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We give a simple prescription for relating different solutions to the zero-rest-mass field equations in
conformally flat space-time via complex conformal transformations and changes in reality conditions. We
give several examples including linearized black holes. In particular, we show that the linearized Plebański-
Demiański and Schwarzschild fields are related by a complex translation and a complex special conformal
transformation. Similar results hold for the linearized Kerr and C-metric fields and for a peculiar toroidal
singularity.
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I. INTRODUCTION

The Newman-Janis complex shift [1] is a method for
obtaining the Kerr solution to the Einstein vacuum equations
from the Schwarzschild solution via a complex coordinate
transformation. The apparent arbitrariness in the way in
which some of the metric functions must be complexified
makes it difficult to establish whether it has a deep geometric
origin [2]. The linear version of it, however, can be under-
stood as a simple complex translation z → z − ia [3]. The
interest in this shift has been recently renewed in view of its
applications to scattering amplitudes [4–6].
In this paper, we show that a complex translation

followed by a complex special conformal transformation
applied to the linearized Schwarzschild field produces the
linearized Plebański-Demiański field (which is the linear
limit of the most general type D vacuum space-time), and
we furthermore show that this is just an example of a
general and simple procedure in twistor space that applies
to generic zero-rest-mass fields. This allows us to uncover
complex coordinate transformations between, for example,
the (linearized) Kerr and C-metric fields and a curious
toroidal structure, as well as complex transformations
applied to constant fields, hopfions/knotted fields, plane
waves, etc. with arbitrary spin and algebraic type, as part of
a unified framework.
It is interesting to note that the basic idea in the Newman-

Janis shift can be traced back to at least 1887, when Appell

[7] noticed that the point singularity fx ¼ y ¼ z ¼ 0g of the
fundamental solution ðx2 þ y2 þ z2Þ−1=2 to the Laplace
equation in R3 is mapped to a ring singularity fx2 þ y2 ¼
a2; z ¼ 0g under the complex translation z → z − ia. Synge
[8] generalized this to remove the light-cone singularity of
the fundamental solution ðt2 − x2 − y2 − z2Þ−1 to the rela-
tivistic wave equation in Minkowski space-time. Complex
translations, and, more generally, complex Poincaré trans-
formations, were then recognized by Trautman [9] as a
powerful tool for thegenerationof newsolutions to the scalar,
Maxwell, and linearized gravity field equations in flat space-
time; see also Ref. [10].

II. PRELIMINARIES

We will use twistor methods. For background on the
aspects of twistor theory relevant to this work, we refer to
Refs. [11–14]. We include the Appendix with some spinor
conventions.
LetCM be complexified Minkowski space-time, with flat

holomorphic metric η ¼ dt2 − dx2 − dy2 − dz2. The twistor
space of CM is PT ¼ CP3nCP1, with homogeneous coor-
dinates Zα ¼ ðZ0; Z1; Z2; Z3Þ. In 2-spinor notation, space-
time coordinates are encoded in a 2 × 2 matrix xAA

0
, and

points of PT are represented by Zα ¼ ðωA; πA0 Þ, with
Z0 ¼ ω0, Z1 ¼ ω1, Z2 ¼ π00 , Z3 ¼ π10 . The two spaces
are related by the incidence relation

ωA ¼ ixAA
0
πA0 : ð1Þ

The CP1 removed in the definition PT ¼ CP3nCP1 corre-
sponds to the set fZ2 ¼ Z3 ¼ 0g (i.e. fπA0 ¼ 0g). This gives
a fibration PT → CP1, where πA0 are inhomogeneous
coordinates on the base, andωA are coordinates on the fibers.
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From (1), one deduces that a point xAA
0 ∈ CM corre-

sponds to a holomorphic linear Riemann sphere Lx ¼
CP1 ⊂ PT (a twistor line), while a point Zα ∈ PT corre-
sponds to a totally null 2-surface in CM (an α-surface). The
set fZ2 ¼ Z3 ¼ 0g removed from PT is a twistor line I in
the twistor space of conformally compactified Minkowski
space-time CM♯. This twistor space is the compactification
CP3; the line I corresponds to the vertex I of the null cone
at infinity, and it can also be represented by the infinity
twistor IαβdZα ∧ dZβ ¼ 2 dZ2 ∧ dZ3.
Two twistor lines Lx and Ly intersect if and only if the

associated space-time points x and y are null separated.
This means that the conformal structure of space-time is
encoded in the intersection of twistor lines in PT . More
generally, twistor theory is conformally invariant, and
twistors can be understood as the spinors of the (com-
plexified) conformal group SLð4;CÞ. In other words,
twistor space carries a representation of SLð4;CÞ: a
complex linear transformation

Zα ↦ Tα
βZβ; Tα

β ∈ SLð4;CÞ; ð2Þ

corresponds to a complex conformal transformation on
space-time [15] (that is, to an element of the 15-complex-
dimensional group of complex Poincaré transformations,
complex dilations, and complex special conformal trans-
formations). More precisely, the conformal group acts on
the compactified space CM♯, since conformal inversions
interchange the origin with I. The subgroup of SLð4;CÞ
that leaves the line I in CP3 invariant is the Poincaré group.
We can express any Tα

β as a matrix:

Tα
β ¼

�
θAB τAB

0

νA0B θ̃A0B
0

�
: ð3Þ

To describe the action on space-time coordinates, we
distinguish three cases: ðiÞ τAB0 ¼ 0 ¼ νA0B, ðiiÞ θAB ¼
δAB, θ̃A0B

0 ¼ δB
0

A0 , νAB0 ¼ 0, and ðiiiÞ θAB ¼ δAB, θ̃A0B
0 ¼ δB

0
A0 ,

τAB
0 ¼ 0. Then, we find

ðiÞ x0AA0 ¼ θABxBB
0 ðθ̃−1ÞB0A

0
; ð4aÞ

ðiiÞ x0AA0 ¼ xAA
0 þ ξAA

0
; ξAA

0 ¼ −iτAA0
; ð4bÞ

ðiiiÞ x0AA0 ¼ xAA
0 − ðxbxbÞsAA0

ðxbxbÞðscscÞ− 2xbsb þ 1
; sAA

0 ¼ −
i
2
νAA

0
:

ð4cÞ

Thus, we see that θAB and θ̃A0B
0
describe left and right

Lorentz transformations and dilations, τAB
0
corresponds to

translations, and νAB0 corresponds to special conformal
transformations.

Let h > 0 be a positive half-integer number. A zero-rest-
mass field of helicity (or spin) h is a totally symmetric
spinor φA0…K0 with 2h indices such that

∇AA0
φA0…K0 ¼ 0: ð5Þ

For h ¼ 0, the corresponding equation is □φ ¼ 0. The
cases h ¼ 1

2
; 1; 3

2
; 2 describe (massless) Dirac, Maxwell,

Rarita-Schwinger, and linearized gravitational fields,
respectively. The field equations (5) are conformally
invariant, as long as φA0…K0 has conformal weight −1. A
classical result from twistor theory (see, e.g., Ref. [13])
establishes that the set of zero-rest-mass fields is isomor-
phic to the Čech cohomology group H̆1ðPT ;Oð−2h − 2ÞÞ,
where OðkÞ is the sheaf of holomorphic functions on PT
that are homogeneous of degree k. An explicit representa-
tion of this isomorphism is the Penrose transform: if xAA

0 ∈
CM and Lx ¼ CP1 is the associated twistor line, then any
solution to (5) can be written as

φA0…K0 ðxÞ ¼ 1

2πi

I
Γ
fðZÞjLx

πA0…πK0πL0dπL
0
; ð6Þ

where the twistor function f is homogeneous of degree
−2h − 2 and holomorphic except for a certain singularity
region and the contour Γ ⊂ Lx is such that it surrounds
the singularities of f; see Ref. [12], Sec. 6.10. The
relationship between φA0…K0 and f is not unique, but f
is just a representative of a cohomology class in
H̆1ðPT ;Oð−2h − 2ÞÞ. For practical calculations, however,
one can work with representatives, as long as the corre-
sponding space-time result is cohomological invariant.
This will be the case for the applications considered in
this work.

A. Main idea

The basic observation in this work is the following.
Consider a twistor function f, which generates a zero-rest-
mass field φA0…K0 via the Penrose transform. Consider also
a linear transformation (2) in PT , and put Z0α ¼ Tα

βZβ.
Define

f0ðZÞ ≔ fðZ0Þ: ð7Þ

The Penrose transform of f0 will generate a new zero-rest-
mass field φ0

A0…K0 (of the same helicity). But we mentioned
that (2) corresponds to a complex conformal transformation
on space-time. Imposing different reality conditions on
space-time coordinates before and after the transformation,
this means that the fields φA0…K0 and φ0

A0…K0 will be two
different solutions, which can be mapped to each other via a
complex conformal transformation. We will illustrate this
with several examples in the next section. We note that,
even though we will apply the prescription (7) to twistor
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representatives and not to cohomology classes, this is
sufficient for the purposes of this work, which are simply
to use twistor theory as a tool to show how to relate
different solutions via complex coordinate transformations.

III. COMPLEX TRANSFORMATIONS

For most of our examples of interest, we will need the
following identity.
Proposition 1. Let αA0 ; βA0 be two arbitrary (non-

proportional) spinor fields, and let r, s be positive integers.
Then,

1

2πi

I
Γ

πA0
1
…πA0

2h
πB0dπB

0

ðαA0
πA0 ÞrðβA0

πA0 Þs

¼ k

ðαA0βA
0 Þ2hþ1

βðA0
1
…βA0

r−1
αA0

r
…αA0

2hÞ; ð8Þ

where k is a constant, 2h ¼ rþ s − 2, and the contour Γ
separates the poles at πA0 ¼ αA0 and πA0 ¼ βA0 .
A simple way to show (8) is to contract the left-hand side

with n factors of αA
0
and 2h − n factors of βA

0
, and then

deduce that the integral will be equal to ðαA0βA
0 Þ−1 if n ¼

r − 1 and zero otherwise; the right-hand side then follows
straightforwardly.

A. Constant, elementary, and momentum states

An elementary state in twistor theory [11,12] is a zero-
rest-mass field generated by a twistor function of the
form

fðZÞ ¼ ðCαZαÞlðDαZαÞm
ðAαZαÞrðBαZαÞs ; ð9Þ

for some Aα;…; Dα, where l, m, r, s are non-negative
integers. The relevance of these functions comes from their
utility as an alternative basis to momentum eigenstates (see
Ref. [11], Sec. 4) and Refs. [13,16]. We will focus on the
case l ¼ m ¼ 0, so that (9) takes the form

fðZÞ ¼ ½χðZÞ�−1; χðZÞ ¼ ðAαZαÞrðBαZαÞs: ð10Þ

Consider the simple case

χðZÞ ¼ ðZ2ÞrðZ3Þs: ð11Þ

The singular region of f ¼ χ−1 is the algebraic set fχ ¼ 0g,
which consists of two parallel planes A ¼ fZ2 ¼ 0g,
B ¼ fZ3 ¼ 0g. These are in fact two fibers of the fibration
PT → CP1 (as such, they do not intersect). The Penrose
transform of f ¼ χ−1 is a particular case of (8), with
αA

0 ¼ oA
0
, βA

0 ¼ ιA
0
(see the Appendix for our conventions).

Thus, we immediately obtain the constant spinor field
φA0

1
…A0

2h
¼ kιðA0

1
…ιA0

r−1
oA0

r
…oA0

2hÞ, with 2h¼ rþ s−2.

For example, for r ¼ s ¼ 2, the corresponding (self-dual)
Maxwell field is [see Eq. (23) below]

F ¼ dt ∧ dzþ idx ∧ dy; ð12Þ

which (assuming t, x, y, z to be real) is a constant electric field
in the z direction.
Now, writing (11) as in (10) with Aα ¼ ð0; 0; 1; 0Þ,

Bα ¼ ð0; 0; 0; 1Þ, we apply an SLð4;CÞ transformation
Zα ↦ Z0α ¼ Tα

βZβ and put

χ0ðZÞ ≔ χðZ0Þ ¼ ðA0
αZαÞrðB0

αZαÞs; ð13Þ

where A0
β¼AαTα

β¼ðν00B;θ̃00B0 Þ, B0
β ¼BαTα

β ¼ðν10B; θ̃10B0 Þ
[Tα

β is given explicitly by (3)]. We see that A0
α and B0

α are
only sensitive to the parts of Tα

β corresponding to right
Lorentz rotations and dilations (contained in θ̃A0B

0
) and

special conformal transformations (contained in νA0B). The
singular set of f0 ¼ χ0−1 is again given by two planes inPT ,
A0 ¼ fA0

αZα ¼ 0g, B0 ¼ fB0
αZα ¼ 0g, but now the planes

intersect. This intersection is a twistor line, A0 ∩ B0 ¼ Lq,

where, putting A0
α ¼ ðaA; ãA0 Þ, B0

α ¼ ðbA; b̃A0 Þ, the point
q ∈ CM is given by

qAA
0 ¼ i

ðaBbBÞ
ðbAãA0 − aAb̃A

0 Þ ¼ 2i
ðνcνcÞ

νAB
0
θ̃B0A

0 ð14Þ

(we assume νa to be non-null). The Penrose transform of
f0 ¼ χ0−1 is again a particular case of (8), where now
αA

0 ¼ ixAA
0
aA þ ãA

0
, βA

0 ¼ ixAA
0
bA þ b̃A

0
. The zero-rest-

mass field is then given by the right-hand side of (8), with

αA0βA
0 ¼ k0ðxa − qaÞðxa − qaÞ ð15Þ

for some constant k0. The fields represented by the right-
hand side of (8) with (15) are called “spin-h hopfions” or
“knotted fields” [17,18]. The name comes from the fact that
the principal spinors αA0 and βA0 define in this case
Robinson congruences, which are in turn related to the
Hopf fibration (cf. Ref. [12], Sec. 6.2).
From the observation made around Eq. (7), we deduce

that spin-h hopfions/knotted fields can be obtained via
complex conformal transformations of constant fields. We
notice that, for the case of null fields in electromagnetism, a
complex transformation from a constant, null Maxwell field
to a null electromagnetic hopfion was already given in
Refs. [19,20], the null condition being essential. Our
approach in this work shows that the complex trans-
formation is valid for fields of arbitrary spin and arbitrary
algebraic type, and it is just a particular example of the
general framework given around Eq. (7).
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1. Intuitive interpretation

Even though the above result that parallel spinors, which
are simply constant fields on space-time, and spin-h
hopfions/knotted fields, which have a quite complicated
topological structure, are related by a complex conformal
transformation may be difficult to anticipate if one only
looks at their space-time description, from the twistor
perspective we can get a fairly simple intuitive under-
standing of this phenomenon. Constant fields can be
generated by two parallel planes in PT (fZ2 ¼ 0g and
fZ3 ¼ 0g), while spin-h hopfions can be generated by two
intersecting planes.1 In the former case, the planes do not
intersect because we removed the line I from CP3 (which
corresponds to infinity in space-time), while in the latter,
the planes intersect in the twistor line Lq corresponding to a
point q in space-time. If we think of the two parallel planes
as “intersecting at infinity,” then the above two twistor
configurations are equivalent, so the corresponding physi-
cal configurations must be appropriately equivalent as well.
It is also clear that the transformation must really be
conformal, since Poincaré transformations preserve the
line I (i.e., the infinity twistor Iαβ).
A little more formally, recall that, in order for conformal

transformations to be well-defined everywhere in space-
time, we must consider compactified Minkowski space
CM♯. As mentioned in Sec. II, the twistor space of CM♯

(which is CP3) does contain I, and the planes fZ2 ¼ 0g
and fZ3 ¼ 0g intersect precisely in I. The special con-
formal transformation relating parallel spinors and spin-h
hopfions interchanges the line I (defined by Z2 ¼ Z3 ¼ 0)
and the line Lq (defined by Z02 ¼ Z03 ¼ 0), or equivalently,
it interchanges (via conformal inversion) the point q ∈
CM♯ with the vertex I of the light-cone at infinity (which is
also a point in CM♯). In other words, if we interpret the
point q as the location of the “source” of the spin-h hopfion,
we see that the source of a constant field is a point at
infinity.

2. Momentum eigenstates

Consider now twistor functions of the form

fðZÞ ¼ expðCαZα=BαZαÞ
ðAαZαÞðBαZαÞ2hþ1

; ð16Þ

where Aα ¼ ð0; ãA0 Þ, Bα ¼ ð0; b̃A0 Þ, Cα ¼ ðcA; 0Þ. The
corresponding zero-rest-mass fields are momentum eigen-
states (or plane waves; see Ref. [11], Sec. 4.4): choosing
ãA0 b̃A

0 ¼ 1, defining ka ≔ cAãA0 , and applying a slight
variation of formula (8), we get the null fields

φA0
1
…A0

2h
¼ eix

aka ãA0
1
…ãA0

2h
: ð17Þ

Now, perform an arbitrary linear transformation
Zα ↦ Z0α ¼ Tα

βZβ, and define A0
β ¼ AαTα

β ¼ ða0A; ã0A
0 Þ,

B0
β ¼ BαTα

β; C0
β ¼ CαTα

β. Let f0ðZÞ ≔ fðZ0Þ. Then, the
Penrose transform of f0 gives

φ0
A0
1
…A0

2h
¼

exp
h
αA0 γ

A0

αB0β
B0

i
ðαC0βC

0 Þ2hþ1
αA0

1
…αA0

2h
; ð18Þ

where αA
0 ¼ ixAA

0
a0A þ ã0A0

, etc. The prefactor can be
written as

1

ðαC0βC
0 Þ2hþ1

exp

�
αA0γA

0

αB0βB
0

�
¼ c1
jx− qj2ð2hþ1Þ exp

�
c2

jx−pj2
jx− qj2

�

for some constants c1 and c2 and some fixed points qa and
pa defined analogously to (14). [We also put jx − qj2≡
ðxa − qaÞðxa − qaÞ, etc.] Thus, a complex conformal trans-
formation of a plane wave (17) produces a new null, zero-
rest-mass field (18) with hopfion/knotted-like features. We
notice that for the electromagnetic case (h ¼ 1), similar
results were obtained in Ref. [20] (see also Ref. [19]). The
generalization (18) to arbitrary spin appears to be new. The
h ¼ 2 case might exhibit some interesting physical fea-
tures, as it transforms a plane gravitational wave to a
hopfion/knotted-like gravitational wave (which is different
from the gravitational hopfion considered in Refs. [17,18]).

B. Linearized black holes

By “linearized black hole,” we mean a spin-2 field
[h ¼ 2 in (5)] in CM, which formally looks the same as the
Weyl curvature spinor of a black hole (Petrov type D)
solution [11]. As explained in Ref. [11], such fields are
generated by twistor functions of the form

fðZÞ ¼ ½χðZÞ�−ðhþ1Þ; χðZÞ ¼ QαβZαZβ; ð19Þ

where h ¼ 2, andQαβ cannot be written as a product AðαBβÞ
of only two twistors. The h ¼ 1 case of (19) describes
electromagnetic analogues such as the Coulomb field, the
“magic” [21] (or “root-Kerr” [4]) field, or others (see
examples below).Wewill, however, leave h in (19) arbitrary,
so our construction also applies to higher-/lower-spin
analogs.
The facts that Qαβ ≠ AðαBβÞ and that any conformal

transformation of AðαBβÞZαZβ gives A0
ðαB

0
βÞZ

αZβ suggest
that linearized black holes (and higher-/lower-spin analogs)
cannot be obtained from complex conformal transforma-
tions of elementary states. However, we should be more
careful since these are facts about representatives and not
about cohomology classes. In other words, one would need
to prove that the cohomology classes of (19) and (10)

1Indeed, this elementary observation was one of our basic
motivations for this work.
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cannot be connected by a linear transformation of the
twistor variables. We will not attempt to do this and will
simply study the case (19) separately.
For any (non-negative) integer h, the zero-rest-mass

fields generated by (19) can be obtained as a particular case
of formula (8), with r ¼ s ¼ hþ 1. This is because on a
generic twistor line Lx, using the incidence relation (1),
we get χjLx

¼ KA0B0
πA0πB0 for some symmetric KA0B0

, which
can always be decomposed into principal spinors as
KA0B0 ¼ αðA0

βB
0Þ, and, assuming the generic case

KA0B0
KA0B0 ≠ 0, we have αA0βA

0 ≠ 0. The spinors αA0 and
βA0 contain the information of the roots of the second-order
homogeneous polynomial χjLx

¼ KA0B0
πA0πB0 . More explic-

itly, in terms of a coordinate ζ ¼ π10
π00

on the Riemann sphere

of x, we have χjLx
¼ ðπ00 Þ2ðAζ2 þ 2Bζ þ CÞ, where

A ¼ K1010 , B ¼ K0010 , C ¼ K0000 . The roots are then

ζ� ¼ 1

A
ð−B� ΔÞ; Δ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AC

p
: ð20Þ

Putting αA
0 ¼ ffiffiffiffi

A
p ðoA0 þ ζþιA

0 Þ, βA0 ¼ ffiffiffiffi
A

p ðoA0 þζ−ι
A0 Þ, we

get KA0B0 ¼ αðA0
βB

0Þ as required. We also see that αA0βA
0 ¼

−2Δ. Finally, defining a spin frame α̂A0 ¼ 1

ðαB0βB
0 Þ1=2 αA0 ,

β̂A0 ¼ 1

ðαB0βB
0 Þ1=2 βA0 , we can express the field generated by

(19) as

φA0
1
…A0

2h
¼ k

Δhþ1
α̂ðA0

1
…α̂A0

h
β̂A0

hþ1
…β̂A0

2hÞ; ð21Þ

where α̂A0 β̂A
0 ¼ 1, and we redefined the constant k. From the

invariant expression

φA0
1
…A0

2hφA0
1
…A0

2h
∝

1

Δ2ðhþ1Þ ; ð22Þ

we see that the field is not null and that it is singular atΔ ¼ 0.
This will be useful for physical interpretation.
The case h ¼ 1 (Maxwell fields) has a simple description

in tensor terms: defining F ab ¼ φA0B0ϵAB, a calculation
gives

F ¼ k
Δ3

�ðA − CÞ
2

ðdt ∧ dxþ idy ∧ dzÞ

þ Bðdt ∧ dzþ idx ∧ dyÞ

þ ðAþ CÞ
2

ðdz ∧ dxþ idy ∧ dtÞ
�
: ð23Þ

1. Schwarzschild and Plebański-Demiański

Consider the twistor function (19) with

χðZÞ ¼ Z0Z3 − Z1Z2: ð24Þ

On a generic twistor line Lx, we get A ¼ xþiyffiffi
2

p , B ¼ zffiffi
2

p , C ¼
− ðx−iyÞffiffi

2
p (we omit an overall factor of i). The function Δ in

(20) is

Δ ¼ 1ffiffiffi
2

p r; r ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
; ð25Þ

and the roots are ζ� ¼ −z�r
xþiy . The singularity region Δ ¼ 0

of the field (21) is then x ¼ y ¼ z ¼ 0 (t arbitrary), which
we can interpret as Coulomb/Schwarzschild-like behavior.
For example, for h ¼ 1 and h ¼ 2,

F ¼ k
r2

½dt ∧ dr − ir2 sin θdϕ ∧ dθ�;

φA0B0C0D0 ¼ k
r3

α̂ðA0 α̂B0 β̂C0 β̂D0Þ; ð26Þ

where ðr; θ;ϕÞ are standard spherical coordinates, defined
by xþ iy ¼ r sin θeiϕ, z ¼ r cos θ. The field F is precisely
the (self-dual) Coulomb field, while the spin-2 field is the
linearized Schwarzschild solution.
Now, consider a linear transformationZα↦Z0α ¼Tα

βZβ,
with

Tα
β ¼

0
BBBBBB@

1 0 cffiffi
2

p 0

0 1 0 − cffiffi
2

p

− 1

c
ffiffi
2

p 0 1
2

0

0 − 1

c
ffiffi
2

p 0 1
2

1
CCCCCCA

ð27Þ

for some c ∈ C, c ≠ 0. One can check that detðTα
βÞ ¼ 1, so

Tα
β ∈ SLð4;CÞ. Following theprescription (7)with (19) and

(24), we get

χ0ðZÞ ≔ χðZ0Þ ¼
ffiffiffi
2

p

c

�
Z0Z1 þ c2

2
Z2Z3

�
: ð28Þ

After some straightforward calculations, the newΔ (20), now
denoted Δ0, is

Δ0 ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxaxa − c2Þ2 − 4c2ðx2 þ y2Þ

q
: ð29Þ

To have an interpretation of the new field, we must analyze
the set of points on space-timewhereΔ0 ¼ 0. To this end, we
separate c into real and imaginary parts as

c ¼ aþ ib; ð30Þ

with a, b real. Writing also ð4Δ0Þ2 ¼ Rþ iI (withR, I real),
we get
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R ¼ ðxaxaÞ2 þ a4 þ b4 − 6a2b2

þ 2ða2 − b2Þðz2 − t2 − x2 − y2Þ;
I ¼ 4abða2 − b2 þ z2 − t2 − x2 − y2Þ; ð31Þ

so Δ0 ¼ 0 iff R ¼ I ¼ 0. The condition I ¼ 0 gives
t2 − z2 þ x2 þ y2 ¼ a2 − b2. Replacing in R ¼ 0, we get
also t2 − z2 − ðx2 þ y2Þ ¼ �ða2 þ b2Þ. Theþ sign leads to
t2 − z2 ¼ a2 and x2 þ y2 ¼ −b2, while the − sign leads to
z2 − t2 ¼ b2 and x2 þ y2 ¼ a2. Assuming the generic case
a ≠ 0, b ≠ 0 (see the next example for other cases), we find

Δ0 ¼ 0 ⇔ z2 − t2 ¼ b2 and x2 þ y2 ¼ a2: ð32Þ

This is exactly the singular structure of the Plebański-
Demiański field [22]: two accelerating ring singularities
x2 þ y2 ¼ a2, each moving on one branch of the hyper-
bola z2 − t2 ¼ b2.
To interpret (27) in space-time terms, we express it as a

composition of the basic transformations (3) and (4). We
find

Tα
β¼SαγUγ

β; Sαγ¼
�

δAC 0

1
c2τA0C δC

0
A0

�
; Uγ

β¼
�
δCB τCB

0

0 δB
0

C0

�
;

ð33Þ

where the components of τAB
0
are τ00

0 ¼ cffiffi
2

p ¼ −τ110 , τ010 ¼
τ10

0 ¼ 0 (see the Appendix for some useful identities).
Using (4), we see that Uα

β corresponds to a translation
along the vector field ξa, while Sαβ is a special conformal
transformation along sa ¼ 1

c2 ξ
a, where [recalling the def-

inition (30)]

ξa ¼ ð0; 0; 0;−iaþ bÞ: ð34Þ

Summarizing, we have the following proposition.
Proposition 2. The Plebański-Demiański field can be

obtained from the Schwarzschild field (for any spin h, in
particular for the linearized black hole solutions) by a
complex translation along ξa followed by a complex special
conformal transformation along sa ¼ 1

ðaþibÞ2 ξ
a, where ξa is

given by (34).
This provides an interpretation for the transformation for

Maxwell fields mentioned by Plebański and Demiański in
Ref. [22], Eq. (4.65). To have some intuition about the
appearance of two objects “out of one”; see the Conclusions.

2. Kerr and the C-metric

Let a be a real parameter, and consider

χðZÞ ¼ Z0Z3 − Z1Z2 þ
ffiffiffi
2

p
aZ2Z3: ð35Þ

Note that this function can be obtained from (24) by a linear
transformation (2) and (3) corresponding to a translation:
this is the twistor version of the (linearized) Newman-Janis
shift. We will, however, analyze this case independently
of (24). On twistor lines, we find A ¼ xþiyffiffi

2
p , B ¼ z−iaffiffi

2
p ,

C ¼ − ðx−iyÞffiffi
2

p , which gives

Δ ¼ 1ffiffiffi
2

p rc; rc ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − iaÞ2

q
¼ r − iaz=r;

ð36Þ

where r is defined to be the real part of rc. The singularity
region Δ ¼ 0 of the fields (21) is now x2 þ y2 ¼ a2, z ¼ 0
(t arbitrary). This ring singularity allows us to associate
(21) in this case to the (linearized) Kerr field and its higher-/
lower-spin analogs. For example, introducing a spheroidal
coordinate system ðr; θ;ϕÞ by xþ iy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θeiϕ,

z ¼ r cos θ, we find for the spin 1 and 2 cases

F ¼ k
ðr − ia cos θÞ2 ½dt ∧ ðdrþ ia sin θdθÞ

− sin θdϕ ∧ ða sin θdrþ iðr2 þ a2ÞdθÞ�; ð37Þ

φA0B0C0D0 ¼ k
ðr − ia cos θÞ3 α̂ðA0 α̂B0 β̂C0 β̂D0Þ: ð38Þ

The field (37) is the root-Kerr (or magic) solution [4], while
(38) is the linearized Kerr solution. So, we can interpret a as
an angular momentum parameter.
Consider now the transformation Zα ↦ Z0α ¼ Tα

βZβ

with

Tα
β ¼

0
BBBBB@

λ 0 0 0

0 λ 0 0

− λ
a
ffiffi
2

p 0 1
λ 0

0 λ
a
ffiffi
2

p 0 1
λ

1
CCCCCA
; ð39Þ

where λ ≠ 0 is a complex parameter. Following the
prescription (7) with (19) and (35), we find

χ0ðZÞ ≔ χðZ0Þ ¼
ffiffiffi
2

p

c

�
Z0Z1 þ c2

2
Z2Z3

�
; c ¼ 2a

λ2
:

ð40Þ

So, the new function χ0 is formally the same as (28), and the
new Δ0 is again given by (29) [although the parameter c is
now related to a different conformal transformation (39)
and (40)]. To interpret the new field, we analyze the set of
points whereΔ0 ¼ 0. This was already done below Eq. (32)
when c is genuinely complex, in which case the new
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solution is the Plebański-Demiański field. So, it remains to
analyze the cases c real or purely imaginary:

(i) Suppose first c purely imaginary, c≡ iα−1, α ∈ R.
Then, ð4Δ0Þ2 ¼ ðxaxa þ α−2Þ2 þ 4α−2ðx2 þ y2Þ, so
Δ0 ¼ 0 iff x2 þ y2 ¼ 0 ¼ xaxa þ α−2. This gives
x ¼ y ¼ 0, z2 − t2 ¼ α−2. These are two points
moving each on one branch of the hyperbola
z2 − t2 ¼ α−2: this is the C-metric field, with accel-
eration parameter α.

(ii) Suppose now c real (for concreteness assume
c > 0). Then, we can write the equation Δ0 ¼ 0

as ðx2 þ y2 þ z2 þ c2 − t2Þ2 ¼ 4c2ðx2 þ y2Þ. For
t ¼ 0, we have a ring singularity x2 þ y2 ¼ c2,
z ¼ 0. For fixed t ≠ 0, the equation describes a
torus, where t is the radius of the tube and c is the
distance from the center of the torus to the center of
the tube. As time progresses, the torus evolves
through the three possible tori2: the standard “ring
torus” for t < c, a “horn torus” (no hole) at t ¼ c,
and a “spindle torus” (self-intersecting) for t > c.
This toroidal singularity is quite peculiar, and we are
not aware of a nonlinear solution in general relativity
that can be associated to this field. We note,
however, that this singularity has also been de-
scribed in Ref. [23].

Finally, we need to interpret (39) in space-time terms. To
this end, we note that

Tα
β¼Dα

γSγβ; Dα
γ¼

�
λδAC 0

0 λ−1δC
0

A0

�
; Sγβ¼

�
δCB 0

νC0B δB
0

C0

�
;

ð41Þ

where the components of νA0B are ν000 ¼ − λ2

a
ffiffi
2

p ¼ −ν101,
ν001 ¼ ν100 ¼ 0. Using (4), we see thatDα

β is a dilation with
parameter λ, and Sαβ is a special conformal transformation
along the vector field

sa ¼
�
0; 0; 0;

λ2

2ia

�
: ð42Þ

Proposition 3 provides a summary.
Proposition 3. The conformal transformation (39),

which consists of a complex special conformal trans-
formation along (42) followed by a complex dilation with
parameter λ, maps the Kerr field (for any spin h, in
particular for the linearized black hole solutions) to (i)
the Plebański-Demiański field if λ2 is genuinely complex,
ðiiÞ the C-metric field if λ2 is purely imaginary, and ðiiiÞ a
toroidal singularity if λ2 is real.
Note that the Schwarzschild field can also be trans-

formed to the C-metric field and to the toroidal singularity

[by assuming a ¼ 0 or b ¼ 0 in (30)]. On the other hand,
given that the Plebański-Demiański field can be obtained
from the Schwarzschild field by a translation followed by a
special conformal transformation, and that the Kerr field is
itself obtained from a translation of Schwarzschild, one
might think that to go from Kerr to Plebański-Demiański
one only needs a special conformal transformation. But the
above result shows that a complex dilation is also needed.
In view of the definition of c in (40), we see that the action
of the dilation is to effectively complexify the angular
momentum parameter (so that it becomes c).

C. Spherical scalar waves

As a final example of complex conformal transforma-
tions, we can try to combine the twistor functions of
linearized black holes (19) with the ones of plane waves
(16). That is, consider

fðZÞ ¼ expðCαZα=BαZαÞ
ðQαβZαZβÞhþ1

ð43Þ

where Bα ¼ ð0; bA0 Þ, Cα ¼ ðcA; 0Þ, and Qαβ cannot be
expressed as a product of only two twistors. For spin other
than zero (i.e., h > 0), the calculation of the contour
integrals involved in the zero-rest-mass fields associated
to (43) is quite involved. We will, for simplicity, restrict
ourselves to the scalar case h ¼ 0. A calculation shows that
the Penrose transform of the twistor function (43) with
h ¼ 0 is

φðxaÞ ¼ 1

αA0βA
0 exp

�
i
xAA

0
cAαA0

αB0bB
0

�
ð44Þ

(in this and the following expressions, we will omit
irrelevant overall numerical constants), where αA0 and
βA0 are the spinor fields defined by ðQαβZαZβÞjLx

¼
αA

0
βB

0
πA0πB0 . Choosing cA ¼ oA, bA

0 ¼ 1ffiffi
2

p ιA
0
and recalling

the definitions (20) of Δ and ζ�, we get

φðxaÞ ¼ eiðtþzþζþðxþiyÞÞ

Δ
: ð45Þ

For example, choosing Qαβ, Q0
αβ to be given by (24) and

(28), respectively, we get the scalar waves

φðxaÞ ¼ 1

r
exp ðiðtþ rÞÞ; ð46aÞ

φ0ðxaÞ ¼ 1

Δ0 exp
�
iðtþ zÞ þ i

2ðt − zÞ

× ð−t2 þ z2 − x2 − y2 þ c2 þ Δ0Þ
�
; ð46bÞ

2See, e.g., https://en.wikipedia.org/wiki/Torus.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
andΔ0 is defined in (29). We see

that (46a) represents a spherical scalar wave, and (46b) is a
much more complicated configuration, but the two solu-
tions (46a) and (46b) are related by the complex conformal
transformation mentioned in Proposition 2.

IV. COMMENTS ON NONLINEAR FIELDS

As emphasized by Newman [24], Flaherty [2], and
others, the fact that complex coordinate transformations
produce new solutions to real field equations can be
understood (assuming real analyticity) via consideration
of holomorphic extensions, holomorphic coordinate trans-
formations, and the imposition of new reality conditions.
The coordinate transformations should also preserve some
additional structure, e.g., the Minkowski metric, or the
conformal structure in the current manuscript.3

While the above works well for linear theories in
(conformally) flat space-time and it has been the topic
of this manuscript, the understanding of the fully nonlinear
Newman-Janis shift [1] in general relativity is much less
satisfactory. In general relativity, one would wish to
preserve the Einstein equations, i.e., to map a solution
to another solution. This is guaranteed to be the case if
one considers holomorphic extensions. The nonlinear
Newman-Janis shift, however, does not correspond to a

holomorphic extension, and the fact that it produces a new
solution does not seem to be an automatic consequence of
the procedure. What is more, the transformation between
Schwarzschild and Kerr cannot be holomorphic (at least
in the above sense of analytic continuation), since, as
explained by Newman [24], the solutions have different
numbers of holomorphic Killing vectors.
As is well known, the main ambiguity in the nonlinear

Newman-Janis shift is in the way in which some functions
in the metric must be complexified. In particular, the
function 2m

r must be replaced by m
r þ m

r̄ in order for the
trick to work. More generally (see Ref. [25]), the idea is that
a function fðrÞ must be replaced by a function Fðr; r̄Þ that
reduces to fðrÞ on the real slice. We can actually use this to
give a very simple version of the trick, as follows. (We are
not aware that this form of the trick has been given before.)
Consider a complex manifold with local complex coor-
dinates ðT; X; Y; ZÞ and a complex nonholomorphic metric

g ¼ dT2 − dX2 − dY2 − dZ2 þΦðR; R̄ÞðLadxaÞ2; ð47Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
and

ΦðR; R̄Þ ¼ m
R
þm

R̄
ð48Þ

Ladxa ¼
1ffiffiffi
2

p
�
dT þ

�
1 − jζþj2
1þ jζþj2

�
dZ þ

�
ζþ þ ζ̄þ
1þ jζþj2

�
dX þ i

�
ζþ − ζ̄þ
1þ jζþj2

�
dY

�
; ð49Þ

ζþ ¼ −Z þ R
X þ iY

; ð50Þ

withm a real parameter. Define two real slices S1¼fT¼ t;
X¼ x;Y¼ y;Z¼ zg and S2 ¼ fT ¼ t; X ¼ x; Y ¼ y;
Z ¼ z − iag, where t, x, y, and z are real and a is a real
parameter. Then, a calculation shows that g restricted to S1
is the Schwarzschild metric, and g restricted to S2 is the
Kerr metric.
The above version of the trick singles out Schwarzschild

and Kerr from a complex space by simply selecting two
different real slices related in the usual Newman-Janis way
z → z − ia (in particular, it does not involve a change from
spherical to spheroidal coordinates—see Ref. [26]—and it
also shows that the null vectors La of Schwarzschild and

Kerr correspond to two points of the Riemann sphere
related by z → z − ia). However, the procedure is arbitrary
in that, in going from Schwarzschild to Kerr, one still
has to make the arbitrary replacement 2m

r → m
r þ m

r̄ in (48).
Moreover, replacements of this sort, without any justifica-
tion, can be used to argue that any two metrics are “related”
by a complex coordinate transformation. Let us illustrate this
with a transformation from Schwarzschild to the C-metric.
Proposition 4. Consider a complex manifold with

local complex coordinates ðU;V;W; W̃Þ and a nonholo-
morphic metric

g ¼ Ω−2½2ðdUdV þ dWdW̃Þ þ F ðU; ŪÞdV2

þ GðW; W̄ÞdW̃2�; ð51Þ

where, separating ðU;V;W; W̃Þ into real and imaginary
parts according to U ¼ uþ iu0, V ¼ v − iv0,W ¼ wþ iw0,
W̃ ¼ w̃ − iw̃0:

ΩðU; Ū;W; W̄Þ ¼ uþ αðw0 − u0Þ; ð52aÞ

3Otherwise, all (say, non-null) Maxwell fields could be
deemed as “equivalent,” since, given any two of them, one
can be mapped to the other by the transformation that takes the
Darboux coordinates of the first to the Darboux coordinates of the
other. Mathematically, this is the statement that all symplectic
forms are locally equivalent.
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F ðU; ŪÞ ¼ u2ð1 − 2muÞ − ðu02 − 1Þð1þ 2mαu0Þ; ð52bÞ

GðW; W̄Þ ¼ 1 − w2 − ð1 − w02Þð1þ 2αmw0Þ; ð52cÞ

and m and α are two real parameters. Define two real
slices by S1 ¼ fU ¼ uþ i; V ¼ v;W ¼ wþ i; W̃ ¼ w̃g
and S2¼fU¼ iu0;V¼−iv0;W¼1þ iw0;W̃¼−iw̃0g. Then,
Eq. (51) restricted to S1 is the Schwarzschild metric, and
Eq. (51) restricted to S2 is the C-metric.
To show this, notice first that

gjS1 ¼
1

u2
½2ðdudvþ dwdw̃Þ þ u2ð1 − 2muÞdv2

þ ð1 − w2Þdw̃2�; ð53Þ

gjS2 ¼
1

α2ðw0 − u0Þ2 ½2ðdu
0dv0 þ dw0dw̃0Þ þ ðu02 − 1Þ

× ð1þ αmu0Þdv02 þ ð1 − w02Þð1þ 2αmw0Þdw̃02�;
ð54Þ

and define new coordinates ðts; r; θ;ϕÞ and ðτ; x; y;φÞ by

u¼1

r
; v¼ tsþ

Z
dr

1−2m
r

; w¼−cosθ; w̃¼ iϕ −
Z

dθ
sinθ

;

ð55Þ

u0 ¼−y; v0 ¼ τþ
Z

dy
FðyÞ ; w0 ¼x; w̃0 ¼ iφ −

Z
dx

GðxÞ ;

ð56Þ

where FðyÞ¼ðy2−1Þð1−2αmyÞ,GðxÞ¼ð1−x2Þð1þ2αmxÞ.
Then, a short calculation gives the standard forms

gjS1 ¼
�
1 −

2m
r

�
dt2s −

dr2

ð1 − 2m
r Þ

− r2ðdθ2 þ sin θ2dϕ2Þ;

ð57Þ

gjS2 ¼
1

α2ðxþ yÞ2
�
FðyÞdτ2 − dy2

FðyÞ −
dx2

GðxÞ −GðxÞdφ2

�
:

ð58Þ

The above shows that one can start from the
Schwarzschild metric written in the form (53), “complex-
ify” the functions u2ð1 − 2muÞ, ð1 − w2Þ in such a way so
as to obtain (52b) and (52c), and then make a complex
coordinate change (or choose a new real slice) and obtain
the C-metric (54) and (58). But this procedure is obviously
completely arbitrary, since there are many ways of com-
plexifying the functions in (53).
We note that the (double-Kerr-Schild) form of the

Schwarzschild and C metrics (53) and (54) was found

by using the facts that the space-times are conformally
(Lorentzian) Kähler [2] and that any Kähler metric has a
double Kerr-Schild structure (as is not hard to show). The
metrics inside the square brackets in (53) and (54) are
actually the Kähler metrics associated to these space-times
[27]. (The fact that these solutions are double-Kerr-Schild
is known from the work of Plebański and Demiański [22],
but it is perhaps not straightforward to deduce (53) and (54)
from the expressions given in Ref. [22].)

V. CONCLUSIONS

Wegave a simple procedure for relating different solutions
to the zero-rest-mass field equations via complex coordinate
transformations, by exploiting the fact that the conformal
group acts linearly on twistor space. In particular, we showed
that a complex translation followed by a complex special
conformal transformation of the (linearized) Schwarzschild
field produces the (linearized) Plebański-Demiański field.
We also gave numerous other examples (constant fields,
hopfions, waves, etc.) and (hopefully) provided a twistor
intuition of why some of these transformations can be
anticipated without calculation.
The fact that a complex translation of a pointlike source

produces a rotating source can already be intuitively
anticipated from the Appell trick [7] at the Newtonian
level, while the Newman-Janis shift generalizes this to the
relativistic level. Interestingly, a complex special conformal
transformation has the effect of producing either two
accelerating ring singularities, two accelerating pointlike
singularities, or a curious toroidal singularity (depending
on the values of the parameters involved in the trans-
formation). The apparent transformation of “one object into
two” has to do with the fact that a special conformal
transformation must be more properly applied in confor-
mally compactified Minkowski space, and from the point
of view of this space, a Coulomb field is actually double-
valued (as it changes sign when crossing conformal
infinity); see Ref. [12], Sec. 9.4.
While our procedure for linear fields is unambiguous and

essentially algorithmic, we argued that an analogous con-
struction for nonlinear fields is not so clear, at least not in the
way in which the usual nonlinear Newman-Janis shift is
performed (that is, at themetric level).We illustrated thiswith
a “complex transformation” that relates the (nonlinear)
Schwarzschild and C metrics, but we noticed that the
procedure is completely artificial and nonunique. Part of
the difficulty has to do with the fact that one is attempting to
perform the complex transformation at the metric level,
whereas in field theory the transformation is done in the
curvature tensor (Maxwell,Weyl, and higher spin),which is a
holomorphic object as it has definite chirality. In any case,
since the recent applications of the Newman-Janis shift to
amplitudes [4,5] make use of the field strength version of the
trick, it is possible that the approach in this paper can be
applied to examine other kinds of scattering processes.
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APPENDIX: CONVENTIONS

The complexified spin group SLð2;CÞ × SLð2;CÞ has
two independent basic representations, ð1

2
; 0Þ and ð0; 1

2
Þ; we

say that they have “opposite” chirality, and we indicate this
with the two different kinds of indices A; B;… and
A0; B0;…, which take values 0,1 in both cases. The vector
representation is ð1

2
; 1
2
Þ ≅ ð1

2
; 0Þ ⊗ ð0; 1

2
Þ, so it has indices

a ≅ AA0, b ≅ BB0, etc. Accordingly, the (complexified)
Minkowskian coordinates ðt; x; y; zÞ of a point xa are
encoded in the 2 × 2 matrix xAA

0
as

x00
0 ¼ 1ffiffiffi

2
p ðtþ zÞ; x01

0 ¼ 1ffiffiffi
2

p ðxþ iyÞ;

x10
0 ¼ 1ffiffiffi

2
p ðx − iyÞ; x11

0 ¼ 1ffiffiffi
2

p ðt − zÞ: ðA1Þ

These components can be thought of as taken with respect
to two constant spin dyads ðoA; ιAÞ, ðoA0 ; ιA0 Þ (which are
in general not complex conjugates): x00

0 ¼ xAA
0
oAoA0 ,

x01
0 ¼ xAA

0
oAιA0 , x10

0 ¼ xAA
0
ιAoA0 , x11

0 ¼ xAA
0
ιAιA0 . We

raise and lower spinor indices with the (skew-symmetric)
spin metrics ϵAB and ϵA0B0 and their inverses, according to
ωA ¼ ϵABωB, φA ¼ φBϵBA, etc.
Similarly, the Minkowskian components of a vector

field V¼Vt
∂tþVx

∂xþVy
∂yþVz

∂z ≅ ðVt;Vx;Vy;VzÞ are
equivalently encoded in the spinor components

V000 ¼ 1ffiffiffi
2

p ðVt þ VzÞ; V010 ¼ 1ffiffiffi
2

p ðVx þ iVyÞ;

V100 ¼ 1ffiffiffi
2

p ðVx − iVyÞ; V110 ¼ 1ffiffiffi
2

p ðVt − VzÞ: ðA2Þ

The inverse transformation is

Vt ¼ ðV000 þ V110 Þffiffiffi
2

p ; Vx ¼ ðV010 þ V100 Þffiffiffi
2

p ;

Vy ¼ ðV010 − V100 Þffiffiffi
2

p
i

; Vz ¼ ðV000 − V110 Þffiffiffi
2

p : ðA3Þ

Putting VAA0 ¼ ϵABϵA0B0VBB0
, we also have

V000 ¼ V110 ; V100 ¼ −V010 ;

V010 ¼ −V100 ; V110 ¼ V000 : ðA4Þ
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