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Complex conformal transformations and zero-rest-mass fields
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We give a simple prescription for relating different solutions to the zero-rest-mass field equations in
conformally flat space-time via complex conformal transformations and changes in reality conditions. We
give several examples including linearized black holes. In particular, we show that the linearized Plebanski-
Demianski and Schwarzschild fields are related by a complex translation and a complex special conformal
transformation. Similar results hold for the linearized Kerr and C-metric fields and for a peculiar toroidal

singularity.
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I. INTRODUCTION

The Newman-Janis complex shift [1] is a method for
obtaining the Kerr solution to the Einstein vacuum equations
from the Schwarzschild solution via a complex coordinate
transformation. The apparent arbitrariness in the way in
which some of the metric functions must be complexified
makes it difficult to establish whether it has a deep geometric
origin [2]. The linear version of it, however, can be under-
stood as a simple complex translation z — z —ia [3]. The
interest in this shift has been recently renewed in view of its
applications to scattering amplitudes [4—6].

In this paper, we show that a complex translation
followed by a complex special conformal transformation
applied to the linearized Schwarzschild field produces the
linearized Plebanski-Demianski field (which is the linear
limit of the most general type D vacuum space-time), and
we furthermore show that this is just an example of a
general and simple procedure in twistor space that applies
to generic zero-rest-mass fields. This allows us to uncover
complex coordinate transformations between, for example,
the (linearized) Kerr and C-metric fields and a curious
toroidal structure, as well as complex transformations
applied to constant fields, hopfions/knotted fields, plane
waves, etc. with arbitrary spin and algebraic type, as part of
a unified framework.

It is interesting to note that the basic idea in the Newman-
Janis shift can be traced back to at least 1887, when Appell
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[7] noticed that the point singularity {x = y = z = 0} of the
fundamental solution (x> +y*+ z2)™'/2 to the Laplace
equation in R? is mapped to a ring singularity {x*> + y*> =
a?, z = 0} under the complex translation z — z — ia. Synge
[8] generalized this to remove the light-cone singularity of
the fundamental solution (> — x> — y? — z?)~! to the rela-
tivistic wave equation in Minkowski space-time. Complex
translations, and, more generally, complex Poincaré trans-
formations, were then recognized by Trautman [9] as a
powerful tool for the generation of new solutions to the scalar,
Maxwell, and linearized gravity field equations in flat space-
time; see also Ref. [10].

II. PRELIMINARIES

We will use twistor methods. For background on the
aspects of twistor theory relevant to this work, we refer to
Refs. [11-14]. We include the Appendix with some spinor
conventions.

Let CM be complexified Minkowski space-time, with flat
holomorphic metric # = df*> — dx*> — dy?> — dz2. The twistor
space of CM is PT = CP*\CP!, with homogeneous coor-
dinates Z* = (Z°,Z', 7%, Z%). In 2-spinor notation, space-
time coordinates are encoded in a 2 x 2 matrix x*’, and
points of PT are represented by Z* = (0, z,), with
7' =a° Z' =w', 7> =ny, Z° = n;. The two spaces
are related by the incidence relation

ot = ix 7y (1)

The CP' removed in the definition PT = CP3\CP' corre-
sponds to the set {Z? = Z* = 0} (i.e. {my = 0}). This gives
a fibration PT — CP!, where 7, are inhomogeneous
coordinates on the base, and w* are coordinates on the fibers.

Published by the American Physical Society
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From (1), one deduces that a point x*4" € CM corre-
sponds to a holomorphic linear Riemann sphere L, =
CP!' c PT (a twistor line), while a point Z* € PT corre-
sponds to a totally null 2-surface in CM (an a-surface). The
set {Z? = 73 = 0} removed from PT is a twistor line I in
the twistor space of conformally compactified Minkowski
space-time CM?. This twistor space is the compactification
CP?; the line I corresponds to the vertex I of the null cone
at infinity, and it can also be represented by the infinity
twistor 1,,dZ* A dZF =2dZ* A dZ°.

Two twistor lines L, and L, intersect if and only if the
associated space-time points x and y are null separated.
This means that the conformal structure of space-time is
encoded in the intersection of twistor lines in PT. More
generally, twistor theory is conformally invariant, and
twistors can be understood as the spinors of the (com-
plexified) conformal group SL(4,C). In other words,
twistor space carries a representation of SL(4,C): a
complex linear transformation

Z% > T7P, T°; € SL(4,C), (2)
corresponds to a complex conformal transformation on
space-time [15] (that is, to an element of the 15-complex-
dimensional group of complex Poincaré transformations,
complex dilations, and complex special conformal trans-
formations). More precisely, the conformal group acts on
the compactified space CMF, since conformal inversions
interchange the origin with /. The subgroup of SL(4,C)
that leaves the line I in CP3 invariant is the Poincaré group.

We can express any T%; as a matrix:

= (T ), 6

~ /
vap  On®

To describe the action on space-time coordinates, we
distinguish three cases: (i) 4% =0 =, p, (ii) 845 =
&, 04% =68, vyp =0, and (iii) 045 = 53, 0,% =55,
748" — 0. Then, we find

(i) x/AA/ _ QABXBB/ (é_l)B’A/’ (4a)
(11) AN — AN 4 §AA” deAI — _iTAA” (4b)
(111) x/AA’ — xAA/ B (xbxb)sAA/ SAA’ _ _iI/AA"

(xpx") (5.5) —2x,8" +1° 2

(4c)

Thus, we see that 645 and 9A/B/ describe left and right
Lorentz transformations and dilations, 745" corresponds to
translations, and v, corresponds to special conformal
transformations.

Let & > 0 be a positive half-integer number. A zero-rest-
mass field of helicity (or spin) % is a totally symmetric
spinor @, g with 2h indices such that

V¥ k= 0. (5)

For h =0, the corresponding equation is [lp = 0. The
cases h =4%,1,3,2 describe (massless) Dirac, Maxwell,
Rarita-Schwinger, and linearized gravitational fields,
respectively. The field equations (5) are conformally
invariant, as long as ¢, g has conformal weight —1. A
classical result from twistor theory (see, e.g., Ref. [13])
establishes that the set of zero-rest-mass fields is isomor-
phic to the Cech cohomology group H'(PT, O(=2h —2)),
where O(k) is the sheaf of holomorphic functions on PT
that are homogeneous of degree k. An explicit representa-
tion of this isomorphism is the Penrose transform: if x4 €
CM and L, = CP! is the associated twistor line, then any
solution to (5) can be written as

1 '
Pu. k(X)) = o -j{f(z)L,Y”A"'-”K’ﬂ:L’d”L’ (6)
1 Jr

where the twistor function f is homogeneous of degree
—2h — 2 and holomorphic except for a certain singularity
region and the contour I' C L, is such that it surrounds
the singularities of f; see Ref. [12], Sec. 6.10. The
relationship between ¢4 g and f is not unique, but f
is just a representative of a cohomology class in
H'(PT,O(=2h — 2)). For practical calculations, however,
one can work with representatives, as long as the corre-
sponding space-time result is cohomological invariant.
This will be the case for the applications considered in
this work.

A. Main idea

The basic observation in this work is the following.
Consider a twistor function f, which generates a zero-rest-
mass field ¢4 g via the Penrose transform. Consider also
a linear transformation (2) in PT, and put Z'* = T”ﬂZﬂ .
Define

f(2)=f(Z). (7)

The Penrose transform of f’ will generate a new zero-rest-
mass field ¢/, ., (of the same helicity). But we mentioned
that (2) corresponds to a complex conformal transformation
on space-time. Imposing different reality conditions on
space-time coordinates before and after the transformation,
this means that the fields @4 g and ¢/, ,, will be two
different solutions, which can be mapped to each other via a
complex conformal transformation. We will illustrate this
with several examples in the next section. We note that,
even though we will apply the prescription (7) to twistor
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representatives and not to cohomology classes, this is
sufficient for the purposes of this work, which are simply
to use twistor theory as a tool to show how to relate
different solutions via complex coordinate transformations.

III. COMPLEX TRANSFORMATIONS

For most of our examples of interest, we will need the
following identity.

Proposition 1. Let ay,f4 be two arbitrary (non-
proportional) spinor fields, and let r, s be positive integers.
Then,

1 Ta ...ﬂA;hﬂBrdﬂ'B/
271 Jr (o 7p) (BN 7))
k
:Wﬂ(A/l”.ﬁA/r—laA/"“aA/Zh)’ (8)

where k is a constant, 24 = r + s — 2, and the contour I"
separates the poles at 7, = ay and 7y = By.

A simple way to show (8) is to contract the left-hand side
with n factors of o and 2k — n factors of #*', and then
deduce that the integral will be equal to (ayp* )" if n =
r — 1 and zero otherwise; the right-hand side then follows
straightforwardly.

A. Constant, elementary, and momentum states

An elementary state in twistor theory [11,12] is a zero-
rest-mass field generated by a twistor function of the
form

(CaZ)'(DZ%)"

"= Gazymzy

©)

for some A,,...,D,, where [, m, r, s are non-negative
integers. The relevance of these functions comes from their
utility as an alternative basis to momentum eigenstates (see
Ref. [11], Sec. 4) and Refs. [13,16]. We will focus on the
case [ = m = 0, so that (9) takes the form

)((Z) = (Aaza)r(BaZa)s' (10)
Consider the simple case
x(2) =(22)(Z°)". (11)

The singular region of f = y~! is the algebraic set {y = 0},
which consists of two parallel planes A = {Z? =0},
B = {Z3 = 0}. These are in fact two fibers of the fibration
PT — CP' (as such, they do not intersect). The Penrose
transform of f = y~! is a particular case of (8), with
at = o, p¥ = 1" (see the Appendix for our conventions).
Thus, we immediately obtain the constant spinor field

Pa;..A, = kl(A/] ceelgr Oy 041 s with 2h=r+s-2.

For example, for r = s = 2, the corresponding (self-dual)
Maxwell field is [see Eq. (23) below]

F =dt Adz+idx A dy, (12)

which (assuming £, x, y, z to be real) is a constant electric field
in the z direction.

Now, writing (11) as in (10) with A, =(0,0,1,0),
B, =(0,0,0,1), we apply an SL(4,C) transformation
Z% v 7/“ = T%;ZP and put

K(2) = x(Z') = (AZ") (BaZ7)", (13)

where Ay =A,T%;= (vy5-00®), B;=B,T%= (V5. 0"
[T is given explicitly by (3)]. We see that A, and By, are
only sensitive to the parts of 7% corresponding to right
Lorentz rotations and dilations (contained in 9ArB/) and
special conformal transformations (contained in v43). The
singular set of f/ = y'~!is again given by two planes in PT,
A" = {A,Z* = 0}, B’ = {B,Z* = 0}, but now the planes
intersect. This intersection is a twistor line, A’ N B’ = L,
where, putting A, = (a,,a"), B, = (b, b"), the point
g € CM is given by

! 1 ~ A ~ Al /= !
qAA = (aBbB) (bAaA - ClAl’)A ) = WDAB B/A (14)

(we assume v to be non-null). The Penrose transform of
f'=x'~! is again a particular case of (8), where now
oV =ixMa, +a¥, pr =ix*'b, + b*. The zero-rest-
mass field is then given by the right-hand side of (8), with

ayf =K (x,— q,)(x" = q) (15)

for some constant k’. The fields represented by the right-
hand side of (8) with (15) are called “spin-A hopfions” or
“knotted fields™ [17,18]. The name comes from the fact that
the principal spinors ay and f, define in this case
Robinson congruences, which are in turn related to the
Hopf fibration (cf. Ref. [12], Sec. 6.2).

From the observation made around Eq. (7), we deduce
that spin-i hopfions/knotted fields can be obtained via
complex conformal transformations of constant fields. We
notice that, for the case of null fields in electromagnetism, a
complex transformation from a constant, null Maxwell field
to a null electromagnetic hopfion was already given in
Refs. [19,20], the null condition being essential. Our
approach in this work shows that the complex trans-
formation is valid for fields of arbitrary spin and arbitrary
algebraic type, and it is just a particular example of the
general framework given around Eq. (7).
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1. Intuitive interpretation

Even though the above result that parallel spinors, which
are simply constant fields on space-time, and spin-h
hopfions/knotted fields, which have a quite complicated
topological structure, are related by a complex conformal
transformation may be difficult to anticipate if one only
looks at their space-time description, from the twistor
perspective we can get a fairly simple intuitive under-
standing of this phenomenon. Constant fields can be
generated by two parallel planes in PT ({Z?> =0} and
{Z3 = 0}), while spin-h hopfions can be generated by two
intersecting planes.1 In the former case, the planes do not
intersect because we removed the line I from CP? (which
corresponds to infinity in space-time), while in the latter,
the planes intersect in the twistor line L, corresponding to a
point g in space-time. If we think of the two parallel planes
as “intersecting at infinity,” then the above two twistor
configurations are equivalent, so the corresponding physi-
cal configurations must be appropriately equivalent as well.
It is also clear that the transformation must really be
conformal, since Poincaré transformations preserve the
line I (i.e., the infinity twistor /).

A little more formally, recall that, in order for conformal
transformations to be well-defined everywhere in space-
time, we must consider compactified Minkowski space
CM?. As mentioned in Sec. II, the twistor space of CM*
(which is CP?) does contain I, and the planes {Z? = 0}
and {Z® = 0} intersect precisely in I. The special con-
formal transformation relating parallel spinors and spin-A
hopfions interchanges the line I (defined by Z> = Z3 = 0)
and the line L, (defined by Z'* = Z"* = 0), or equivalently,
it interchanges (via conformal inversion) the point ¢ €
CMF with the vertex I of the light-cone at infinity (which is
also a point in CM?). In other words, if we interpret the
point g as the location of the “source” of the spin-/ hopfion,
we see that the source of a constant field is a point at
infinity.

2. Momentum eigenstates

Consider now twistor functions of the form

exp(C,Z*/B,Z")
(Aaza) (Baza)2h+1 ’

f(2) = (16)

where A, = (0,a"), B, = (0,b"), C, = (c4.0). The
corresponding zero-rest-mass fields are momentum eigen-
states (or plane waves; see Ref. [11], Sec. 4.4): choosing
ayb =1, defining k, := c4a,, and applying a slight
variation of formula (8), we get the null fields

lIndeed, this elementary observation was one of our basic
motivations for this work.

— x> ~
(pAflmA/zh e aAr]...aAth. (17)

Now, perform an arbitrary linear transformation
7> 7' = T%7F, and define Aj = A,T%; = (dj.@*),
By = B,T7%,Cy = C,T%. Let f'(Z) == f(Z'). Then, the
Penrose transform of f’ gives

!
exp [HA’V/;,}
@ S 7 R (18)
! ! - LIRS
AlLLA, (aC/ﬂC’)2h+l A A’

where ot = ix*'d, + @*, etc. The prefactor can be
written as

ayy® c x—pl?
C'\2h+1 exp{ . yB’:| = ;(%H)exp {c2| p|2}
(acf®) agp lx—q lx—q

for some constants ¢; and ¢, and some fixed points g and
p® defined analogously to (14). [We also put |x — g[*=
(x, — qq)(x* = g*), etc.] Thus, a complex conformal trans-
formation of a plane wave (17) produces a new null, zero-
rest-mass field (18) with hopfion/knotted-like features. We
notice that for the electromagnetic case (h = 1), similar
results were obtained in Ref. [20] (see also Ref. [19]). The
generalization (18) to arbitrary spin appears to be new. The
h =72 case might exhibit some interesting physical fea-
tures, as it transforms a plane gravitational wave to a
hopfion/knotted-like gravitational wave (which is different
from the gravitational hopfion considered in Refs. [17,18]).

B. Linearized black holes

By “linearized black hole,” we mean a spin-2 field
[A =2 1in (5)] in CM, which formally looks the same as the
Weyl curvature spinor of a black hole (Petrov type D)
solution [11]. As explained in Ref. [11], such fields are
generated by twistor functions of the form

f(2) = (2)]7,

where i = 2, and O, cannot be written as a product A, By
of only two twistors. The 7 =1 case of (19) describes
electromagnetic analogues such as the Coulomb field, the
“magic” [21] (or “root-Kerr” [4]) field, or others (see
examples below). We will, however, leave £ in (19) arbitrary,
so our construction also applies to higher-/lower-spin
analogs.

The facts that Q.5 # A(,Bp) and that any conformal

/

transformation of A,ByZ°ZF gives A(aB’mZ“Zﬂ suggest

x(2) = QaﬂZ“Zﬂ, (19)

that linearized black holes (and higher-/lower-spin analogs)
cannot be obtained from complex conformal transforma-
tions of elementary states. However, we should be more
careful since these are facts about representatives and not
about cohomology classes. In other words, one would need
to prove that the cohomology classes of (19) and (10)
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cannot be connected by a linear transformation of the
twistor variables. We will not attempt to do this and will
simply study the case (19) separately.

For any (non-negative) integer h, the zero-rest-mass
fields generated by (19) can be obtained as a particular case
of formula (8), with r = s = h + 1. This is because on a
generic twistor line L, using the incidence relation (1),
we get |, = KAP z,mp for some symmetric K45, which
can always be decomposed into principal spinors as
KAB = qWpB)  and, assuming the generic case
KAB'K yp # 0, we have a,pY # 0. The spinors a, and
P4 contain the information of the roots of the second-order
homogeneous polynomial y[; = KA'B' 7,071 . More explic-
itly, in terms of a coordinate { = Z—(‘);
of x, we have y|, = (my)*(AL* + 2B+ C),
A=K"" B=K"" C= K" The roots are then

on the Riemann sphere

where

1

Ci:Z(—B:I:A), A=+VB>-AC. (20)

Putting o' = VA(o* + 1), pA =VA(oN +1Y), we
get KA'B' = a4 pB) as required. We also see that ayfY =

—2A. Finally, defining a spin frame ay = W%/,

ﬁ n —Bl/z P4, we can express the field generated by
(19) as

A’ ﬂA’

h+1

P - Bay, (21)

Ay T Ah+l
A A

where &, /" = 1, and we redefined the constant k. From the

invariant expression

1

Ay A2(h+1) ’ (22)

(pA] 2h §0A’
we see that the field is not null and that it is singularat A = 0.
This will be useful for physical interpretation.

The case i = 1 (Maxwell fields) has a simple description
in tensor terms: defining F,, = @ap€asp, a calculation
gives

k [(A-C
F=-= ( >(dt/\dx+idy/\dz)
A’ 2
+ B(dt A dz +idx A dy)
A+C
+( ; )(dz/\dx+idy/\dt) . (23)
1. Schwarzschild and Plebariski-Demiariski
Consider the twistor function (19) with
y(2)=27° -7'7%. (24)

X\-;l\ B \/_’
Cs \/l-y (we omit an overall factor of i). The function A in

(20) is

On a generic twistor line L,, we get A =

(25)

1
A=—r, re=1/x*+y*+72%,
V2 g

zir

and the roots are {, = The singularity region A =0

of the field (21) is then x =y = z = 0 (¢ arbitrary), which
we can interpret as Coulomb/Schwarzschild-like behavior.
For example, for h =1 and h = 2,

F =—[dt A dr —ir? sin@dg A dé),

(26)

PABCD =

‘u| = ‘N| tan

aagPoPp.

where (r, 0, ¢) are standard spherical coordinates, defined
by x + iy = rsin@e'%, z = rcos . The field F is precisely
the (self-dual) Coulomb field, while the spin-2 field is the
linearized Schwarzschild solution.

Now, consider a linear transformation Z% — Z'* = T¢ ﬂZﬂ
with
1 0 % 0
0 1 0o -5
o= oo (27)
— 0 ; 0
V2 2
1 1
0 A 0 3

for some ¢ € C, ¢ # 0. One can check that det(7%) = 1, so
T%; € SL(4, C).Following the prescription (7) with (19) and
(24), we get

2(2) = 4(2) =

o

2
297" + %ZZZ3> . (28)

After some straightforward calculations, the new A (20), now
denoted A/, is

1

A = 1 \/(xax“ — )2 —42(x2 +y?). (29)

To have an interpretation of the new field, we must analyze
the set of points on space-time where A’ = 0. To this end, we
separate ¢ into real and imaginary parts as

c=a+ib, (30)
with a, b real. Writing also (4A’)?
we get

= R + il (with R, I real),

024032-5
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R = (x,x9)* + a* + b* — 6a%D?
+2(a? = b)) (2 -2 —x2—y?),
I =4ab(a* = b* + 22 — > = x* = y?), (31)

so A"=0 iff R=1=0. The condition I =0 gives
? — 72 + x> +y*> = a®> — b*. Replacing in R =0, we get
also 2 — 72 — (x* + y?) = £(a® + b?). The + sign leads to
* — 72 = d® and x> + y> = —b?, while the — sign leads to
72 — 2 = b? and x? + y?> = 4. Assuming the generic case
a # 0, b # 0 (see the next example for other cases), we find
AN=0s72-7~2=0b and x>+y>=a> (32)
This is exactly the singular structure of the Plebanski-
Demianski field [22]: two accelerating ring singularities
x*> +y? = a?, each moving on one branch of the hyper-
bola 2 — 1# = b*.
To interpret (27) in space-time terms, we express it as a
composition of the basic transformations (3) and (4). We
find

&0 55 78
Ta — S(l Uy , Sa — 1, UV — , s
p rY'p Y <%TA’C 5(;/) p < 0 513 )

(33)

/ / I I
where the components of 748" are 7% = &= —1 701 =

7" =0 (see the Appendix for some useful identities).
Using (4), we see that U%; corresponds to a translation
along the vector field £, while $%; is a special conformal
transformation along s = C%é“, where [recalling the def-
inition (30)]

£9=(0,0,0,—ia + b). (34)

Summarizing, we have the following proposition.
Proposition 2. The Plebafiski-Demianski field can be
obtained from the Schwarzschild field (for any spin /4, in
particular for the linearized black hole solutions) by a
complex translation along £ followed by a complex special
1

conformal transformation along s¢ = =0 &% where & is

given by (34).

This provides an interpretation for the transformation for
Maxwell fields mentioned by Plebafiski and Demiafski in
Ref. [22], Eq. (4.65). To have some intuition about the
appearance of two objects “out of one”; see the Conclusions.

2. Kerr and the C-metric

Let a be a real parameter, and consider

2(Z) =2°7% - 7' 7> + V24 72 7°. (35)

Note that this function can be obtained from (24) by a linear
transformation (2) and (3) corresponding to a translation:
this is the twistor version of the (linearized) Newman-Janis
shift. We will, however, analyze this case independently

of (24). On twistor lines, we find A :x\%", B = %,

C=— “\;%y), which gives

A= Te, re = \/x2—|—y2+(z—ia)2:r—iaz/r,

1

V2

(36)
where r is defined to be the real part of r.. The singularity
region A = 0 of the fields (21) is now x> +y?> = a%,z =0
(¢ arbitrary). This ring singularity allows us to associate
(21) in this case to the (linearized) Kerr field and its higher-/
lower-spin analogs. For example, introducing a spheroidal
coordinate system (r, 0, ¢) by x + iy = Vr*> + a® sin 0e'?,
z = rcos 0, we find for the spin 1 and 2 cases

k

F =———-|dt A (dr + iasin 6d6
(r—ia 0059)2[ (dr+iasin 6d6)
—sin@d¢ A (asin@dr +i(r> + a®)do)],  (37)
k A A
a(A/aB'ﬂc'ﬂD’)- (38)

Pamcp = (r —iacos 0)3

The field (37) is the root-Kerr (or magic) solution [4], while
(38) is the linearized Kerr solution. So, we can interpret a as
an angular momentum parameter.

Consider now the transformation Z% > Z'* = T“ﬂZ/’
with

20 00
0O 1 00

T =1 _ 1 : (39)
/ a2s 0 10
A 1
0 40!

where 1#0 is a complex parameter. Following the
prescription (7) with (19) and (35), we find

=7
(40)

2 2 2
L(Z) = 4(Z) = V2 <z°z1 + %Z2Z3>, =2
C

So, the new function ¥’ is formally the same as (28), and the
new A’ is again given by (29) [although the parameter c is
now related to a different conformal transformation (39)
and (40)]. To interpret the new field, we analyze the set of
points where A’ = 0. This was already done below Eq. (32)
when c¢ is genuinely complex, in which case the new
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solution is the Plebanski-Demianski field. So, it remains to
analyze the cases c real or purely imaginary:

(i) Suppose first ¢ purely imaginary, ¢ = ia~', a € R.
Then, (4A")? = (x,x¢ + a2)? + 4a 2 (x> + y?), so
A =0 iff x>+ y>=0=x,x*+ a2 This gives
x=y=0, z2—1>=a2 These are two points
moving each on one branch of the hyperbola
7> — > = a~2: this is the C-metric field, with accel-
eration parameter a.

(ii) Suppose now c¢ real (for concreteness assume
¢ > 0). Then, we can write the equation A’ =0
as (2 +y*+ 22+ =122 =4c*(x* +y?). For
t=0, we have a ring singularity x>+ y> = ¢2,
z=0. For fixed ¢ # 0, the equation describes a
torus, where ¢ is the radius of the tube and c is the
distance from the center of the torus to the center of
the tube. As time progresses, the torus evolves
through the three possible tori: the standard “ring
torus” for r < ¢, a “horn torus” (no hole) at r = ¢,
and a “spindle torus” (self-intersecting) for ¢ > c.
This toroidal singularity is quite peculiar, and we are
not aware of a nonlinear solution in general relativity
that can be associated to this field. We note,
however, that this singularity has also been de-
scribed in Ref. [23].

Finally, we need to interpret (39) in space-time terms. To

this end, we note that

. _peg pe <mg 0) o <5g 0>
= h 7\ o /1_152 ’ e Ve'p 52; ’

(41)

where the components of v, are vyg = —a’l—\;i = —vy,
vy = vyg = 0. Using (4), we see that D% is a dilation with
parameter 4, and $% is a special conformal transformation
along the vector field

/12
¢“=10,0,0,—). 42
= (0.0.05) “2)

Proposition 3 provides a summary.

Proposition 3. The conformal transformation (39),
which consists of a complex special conformal trans-
formation along (42) followed by a complex dilation with
parameter A, maps the Kerr field (for any spin A, in
particular for the linearized black hole solutions) to (i)
the Plebanski-Demiariski field if 4 is genuinely complex,
(ii) the C-metric field if A? is purely imaginary, and (iii) a
toroidal singularity if 4* is real.

Note that the Schwarzschild field can also be trans-
formed to the C-metric field and to the toroidal singularity

“See, e.g., https://en.wikipedia.org/wiki/Torus.

[by assuming a = 0 or b = 0 in (30)]. On the other hand,
given that the Plebanski-Demianski field can be obtained
from the Schwarzschild field by a translation followed by a
special conformal transformation, and that the Kerr field is
itself obtained from a translation of Schwarzschild, one
might think that to go from Kerr to Plebanski-Demianski
one only needs a special conformal transformation. But the
above result shows that a complex dilation is also needed.
In view of the definition of ¢ in (40), we see that the action
of the dilation is to effectively complexify the angular
momentum parameter (so that it becomes c).

C. Spherical scalar waves

As a final example of complex conformal transforma-
tions, we can try to combine the twistor functions of
linearized black holes (19) with the ones of plane waves
(16). That is, consider

B exp(C,Z%/B,Z%)

f(Z) - (Qaﬂzazﬂ)h-&-l (43)

where B, = (0,b"), C, = (c4.0), and Qs cannot be
expressed as a product of only two twistors. For spin other
than zero (i.e., h > 0), the calculation of the contour
integrals involved in the zero-rest-mass fields associated
to (43) is quite involved. We will, for simplicity, restrict
ourselves to the scalar case & = 0. A calculation shows that
the Penrose transform of the twistor function (43) with
h=0is

(44)

Pp(x9) = 1 -xAA/CAaA’:|

—Xp |[1——%—
aA/ﬁA (ZBrbB

(in this and the following expressions, we will omit
irrelevant overall numerical constants), where a, and
Py are the spinor fields defined by (Q.;Z°ZF)| L =
o B8 wymp. Choosing c, = oy, bY = %1"/ and recalling
the definitions (20) of A and ., we get

Qi (i)

K (45)

p(x?) =

For example, choosing Q,s, Q. to be given by (24) and
(28), respectively, we get the scalar waves

1 .
o(x?) = —exp (i(r + 1)), (46a)
@' (x%) :iexp i(r+2)+ i

A’ 2(t-2z)

X (=2 +722=x>—y*+c*+A)|, (46b)
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where r = \/x% + y? + 7> and A is defined in (29). We see
that (46a) represents a spherical scalar wave, and (46b) is a
much more complicated configuration, but the two solu-
tions (46a) and (46b) are related by the complex conformal
transformation mentioned in Proposition 2.

IV. COMMENTS ON NONLINEAR FIELDS

As emphasized by Newman [24], Flaherty [2], and
others, the fact that complex coordinate transformations
produce new solutions to real field equations can be
understood (assuming real analyticity) via consideration
of holomorphic extensions, holomorphic coordinate trans-
formations, and the imposition of new reality conditions.
The coordinate transformations should also preserve some
additional structure, e.g., the Minkowski metric, or the
conformal structure in the current manuscript.3

While the above works well for linear theories in
(conformally) flat space-time and it has been the topic
of this manuscript, the understanding of the fully nonlinear
Newman-Janis shift [1] in general relativity is much less
satisfactory. In general relativity, one would wish to
preserve the Einstein equations, i.e., to map a solution
to another solution. This is guaranteed to be the case if
one considers holomorphic extensions. The nonlinear
Newman-Janis shift, however, does not correspond to a

Ldx* = — =
V2 1+[¢,
—Z+R
— , 50
¢ X Tiv (50)

with m a real parameter. Define two real slices §; = {T =1,
X=xY=y,Z=z} and S, ={T =1, X = x, Y =y,
Z = z — ia}, where ¢, x, y, and z are real and a is a real
parameter. Then, a calculation shows that g restricted to S
is the Schwarzschild metric, and g restricted to S, is the
Kerr metric.

The above version of the trick singles out Schwarzschild
and Kerr from a complex space by simply selecting two
different real slices related in the usual Newman-Janis way
z — z —ia (in particular, it does not involve a change from
spherical to spheroidal coordinates—see Ref. [26]—and it
also shows that the null vectors L, of Schwarzschild and

3Otherwise, all (say, non-null) Maxwell fields could be
deemed as ‘“‘equivalent,” since, given any two of them, one
can be mapped to the other by the transformation that takes the
Darboux coordinates of the first to the Darboux coordinates of the
other. Mathematically, this is the statement that all symplectic
forms are locally equivalent.

holomorphic extension, and the fact that it produces a new
solution does not seem to be an automatic consequence of
the procedure. What is more, the transformation between
Schwarzschild and Kerr cannot be holomorphic (at least
in the above sense of analytic continuation), since, as
explained by Newman [24], the solutions have different
numbers of holomorphic Killing vectors.

As is well known, the main ambiguity in the nonlinear
Newman-Janis shift is in the way in which some functions
in the metric must be complexified. In particular, the
function 2—:” must be replaced by 7' +% in order for the
trick to work. More generally (see Ref. [25]), the idea is that
a function f(r) must be replaced by a function F(r, 7) that
reduces to f(r) on the real slice. We can actually use this to
give a very simple version of the trick, as follows. (We are
not aware that this form of the trick has been given before.)
Consider a complex manifold with local complex coor-
dinates (T, X, Y, Z) and a complex nonholomorphic metric

g=dT? —dX? —dY? —dZ? + ®(R,R)(L,dx*)?,  (47)

where R = vX? + Y? + Z? and

! [dTJr(]_§+|2>dZ+<C++5+>dX+i<ﬁ)dY}, (49)

1+ ¢4 1+ 5P

Kerr correspond to two points of the Riemann sphere
related by z — z — ia). However, the procedure is arbitrary
in that, in going from Schwarzschild to Kerr, one still
has to make the arbitrary replacement 27’” — 2+ % in (43).
Moreover, replacements of this sort, without any justifica-
tion, can be used to argue that any two metrics are “related”
by a complex coordinate transformation. Let us illustrate this
with a transformation from Schwarzschild to the C-metric.

Proposition 4. Consider a complex manifold with
local complex coordinates (U, V,W, W) and a nonholo-
morphic metric

g =Q722(dUdV + dWdW) + F(U, U)dV?
+ G(W. W)dw?], (51)
where, separating (U, V, W, W) into real and imaginary

parts accordingto U = u+ i/, V=v -1/, W =w+in/,
W=w—iw":

QU, U W, W)=u+aw -u), (52a)

024032-8



COMPLEX CONFORMAL TRANSFORMATIONS AND ...

PHYS. REV. D 108, 024032 (2023)

FU,U) = u*(1 =2mu) — (u*> = 1)(1 + 2mar), (52b)

GW, W) =1-=w?—(1=w?)(1+ 2amw’), (52¢)
and m and a are two real parameters. Define two real
slices by S, ={U=u+i,V=0,W=w+i,W=w}
and S, ={U=iu',V=—iv/,W=1+iw/,W=—iW'}. Then,
Eq. (51) restricted to S; is the Schwarzschild metric, and
Eq. (51) restricted to S, is the C-metric.

To show this, notice first that

1
gls, = — [2(dudv + dwdW) + u?(1 — 2mu)dv?

u
+ (1 =w?)dw?], (53)
g|S2 = m [Z(du'dU' + dW/dWl) + (M/z - l)
X (1 4+ amu')dv? + (1 —w?)(1 + 2amw’)di'?],
(54)

and define new coordinates (f,, r, 6, ¢) and (z,x,y, ) by

1 t—|—/ dr d
u=-, v=t o
r ; 1—27’"

w=—cosf, w=ig¢ —/

sinf’

0
(55)
U =- v’—r+/d—y w=x, Ww=i —/i
g Foy tT T GGy
(56)

where F(y)=(y*>—1)(1-2amy), G(x)=(1-x*)(1+2amx).
Then, a short calculation gives the standard forms

2 dr?
dls, = (1 ——m>th e rzm) — r?(d6? + sin 0*d¢?),

’ (57)
. 1 dy? dx?
gls, = 217 {F()’)dfz “F) TG0 G(x)dg?|.
(58)

The above shows that one can start from the
Schwarzschild metric written in the form (53), “complex-
ify” the functions u?(1 — 2mu), (1 —w?) in such a way so
as to obtain (52b) and (52c), and then make a complex
coordinate change (or choose a new real slice) and obtain
the C-metric (54) and (58). But this procedure is obviously
completely arbitrary, since there are many ways of com-
plexifying the functions in (53).

We note that the (double-Kerr-Schild) form of the
Schwarzschild and C metrics (53) and (54) was found

by using the facts that the space-times are conformally
(Lorentzian) Kéhler [2] and that any Kihler metric has a
double Kerr-Schild structure (as is not hard to show). The
metrics inside the square brackets in (53) and (54) are
actually the Kéhler metrics associated to these space-times
[27]. (The fact that these solutions are double-Kerr-Schild
is known from the work of Plebanski and Demianski [22],
but it is perhaps not straightforward to deduce (53) and (54)
from the expressions given in Ref. [22].)

V. CONCLUSIONS

We gave a simple procedure for relating different solutions
to the zero-rest-mass field equations via complex coordinate
transformations, by exploiting the fact that the conformal
group acts linearly on twistor space. In particular, we showed
that a complex translation followed by a complex special
conformal transformation of the (linearized) Schwarzschild
field produces the (linearized) Plebafiski-Demianski field.
We also gave numerous other examples (constant fields,
hopfions, waves, etc.) and (hopefully) provided a twistor
intuition of why some of these transformations can be
anticipated without calculation.

The fact that a complex translation of a pointlike source
produces a rotating source can already be intuitively
anticipated from the Appell trick [7] at the Newtonian
level, while the Newman-Janis shift generalizes this to the
relativistic level. Interestingly, a complex special conformal
transformation has the effect of producing either fwo
accelerating ring singularities, two accelerating pointlike
singularities, or a curious toroidal singularity (depending
on the values of the parameters involved in the trans-
formation). The apparent transformation of “one object into
two” has to do with the fact that a special conformal
transformation must be more properly applied in confor-
mally compactified Minkowski space, and from the point
of view of this space, a Coulomb field is actually double-
valued (as it changes sign when crossing conformal
infinity); see Ref. [12], Sec. 9.4.

While our procedure for linear fields is unambiguous and
essentially algorithmic, we argued that an analogous con-
struction for nonlinear fields is not so clear, at least not in the
way in which the usual nonlinear Newman-Janis shift is
performed (that s, at the metric level). We illustrated this with
a “complex transformation” that relates the (nonlinear)
Schwarzschild and C metrics, but we noticed that the
procedure is completely artificial and nonunique. Part of
the difficulty has to do with the fact that one is attempting to
perform the complex transformation at the metric level,
whereas in field theory the transformation is done in the
curvature tensor (Maxwell, Weyl, and higher spin), whichisa
holomorphic object as it has definite chirality. In any case,
since the recent applications of the Newman-Janis shift to
amplitudes [4,5] make use of the field strength version of the
trick, it is possible that the approach in this paper can be
applied to examine other kinds of scattering processes.
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APPENDIX: CONVENTIONS

The complexified spin group SL(2,C) x SL(2,C) has
two independent basic representations, (% ,0) and (0, %) we
say that they have “opposite” chirality, and we indicate this
with the two different kinds of indices A, B,... and

A’ B’, ..., which take values 0,1 in both cases. The vector
representation is (3,%) = (3.0) ® (0.3), so it has indices

a=AA’, b= BB/, etc. Accordingly, the (complexified)
Minkowskian coordinates (7,x,y,z) of a point x“ are
encoded in the 2 x 2 matrix x4’

as
X0 = L(t+ 2) KO = i()c +iy)
V2 ’ V2 ’
/ 1 ! 1
XV = (x—1iy), M =——(r-2). Al
\/i( y) \/5( ) (A1)

These components can be thought of as taken with respect
to two constant spin dyads (0y4,14), (04r,14) (Which are
in general not complex conjugates): x% = x4'0,0,,

AA AA

KOV = o , XY =M 0., XY =M. We
raise and lower spinor indices with the (skew-symmetric)
spin metrics €43 and €,/ and their inverses, according to
o = By, s = pPeg,, etc.

Similarly, the Minkowskian components of a vector
field V=V'0,+V*d,+V?d,+ V<o, = (V',V* V¥ V%) are
equivalently encoded in the spinor components

1 1
VOO = — (VI Ve, VO = (V4 iW),
ﬂ( ) ﬂ( )
1 1
VIO = — (v —iw),  VIN=— (V' = V5. (A2
ﬂ( ) ﬁ( ). (A2)
The inverse transformation is
Vi (VOO’ 4 Vll’) ’ - (VOl’ 4 Vlo’) ’
V2 V2
VOl’ _ VlO’ VOO’ _ Vll’
VY = 7( - ) , Ve = 4( ) (A3)
V2i V2
Putting V4 = e, peny VEE, we also have
Voo = V', Vig ==V,
Vor ==V17, Vip = v, (Ad)

[1] E.-T. Newman and A.I. Janis, Note on the Kerr
spinning particle metric, J. Math. Phys. (N.Y.) 6, 915
(1965).

[2] E.J. Flaherty, Jr., Hermitian and Kdhlerian Geometry in
Relativity, Springer Lecture Notes in Physics Vol. 46
(Springer-Verlag, New York, 1976).

[3] E. T. Newman, On a classical, geometric origin of magnetic
moments, spin angular momentum and the Dirac gyromag-
netic ratio, Phys. Rev. D 65, 104005 (2002).

[4] N. Arkani-Hamed, Y.-t. Huang, and D. O’Connell, Kerr
black holes as elementary particles, J. High Energy Phys. 01
(2020) 046.

[5] A. Guevara, B. Maybee, A. Ochirov, D. O’Connell, and J.
Vines, A worldsheet for Kerr, J. High Energy Phys. 03
(2021) 201.

[6] A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P.
Solon, and M. Zeng, Snowmass white paper: Gravitational
waves and scattering amplitudes, arXiv:2204.05194.

[7] P. Appell, Quelques remarques sur la théorie des potentiels
multiformes, Math. Ann. 30, 155 (1887).

[8] J. L. Synge, Relativity: The Special Theory (North-Holland
Publishing Company, Amsterdam, 1956).

[9] A. Trautman, Analytic solutions of Lorentz-invariant linear
equations, Proc. R. Soc. A 270, 326 (1962).

[10] E.T. Newman, Maxwell’s equations and complex
Minkowski space, J. Math. Phys. (N.Y.) 14, 102 (1973).

[11] R. Penrose and M. MacCallum, Twistor theory: An ap-
proach to the quantisation of fields and space-time, Phys.
Rep. 6, 241 (1973).

[12] R. Penrose and W. Rindler, Spinors and Space-Time: Vol-
ume 2, Spinor and Twistor Methods in Space-Time Geometry
(Cambridge University Press, Cambridge, England, 1986).

[13] S. A. Huggett and K.P. Tod, An Introduction to Twistor
Theory, London Mathematical Society Student Texts Vol. 4
(Cambridge University Press, Cambridge, England, 1985),
p. 145.

[14] T. Adamo, Lectures on twistor theory,
Modave2017 (2018) 003 [arXiv:1712.02196].

[15] R. Penrose, Twistor algebra, J. Math. Phys. (N.Y.) 8, 345
(1967).

[16] A. Hodges, Twistor diagrams, Physica (Amsterdam) 114A,
157 (1982).

[17] J. Swearngin, A. Thompson, A. Wickes, J. W. Dalhuisen, and
D. Bouwmeester, Gravitational hopfions, arXiv:1302.1431.

Proc. Sci.

024032-10


https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.1704350
https://doi.org/10.1103/PhysRevD.65.104005
https://doi.org/10.1007/JHEP01(2020)046
https://doi.org/10.1007/JHEP01(2020)046
https://doi.org/10.1007/JHEP03(2021)201
https://doi.org/10.1007/JHEP03(2021)201
https://arXiv.org/abs/2204.05194
https://doi.org/10.1007/BF01564536
https://doi.org/10.1098/rspa.1962.0222
https://doi.org/10.1063/1.1666160
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.22323/1.323.0003
https://doi.org/10.22323/1.323.0003
https://arXiv.org/abs/1712.02196
https://doi.org/10.1063/1.1705200
https://doi.org/10.1063/1.1705200
https://doi.org/10.1016/0378-4371(82)90278-3
https://doi.org/10.1016/0378-4371(82)90278-3
https://arXiv.org/abs/1302.1431

COMPLEX CONFORMAL TRANSFORMATIONS AND ...

PHYS. REV. D 108, 024032 (2023)

[18] A.Thompson, A. Wickes,J. Swearngin, and D. Bouwmeester,
Classification of electromagnetic and gravitational hopfions
by algebraic type, J. Phys. A 48, 205202 (2015).

[19] I. Bialynicki-Birula, Electromagnetic vortex lines riding
atop null solutions of the Maxwell equations, J. Opt. A 6,
S181 (2004).

[20] C. Hoyos, N. Sircar, and J. Sonnenschein, New knotted
solutions of Maxwell’s equations, J. Phys. A 48, 255204
(2015).

[21] D. Lynden-Bell, Electromagnetic magic: The relativistically
rotating disk, Phys. Rev. D 70, 105017 (2004).

[22] J.F. Plebaniski and M. Demianski, Rotating, charged, and
uniformly accelerating mass in general relativity, Ann. Phys.
(N.Y.) 98, 98 (1976).

[23] V. V. Kassandrov and J. A. Rizcalla, Algebrodynamical
approach in field theory: Bisingular solution and its mod-
ifications, arXiv:gr-qc/9809078.

[24] E. T. Newman, The remarkable efficacy of complex methods
in general relativity, in Highlights in Gravitation and Cosmol-
ogy (Cambridge University Press, Cambridge, 1988), p. 67.

[25] T. Adamo and E. T. Newman, The Kerr-Newman metric: A
review, Scholarpedia 9, 31791 (2014).

[26] D. Rajan and M. Visser, Cartesian Kerr—Schild variation on
the Newman-Janis trick, Int. J. Mod. Phys. D 26, 1750167
(2017).

[27] S. Aksteiner and B. Araneda, Kihler Geometry of Black
Holes and Gravitational Instantons, Phys. Rev. Lett. 130,
161502 (2023).

024032-11


https://doi.org/10.1088/1751-8113/48/20/205202
https://doi.org/10.1088/1464-4258/6/5/007
https://doi.org/10.1088/1464-4258/6/5/007
https://doi.org/10.1088/1751-8113/48/25/255204
https://doi.org/10.1088/1751-8113/48/25/255204
https://doi.org/10.1103/PhysRevD.70.105017
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1016/0003-4916(76)90240-2
https://arXiv.org/abs/gr-qc/9809078
https://doi.org/10.4249/scholarpedia.31791
https://doi.org/10.1142/S021827181750167X
https://doi.org/10.1142/S021827181750167X
https://doi.org/10.1103/PhysRevLett.130.161502
https://doi.org/10.1103/PhysRevLett.130.161502

