|2
1 + |ζ+|2

)

dZ +

(

ζ+ + ζ̄+
1 + |ζ+|2

)

dX + i

(

ζ+ − ζ̄+
1 + |ζ+|2

)

dY

]

, (49)

ζ+ =
−Z +R

X + iY
, (50)

3Otherwise, all (say, non-null) Maxwell fields could be deemed as “equivalent”, since, given any two of them,
one can be mapped to the other by the transformation that takes the Darboux coordinates of the first to the
Darboux coordinates of the other. Mathematically, this is the statement that all symplectic forms are locally
equivalent.
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with m a real parameter. Define two real slices S1 = {T = t, X = x, Y = y, Z = z},
S2 = {T = t, X = x, Y = y, Z = z − ia}, where t, x, y, z are real and a is a real parameter.
Then a calculation shows that g restricted to S1 is the Schwarzschild metric, and g restricted to
S2 is the Kerr metric.

The above version of the trick singles out Schwarzschild and Kerr from a complex space by
simply selecting two different real slices related in the usual Newman-Janis way z → z − ia (in
particular, it does not involve a change from spherical to spheroidal coordinates, see [26], and it
also shows that the null vectors La of Schwarzschild and Kerr correspond to two points of the
Riemann sphere related by z → z − ia). However, the procedure is arbitrary in that, in going
from Schwarzschild to Kerr, one still has to make the arbitrary replacement 2m

r → m
r + m

r̄ in
(48). Moreover, replacements of this sort, without any justification, can be used to argue that
any two metrics are “related” by a complex coordinate transformation. Let us illustrate this with
a transformation from Schwarzschild to the C-metric:

Proposition 4. Consider a complex manifold with local complex coordinates (U, V,W, W̃ ) and
a non-holomorphic metric

g = Ω−2
[

2(dUdV + dWdW̃ ) + F(U, Ū )dV 2 + G(W, W̄ )dW̃ 2
]

, (51)

where, separating (U, V,W, W̃ ) into real and imaginary parts according to U = u+iu′, V = v−iv′,
W = w + iw′, W̃ = w̃ − iw̃′:

Ω(U, Ū ,W, W̄ ) = u+ α(w′ − u′), (52a)

F(U, Ū ) = u2(1− 2mu)− (u′2 − 1)(1 + 2mαu′), (52b)

G(W, W̄ ) = 1− w2 − (1− w′2)(1 + 2αmw′), (52c)

and m,α are two real parameters. Define two real slices by S1 = {U = u + i, V = v,W =
w + i, W̃ = w̃} and S2 = {U = iu′, V = −iv′,W = 1 + iw′, W̃ = −iw̃′}. Then (51) restricted to
S1 is the Schwarzschild metric, and (51) restricted to S2 is the C-metric.

To show this, notice first that

g
∣

∣

S1
= 1

u2

[

2(dudv + dwdw̃) + u2(1− 2mu)dv2 + (1− w2)dw̃2
]

, (53)

g
∣

∣

S2
= 1

α2(w′−u′)2

[

2(du′dv′ + dw′dw̃′) + (u′2 − 1)(1 + αmu′)dv′2 + (1− w′2)(1 + 2αmw′)dw̃′2] ,

(54)

and define new coordinates (ts, r, θ, φ) and (τ, x, y, ϕ) by

u =
1

r
, v = ts +

∫

dr

1− 2m
r

, w = − cos θ, w̃ = iφ−
∫

dθ

sin θ
, (55)

u′ = −y, v′ = τ +

∫

dy

F (y)
, w′ = x, w̃′ = iϕ−

∫

dx

G(x)
(56)

where F (y) = (y2 − 1)(1 − 2αmy), G(x) = (1 − x2)(1 + 2αmx). Then a short calculation gives
the standard forms

g
∣

∣

S1
= (1− 2m

r )dt2s −
dr2

(1− 2m
r )

− r2(dθ2 + sin θ2dφ2), (57)

g
∣

∣

S2
=

1

α2(x+ y)2

[

F (y)dτ2 − dy2

F (y)
− dx2

G(x)
−G(x)dϕ2

]

. (58)
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The above shows that one can start from the Schwarzschild metric written in the form (53),
“complexify” the functions u2(1− 2mu), (1−w2) in such a way so as to obtain (52b) and (52c),
and then make a complex coordinate change (or choose a new real slice) and obtain the C-metric
(54), (58). But this procedure is obviously completely arbitrary, since there are many ways of
complexifying the functions in (53).

We note that the (double-Kerr-Schild) form of the Schwarzschild and C metrics (53), (54)
was found by using the facts that the space-times are conformally (Lorentzian) Kähler [2] and
that any Kähler metric has a double Kerr-Schild structure (as is not hard to show). The metrics
inside the square brackets in (53), (54) are actually the Kähler metrics associated to these space-
times [27]. (The fact that these solutions are double-Kerr-Schild is known from the work of
Plebański and Demiański [22], but it is perhaps not straightforward to deduce (53)-(54) from the
expressions given in [22].)

5 Conclusions

We gave a simple procedure for relating different solutions to the zero-rest-mass field equations via
complex coordinate transformations, by exploiting the fact that the conformal group acts linearly
on twistor space. In particular, we showed that a complex translation followed by a complex
special conformal transformation of the (linearized) Schwarzschild field produces the (linearized)
Plebański-Demiański field. We also gave numerous other examples (constant fields, hopfions,
waves, etc.) and (hopefully) provided a twistor intuition of why some of these transformations
can be anticipated without calculation.

The fact that a complex translation of a point-like source produces a rotating source can
already be intuitively anticipated from the Appell trick [7] at the Newtonian level, while the
Newman-Janis shift generalizes this to the relativistic level. Interestingly, a complex special
conformal transformation has the effect of producing either two accelerating ring singularities,
two accelerating point-like singularities, or a curious toroidal singularity (depending on the values
of the parameters involved in the transformation). The apparent transformation of “one object
into two” has to do with the fact that a special conformal transformation must be more properly
applied in conformally compactified Minkowski space, and from the point of view of this space,
a Coulomb field is actually double-valued (as it changes sign when crossing conformal infinity),
see [12, Section 9.4].

While our procedure for linear fields is unambiguous and essentially algorithmic, we argued
that an analogous construction for non-linear fields is not so clear, at least not in the way in
which the usual non-linear Newman-Janis shift is performed (that is, at the metric level). We
illustrated this with a “complex transformation” that relates the (non-linear) Schwarzschild and
C metrics, but we noticed that the procedure is completely artificial and non-unique. Part of the
difficulty has to do with the fact that one is attempting to perform the complex transformation
at the metric level, whereas in field theory the transformation is done in the curvature tensor
(Maxwell, Weyl, and higher spin), which is a holomorphic object as it has definite chirality. In
any case, since the recent applications of the Newman-Janis shift to amplitudes [4, 5] make use of
the field strength version of the trick, it is possible that the approach in this note can be applied
to examine other kinds of scattering processes.

Acknowledgements. It is a pleasure to thank Tim Adamo for very helpful comments on this
manuscript and for conversations during a visit to the University of Edinburgh, in which parts of
this work were first presented. I am also very grateful to the Alexander von Humboldt Foundation
for support.
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A Conventions

The complexified spin group SL(2,C) × SL(2,C) has two independent basic representations,
(12 , 0) and (0, 12), we say that they have “opposite” chirality and we indicate this with the two
different kinds of indices A,B, ... and A′, B′, ..., which take values 0, 1 in both cases. The vector
representation is (12 ,

1
2)

∼= (12 , 0) ⊗ (0, 12), so it has indices a ∼= AA′, b ∼= BB′, etc. Accordingly,
the (complexified) Minkowskian coordinates (t, x, y, z) of a point xa are encoded in the 2 × 2
matrix xAA′

as

x00
′

= 1√
2
(t+ z), x01

′

= 1√
2
(x+ iy), x10

′

= 1√
2
(x− iy), x11

′

= 1√
2
(t− z). (59)

These components can be thought of as taken with respect to two constant spin dyads (oA, ιA),
(oA′ , ιA′) (which are in general not complex conjugates): x00

′

= xAA′

oAoA′ , x01
′

= xAA′

oAιA′ ,
x10

′

= xAA′

ιAoA′ , x11
′

= xAA′

ιAιA′ . We raise and lower spinor indices with the (skew-symmetric)
spin metrics ǫAB, ǫA′B′ and their inverses, according to ωA = ǫABωB, ϕA = ϕBǫBA, etc.

Similarly, the Minkowskian components of a vector field V = V t∂t + V x∂x + V y∂y + V z∂z ∼=
(V t, V x, V y, V z) are equivalently encoded in the spinor components

V 00′ = 1√
2
(V t + V z), V 01′ = 1√

2
(V x + iV y), V 10′ = 1√

2
(V x − iV y), V 11′ = 1√

2
(V t − V z).

(60)

The inverse transformation is

V t = (V 00′+V 11′ )√
2

, V x = (V 01′+V 10′ )√
2

, V y = (V 01′−V 10′ )√
2i

, V z = (V 00′−V 11′ )√
2

. (61)

Putting VAA′ = ǫABǫA′B′V BB′

, we also have

V00′ = V 11′ , V10′ = −V 01′ , V01′ = −V 10′ , V11′ = V 00′ . (62)
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