
METHOD

The power and pitfalls of amino acid carbon stable isotopes
for tracing origin and use of basal resources in food webs

Kim Vane1 | Matthew R. D. Cobain2,3 | Thomas Larsen4

1Department for Biosciences, Alfred
Wegener Institute for Polar and Marine
Research, Bremerhaven, Germany
2School of Natural Sciences – Zoology,
Trinity College Dublin, The University of
Dublin, Dublin, Leinster, Ireland
3Department of Biological and
Environmental Science, University of
Jyväskylä, Jyväskylä, Keski-Suomi,
Finland
4Department of Archaeology, Max Planck
Institute of Geoanthropology, Jena,
Thüringen, Germany

Correspondence
Kim Vane
Email: kim.vane@awi.de

Funding information
German Federal Ministry of Education
and Research (BMBF), Grant/Award
Numbers: 03F0800A, 03V01459; Irish
Research Council, Grant/Award Number:
IRCLA/2017/186; Research Council of
Finland, Grant/Award Number: 351860;
Natural Environment Research Council,
Grant/Award Number: NE/R012520/1

Handling Editor: Hugh Henry

Abstract

Natural and anthropogenic stressors alter the composition, biomass, and nutri-

tional quality of primary producers and microorganisms, the basal organisms

that synthesize the biomolecules essential for metazoan growth and survival

(i.e., basal resources). Traditional biomarkers have provided valuable insight

into the spatiotemporal dynamics of basal resource use, but lack specificity in

identifying multiple basal organisms, can be confounded by environmental

and physiological processes, and do not always preserve in tissues over long

timescales. Carbon stable isotope ratios of essential amino acids (δ13C-EAA)
show remarkable promise in identifying and distinguishing clades of basal

organisms with unique δ13C-EAA fingerprints that are independent of trophic

processing and environmental variability, providing unparalleled potential in

their application. Understanding the biochemical processes that underpin

δ13C-AA data is crucial, however, for holistic and robust inferences in ecologi-

cal applications. This comprehensive methodological review, for the first time,

conceptualizes these mechanistic underpinnings that drive δ13C-EAA finger-

prints among basal organisms and incorporates δ13C values of non-essential

amino acids that are generally overlooked in ecological studies, despite the

gain of metabolic information. We conduct meta-analyses of published data to

test hypothesized AA-specific isotope fractionations among basal organism

clades, demonstrating that phenylalanine separates vascular plant δ13C-EAA
fingerprints, which strongly covaries with their phylogeny. We further explore

the utility of non-essential AAs in separating dietary protein sources of archae-

ological humans, showing the differences in metabolic information contained

within different NEAAs. By scrutinizing the many methodologies that are

applied in the field, we highlight the absence of standardized analytical proto-

cols, particularly in sample pretreatments leading to biases, inappropriate use

of statistical methods, and reliance on unsuitable training data. To unlock the

full potential of δ13C-EAA fingerprints, we provide in-depth explanations on

knowledge gaps, pitfalls, and optimal practices in this complex but powerful

approach for assessing ecosystem change across spatiotemporal scales.
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INTRODUCTION

Food webs are increasingly impacted by anthropogenic
stressors such as accelerated climate change, biodiversity
loss, habitat destruction, and pollution (Blanchard et al.,
2012; Hoegh-Guldberg & Bruno, 2010; Kȩdra et al., 2015).
These stressors can disrupt the natural processes and
environmental cycles that determine the timing, location,
and magnitude of primary producer and microbe produc-
tivity (Eker-Develi et al., 2006; Vining et al., 2022).
Higher trophic-level organisms rely on suites of
biomolecules—referred to as basal resources—
synthesized by primary producers and microbes (basal
organisms). Changes in the abundance and nutritional
quality of basal organisms can therefore have
far-reaching implications for the dynamics, structure,
functioning, and stability of food webs (Kortsch et al.,
2015; Nakazawa, 2015; Svanbäck et al., 2015). However,
changes in basal organisms and the assimilation of their
basal resources by higher trophic levels occur across spa-
tiotemporal scales and on fine-scale taxonomic levels
(Chidawanyika et al., 2019; McMeans et al., 2015;
Raubenheimer et al., 2012). A precise and consistent
approach to tracing the origin of basal resources in food
webs, therefore, facilitates assessing the vulnerability of
species, food webs, and entire ecosystems to environmen-
tal change (Moloney et al., 2011).

Among the analytical approaches for tracing trophic
transfers (e.g., gut content analysis, metabarcoding, fatty
acid profiling, and stable isotope analyses), measuring
carbon stable isotope compositions has emerged as a
standard approach for quantifying the pathways of
energy and nutrients in food webs. The relative abun-
dance of heavy (13C) to light (12C) carbon isotopes, nor-
malized to the international standard (Vienna Pee Dee
Belemnite, VPDB) and expressed as δ13C per mille (‰)
values, are measured within whole organisms or bulk tis-
sues. The δ13C values of consumer tissues are then com-
pared with their potential resources. δ13C values are
highly suited to trace basal resources because carbon is
abundant, ubiquitous, and δ13C values of basal organisms
are often habitat or taxon specific. However, bulk δ13C
values of basal organisms can vary substantially with the
environment (Casey & Post, 2011; Magozzi et al., 2017;
Peterson & Fry, 1987), which adds complexity to
reconstructing basal resource use. Moreover, bulk δ13C
values, as only a single tracer, have a limited ability to
distinguish between the multitude of basal organisms in

a given ecosystem and contributions from microorgan-
isms are frequently underappreciated due to the logistical
challenge of sampling them in situ (Casey & Post, 2011).

To address the constraints of bulk tissue analysis,
researchers increasingly analyze δ13C values of individual
biomolecules (Nielsen et al., 2017; Ruess &
Müller-Navarra, 2019). Basal organisms take up external
carbon to synthesize their own complex biomolecules.
Following ingestion, digestion, and absorption, these bio-
molecules are assimilated into consumer tissues with
minimal modification of their carbon skeleton, catabo-
lized for energy, or used in the synthesis of new biomole-
cules (Boecklen et al., 2011). Individual fatty acids have
proven valuable for tracing basal resources to consumers
in modern food webs (Burian et al., 2020). However, fatty
acids are less suited for past basal resource use recon-
structions because of their low concentration and degra-
dation in most structural tissues that persist in
palaeoecological records (Geigl et al., 2004). The δ13C
values of the 20 proteinogenic amino acids (AAs) show
considerable promise in identifying specific basal organ-
isms from primary producers and microbial organisms.
δ13C-AA values can trace the carbon transfer from basal
organisms to higher trophic levels, irrespective of envi-
ronmental conditions (Elliott Smith et al., 2022; Larsen
et al., 2009; Vane et al., 2023), serving as powerful spatio-
temporal tracers of basal resource use. As AAs exhibit
stable preservation in fossilized biogenic carbonates such
as dinosaur eggshells, coral skeletons, and fish otoliths or
other preserved structural tissues (Abelson, 1954; Hare
et al., 1991; Ma et al., 2021; Mora et al., 2018), δ13C-AA
values allow for detailed retrospective inferences of basal
resource use by animals across contemporary, paleonto-
logical, and geological records.

Animals cannot synthesize 9 proteinogenic AAs de
novo. While the non-synthesizable AAs, or essential
amino acids (EAAs, Wu et al., 2014), must primarily
come from dietary sources, gut microbes can synthesize
them from various precursors including carbohydrates
and NEAAs (Figure 1). In animals with adequate protein
intake, microbial contribution to EAA requirements
appears limited (Bergen, 2015). These contributions can
become substantial in consumers specialized on ligneous,
protein-poor diets (e.g., Ayayee et al., 2016; Larsen,
Ventura, et al., 2016). In well-nourished animals that do
not rely on coprophagy (Torrallardona et al., 2003), EAAs
are predominantly routed from dietary proteins to tis-
sues, resulting in negligible tissue-diet δ13C offsets
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F I GURE 1 Schematic representation of the sources, processes, and environmental effects that contribute to the δ13C values of

synthesized proteinogenic AAs (Ala, alanine; Arg, arginine, Asn, asparagine; Asp, Asparagine; Cys, cysteine; Gly, glycine; Gln, glutamine;

Glu, glutamic acid; His, histidine; Ile, isoleucine; Leu. leucine, Lys, lysine; Met, methionine; Phe, phenylalanine; Pro, proline; Ser, serine;

Thr, threonine, Trp, tryptophan; Tyr, tyrosine; Val, valine) in two prototrophs—a heterotrophic prokaryote and a photosynthetic eukaryote,

following Equations (1)–(3) in section Conceptualizing amino acid δ 13C values in basal organisms. Within the eukaryotic cell,

membrane-bound organelles are signified by rectangles with dashed lines: mitochondria (red), and plastids (green) including the chloroplast.

Metabolic pathways are based on Chen et al. (2018) and Gupta and Gupta (2021). Detailed metabolic networks are provided in Appendix S1:

Figures S1 and S2. Acetyl-CoA, acetyl coenzyme A; Acq., carbon acquisition; CBB, Calvin–Benson–Bassham; Env., environment; Ext.,

external; F6P, fructose-6 phosphate; G6P, glucose-6 phosphate; TCA, tricarboxylic acid. The illustration was created with BioRender.com.
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(McMahon et al., 2010; McMahon, Polito, et al., 2015;
Takizawa et al., 2017; Wang, Wan, et al., 2019). EAAs
have a powerful source-diagnostic potential to trace basal
resource transfer to animal biomass as broad taxonomic
groups such as algae, bacteria, fungi, and vascular plants
each have characteristic δ13C-EAA patterns: the relative
differences in δ13C values between EAAs (Elliott Smith
et al., 2018, 2022; Larsen et al., 2013, 2015; Lynch
et al., 2016; Scott et al., 2006; Stahl et al., 2023). Distinct
δ13C-EAA patterns among basal organisms that remain
largely consistent across variable physiochemical condi-
tions and through time have been typically referred to as
δ13C-EAA fingerprints (Larsen et al., 2009). For the
metazoan-synthesizable AAs, commonly termed
the non-essential amino acids (NEAAs), animals may
rely both on dietary sources and de novo synthesis.
However, some NEAAs can be considered conditionally
essential for metazoans, particularly during stages of
rapid growth when the rate of utilization outpaces the
rate of synthesis, constraining normal physiological and
metabolic processes without dietary supplementation
(Eisert, 2011; Hou et al., 2015; Tresia et al., 2023;
Wu, 2009).

Despite the increasing use of δ13C-AA values in
archaeological and ecological food web studies, apprecia-
tion of the mechanistic processes that underpin δ13C-AA
values and the δ13C-EAA fingerprint approach is limited
(Besser et al., 2022; Nielsen et al., 2017; Ruess &
Müller-Navarra, 2019; Whiteman et al., 2019; Yun
et al., 2022). Moreover, the wide variety of analytical and
statistical methodologies currently in use may be
inhibiting robust applications, and the complementary
metabolic and nutritional information concealed in con-
sumer δ13C values of NEAAs is generally overlooked
(δ13C-NEAA, McMahon, Polito, et al., 2015). To progress
the field and unlock the full potential of δ13C-AA data, a
solid mechanistic understanding of the underlying bio-
chemistry is required, along with identifying pitfalls and
establishing consistent methodologies. This review pro-
vides the first comprehensive framework of the applica-
tion of carbon isotopes in AAs for inferring the origin
and use of basal resources within food webs. By covering
the full process from biochemical mechanisms and sam-
pling to analysis and interpretation, we identify potential
pitfalls and highlight areas for further investigation. We
build a conceptual framework for understanding the fac-
tors influencing δ13C-AA values and establish a standard-
ized terminology in the field (see Table 1). Postulating on
the specific mechanisms that give rise to the discrimina-
tory power of δ13C-EAA patterns, we explore these
hypotheses using a global data compilation. We expand
our framework to incorporate the additional complexities
of NEAAs and demonstrate how inclusion of δ13C-NEAA

values can provide additional insight into spatiotemporal
resource use and individual metabolisms. Emphasizing
the importance of accurate measurements, we highlight
best practices within analytical protocols and address the
critical issue of correctly applying mixing models for
robust quantification of basal resource use by consumers.
With proper use of the wealth of information provided by
δ13C-AA values, the specific drivers of food web produc-
tivity and their spatiotemporal dynamics can be explored,
providing a powerful and currently unprecedented way
to assess changing ecosystems.

FACTORS SHAPING AMINO ACID
δ13C VALUES IN BASAL ORGANISMS

A thorough knowledge of the metabolic pathways that
shape intermolecular 13C distributions is essential for
understanding how and why δ13C-AA patterns in basal
organisms vary across the diversity of life. The rigorous
application of δ13C-AA patterns, therefore, requires the
development of a mechanistic framework (Hayes, 2001),
which has so far been lacking. While variations between
different biosynthetic pathways have been acknowledged
as a key driver in diverging δ13C-AA patterns among taxa
(Larsen et al., 2009), ecological applications of δ13C-AA
patterns are still mostly driven by phenomenological
observations (e.g., Besser et al., 2022; Larsen et al., 2012;
Stahl et al., 2023). By conceptualizing the processes that
give rise to δ13C-AA values in basal organisms, we high-
light how specific mechanisms can dominate the relative
δ13C offsets of certain AAs, underpinning the distinction
of δ13C-AA patterns between taxa. Explicit definitions for
δ13C-AA terminology are proposed to establish an unam-
biguous basis for subsequent discussions and interpreta-
tions. By establishing this foundation, we lay the
groundwork for further developing the applications of
δ13C-AA in ecological research.

Conceptualizing amino acid δ13C values in
basal organisms

Basal organisms are those that can synthesize basal
resources de novo, here specifically considered the full
suite of 20 proteinogenic AAs. The ability to synthesize
particular biomolecules, such as AAs, is termed prototro-
phy (the inability being auxotrophy). The majority of
basal organisms, the AA prototrophs, by biomass are
autotrophic, relying on photo- or chemosynthesis to fix
inorganic carbon for the synthesis of all their biomole-
cules, including AAs. However, some basal organisms
such as fungi and bacteria are heterotrophic and break
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down organic molecules into simple 2- or 3-carbon com-
pounds for both chemical energy and de novo synthesis
of biomolecules (Hayes, 2001). The pathways from external
sources of (in)organic carbon to intracellular AA synthesis
can be generalized into two broad categories. The first is the
collection of processes involved in the uptake and conver-
sion of external carbon to internal pools of common precur-
sor molecules, which we refer to as carbon acquisition. The
second is the biochemical reactions that synthesize the spe-
cific AAs from these precursors (Figure 1). Mass-dependent
kinetic isotope fractionations associated with these biosyn-
thetic pathways result in stepwise changes in relative isoto-
pic ratios as either lighter or heavier carbon atoms diffuse
passively, are actively transported, or react in anabolic and
catabolic processes at different rates (Figure 2, Fry, 2006;
Hayes, 2001). The carbon isotope composition of individual

AAs therefore reflects the summation of all stepwise frac-
tionations from the isotopic composition of the initial car-
bon pool to the synthesis of AAs.

Synthesis pathways among AAs are unique and there-
fore comprise different summations of kinetic isotope
fractionations (Appendix S1: Figures S1 and S2). This con-
trasts with carbon acquisition where total isotopic fraction-
ation will be reflected relatively equally across AAs due to
common pools of precursor molecules. Basal organisms
use various sources of external carbon that have inherent
carbon isotope compositions. Rates of diffusion, transport,
and chemical reactions depend on various environmental
factors that cause isotopic fractionation during carbon
acquisition. The isotopic composition of external car-
bon also depends on various kinetic processes and
therefore will also vary with environmental conditions.

TAB L E 1 Glossary of terminology and associated quantitative measures used in carbon stable isotope analysis of amino acids.

Terminology Definition

Amino acids—essential
(EAA)

Proteinogenic amino acids that cannot be synthesized de novo by metazoans: histidine, isoleucine,
leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.

Amino acids—
non-essential (NEAA)

Proteinogenic amino acids that can be synthesized de novo by (most) metazoans: alanine, arginine,
asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine.

Auxotrophs Organisms that lack the capability to synthesize particular biomolecules de novo (applied here specifically
to EAA synthesis, antonym of prototrophs).

Basal organisms Primary producers and microbes that synthesize suites of biomolecules de novo from externally sourced
(in)organic carbon, considered to be the base of food webs.

Basal resources The suites of biomolecules (focusing on AAs in this review) synthesized de novo by basal organisms and
assimilated by consumers for normal physiological functioning.

Basal resource use
reconstruction

Estimating the proportions of basal resources synthesized by specific basal organism groups or clades that
have been assimilated into consumer tissues.

Facultative
EAA-prototrophs

Organisms that can synthesize EAAs de novo, but have the capacity to assimilate externally derived EAAs
for normal metabolic functioning.

Obligate EAA-prototrophs Autotrophs that synthesize all the EAAs they need solely from simple inorganic carbon sources fixed
through photo- or chemosynthesis.

Training data A compilation of δ13C-AA values, previously measured external to the current study, used to characterize
basal organisms in another study system.

Trophic discrimination
factor (TDF)

The isotopic offset between a consumer tissue and the assimilated diet, capturing isotope fractionations
due to metabolic processes.

Quantitative
terminology Definition

Acquired 13C-AA
data

Ratios of 13C to 12C in individual amino acids, uncorrected for measurement biases and not standardized to
VPDB.

Measured δ13C-AA
values

The VPDB standardized (δ) carbon stable isotope values of AAs, corrected for measurement protocol biases,
that are physically quantified in a sample.

Baseline δ13C-AA
values

The measured δ13C values of AAs in basal organism tissues.

δ13C-AA pattern The relative offsets between individual δ13C-AA values within a sample. For basal resource use reconstructions,
typically only the offsets between EAA are used (δ13C-EAA patterns).

δ13C-EAA fingerprint The minimum multivariate δ13C-EAA pattern space that is solely occupied by a group or collection of similar
basal organisms, encompassing the intragroup variability in δ13C-EAA patterns expressed by those organisms.

ECOLOGICAL MONOGRAPHS 5 of 41
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Taken together, the δ13C value of an AA in a basal
organism can be broadly formulated as:

δ13CAA� δ13CExt: +Env:×Ext:

+Acq:+Env:×Acq:+ SynthAA, ð1Þ

where δ13CAA is given by the δ13C value of the external
carbon, Ext.; plus any modifications to this value due to
environmental effects, Env., dependent on the nature of
the external carbon; plus the summed fractionations
associated with carbon acquisition, Acq.; plus any modifi-
cations due to environmental effects on the physiology
associated with carbon acquisition fractionation; plus the
summed fractionation associated with synthesis pathway,
Synth., which is AA specific (visualized in Figure 1).
Environmental gradients can modify the specific fraction-
ations associated with each AA synthesis pathway; how-
ever, these differences will likely be very small compared
with the overall average effect of the environment on
physiology and therefore carbon acquisition (Larsen
et al., 2015; Stahl et al., 2023, Figure 3a,b). From
Equation (1), the measured δ13C values of AAs in basal
organisms therefore depend on the carbon source, the
environment and phylogeny (via their fixation and syn-
thesis pathways). This aligns with the concept of multiple
isotopic baselines in bulk stable isotope approaches
that characterize the base of the food web contextualized
with in situ environmental conditions for different pro-
duction sources (e.g., Docmac et al., 2017; Søreide
et al., 2006). We therefore define measured δ13C-AA
values in basal organisms as baseline δ13C-AA values
(Figure 3a).

If we consider the isotopic fractionations of AA bio-
synthesis as relative differences (i.e., SynthAA averages to
zero) then they can be regarded as a relative ordination
centered on their mean value. We denote this relative
ordination of SynthAA specifically as (1jAA) in Figure 1.
Conceptually, this means that any non-zero average frac-
tionation across AA biosynthesis pathways will be incor-
porated as part of the acquisition term, but has the
advantage that the collection of AA biosynthesis fraction-
ations can be considered as a relative ordination that is
imposed onto the average baseline bulk (protein) δ13C
value of the basal organism:

Averageδ13CAA ¼1
n

Xn

i¼1

δ13CAA ˜ δ13CExt: +Env:×Ext:

+Acq:+Env:×Acq:, ð2Þ

where n is the number of AAs. It follows that the ordina-
tion can be determined as:

1jAAð Þ¼Baselineδ13CAA −Averageδ13CAA

¼ δ13CAA −
1
n

Xn

i¼1

δ13CAA: ð3Þ

The relative offset for each AA is simply the individ-
ual baseline δ13C-AA value minus the mean δ13C-AA
value of the basal organism (the non-weighted,
within-sample average δ13C-AA value), which we define
as the δ13C-AA pattern (Figure 3b). Expressing δ13C-AA
patterns via mean-centering is the standard approach
first introduced by Larsen et al. (2009, denoted as δ13CN).

A2A1
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F I GURE 2 A simple, hypothetical biochemical network within a eukaryotic cell, highlighting different processes that lead to isotopic

differences in synthesized biomolecules. Focal compounds are denoted by capital letters (A through to F) with numerical subscripts

distinguishing between different pools that may differ in isotopic composition. Secondary compounds are denoted as Rn in gray. Arrows

denote the flow of a compound from one pool to another, with solid arrows indicating a chemical reaction and dashed arrows a movement

of molecules. This illustration was created with BioRender.com.
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However, an important constraint is that changes in the
combination of AAs result in changes in the absolute
offsets in the expressed δ13C-AA pattern, although not
the pairwise AA differences.

Isotope fractionations in metabolic
networks

While many processes affect measured δ13C-AA values in
basal organisms, differences in the δ13C-AA patterns among
basal organisms should conceptually arise solely from varia-
tions in summed stepwise isotope fractionations associated

with the AA biosynthesis pathways (Figure 1). Figure 2
shows a simple hypothetical biochemical network, empha-
sizing some of the diverse processes that transpire during
biosynthesis. δ13C values of synthesized biomolecules are
underpinned by two factors: the kinetic isotopic effect of
the step processes, and the relative flow rates of reactant
replenishments and product removals (Hayes, 2001).
Consequently, three distinct mechanisms can alter δ13C-AA
offsets and hence the δ13C-AA patterns in basal organisms:
distinct biosynthesis pathways for the same AA, different
modulating enzymes for individual steps within AA path-
ways, and different flows of pathway reactants and prod-
ucts, including the synthesized AA product.
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F I GURE 3 The progression from baseline δ13C-EAA values (a) to δ13C-EAA patterns (b) to δ13C-EAA fingerprints (c). (a) The

measured δ13C values of six EAAs in the marine diatom Thalassiosira weissflogii, cultured under different conditions, show how different

environmental conditions influence baseline δ13C-EAA values: (a) 27�C, (b) 18�C, (c) high pH, (d) control, (e) ultraviolet filter, (f) no

ultraviolet filter, (g) low irradiance, (h) high irradiance, (i) low pH, (j) low salinity (mean and SD for each EAA across treatments given on

the right, data from Larsen et al., 2015). (b) By mean-centering the baseline δ13C values within samples, the consistency in δ13C-EAA
patterns of T. weissflogii across environments becomes apparent. (c) Comparing the δ13C-EAA patterns of different basal organism groups

determines whether the δ13C-EAA patterns constitute δ13C-EAA fingerprints within a study system (illustrated with three EAAs). A basal

organism group has a δ13C-EAA fingerprint when that group solely occupies its δ13C-EAA pattern space, for example, Groups 1 and 2. The

specificity of the δ13C-EAA fingerprint can be high if subgroups of the basal organisms (illustrated by branches) occupy unique subspaces

within their overall fingerprint, ca. Group 1 with Group 2. δ13C-EAA patterns are not considered δ13C-EAA fingerprints if different basal

organism groups exhibit overlap in δ13C-EAA pattern space, for example, Groups 3 and 4.
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For many AAs, multiple synthesis pathways exist
across different basal organism taxa. As different synthe-
sis pathways comprise different steps (e.g., the synthesis
of E from B with either C or D as an intermediate in
Figure 2), they result in different δ13C offsets for their
respective AAs across taxa. A notable example are the
three aromatic AAs that are synthesized from
the shikimate pathway using the chorismate precursor
(Figure 1). Two pathways exist for phenylalanine that dif-
fer in the final two reaction steps. Fungi and bacteria use
phenylpyruvate as an intermediate that is converted to
phenylalanine via the transfer of an amine group. In con-
trast, plants and algae first synthesize the
non-proteinogenic AA arogenate, then modify the side
chain to produce phenylalanine. Tyrosine follows a simi-
lar path, with plants and algae using arogenate as an
intermediate while bacteria and fungi form tyrosine from
hydroxy-phenylpyruvate. The third AA synthesized
from chorismate is tryptophan, a biochemically complex
and expensive pathway that has been evolutionary con-
served, involving homologous reaction steps across the
three domains of life (Crawford, 1989). Among the aro-
matic AAs, it is expected that phenylalanine and tyrosine
δ13C offsets in plants and algae may differ from bacteria
and fungi, but not for tryptophan. For biochemically sim-
ple AAs such as lysine, separate anabolic synthesis routes
exist: The diaminopimelic acid pathway is used predomi-
nantly by algae and plants, while the α-aminoadipic acid
pathway is predominantly used by fungi, with bacteria
and archaea utilizing both pathways (Velasco
et al., 2002). Within these two broad routes, six major
pathways have emerged among different taxa, giving
lysine a particularly high diagnostic potential in δ13C-AA
offsets (Larsen et al., 2009).

Within seemingly identical biosynthesis pathways,
individual steps can be modulated by different enzymes
(enzyme-A vs. enzyme-B in Figure 2). Differing enzyme
structures and catalytic efficiencies may cause variations
in the kinetic isotopic effects during individual steps of
biosynthetic pathways. A prime example of enzymatic
fractionation differences occurs in Rubisco, the enzyme
that fixes CO2 in the Calvin–Benson–Bassham cycle (but
is not involved in AA synthesis, Figure 1). Plant and
algae Rubisco (form I) has a larger fractionation (~30‰)
than prokaryotic Rubisco (form II; ~22‰, Guy
et al., 1993; Hayes, 2001). Across the AA synthesis path-
ways, diverse classes of enzymes may be used that are
general or reactant-specific, and therefore vary in their
isotopic fractionations, contributing to distinct δ13C-AA
patterns among basal organisms. However, 13C kinetic
isotope fractionation primarily occurs when the rate limi-
tation of the catalyzing enzyme consists of bond cleaving,
formation, or transfers involving carbon atoms.

Consequently, not all catalyzed processes will result in an
observable 13C fractionation even if the overall reaction
step involves the breaking or formation of carbon-linked
bonds. For example, the synthesis of glutamine from glu-
tamate, a process where an amine group is bound to the
end carbon atom of the glutamate side chain, does not
result in 13C fractionation. This is because the rate limita-
tion occurs during the amine-deprotonation and release
of glutamine from the catalyzing enzyme, which involves
only nitrogen and hydrogen atoms (Mauve et al., 2016).
To accurately predict potential differences in fraction-
ation rates for specific pathway steps, detailed informa-
tion about reaction kinetics is required.

As AA biosynthesis pathways are embedded within
larger interconnected metabolic networks, differences in
the upstream supply of reactants and downstream
demands of products can result in asynchronous flow
rates between pathway steps. Substantial differences in
flow rates between pathway steps can lead to deviations
from and potentially result in new steady-state condi-
tions. Consequently, the rates of individual biochemical
reactions may differ, leading to varying degrees of isotope
fractionation at each step (see Hayes, 2001, 2004 for
detailed biochemical mechanisms). One key mechanism
underpinning flow rates is intracellular compartmentali-
zation (e.g., the movements of A1, E1 and E2 in Figure 2),
with prokaryotes carrying out AA synthesis in the cyto-
plasm, whereas eukaryotes additionally synthesize AAs
in organelles—involving the active movement of mole-
cules across intracellular membranes which may be asso-
ciated with additional isotopic fractionation.
Clade-specific demands for proteinogenic AAs as precur-
sors for secondary metabolites, energy-yielding sub-
strates, and metabolic donors (Appendix S1:
Figures S1–S3) can influence relative flow rates due to
branching (e.g., the downstream branching of E3 in
Figure 2: increasing demand for F1 will reduce the flow
rate to E4). In higher plants, the synthesis of alkaloid
compounds relies on several nitrogenous precursors such
as phenylalanine, lysine, and histidine
(Aniszewski, 2007). In comparison, algae have very low
concentrations of alkaloids (Güven et al., 2010) and
therefore lack this downstream AA demand. Similarly,
the biosynthesis of phenylpropanoids, the backbone of
lignin in vascular plants, uses phenylalanine as a precur-
sor (Vanholme et al., 2010). If such supply and demand
flows of AAs are substantial, lineage specific, and consis-
tent then systematic differences in δ13C-AA patterns
emerge.

Differences in the synthesis pathways, modulating
enzymes, and flow rates between basal organisms that
result in distinct δ13C-AA patterns are likely expressed at
different taxonomic levels. AA synthesis pathways

8 of 41 VANE ET AL.
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primarily vary among the broadest taxonomic levels due
to the extensive suites of functional genes required. The
major eukaryotic clades of plants, algae, and fungi typi-
cally possess only a single synthesis pathway for each
AA, with plants and algae often sharing the same path-
way. In contrast, multiple pathways for some AAs are
found within bacteria (e.g., five of the six lysine synthesis
pathways) and to a lesser extent Archaea, following their
greater genetic diversity. It therefore can be expected that
the prokaryotic clades express greater variability in their
δ13C-AA patterns than eukaryotes. Variation in geneti-
cally encoded enzyme structures can occur at lower levels
of phylogeny, as they constitute more limited genetic dif-
ferences. Enzyme-mediated fractionations of 13C can vary
substantially (Hayes, 2001), but this variation depends on
whether the rate limitation of the specific reaction being
mediated involves carbon atoms (Mauve et al., 2016).
Therefore, differences in enzymes may not always result
in δ13C-AA pattern differences between taxa. Differential
flow rates in AA biosynthesis pathways are the most flex-
ible mechanism through which isotope fractionations
may differ, as they can be altered by regulating gene
expression (e.g., increasing the number of transmem-
brane protein channels), and may occur across the differ-
ent levels of phylogeny. Substantial demands for AAs to
synthesize secondary metabolites that constitute signifi-
cant proportions of organismal biomass may dominate
trends in δ13C-AA patterns between phenotypes.
Therefore, there is significant potential for δ13C-AA pat-
terns to be diagnostic of the origin of basal resources
from broad to fine levels of phylogeny in basal
organisms.

DISCRIMINATING BASAL
ORGANISMS WITH δ13C-EAA
FINGERPRINTS

Although all AAs and their δ13C values can be used to
distinguish between basal organisms, the nine canonical
EAAs are the most valuable indicators when
reconstructing basal resource use in consumers. The sta-
bility of δ13C-EAA values during trophic transfer due to
the direct routing of EAAs means that their relative off-
sets, and hence the δ13C-EAA patterns of basal organ-
isms, the EAA subset of the δ13C-AA patterns, are also
preserved (Liu et al., 2018; McMahon et al., 2010;
McMahon, Polito, et al., 2015; Wang, Wan, et al., 2019).
Published δ13C-EAA patterns have already demonstrated
the unique ability to discriminate groups of basal organ-
isms yet offer limited understanding of the underlying
processes and potential taxonomic specificity. To develop
this fundamental understanding, we build upon our

mechanistic framework laid out in section Factors shap-
ing amino acid δ13C values in basal organisms by compil-
ing and exploring published δ13C-EAA values of basal
organisms at varying levels of phylogeny. We are unable
to correct the compiled data for interlaboratory measure-
ment differences due to the lack of common reference
materials (see Minimizing analytical uncertainties in
δ13C-AA values). Nevertheless, we use the data to identify
potential underlying mechanisms of basal organism bio-
chemistry, rather than to quantify basal resource use by
consumers (see Applying δ13C-EAA fingerprints in ecologi-
cal studies and Considerations when quantifying basal
resource use for further discussion). We also discuss the
potential for some basal organisms to directly assimilate
EAAs from the environment. Based on these mechanistic
considerations, we refine the definition of δ13C-EAA fin-
gerprints and outline best practices for accurate
characterization.

The diagnostic potential of δ13C-EAA
patterns among basal organisms

Five EAAs typically reported across ecological and
archaeological studies are leucine, isoleucine, phenylala-
nine, threonine, and valine. Of these five, all except phe-
nylalanine share a common biosynthesis pathway across
the domains of life: phenylalanine has two common
pathways that are split between plants and algae, and
bacteria and fungi (See Isotope fractionations in metabolic
networks, Appendix S1: Figures S1 and S2). Although
some bacteria and plants can use alternative isoleucine
synthesis pathways (Sugimoto et al., 2021), the rarity of
these pathways is unlikely to cause divergence in
clade-specific isoleucine δ13C offsets. Bacteria generally
exhibit significant metabolic redundancy and flexibility
in synthesizing EAAs (Cotton et al., 2020), but it is diffi-
cult to predict how this influences δ13C-EAA patterns.
Based on biosynthesis pathways, phenylalanine emerges
as the most likely candidate to cause consistent diver-
gence in δ13C-EAA patterns between plants and algae,
and bacteria and fungi. In terms of differential flow rates
influencing δ13C-EAA patterns, there are two systematic
differences between broad basal organism groups. The
first is intracellular compartmentalization within eukary-
otes that affects the synthesis pathways of the five EAAs
(Figure 1), potentially separating bacterial δ13C-EAA pat-
terns. The second are differences in downstream
demands for secondary metabolites. The synthesis and
incorporation of lignin into vascular plant cell walls uses
phenylalanine as a monomer precursor (Vanholme
et al., 2010) and therefore may influence plant δ13C-EAA
patterns. As lignin is relatively depleted in 13C compared

ECOLOGICAL MONOGRAPHS 9 of 41
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with other major biomolecules in plant tissues (Benner
et al., 1987), its synthesis should result in an enriched 13C
pool of phenylalanine for proteins. In contrast, the cell
walls of other major basal organism taxa do not require
significant amounts of the five EAAs (Domozych, 2019;
Kottom et al., 2017; Van Heijenoort, 2001). Taken
together, the unique biosynthesis pathways of phenylala-
nine, along with the distinct characteristics of intracellular
compartmentalization and downstream demands for sec-
ondary metabolites, highlight the complexity of δ13C-EAA
patterns across various life domains. Phenylalanine’s
divergent synthesis between plants, algae, bacteria, and
fungi, combined with its utilization in cell wall structures,
makes it a central candidate in understanding and differ-
entiating δ13C-EAA patterns within these groups.

To test the mechanistic expectation of phenylalanine,
and explore other lineage-specific δ13C-EAA patterns, we
compiled and analyzed data of 680 samples from 20 ecolog-
ical and archaeological studies (Figure 4, Appendix S2).
We applied linear discriminant analysis (LDA), which
aims to separate different groups of basal organisms based
on their δ13C-EAA patterns. LDA does this by maximizing
the differences between groups while minimizing
within-group variability, providing EAA-specific
weightings for group separation. To quantify the extent of
overlap between groups, we calculated pairwise
Bhattacharya coefficients (BCs, Bhattacharyya, 1946) on
the LDA-transformed data (see Appendix S2 for details).
BCs are a general measure of similarity between two mul-
tivariate distributions, with 0 indicating no overlap and
1 indicating identical distributions. We observe that plant
δ13C-EAA patterns diverge from the other major basal
resource groups, including algae (median BC overlap of
0.53, Figure 4a), due to increased phenylalanine δ13C off-
sets. Bacterial δ13C-EAA patterns also separate from other
basal resource groups, predominantly due to leucine
(median overlap with plants of 0.23), while valine δ13C off-
sets cause some divergence of fungi. Threonine δ13C
offsets contribute little to between-basal resource group
separation (Figure 4).

While algae δ13C-EAA patterns express considerable
variation, substructuring is observed among the three
clades of macroalgae. Brown (Phaeophyta) and red
macroalgae (Rhodophyta) δ13C-EAA patterns appear to
separate (median overlap 0.35), but green macroalgae
(Chlorophyta) occupy the overlapping δ13C-EAA pattern
space in between. Comparing macroalgae against
seagrasses, the only marine vascular plants, shows that
within the same biome, plant-algae separation is still
driven by enriched phenylalanine δ13C offsets. This is simi-
larly the case when contrasting seagrasses with microalgae
(Appendix S2: Figure S1b), where the δ13C-EAA patterns
of phytoplankton diverge between freshwater and marine

biomes (median overlap of 0.33). Terrestrial plant
δ13C-EAA patterns do not discriminate on their C3 or C4

photosynthetic carbon fixation systems (median overlap of
0.91, Figure 4c). However, limited observations suggest sep-
aration for CAM plants, here solely represented by two
cacti species from a single study (median overlaps of 0.32
and 0.25 with C3 and C4 plants respectively, Figure 4c).
This is unexpected as CAM physiology affects fractionation
during carbon acquisition, and therefore should only influ-
ence the baseline δ13C-EAA values (See Factors shaping
amino acid δ13C values in basal organisms). Some individ-
ual C3 plants express similar δ13C-EAA patterns to CAM
plants (Figure 4c). We explored substructuring of
δ13C-EAA patterns within terrestrial plants using multivar-
iate Bayesian mixed models, as their phylogenetic diversity
was well represented (212 samples across 18 families,
Figure 4d, Appendix S3). Approximately half (36%–66%) of
the variation in δ13C-EAA patterns in terrestrial plants can
be attributed to phylogeny. The cacti CAM plants closely
align with two other arid adapted C3 plant families,
Agavoideae and Zygophyllaceae, driven by increasing iso-
leucine but decreasing leucine δ13C offsets (Figure 4d).
Despite phenylalanine separating plants from other basal
organism groups, phenylalanine along with valine contrib-
ute little to δ13C-EAA pattern substructuring within plants.
The contrast between valine and isoleucine is noteworthy
as they have parallel synthesis pathways and therefore
observed differences cannot be due to separate reactions or
enzymes.

Taken together, we conclude that δ13C-EAA patterns
are predominantly driven by differences in flow rates of
EAAs, particularly for substantial and continuous down-
stream demands as precursors for biopolymers. Despite
sharing the same biosynthesis pathway, plants and algae
are separated by phenylalanine δ13C offsets, with plant
phenylalanine being comparatively enriched in 13C
(Figure 4a), even among finer comparisons between sym-
patric plant and algal clades (Figure 4b, Appendix S2:
Figure S1b). Phenylalanine contributed little to δ13C-EAA
pattern variability within vascular plant phylogeny, which
is consistent with the ubiquity of lignin synthesis in this
group. The observation that δ13C-EAA pattern distinctions
can be observed not only with phylogeny, but also by eco-
systems such as marine versus freshwater algae
(Appendix S2: Figure S1a,b) and similarities between arid
climate-adapted plants (Figure 4d), further highlights how
consistent phenotypic expressions may contribute to
δ13C-EAA pattern variation. Several other studies have
observed δ13C-EAA pattern distinctions between organs of
individual plants, that is, roots, seeds, and leaves (Jarman
et al., 2017; Larsen, Ventura, et al., 2016; Lynch
et al., 2011), demonstrating that structural differences can
underpin δ13C-EAA patterns within the same individual.
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F I GURE 4 Linear discriminant (LD) analysis of mean-centered δ13C-EAA values in basal organisms compiled from the literature (see

Appendix S2). Upper subplot panel: LD scores for individual samples, with distinct symbols denoting each group. Lower subplot panel:

posterior distributions of group pair overlaps, quantified by the Bhattacharyya coefficients (BC, see Appendix S2), indicating the probability

density of degree of overlap in LD scores between groups (0 = no overlap, 1 = identical distributions). EAAs considered: leucine (Leu),

isoleucine (Ile), valine (Val), threonine (Thr), and phenylalanine (Phe). Each subplot features the following basal organism taxa:

(a) heterotrophic bacteria (Bac), plants (Pla), algae (Alg), and fungi (Fun); (b) brown macroalgae (BA), red macroalgae (RA), green

macroalgae (UL, represented by Ulva sp.), and seagrasses; (c) C3 plants (C3P), C4 plants (C4P), and CAM (crassulacean acid metabolism)

plants, containing the two cacti species Cylindropuntia sp. and Opuntia sp. For visual clarity, LD weighting coefficients for each EAA were

multiplied by 8. The BCs for seagrass are not shown to avoid overcrowding; see Appendix S2 for their posterior estimates. (d) Modeled

mean-centered δ13C-EAA values (δ13C-EAA patterns) of vascular plants, showing the global average values (right hand panel) and

individual EAA offsets, Δδ13C among the 18 taxonomic (sub)families in the vascular plant dataset. Phylogenetic topology is plotted on the

left hand side. Circles indicate median posterior values, thick bars denote the 50% credible intervals (CIs) and thin bars the 95% CIs. Average

mean-centered δ13C CIs for phenylalanine and valine fall within the median circles.
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Considerations for the δ13C-EAA patterns
of facultative prototrophs

Until now, we presumed that the EAAs that define a
basal organism’s δ13C-EAA pattern are exclusively the
result of de novo synthesis. This is true for strictly auto-
trophic organisms, as they are obligate EAA-prototrophs.
However, basal organisms with the capacity to take up
external sources of organic carbon—that is,
heterotrophy—have the potential to directly assimilate
external AAs into their tissues, termed facultative
AA-prototrophy. This is not only limited to heterotrophic
bacteria and fungi, but also includes mixotrophic basal
organisms that can both fix inorganic carbon and acquire
external organic carbon. Many algal protists, free-living
protozoa, and greens plants may be classed as mixotrophs
(Matantseva & Skarlato, 2013; Selosse & Roy, 2009). If
facultative EAA-prototrophs incorporate substantial
amounts of externally derived EAAs, then their in situ
δ13C-EAA patterns will not wholly reflect the carbon
fractionation among EAAs of their de novo synthesis.
This affects the accuracy of δ13C-EAA pattern applica-
tions tracing the origin of basal resources (Arsenault,
Liew, & Hopkins, 2022), and therefore requires knowl-
edge of the occurrence, degree, and flexibility of faculta-
tive prototrophy in different basal resource groups.

Assimilating AAs opportunistically from the external
environment is energetically efficient compared with syn-
thesizing them de novo (Morrissey et al., 2023); however,
basal organisms must have the necessary membrane pro-
teins that are energetically expensive to synthesize and
maintain. The capacity for AA assimilation among het-
erotrophic bacteria is common but phylogenetically
constrained, implying genetic and phenotypic prerequi-
sites for AA membrane transport proteins (Dang
et al., 2022). The energetic cost of AA biosynthesis is a
considerable evolutionary selection pressure for bacteria
(D’Souza et al., 2014; Heizer et al., 2006), suggesting that
demand for external AAs will be substantial and highly
competitive. Functional specialization within soil micro-
bial communities is apparent (Morrissey et al., 2023),
with some bacteria being auxotrophic (Table 1), having
lost their biosynthesis capacity for certain AAs and
becoming metabolically dependent on external AA
sources (D’Souza et al., 2014; Heizer et al., 2006).
Conversely, saprotrophic bacteria that undertake bio-
chemical decomposition of complex polymers do not
assimilate appreciable amounts of simple organic carbon
compounds including AAs (Dang et al., 2021). Various
AA transport proteins occur in fungi (Bianchi et al.,
2019); however, saprotrophic fungi are likewise special-
ized in breaking down and assimilating large insoluble
polymers through exoenzyme secretion (Algora Gallardo

et al., 2021; Batista García et al., 2016; Ruiz-Dueñas
et al., 2021). This contrasts with root-associated mycor-
rhizal fungi that rely on simple carbon compounds from
plants, but observed two-way carbon exchanges imply
mixotrophy may occur in fungi-hosting vascular plants
(Bolin et al., 2017; Firmin et al., 2022; Selosse
et al., 2016), beyond the limited cases of carnivory and
hemi-parasitism (Giesemann & Gebauer, 2022; Selosse &
Roy, 2009). AA membrane transport proteins have been
characterized in several species of plant roots, the prereq-
uisite for direct uptake of external AAs (Moe, 2013;
Näsholm et al., 2009). Although mixotrophic protists that
phagocytose prey have long been recognized
(Jones, 2000; Sanders, 1991), uptake of external carbon in
the form of simple dissolved compounds, including AAs,
has also been observed to occur in more traditionally
viewed autotrophic microalgal species such as diatoms
(e.g., Rivkin & Putt, 1987; Tuchman et al., 2006). The
potential for uptake of external biomolecules in these
algae and plants likely evolved as an adaptation to nutri-
ent rich but light-limited, and therefore carbon limited,
environments (Selosse et al., 2017).

Examples of facultative prototrophy may therefore
be found across basal organism groups. However, the
uptake of external AAs alone may not result in signifi-
cant AA assimilation into tissues if the external AAs
are preferentially used for other metabolic purposes, or
only occurs under certain physiological conditions. In
diatoms, external AA uptake has been observed when
cultivated under dark conditions but occurs with
simultaneous increases in oxidation rates, implying
external AAs are used to fuel respiration (Tuchman
et al., 2006). Antarctic diatoms can incorporate the car-
bon of external AAs into their proteins (Rivkin &
Putt, 1987), suggesting AA uptake in algae occurs as a
physiological response to carbon limitation when pho-
tosynthesis is restricted due to prolonged dark periods.
Culturing fungi under very high AA concentrations led
to changes in δ13C-AA patterns, implying incorporation
of external AAs (Arsenault, Liew, & Hopkins, 2022).
Labelling experiments demonstrate however that
uptake of external AAs occurs during exponential but
not stationary growth phases in fungi (Martin-Perez &
Villén, 2015). For bacteria, specialized adaptations sug-
gest that external AAs will benefit only those species
that readily utilize labile dissolved organic carbon
(Dang et al., 2022; Morrissey et al., 2023). Average
dissolved AAs in soils and aquatic environments typi-
cally occur in low concentrations of 0.01–50 μM and
1–10 μM, respectively (Kielland, 1994; Lytle &
Perdue, 1981, cf. 130–840 μM in “low” AA concentra-
tion treatment in Arsenault, Liew, & Hopkins, 2022).
This suggests that under most conditions facultative
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prototrophs do not assimilate enough external EAAs
into their tissues to substantially alter their δ13C-EAA
patterns.

Although some specific environments may induce
high external AA uptake in some basal organisms, the
evidence suggests that this is not a common occurrence.
Reflecting on our compiled δ13C-EAA data, we can
exclude the influence of external EAAs influencing
δ13C-EAA patterns de facto as bacteria, fungi, and
microalgae are predominantly cultured in AA-free media.
This ensures that measured EAAs are derived from the
organisms’ biosynthetic pathways and not from the cul-
turing substrate (Larsen et al., 2009), and therefore can
be applied for determining basal resource origin. It
should be acknowledged that culture media cannot
mimic the complex natural growth environments experi-
enced in situ, especially for saprotrophic organisms.
However, carefully designed cultivation experiments
comparing δ13C-EAA patterns between EAA-free and iso-
topically labeled EAA media under natural growth condi-
tions could provide insights into the metabolic
dependencies of facultative EAA-prototrophs on
external EAAs.

From δ13C-EAA patterns to fingerprints

The variety of phylogenetic and ecological factors that
influence δ13C-EAA patterns prompts the question of
how to define the δ13C-EAA fingerprint for a given basal
resource. The concept of a “fingerprint” for δ13C-EAA
patterns, as introduced by Larsen et al. (2009) to differen-
tiate between bacterial, fungal, and plant EAA biosynthe-
sis, has since been applied to a wider range of contexts
(e.g., Arthur et al., 2014; Larsen et al., 2012; Yun
et al., 2022). The notable lack of a formal definition of a
δ13C-EAA fingerprint likely contributed to variations in
the construction and interpretation of “δ13C-EAA
fingerprints,” such as the use of baseline rather than
mean-centered δ13C-EAA values (e.g., Besser et al., 2022)
or referring to consumer δ13C-EAA patterns as “finger-
prints” (e.g., McMahon & Newsome, 2019). Considering
the original purpose of δ13C-EAA fingerprints, which was
to trace the contribution of different basal resources to
consumer tissue proteins (Larsen et al., 2009), we explic-
itly define a “δ13C-EAA fingerprint” as:

the minimum multivariate δ13C-EAA
pattern space that is solely occupied by a
group or collection of similar basal organ-
isms, encompassing the intragroup variabil-
ity in δ13C-EAA patterns expressed by those
organisms.

Here, the “uniqueness” characteristic of a δ13C-EAA fin-
gerprint is qualified by sole occupancy of a basal organ-
ism group in the multivariate space of δ13C-EAA patterns
(as defined in Table 1, Figure 3). By limiting it to the
minimum space occupied, arbitrary overlaps between
basal organisms are excluded. However, as sole occu-
pancy of δ13C-EAA pattern space is comparative, it
depends upon the presence or absence of other basal
organisms in an ecosystem (shown in Figure 3c,
basal organism Groups 3 and 4) or its relevance to the
consumer (See Applying δ13C-EAA fingerprints in ecologi-
cal studies). A priori understanding of a consumer’s ecol-
ogy and its ecosystem underpins which basal organism
δ13C-EAA patterns will be defined as δ13C-EAA finger-
prints. Therefore, δ13C-EAA fingerprints will be study-
and context-specific and may change between studies
that include the same basal organisms.

To define groups of similar basal organisms, a flexible
framework is needed to accommodate the variety of stud-
ies using δ13C-EAA fingerprints. Phylogenetically closer
organisms are expected to express more similar
δ13C-EAA patterns due to genetic constraints associated
with AA biosynthesis, as we observed in broad basal
organism groups (Figure 4a,b). Yet, adaptations to partic-
ular environments can lead to similar δ13C-EAA patterns
among phylogenetically distant groups, such as
arid-adapted plants (Figure 4d). Variation in δ13C-EAA
patterns occurs across varying levels of phylogeny, and
can be driven by different EAAs (See The diagnostic
potential of δ13C-EAA patterns among basal organisms,
Figures 3a,b and 4d, Appendix S3: Figure S1). These
observations suggest that δ13C-EAA patterns have the
potential to express higher specificity than is acknowl-
edged in the literature, where broad basal organism
groups are characterized (Arsenault, Thorp, et al., 2022;
Arthur et al., 2014; Ayayee et al., 2015; Macartney
et al., 2020; McMahon, McCarthy, et al., 2015; Rowe
et al., 2019; Stubbs et al., 2022; Wall et al., 2021).
Valuable phenomenological insights have been provided
over the past decade; however, we propose the develop-
ment of a framework focused on the metabolic function-
ing of basal organisms (See Factors shaping amino acid
δ13C values in basal organisms) to facilitate predictions of
δ13C-EAA pattern distinctions across clades and environ-
ments to complement the current in situ measurements
on a study-by-study basis.

Optimal characterization of δ13C-EAA
fingerprints

Defining δ13C-EAA fingerprints requires a conscientious
approach to basal organism sampling and analysis. The
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characterization of δ13C-EAA fingerprints involves accu-
rate representation of a particular basal organism group
in an ecosystem, its natural variation, and its relevance to
the studied consumer. For optimally characterizing
δ13C-EAA fingerprints, the following considerations are
important:

1. Basal organism samples should accurately represent
the taxonomic group under investigation in the stud-
ied ecosystem. This precludes complex composites
such as particulate organic matter (POM) filtrates,
microalgal and bacterial mats, or partially degraded
materials (detritus) that are contaminated with feces,
degraded organic matter, bacteria, etc. Further, com-
posites average over a diversity of species, preventing
specific characterization. In some cases, more specific
δ13C-EAA fingerprints for individual species can be
obtained by extraction from composite samples and
cultivation under controlled laboratory conditions.
Systematic characterization of δ13C-EAA fingerprints
in singularly cultured basal organisms would establish
the extent to which basal organisms can be subdivided
into clades with similar δ13C-EAA patterns.
Field-collected samples with a high concentration of a
particular species or clade can be analyzed for verifica-
tion, as some basal organisms might display different
δ13C-EAA patterns in situ compared with cultures
(Vane et al., 2023).

2. Tissue samples of specialist primary consumers
(e.g., zooplankton or herbivorous fishes) are often
used as a surrogate for specific δ13C-EAA fingerprints
of basal organisms (e.g., McMahon et al., 2016;
Skinner et al., 2021; Vane et al., 2018). However, com-
plete dependency of a primary consumer on basal
resources of one specific clade of basal organisms is
unlikely due to incidental EAA assimilation from
other sources (e.g., functionally similar basal organ-
isms, detritus, associated bacteria and meiofauna in
macroalgal turfs, Nicholson & Clements, 2023).

3. The extent to which unique δ13C-EAA fingerprints
can be characterized depends on the number of EAAs
measured in basal organisms and metazoan tissues
due to analytical limitations (See Temporal resolutions
within consumer tissues and Minimizing analytical
uncertainties in δ13C-AA values). In most proteina-
ceous soft tissues six to seven EAAs can be measured,
but this number is reduced in mineralized tissues such
as biogenic calcites due to lower EAA concentrations
(McMahon et al., 2018; Vokhshoori et al., 2022). It is
advisable to reliably measure, and report, as many
EAAs as possible (See Minimizing analytical uncer-
tainties in δ13C-AA value) to increase the discrimina-
tory power of δ13C-EAA patterns.

Directly visualizing whether δ13C-EAA patterns of
select basal organism groups solely occupy their isoto-
pic space, and therefore are a δ13C-EAA fingerprint
(See From δ13C-EAA patterns to fingerprints,
Figure 3c), is not feasible due to the high dimensional-
ity of the data. Visualizing multiple pairwise biplots of
mean-centered δ13C-EAA values results in significant
information loss and can be difficult to interpret.
Dimension reduction approaches used to visualize
δ13C-EAA patterns include principal component analy-
sis (PCA, which maximizes total variation across the
dataset) and LDAs (See The diagnostic potential of
δ13C-EAA patterns among basal organisms). While
LDAs may seem more effective to identify distinctions
between δ13C-EAA patterns as it aims to maximize
group separation, PCA can outperform LDA in separat-
ing groups when sample sizes are small (Martinez &
Kak, 2001; for a comparison of the two approaches see
Appendix S4). The distinctions between δ13C-EAA pat-
terns can be objectively quantified using, for example,
BCs (Bhattacharyya, 1946, see The diagnostic potential
of δ13C-EAA patterns among basal organisms,
Figure 4a–c, Appendix S2). Quantifying δ13C-EAA pat-
tern distinctions not only improves statistical clarity
for defining δ13C-EAA fingerprints but also facilitates
more direct comparisons between studies that measure
different suites of EAAs.

TRACING BASAL RESOURCES
FROM A CONSUMER PERSPECTIVE

Organisms consume the basal resources synthesized by
basal organisms either directly or indirectly through their
prey. In doing so, they assimilate the baseline δ13C-EAA
values, and by extension the δ13C-EAA patterns, of those
basal organisms into their own tissues with minimal
alteration. Consumers’ δ13C-EAA patterns are a weighted
average of the assimilated δ13C-EAA patterns that can be
used to identify the basal organisms that synthesized the
basal resources using δ13C-EAA fingerprints. Prior
knowledge of the consumer’s dietary niche is essential to
characterize relevant basal organisms, and to determine
the extent of the distinction and specificity with which
they should be quantified. While δ13C-EAA fingerprints
can trace basal resources to broad taxonomic groups and
specific clades of basal organisms, their effectiveness
depends on the research question and inferences become
more nuanced for consumers that partially rely on EAAs
biosynthesized by (endo)symbionts. In this section, we
discuss how δ13C-EAA patterns and fingerprints can be
applied to robustly infer basal resource use by
consumers.
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Applying δ13C-EAA fingerprints in
ecological studies

δ13C-EAA fingerprints can differentiate basal organisms
across broad taxonomic groups and finer clades (See
Discriminating basal organisms with δ13C-EAA finger-
prints). However, disentangling these from δ13C-EAA
patterns of consumer tissues is challenging, especially for
higher trophic level consumers that acquire basal
resources through multiple trophic transfers. A first step
is to determine to which level basal organisms should be
distinguished. General questions might involve differenti-
ating between aquatic versus terrestrial basal resources
(Larsen et al., 2013; Liew et al., 2019). More complex
inquiries can revolve around estimating the proportional
use of basal resources originating from different groups
of basal organisms, or distinguishing among closely
related clades such as phytoplankton groups (McMahon,
McCarthy, et al., 2015; Stahl et al., 2023; Vane
et al., 2023), although such fine-scale distinctions may
not always be informative depending on the ecological
setting. For example, the fine resolution of distinguishing
between various clades within phytoplankton is dimin-
ished when contrasted against other major basal organ-
ism groups such as bacteria, fungi and macroalgae (Vane
et al., 2023). After thoroughly characterizing δ13C-EAA
fingerprints within the research framework, their varia-
tion must be evaluated together with the consumer tissue
δ13C-EAA patterns using methods such as biplots and, or
PCA/LDAs. If consumer δ13C-EAA patterns fall outside
of known δ13C-EAA fingerprints, this can indicate an
unaccounted basal organism or incomplete characteriza-
tion due to limited replication or sampling. Biases during
isotopic analysis can also lead to measurement offsets
between consumer tissues and basal resources (See
Minimizing analytical uncertainties in δ13C-AA value).
These considerations are important for reliable quanti-
fications of proportional basal resource use by the
consumer (See From qualifying to quantifying basal
resource use).

Many researchers rely on existing training datasets,
that is, basal organism δ13C-EAA values characterized in
other studies, such as those of Larsen et al. (2013) and
McMahon et al. (2016), to infer basal resource use.
Generic training datasets assume that δ13C-EAA patterns
are highly conservative with broad ecosystem applicabil-
ity, a questionable assumption at broad taxonomic scales.
As elaborated in section Discriminating basal organisms
with δ13C-EAA fingerprints, variations within δ13C-EAA
patterns of broad taxa such as microalgae and bacteria
may be attributed to finer phylogenetic substructuring or
associated with phenotypic structural traits. Within indi-
vidual plants, δ13C-EAA patterns vary among seeds,

roots, and leaves (Jarman et al., 2017; Larsen, Ventura,
et al., 2016; Lynch et al., 2011), necessitating sampling of
specific plant organs that are ingested by the consumer.
Using generic training data therefore introduces variation
that is not pertinent to the specific ecosystem,
undermining discrimination between basal resource ori-
gins and distorting the true underlying δ13C-EAA pattern
space that comprises the consumer tissue (Liew
et al., 2019; Macartney et al., 2020; Phillips et al., 2020;
Stubbs et al., 2022). Moreover, without proper
inter-laboratory calibration, training data may contain
inconsistencies arising from different analytical protocols
and errors that are currently not well-constrained and
therefore difficult to account for with calibrations post
hoc (See Minimizing analytical uncertainties in δ13C-AA
value). While researchers often supplement measured
δ13C-EAA values of basal organisms in the studied eco-
system with external training data (e.g., Arsenault,
Thorp, et al., 2022; Arthur et al., 2014; Ayayee
et al., 2015; Macartney et al., 2020; Rowe et al., 2019;
Stubbs et al., 2022; Wall et al., 2021), for accurate infer-
ences it is advisable to characterize study-specific
δ13C-EAA fingerprints of relevant basal organisms mea-
sured in situ. Going forward, a δ13C-EAA fingerprint
library could streamline this process, if built on widely
accepted international reference materials and standard-
ized methodologies (See Minimizing analytical uncer-
tainties in δ13C-AA value). Such a library would be
invaluable in addressing large-scale ecological questions
over various spatiotemporal scales.

Consumers with (endo)symbionts

The direct assimilation of basal resources by consumers
can be compounded by the occurrence of symbiotic rela-
tionships. Endosymbionts can supplement hosts with
EAAs synthesized de novo, particularly when the host
specializes on nitrogen or nutrient-poor diets. Examples
include aphids and other plant sap feeding insects
with sugar dominated diets (Akman Gündüz &
Douglas, 2009), or detrital consumers, such as earth-
worms, springtails, and termites (Ayayee et al., 2015;
Larsen, Pollierer, et al., 2016). EAA supplementation can
vary dynamically depending on dietary availability and
digestibility, leading to trade-offs. For instance, experi-
mentally increasing indigestible fiber content in
enchytraeids’ diets increased EAA supplementation by
gut symbionts, but reduced enchytraeid growth (Larsen,
Pollierer, et al., 2016). However, digestive anatomy and
physiology is important when considering gut
microbiome EAA supplementation. For example, in most
vertebrates, AA assimilation occurs primarily in the small
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intestine, and therefore, the distinction between
small and large intestinal microbes is critical when char-
acterizing microbial δ13C-EAA patterns for EAA absorp-
tion (MacRae et al., 1997; van der Wielen et al., 2017). As
such, fecal or cecal extracted microbiota poorly represent
the microbial communities involved in EAA provisioning
in the small intestine. Coprophagy can add further com-
plexities as this can enhance “apparent” gut microbial
contributions as demonstrated through controlled feed-
ing studies (see Torrallardona et al., 2003).

In marine environments, mixotrophic holobionts
such as corals, mollusks, and sponges rely on a complex
community of symbionts in addition to heterotrophic
feeding (Pita et al., 2018; Skinner et al., 2022). These
include dinoflagellate algae hosted within coral tissues
(Skinner et al., 2022), diverse endolithic microbiomes
associated with the carbonate skeleton, including
microalgae, fungi, and bacteria (Pernice et al., 2020), and
epidermal and gastrodermal mucus microbiomes (Fox
et al., 2019; Kwong et al., 2019). Coupled
host–endosymbiont δ13C-AA values suggest that endo-
symbiotic algae play a major role in the biosynthesis and
provisioning of AAs, but transfer of photoassimilates also
occurs between endolithic symbionts and overlying host
tissues (Fine & Loya, 2002; Schlichter et al., 1995). Yet,
the biochemical roles of holobiont symbioses extend
beyond AA provisioning, including rapid carbon fixation
and subsequent high-energy biomolecule transfers (Kopp
et al., 2015; Tremblay et al., 2012).

Identifying and quantifying EAA contributions to
host consumer tissues by symbionts requires the charac-
terization of δ13C-EAA fingerprints of both symbionts
and host diet. δ13C-EAA patterns in dinoflagellate endo-
symbionts of corals can be distinct from the surrounding
POM, a proxy for phytoplankton (Fox et al., 2019; Wall
et al., 2021) and other free-living dinoflagellates (Stahl
et al., 2023). However, similar characterizations are
largely missing for other symbionts like those of sponges
(Shih et al., 2020). For microbial gut symbionts, their
δ13C-EAA patterns remain to be adequately character-
ized, despite the possibility to cultivate gut microbes from
model organisms such as Drosophila (Erkosar et al., 2013,
but see Besser et al., 2023 for extracting microbial bio-
mass from fecal materials for δ13C-AA analyses).
Currently, researchers predominantly rely on training
data from disparate terrestrial bacteria to identify gut
microbial EAA supplementation (e.g., Arthur et al., 2014;
Ayayee et al., 2015; Stubbs et al., 2022), which may yield
inaccurate quantifications (see Applying δ13C-EAA finger-
prints in ecological studies). Although extensive research
is required to capture the full variation and distinction of
δ13C-EAA patterns among different symbiont taxa, an
alternative approach involves estimating these δ13C-EAA

patterns from the offsets between δ13C-EAA values of
diet and consumer tissues (Larsen, Ventura, et al., 2016;
Newsome et al., 2020). However, this method requires
prior knowledge of the proportional contributions of each
EAA from symbionts to consumer tissues which are gen-
erally poorly constrained. Future studies should also con-
sider the spatiotemporal host–symbiont dynamics when
attempting to acquire relevant symbiont δ13C-EAA fin-
gerprints. As symbionts are typically hosted in diverse
communities, the optimal characterization of symbiont
δ13C-EAA patterns will likely be difficult beyond isolat-
ing single symbiont species cultures. Nonetheless, with
symbiont δ13C-EAA fingerprints characterized, they
could aid in identifying and quantifying changes in EAA
symbiont provisioning to their host.

BEYOND δ13C-EAA FINGERPRINTS

Consumers may rely on a variety of basal resources
whose origins cannot be distinguished using δ13C-EAA
fingerprints. For example, researchers might aim to dif-
ferentiate contributions from phylogenetically similar
understory versus canopy vegetation, or sea-ice
microalgae versus pelagic phytoplankton (de la Vega
et al., 2019; Tejada et al., 2020). Spatial or environmental
segregation of these basal organisms within the ecosys-
tem (e.g., ice-algae vs. phytoplankton), or differences in
carbon fixation machinery (e.g., C3 vs. C4 plants) can
result in disparate baseline δ13C-EAA values between
basal organism groups, despite their δ13C-EAA patterns
being similar. Even when basal organisms lack distinct
δ13C-EAA patterns, they may still have different baseline
δ13C-EAA values due to spatial, environmental, or physi-
ological factors (See Conceptualizing amino acid δ13C
values in basal organisms, Figure 1). In such cases, using
measured δ13C-EAA data from consumer tissues, rather
than mean-centered δ13C-EAA values, can help differen-
tiate the contributions of these basal resources to food
webs, assuming all resources can be adequately sampled
in situ. By applying multivariate analyses to baseline
δ13C-EAA values, researchers have distinguished
between freshwater algae, marine algae, terrestrial mat-
ter, and detrital material simultaneously in consumers
(Johnson et al., 2019; McMahon et al., 2016; Vane
et al., 2018, 2023). Incorporating δ13C-NEAA values from
consumer tissues could provide further insight into mac-
ronutrient sources and the physiological conditions of
animals (Barreto-Curiel et al., 2017). However, drawing
such inferences from δ13C-NEAA values remains chal-
lenging and underexplored (Larsen, Wang, & Wan, 2022)
as the extent to which individual NEAAs reflect meta-
bolic versus dietary sourcing is not yet fully understood.
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Here, we provide an overview for integrating full
δ13C-AA datasets into ecological studies. We discuss the
factors that influence δ13C-NEAA values in animals by
expanding our conceptualizations from section Factors
shaping amino acid δ13C values in basal organisms,
explore the utility of PCA and LDA for δ13C-AA data
analysis, and examine whether individual NEAAs pri-
marily reflect metabolic or dietary influences.

Factors affecting δ13C-NEAA values in
animals

While EAAs in consumer tissues must be directly routed
from the diet, the NEAAs are a mixture of two sources:
NEAAs that are synthesized de novo by the organism
and those assimilated from the dietary tract
(ca. Figures 1–5). Carbon for NEAA synthesis comes
from various macronutrients, each with its own unique
isotopic composition, associated catabolic pathways, and
contribution to NEAA biosynthesis (see Figure 5
and Appendix S1: Figure S3 for a detailed metabolic net-
work). For instance, lipids and short-chain fatty acids are
generally depleted in 13C compared with proteins and
carbohydrates (Deniro & Epstein, 1977; Melzer &
Schmidt, 1987; Weber et al., 1997). NEAAs directly
assimilated from the diet will have δ13C values mirroring
those of the dietary sources; however, they may undergo
substantial metabolic processing, particularly in the
splanchnic tissues (e.g., liver, stomach, intestines, etc.),
that could result in isotope fractionations (Caut
et al., 2009; Larsen, Wang, & Wan, 2022). Additionally,
dietary sourced AAs may experience fractionation during
their catabolic processing within the microbiome of the
abdominal cavity. The consumer body’s response to
changes in diet quality may vary depending on the spe-
cific AAs involved, as different macronutrients enter
varying segments of the central metabolic network
(Appendix S1: Figure S3). For example, glycine metabo-
lism responds to dietary AA composition whereas alanine
metabolism responds to energy balance and carbohydrate
intake rather than to dietary AA content (Yu et al., 1985).

NEAA deficiency or general caloric restrictions can
prompt heightened catabolism (and splanchnic retention)
of certain AAs, making them unavailable for the forma-
tion of structural tissues (Neis et al., 2015). In humans,
retention rates of dietary EAAs destined for catabolic
processing are low, ranging from 20% to 50% except for
threonine, which has a 90% retention rate. Retention
rates for dietary NEAAs tend to be higher, but variable.
Differentiating these retention rates between digestive
processes and tissue protein synthesis is complex
(Battezzati et al., 1999; Dai et al., 2012). Once dietary

NEAAs reach the liver—the center of AA degradation
and synthesis—they serve various functions, including as
building blocks for proteins and precursors for
non-proteinogenic metabolites (Burrin & Stoll, 2009,
Figure 5). Excess dietary NEAAs are converted into
energy dense molecules such as fats and glycogen, which
can later be catabolized into glucose as needed. Although
the precise ratio of dietary to synthesized NEAAs in
proteinogenic tissues often remains ambiguous due to
fluctuating metabolic demands and catabolic rates, it is
feasible to make reasonably accurate estimates in certain
tissues like collagen when considering NEAAs as an
aggregated pool (Hobbie, 2017).

Exploring full δ13C amino acid datasets

Many factors encompassing diet, digestive physiology,
metabolism, and life history traits influence δ13C-NEAA
values in consumers (Larsen, Fernandes, et al., 2022).
Unraveling these complex interactions necessitates a
comprehensive approach, especially when trying to dis-
tinguish metabolic from dietary effects. To isolate the fac-
tors contributing to δ13C-NEAA variations, examining
data from closely related consumer species or functional
groups can be helpful. This allows for establishing
informed assumptions based on shared characteristics
among consumers like digestive physiology, metabolism,
and life histories (Larsen, Wang, & Wan, 2022).
Intriguingly, the most consistent and robust insights into
δ13C-NEAA data have emerged from human studies
when interpreted in concert with measured δ13C-EAA
values and δ13C-EAA patterns in human tissues (Choy
et al., 2013; Corr et al., 2005; Johnson et al., 2021; Yun
et al., 2018, 2020). Epidemiological studies have shown
that δ13C-NEAA values in humans can vary with specific
food compositions, but have so far explored only a lim-
ited spectrum of human diets (Choy et al., 2013; Johnson
et al., 2021; Yun et al., 2018, 2020). This suggests that var-
iations in δ13C-NEAA values can deepen our understand-
ing of the complex interplay between consumer biology,
and their diverse dietary sources.

To broaden our perspective on integrating δ13C-NEAA
values for understanding basal resource use, we assembled
archaeological δ13C-AA data from human bone collagen
and hair keratin samples, covering a period of 6500 years
from diverse geographical locations (eight studies, n = 52;
see Appendix S4 for details). This dataset includes δ13C
values for five NEAAs (alanine, aspartate/asparagine, glu-
tamate/glutamine, glycine, proline) and two EAAs (phe-
nylalanine, valine). From contextual archaeological
information, we can presume that these AAs were derived
from four major protein sources: freshwater, marine,
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terrestrial C3 plants, and terrestrial C4 plants. For a subset
of the populations, there is sufficiently detailed archaeo-
logical data to make prior assumptions about the major
protein sources in their diets. Individuals from this subset
are denoted as “known” individuals. For a comprehensive
discussion on predictive accuracy with different ordination
and preprocessing combinations within the data, see
Appendix S4.

To explore how the relative offsets in AAs vary among
individuals and populations, we employed PCA on EAA

mean-centered δ13C-AA data (Figure 6a,b), with results
showing relatively strong separation among the four pro-
tein sources. Most AAs align with PC1, which differenti-
ates populations along a terrestrial–aquatic (freshwater
and marine) axis, while PC2 distinguishes between C3

and C4 protein sources and is primarily driven by the
δ13C contrast between proline and aspartate. These dis-
tinctions are further pronounced by combining measured
δ13C-AA values—data that comprises the individual
δ13C-AA offsets combined with the δ13C bulk baselines—

Direct AA routing

External 
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Catabolism Metabolism
NEAA

 biosynthesis
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proteins

NEAAs
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PProt.
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F I GURE 5 Conceptual schematic incorporating macronutrients (Macro.) such as proteins; Prot., carbohydrates; Carb., and lipids; Lip.),

metabolic processes, and environmental effects that contribute to the δ13C-AA values in animals (ca. Figure 1). Metabolic processes are

divided into macronutrient catabolism, central metabolism including glycolysis and the tricarboxylic acid (TCA) cycle, and the biosynthesis

of the non-essential AAs (NEAAs, Ala, alanine; Arg, arginine; Asn, asparagine; Asp, Asparagine; Cys, cysteine; Gly, glycine; Gln, glutamine;

Glu, glutamic acid; Hyp, hydroxyglycine; Pro, proline; Ser, serine; Tyr, tyrosine) that can be utilized for proteinogenic or non-proteinogenic

purposes. All the essential AAs (EAAs) are assumed to be routed directly from dietary proteins (ΣPMacro. = 0, where P is proportional

contribution). A fraction of the dietary NEAAs may be routed directly to tissue proteins (1 − ΣPMacro.), which will have δ13C values that

reflect those of the dietary NEAAs. In terms of the sources and processes affecting δ13C-NEAA values of tissue proteins, the molecular

constituents of each macronutrient have their own initial isotopic composition, δ13CMacro., and fractionation during carbon acquisition,

Acq.Macro., as they are converted to NEAA-precursors. As the catabolic networks are different for the three macronutrients (Appendix S1:

Figure S3), the effect of environment, Env., will likely induce different physiological responses in isotopic fractionations (Env. × Acq.Macro.).

The contributions of different macronutrients to NEAA synthesis (ΣPMacro. = PProt. + PCarb. + PLip.) may fluctuate with diet composition and

covary with physiological changes such as the accumulation of adipose tissue, reproduction status or muscle catabolism. Tissue proteins may

be catabolized and re-enter the central metabolism. The metabolic pathways are summarized based on Stryer et al. (2019, see Appendix S1:

Figure S3 for a detailed metabolic network). 3-PGA, 3-phosphoglyceric acid. The illustration was created with BioRender.com.
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F I GURE 6 Ordination analyses using δ13C values of alanine (Ala), aspartate/asparagine (Asx), glycine (Gly), glutamate/glutamine (Glx),

phenylalanine (Phe), proline (Pro), and valine (Val) extracted from archaeological human collagen and keratin samples. Sites include:

Köpingsvik, Sweden (KS, Mesolithic and Middle Neolithic), Nancheng, China (NC, Proto-Shang), Nukdo, Korea (NK, Late Bronze Age),

Uummannaq, Greenland (UG, sixteenth–seventeenth centuries), Odense, Denmark (ODr/ODf, Medieval), and Pica 8, Chile (PCh/PCt, Late

Intermediate Period). Subplots (a) and (b) display the first two principal components (PC1 and PC2 explain 54.7% and 19.6% of the variance,

respectively), based on δ13C-AA values centered to the within-sample mean EAA values (δ13C-AAmean of Phe and Val). Subplots (c) and

(d) show the first two linear discriminants (LD1 and LD2 explain 76.6% and 21.8% of the variance, respectively) based on measured δ13C-AA
data. Subplots (a) and (c) categorize individuals according to their respective populations, while the color-gradient subplots (b) and (d) illustrate

variations in individually measured mean δ13C-EAA values. The broken lines in the LDA plots indicate the decision boundaries for freshwater

(FP), marine (MP), terrestrial C3 (C3P), or terrestrial C4 (C4P) sources based on a subset of individuals with clear archaeological and

environmental contexts. These “known” individuals are denoted with open gray symbols and originate from Belize, Brazil, Bulgaria,

Greenland, Guatemala, Japan, Serbia, and Romania (data from Colonese et al., 2014; Honch et al., 2012). Populations with less certain diets are

plotted with distinctly colored symbols and polygons. The Odense and Pica 8 populations are based on tissues from the same individuals that

reflect short-term (rib and hair) or long-term (femur and tendon) dietary histories. See Appendix S4 for detailed sample information.
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with LDA that maximizes group separation while mini-
mizing intra-group variation. The LDA highlights signifi-
cant variability in the contribution of different AAs to
group separation within measured δ13C-AA values.
Phenylalanine and valine again distinguish between ter-
restrial and aquatic sources (Honch et al., 2012; Larsen
et al., 2013), while proline and glutamate separates C3

diets (Figure 6c,d). Glycine plays a key role in differentiat-
ing freshwater protein from other groups (Corr
et al., 2005) whereas alanine and aspartate contributed
very little to group separation. Interestingly, Fry et al.
(2023) identified that both alanine and aspartate position
specific 13C carboxyl trends are strongly associated with
lipid metabolism across a broad range of animals, includ-
ing mammals, mollusks, fish, and crustaceans. This sug-
gests that alanine and aspartate δ13C values are more
reflective of an individual’s metabolic state than of their
macronutrient sourcing. Conversely, proline appears to be
the most source diagnostic of the NEAAs, which aligns
with the fact that proline has one of the lowest splanchnic
retention rates of NEAAs (~40%). Thus, our meta-analysis
of humans suggests that a combination of metabolic effects
in case of aspartate and source effects in case of proline
(Figure 6b,d), can separate C3 and C4 plant sources when
δ13C-EAA patterns cannot (Figure 4c). To delve deeper
into the multifaceted factors that drive variability in
δ13C-NEAA values, we propose an investigative tandem of
expanded meta-analyses coupled with detailed
compound-specific and position-specific isotope analysis.
This comprehensive approach has the potential to dissect
the layers of complexity and identify the precise processes,
metabolic activities or the influence of dietary sources that
are responsible for the variability observed in δ13C-NEAA
values in consumers.

When using multivariate analyses to differentiate die-
tary sources, the choice between measured and
mean-centered δ13C-AA values depends on the specific
context of the study. Measured δ13C-AA values in con-
sumer tissues are particularly effective when the protein
sources originate from distinct biomes, such as terrestrial
versus aquatic, or when there are significant differences
in baseline δ13C-AA values between the dietary sources,
for example, C3 versus C4 vegetation or freshwater versus
marine. In these cases, incorporating measured δ13C-AA
values alongside δ13C-AA patterns in multivariate ana-
lyses can compensate for the limitations of each approach
while leveraging their strengths. This synergy is most
effective when the variability in isotopic baselines
between biomes (intergroup variability) is substantially
greater than the variation within a single biome
(intragroup variability). A case in point is the
meta-analysis involving archaeological human samples
presented above, and ecological studies that characterize

or approximate baseline δ13C-EAA values directly from
basal organisms in situ such as Vane et al. (2018, 2023)
and Johnson et al. (2019).

However, it is important to recognize the limitations
of using measured δ13C-AA values in multivariate ana-
lyses. Baseline δ13C-AA values are sensitive to environ-
mental fluctuations, making them context-dependent
(McMahon et al., 2016; Vane et al., 2023). When baseline
δ13C-AA values show only subtle distinctions between
basal organisms, comprehensive sampling strategies
become crucial. Seasonal or spatial sampling can help
constrain the variation in baseline δ13C-AA values for
each basal organism group, providing a more stable con-
text for analysis (See Interpreting mixing model output,
Vane et al., 2023). This allows for a more reliable estima-
tion of baseline δ13C-AA values in environments where
protein sources within a biome are not sharply delin-
eated. Researchers may face additional challenges in situ-
ations where comprehensive sampling is not feasible,
such as when studying historical/archaeological samples,
modern environments with temporally dynamic
resources (e.g., lakes, coastal environments), mobile con-
sumers (e.g., migrating birds, insects) that assimilate AAs
over extensive spatial areas, or when confronted with
logistical constraints (e.g., costs). These sources often pre-
sent gaps in spatiotemporal data, limited sample sizes,
material degradation, or incomplete records, which can
complicate the construction of a robust analytical frame-
work. In these cases, auxiliary data like climatic records,
historical/archaeological contexts, or alternative sam-
pling strategies may provide complementary information
for constraining protein sources and inform their ana-
lyses when isotope data alone are insufficient.

CONSIDERATIONS FOR USING
ARCHIVAL TISSUES

AAs are highly persistent in preserved and metabolically
inactive tissues. This persistence together with their abil-
ity to track biosynthetic origins makes AAs a powerful
tool to investigate changes in basal resource use within
and between consumer populations, and over time scales
ranging from seasons to millennia. Tracing how a con-
sumer’s use of basal resources varies across different hab-
itats and time periods depends on the rate at which AAs
are assimilated and replaced in various tissues (i.e., tissue
turnover rate), and the preservation of those tissues
(Boecklen et al., 2011). Stable isotope analysis of AAs
holds a distinct advantage over that of composite bulk
samples because δ13C-AA values are less affected by pres-
ervation conditions, such as the incorporation of exoge-
nous carbon into the bulk tissue via chemical
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preservatives or diagenic contaminants. Nonetheless, the
ability to use AAs to reconstruct past basal resource use
of individual consumers relies on the preservation and
integrity of tissue samples. In this section, we discuss tis-
sue characteristics that enable specific basal resource use
reconstructions over time and space.

Temporal resolutions within consumer
tissues

The temporal resolution of inferred basal resource use
depends on the choice of consumer tissue, as AA assimi-
lation varies across tissue types. While direct measure-
ments of AA turnover rates in tissues are scarce, studies
have shown that they often closely match turnover rates
measured with bulk δ13C values. This similarity suggests
that existing knowledge of bulk δ13C turnover rates can
be used to estimate the temporal resolution of
δ13C-AA-based reconstructions of basal resource use (see
Martínez del Rio et al., 2009 for a comprehensive review).
AAs in blood plasma and soft tissues, such as liver and
muscle, can be turned over within days to months
depending on tissue metabolism, age, size, or species
(Boecklen et al., 2011; Hesse et al., 2022; Robinson
et al., 2011; Vander Zanden et al., 2015). Many hard and
semi-hard tissues such as bones and ligaments are also
remodeled throughout life at different rates varying with
age, gender, physiology, and pathological conditions
(Hadjidakis & Androulakis, 2006). By analyzing different
skeletal tissues with contrasting turnover rates, such as
bone collagen and hair keratin, basal resource use can be
reconstructed over different time periods, ranging from
weeks to decades (Fahy et al., 2017; Matsubayashi &
Tayasu, 2019; Tieszen, 1983). Inert keratin excrescences
such as hair, nails, and feathers capture longitudinal
basal resource use over seasons as they grow continu-
ously until shedding. Other keratin tissues such as scales
and whale baleen grow incrementally and can be used to
reconstruct partial life histories. Entire life histories can
be reconstructed from protein incorporated in increments
of metabolically inert calcium carbonate structures such
as bivalve shells, coral skeletons, and fish otoliths (Borelli
et al., 2001; Edeyer et al., 2000; Falini et al., 2015; Payan
et al., 1999), and similarly so with chitinous cephalopod
beaks and cartilaginous vertebrae of sharks (Cherel
et al., 2009, 2019; Magozzi et al., 2021). However, mate-
rial wear due to mechanical abrasion can limit the tem-
poral window of information contained in structures
such as beaks and baleen (Aguilar & Borrell, 2021).

The temporal resolution of incrementally grown tissues
is dependent on their AA concentration, increment width,
and size relative to the sensitivity of the analytical

instrument. AA concentrations in shells, fish otoliths, and
coral skeletons are typically low, generally ranging between
0.5% and 2%, requiring large sample amounts per measure-
ment, although proteinaceous corals have naturally high
AA contents (Degens et al., 1969; Williams, 2020). Small
increment widths in biogenic carbonates may necessitate
combining material from multiple increments, reducing
temporal resolution. Moreover, AA composition can signif-
icantly differ between species and tissue types; bones have
notably high glycine contents while methionine occurs in
low concentrations in many tissues.

Natural and artificial preservation of
tissues

Proteinogenic AAs can withstand high levels of heat,
gamma radiation, and temperature changes; therefore, their
preservation largely depends on whether hard tissues are
compromised by AA leaching, augmentation, or bacterial
reworking (Collins et al., 2002; Grupe, 1995; Iglesias-Groth
et al., 2011). Several degradation indicators such as AA ste-
reoisomer ratios, and stable δ13C-AA and δ15N-AA values,
suggest that high density carbonate matrices such as egg
and bivalve shells remain inert for at least 10,000 years
under favorable conditions (Engel et al., 1994; Johnson
et al., 1998; O’Donnell et al., 2007; Silfer et al., 1994; Tuross
et al., 1988). However, unbound protein fractions are prone
to leaching and can disappear within the first 6000 years of
an organism’s death (Bada et al., 1999; Ortiz et al., 2018).
External AAs can accumulate on tissue surfaces and should
be removed prior to analysis (e.g., mechanically, by dilute
acid washing, or sonication, Engel et al., 1994). This can be
challenging in porous structures such as coral skeletons
and damaged bones where external AAs can be deposited
over large internal surfaces (Bada et al., 1999). AAs in lower
density matrices such as bones and elastic tissues do not
typically persist on geological timescales as humidity and
temperature shifts accelerate AA degradation by creating
micro-fissures and increasing porosity (Grupe, 1995;
Maurer et al., 2014). Physical abrasion and leaching can fur-
ther diminish the protein content of external hard tissues
like feathers and fish scales (Salvatteci et al., 2012).
Measuring the nitrogen content and atomic ratios of carbon
to nitrogen is often standard practice to assess protein pres-
ervation (Brock et al., 2012).

Soft tissues that readily degrade are best stored either
dried or frozen for extensive time periods. However,
museums and research institutions often preserve
specimens in chemical solvents such as ethanol or
formaldehyde solutions. In the short term (<1 year),
chemical preservation techniques have no observable
effects on δ13C-AA or δ15N-AA values (Chua et al., 2020;
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Durante et al., 2020; Strzepek et al., 2014), but alterations
have been observed for samples stored for prolonged
periods of up to 27 years (Durante et al., 2020; Hannides
et al., 2009; Hetherington et al., 2019; Swalethorp et al.,
2020). Beyond this, it is unclear how solvents affect
δ13C-AA values in proteinaceous tissues, but storage over
centennial timescales or heating causes tissue disintegra-
tion and loss of AAs to the surrounding solvent (Von
Endt, 2000). Preservation chemicals likely affect tissue
integrity by impacting the peptide and protein bonds,
leading to unstructured AA leaching and affecting
δ13C-AA values of the tissue due to mass-based diffusion
differences long term. To fully embrace δ13C-AA analysis
of chemically preserved tissues, further experimental
investigations into the potential effects of chemical pre-
servatives on δ13C-AA values are warranted.

MINIMIZING ANALYTICAL
UNCERTAINTIES IN δ13C-AA
VALUES

Carbon isotope analysis of AAs poses greater methodo-
logical challenges and analytical error potential than
bulk stable isotope analysis. Bulk isotope analysis typi-
cally consists of weighing dried tissue that is then
combusted in the elemental analyzer, although some
samples may require pretreatment. The procedures for
AA analysis are more complex as AAs must first be
extracted and isolated from the diverse compounds
within a sample (see Figure 7). Isotopic measurement
can be done using a gas or liquid chromatograph
interfaced to a combustion reactor and isotope ratio
mass spectrometer (GC-IRMS or LC-IRMS). For
GC-IRMS, polar charged AAs need to be chemically
modified for evaporation (Silverman et al., 2022).
Conversely, AAs can be analyzed directly with LC-IRMS
but analytical sensitivity is comparatively low (Dunn
et al., 2011; Smith et al., 2009). Monitoring the consis-
tency and stability of compound-specific isotope mea-
surements requires the use of reference materials. With
diverse approaches to analytical protocols, instrumenta-
tion, and referencing between laboratories that can affect
the accuracy of δ13C-AA measurements, here we discuss
achieving analytical consistency and inter-laboratory
comparability when measuring δ13C-AA values.

Analytical workflow

To assess the stable isotope composition of individual
AAs, samples are first dried and homogenized, then
subjected to acid hydrolysis, where strong hydrochloric

acid and high temperatures break down proteins and
peptides into their individual AAs (Figure 7: step 2 and 3,
Enggrob et al., 2019). Acid hydrolysis also disrupts addi-
tional chemical bonds, particularly those within the EAA
tryptophan, yielding a complex mixture of AAs alongside
other organic molecules and salts. The removal of the
non-AA fraction, or purification, is essential as it interferes
with later steps in the analytical workflow. Purification
methods vary, depending on the type of tissue analyzed
and chemical protocol employed. Carbonate AAs in bone
collagen must be removed due to their susceptible to dia-
genetic processes and different turnover rates than colla-
gen (Lambert & Grupe, 1993; Stafford et al., 1988). The
decalcification process involves soaking whole bones in a
mild acid (Figure 7: Step 1, Brault et al., 2014; Sealy
et al., 2014), while other biogenic carbonates undergo
homogenization, acid hydrolysis, and purification using
cation exchange resins (Figure 7: Step 5). For samples rich
in secondary metabolites, such as soils, plants, and algae,
purification with cation exchange resins may also be nec-
essary. Large particulates in hydrolyzed samples are
removed through glass wool filtration, while chemical
extraction removes lipophilic compounds (Figure 7: Step
4). The samples undergo drying after purification, followed
by the addition of molecularly similar internal reference
compounds to account for potential AA losses or
isotope effects (Figure 7: Step 6). Prior to GC-IRMS analy-
sis, AAs undergo chemical modification—known as
derivatization—increasing their volatility and enabling
chromatographic separation. This process is done chemi-
cally by specifically targeting AA functional groups
(Figure 7: Step 7). Following derivatization, internal refer-
ence compounds with known isotope values are added to
the sample. After GC-IRMS analysis, chromatograms must
undergo quality control and assurance to evaluate consis-
tency of AA peak integration and co-elution issues
(Figure 7: Step 9). Co-elution can create substantial mea-
surement errors when an AA peak incorporates another
compound’s lighter 12C peak start or heavier 13C peak tail
(Meier-Augenstein, 2002; Sessions, 2006). Since derivatiza-
tion adds external carbon to the AAs, 13C-AA data require
correction using mass-balance equations and predefined
isotope correction factors (Figure 7: Step 10, Docherty
et al., 2001). Long-term measurement stability and instru-
ment performance are monitored through regular analysis
of external reference compounds with known isotope
values (Figure 7: Step 11).

Pitfalls in the analytical workflow

Sample pre-treatments and purification protocols vary
widely in their complexity and scope (Figure 7: Steps 1, 4, 5),
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yet their potential bias on δ13C-AA values remains largely
unexplored. Although acidic treatments and chemical
extractions with extensive water rinsing are commonly
used to remove minerals, urea, and lipids from consumer
tissues, these methods are discouraged as they lead to
large and inconsistent bulk isotopic measurements

(Brodie et al., 2011; Huang et al., 2023; Pellegrini &
Snoeck, 2016; Schlacher & Connolly, 2014). Such
aqueous pretreatments may result in AA loss and
alter δ13C-EAA values in consumer tissues relative to
untreated dietary tissues (see Appendix S5). We compiled
17 controlled feeding studies to highlight the potential
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isotopic effects of aqueous pretreatments. Data reveal
inconsistent changes in δ13C-EAA values between diets
and consumer tissues, ranging from −13 to +12‰, in
studies utilizing extensive aqueous pretreatments
(Figure 8, Appendix S5). In contrast, non-aqueous
pretreatment studies report values consistently much
closer to 0‰ (Figure 8, Appendix S5). Applying aqueous
pretreatments to soft tissue samples may wash away
small peptides and free AAs by dissolving hydrophilic
proteins and AAs. While this observation was based
on recurring methodological patterns, we call for
more studies on pretreatment protocols and methodol-
ogy in general. Demonstrably less bias prone are
post-hydrolysis purification methods, such as cation
exchange or solid-phase extractions (McMahon
et al., 2010; Ohkouchi et al., 2017; Takano et al., 2010).
For carbonate samples, acid hydrolysis converts cal-
cium carbonate to calcium chloride, a compound that
readily absorbs water. Water-sensitive derivatization
reagents, such as acetyl chloride and acetic anhydride,
react with water and form compounds that can
co-elute with the AAs during chromatography. This
can be mitigated by using post-hydrolysis purification
with cation exchange resins, or using water-insensitive
reagents (e.g., methoxycarbonyl esterification [MOC],
Vane et al., 2018; Walsh et al., 2014).

Correcting for exogenous carbon addition during AA
derivatization remains challenging (Figure 7: Step
10, Docherty et al., 2001; Takizawa et al., 2020). Using
derivatization reagents with δ13C values similar to sample
values and ensuring complete reactions helps minimizing
errors. Methods like MOC and N-acetyl methylation
(NACME) introduce minimal additional carbon and
produce stable derivatized AAs suitable for long-term
storage, offering advantages over the trifluoroacetic acid
anhydride (TFAA) method (Corr et al., 2007; Walsh
et al., 2014). Different derivatization methods, such as
MOC, NACME, and TFAA, can introduce biases in indi-
vidual δ13C-AA values, making direct comparisons
impractical (Dunn et al., 2011; Walsh et al., 2014).
Sample drying during and after derivatization requires
careful monitoring, as excessive drying can cause partial
evaporation of low-molecular-weight AAs.

The need for standardization

Maintaining δ13C-AA measurement integrity requires
careful monitoring of analytical consistency and stability
over time. Complete peak separation and Gaussian peak
shapes are fundamental for accurate isotopic measure-
ments (Meier-Augenstein, 2002; Sessions, 2006).
Monitoring instrument stability and accuracy, that is,

measurement standardization, is achieved with internal
and external reference compounds (Meier-Augenstein &
Schimmelmann, 2019). Internal references are added
directly to the sample (Figure 6: Steps 6 and 7) to provide
calibration, track isotope effects, and monitor AA losses.
To calculate appropriate concentrations of internal refer-
ences, sample AA concentrations can be determined
using GC with flame ionization detection (GC-FID,
Figure 7: Step 8). External references are measured sepa-
rately to serve as benchmarks (Figure 6: Step 11) and
should encompass the range of δ13C-AA values in the
samples. References can be subdivided into two catego-
ries: derivatized AAs with known pre-derivatization δ13C
values (Meier-Augenstein & Schimmelmann, 2019;
Roberts et al., 2018) and non-derivatized compounds, for
example, caffeine, fatty acid methyl esters or n-alkanes.
The former account for isotope effects introduced during
derivatization, while the latter calibrate the reference
CO2 monitoring gas and provide a long-term stability
check for δ13C values (Schimmelmann et al., 2016).

To address and reduce biases arising from diverse
analytical protocols, equipment, and sample matrices
across different research facilities, researchers must
implement the practice of thoroughly detailing their
methodological protocols in publications, as proposed by
Dunn and Skrzypek (2023). To that end, the research
community should share and analyze a common set of
relevant biological reference materials. This aligns with
broader initiatives in isotope analysis that call for stan-
dardized reference materials for direct data comparisons
between laboratories (e.g., de Laeter, 2005;
Gröning, 2004; Stichler, 1995). Selecting suitable refer-
ences for δ13C-AA analysis requires materials that are
homogeneous, easily transportable, and neither hazard-
ous nor biologically active. International reference mate-
rials meeting these criteria would strengthen the
reliability and comparability of δ13C-AA measurements
across laboratories. Standardizing methodologies (Figure 7)
would further enhance this, reducing the additional biases
introduced by the array of protocols and chemicals cur-
rently in use, improving the inter-comparability of values
measured in different facilities, and enabling a δ13C-EAA
fingerprint library (Applying δ13C-EAA fingerprints in
ecological studies).

FROM QUALIFYING TO
QUANTIFYING BASAL
RESOURCE USE

Consumer tissue δ13C-EAA patterns are a composition of
the δ13C-EAA patterns of the assimilated basal organ-
isms. Compositional data analysis has a long history,
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spanning from geology to remote sensing
(Aitchison, 1982; Clevers & Zurita-Milla, 2008;
Weltje, 1997). The statistical frameworks used to estimate
proportional contributions in compositional data are lin-
ear (un)mixing models (Parnell et al., 2013;
Phillips, 2012; Weltje, 1997). Over the past 20 years, sig-
nificant development of mixing models has addressed
many issues associated with biological systems, including
complex data structures (Semmens et al., 2009; Stock
et al., 2018), under-determined mixing systems where
many potential basal organism combinations could result
in the same δ13C-EAA patterns (Parnell et al., 2010), and
incorporating natural variations and measurement uncer-
tainties (Moore & Semmens, 2008; Stock et al., 2018).
Here we outline the application of mixing models with
δ13C-EAA data, highlighting key considerations, assump-
tions, and limitations (but see Cheung & Szpak, 2021;
Phillips et al., 2014; Stock et al., 2018 for general reviews
of best practices). While several implementations of
mixing models are available, we primarily focus on the
MixSIAR package in R (Stock et al., 2018) due to its flexi-
bility and relatively common use across ecology (but see

Wang, Lu, & Fu, 2019, and Cheung & Szpak, 2021 for
direct software comparisons).

Consolidating basal organism information

The area bounded by basal organism δ13C-EAA finger-
prints, the endmembers, constitutes the mixing space:
the area containing all possible consumer tissue
δ13C-EAA patterns (Phillips et al., 2014; Smith
et al., 2013). The mixing space dimensionality is equal to
the number of EAAs measured, the mixing model tracers.
All basal organisms that likely contribute to consumer
δ13C-EAA patterns should be characterized (see
Considerations for the δ13C-EAA patterns of facultative
prototrophs), as proportional contributions of basal
resources are not independent of each other: they must,
by definition, sum to one. When resolving mixing sys-
tems, missing endmembers is a general problem
(Weltje, 1997), resulting in inaccurate proportions regard-
less of the statistical approach. Consumer δ13C-EAA data
falling outside of the mixing space can indicate missing
basal organism groups, although consumers falling
within the mixing space may still utilize basal resources
that have not been characterized. Conversely, it is impor-
tant to limit basal organisms to only those that likely con-
tribute to consumers. It may seem reasonable to include
as many basal organisms as possible, but a key assump-
tion of mixing models is that all included basal organisms
contribute to the consumer δ13C-EAA values to some
degree. Excluding unused basal organisms limits model
complexity, aiding model performance, and improves
model accuracy by removing isotopically feasible but bio-
logically unrealistic combinations. Further, statistical
artifacts arise when resolving mixing models with high
numbers of basal organisms as solutions will tend toward
1/n for large n: it is recommended to limit mixing models
to seven or fewer endmembers (Stock et al., 2018).

Trophic discrimination factors (TDFs, Table 1) need
to be quantified for many types of tracers (Schulting
et al., 2022), but they are negligible for δ13C-EAA data
(e.g., McMahon et al., 2010, Figure 8, Appendix S6).
However, the natural variation in basal organism
δ13C-EAA values needs careful consideration as it can be
inadequately described when logistical and analytical
constraints result in low sample sizes. While low sample
sizes can be accounted for in Bayesian mixing models, it
reduces model precision. δ13C-EAA variability could be
approximated using well-constrained literature sources;
however, differences in methodologies and analytical
processes can add additional uncertainties in δ13C-EAA
data (See Minimizing analytical uncertainties in δ13C-AA
value). Analytical precision is rarely considered when

H
is

Ly
s

M
et

Th
r

δ13
C

tis
su

e –
 δ

13
C

di
et
 (‰

)

–15

–5

–10

0

5

10

15

Va
l

Ph
e

Le
u

Ile

with water-rinsing pretreatment

without aqueous pretreatment

F I GURE 8 The differences in measured δ13C values for

individual EAAs, isoleucine (Ile), leucine (Leu), phenylalanine

(Phe), valine (Val), threonine (Thr), lysine (Lys), methionine (Met),

histidine (His), observed between diet and consumer tissue in

17 controlled feeding studies divided on the use of water-rinsing or

soaking in the purification of consumer tissue samples. No

distinction is made between the various consumer tissue types

(muscle, intestine, heart, liver, bone collagen, blood plasma,

eggshell) or between different diets (e.g., protein origin,

macronutrient composition, or prey organisms). See Appendix S5

for specific details on individual studies.
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quantifying basal resource use with δ13C-EAA data
(Hopkins & Ferguson, 2012, but see Vane et al., 2023).
Mixing model frameworks initially developed for bulk
stable isotope analysis are based on data with limited
instrumental error (typically 0.1‰–0.2‰ for bulk δ13C
and δ15N). Analytical uncertainty in δ13C-EAA values
can be larger (~1‰) and AA specific and should be incor-
porated into mixing models to ensure uncertainty esti-
mates are not artificially deflated (see Appendix S6).

Modeling consumer behavior

Specific hypotheses regarding consumer basal resource
use inform how mixing models are structured. Different
nutritional requirements or access to specific dietary
items or habitats that can vary with factors such as spe-
cies, sex, size or ontogenetic stage, or social status may
result in differences in basal resource use between con-
sumers. Hierarchical spatial structuring of consumers,
such as distinct subpopulations within larger areas or
spatially discrete sampling sites, should be considered as
spatial structuring can affect basal organism availability
and use, even if preferences are the same among individ-
ual consumers (Semmens et al., 2009). This similarly
applies to consumers sampled in different time periods
(e.g., seasons, years).

Bayesian mixing models can incorporate prior infor-
mation to inform model solutions, such as estimates
extracted from mass-balanced food web models (Stock
et al., 2018). However, prior information can be biased
(e.g., stomach and scat data toward poorly digestible
prey), and may overly restrict mixing model solutions
(Swan et al., 2020, but see Brown et al., 2018).
Theoretically, known nutritional limitations such as mac-
ronutrient requirements can be included as prior infor-
mation where consumers have considerable diversity in
diet quality, for example, in FRUITS mixing model soft-
ware (Fernandes et al., 2014). However, as prior informa-
tion typically pertains to consumer diet (i.e., the
proportions of prey ingested) rather than basal resource
use, it should be considered carefully with
δ13C-EAA data.

Error structures are often overlooked in mixing
models. For groups of consumers, residual errors in
MixSIAR are modeled as a multiplicative term called a
“residual stretch error,” rather than as a normal distribu-
tion, that stretches or compresses the variance attributed
to model processes (stochastic sampling of basal resource
variation and additional uncertainties, Stock &
Semmens, 2016; Stock et al., 2018). The ecological justifi-
cation for the residual stretch error approach is that con-
sumers feed many times, dampening the isotopic

variation observed in basal organisms. This contrasts
with the implementation of mixing models that sample
basal organism δ13C-EAA values from their distributions
only once when estimating model solutions (Stock &
Semmens, 2016). Residual stretch errors should therefore
take values between 0 and 1 to compress variation due to
feeding behaviors. Values approaching zero can be
interpreted as an increase in the number of feeding
events reflected in the consumer tissue, whereas values
greater than 1 indicate that factors beyond those included
in the mixing model contribute to individual variation.
For passive trophic behaviors such as sessile filter-feeding
or grazing, the stretch error approach works well
(Stock & Semmens, 2016). However, active and selective
feeding modes in motile consumers may violate the
assumption of stochastic sampling, inflating residual
stretch errors, where it may be more appropriate to incor-
porate individuals as an additional random effect in the
model structure. The drawback however is that all resid-
ual intra-group variation in δ13C-EAA values is solely
attributed to differences in individual basal resource use.
In reality, most systems comprise some individual varia-
tion in basal resource use, and other undefined sources of
isotopic variation. While the suitability of different error
structures can be explored in terms of model perfor-
mance (Cheung & Szpak, 2021), emphasis should be
given to the biological interpretations and their trade-offs
within the studied system.

Interpreting mixing model output

Underpinning a mixing model’s ability to accurately esti-
mate basal resource use by the consumer is the separa-
tion in δ13C-EAA data between basal organisms. It is
necessary to first check whether basic model assumptions
are met, the model has converged, and the optimal model
structure has been determined (see Phillips et al., 2014).
If two basal organism δ13C-EAA patterns cannot be dis-
tinguished, that is, are not δ13C-EAA fingerprints, then
their posterior contributions will be negatively correlated,
and potentially exhibit bimodality (Phillips et al., 2014).
In such cases, the proportional contributions of the two
groups should be combined into a single group post anal-
ysis, which often drastically reduces overall uncertainty
(Phillips et al., 2014). Similarity between δ13C-EAA pat-
terns is often tested statistically by comparing the mean
δ13C-EAA offsets for each AA separately. However,
equality of means testing depends on large endmember
sample sizes to be robust (Stock et al., 2018), which is
typically not the case for δ13C-EAA measurements, and
does not consider differences in variances and covari-
ances between basal organisms. If required, statistical
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scrutiny should be conducted using a multivariate
approach (e.g., Bhattacharyya coefficients, Figure 4). If
two or more basal organism groups are isotopically simi-
lar, it is still recommended that their proportional con-
tributions be combined post analysis rather than
merging them prior to implementing the mixing model
(Stock et al., 2018). Similarly, if all basal organisms
exhibit similar means across one or more EAAs, then it
may seem logical to remove such tracers to reduce
model complexity and aid model convergence; however,
differences in basal resource (co)variances also contrib-
ute to resolving mixing models. As demonstrated for
δ13C-EAA data from controlled feeding experiments,
mixing models including all measured EAAs provide
the most accurate solutions across diets with reduced
uncertainties compared with those using a restricted set
of AAs or other statistical approaches (Manlick &
Newsome, 2022); therefore, users should be cautious
about arbitrarily removing tracers.

When implemented, residual stretch errors identify
insufficiently characterized basal organism groups and
highlight potential issues with model components, for
example, analytical uncertainty. Stretch errors slightly
greater than 1 are not necessarily suggestive of poor
model quality: many complex biological and ecological
processes impart variability that cannot be measured or
captured in statistical models. However, stretch error
values that are much greater than 1 can indicate that one
or more substantive processes are lacking from the
mixing model. If stretch errors are inflated for many to
all of the EAA tracers, then this likely indicates missing
but significant driver(s) of basal resource use from the
model structure. If only one or a few EAA tracers have
inflated stretch errors, then more EAA tracer-specific
sources of variation need to be identified. This could
include missing basal organism clades that significantly
differ in δ13C values for the identified EAAs (Vane
et al., 2023, Appendix S6) or poorly constrained
EAA-specific variations. While such situations may be
problematic for testing specific hypotheses, they can
be useful in highlighting inadequacies in current
knowledge.

A mixing model’s ability to partition basal resource
use with precision ultimately depends on the mixing
space, the positions of basal organisms and consumers
within it, and their uncertainties. Precisely quantifying
basal resource use can therefore be highly ecosystem
specific. If consumers depend on only a few, isotopi-
cally similar basal organisms, then their δ13C-EAA pat-
tern mixing area will be small, increasing uncertainty
in model estimates. This can be exacerbated if other
sources of uncertainty, such as measurement errors for
individual EAAs, are large. Small signal-to-noise ratios

in δ13C-EAA data are often reflected in large uncer-
tainties in mixing model solutions, capturing the true
uncertainty associated with disentangling basal
resource use. This can be verified by quantifying how
informative the input data have been in updating the
mixing model priors (Brown et al., 2018). In such
instances, using baseline δ13C-EAA values may prove
fruitful where strong environmental gradients separate
basal organisms, but comes with greater logistical
restraints such as in situ sampling (Vane et al., 2023,
see Beyond δ13C-EAA fingerprints).

Considerations when quantifying basal
resource use

Quantitative approaches using δ13C-EAA data provide
complementary benefits, but additional complexities
compared with bulk stable isotope data (See Minimizing
analytical uncertainties in δ13C-AA value), notably the
logistical difficulties in adequately characterizing all basal
organisms in situ. This has likely led to the application of
extensive training datasets becoming commonplace in
δ13C-EAA studies (e.g., Arsenault, Thorp, et al., 2022;
Arthur et al., 2014; Macartney et al., 2020; Rowe
et al., 2019, see Applying δ13C-EAA fingerprints in ecologi-
cal studies). However, such training datasets can result in
inflated variation and potential bias (mean offsets) in
δ13C-EAA patterns, preventing the characterization of
δ13C-EAA fingerprints compared with in situ sampling
(See Applying δ13C-EAA fingerprints in ecological studies
and Pitfalls in the analytical workflow). These issues may
give rise to conflicting and/or inaccurate inferences
depending on the approach taken. We illustrate this in
Figure 9 where we show the variability in a global
training dataset compared with ecosystem specific but
limited in-study sampling of basal organisms in LDA
space. Mean δ13C-EAA pattern bias between the two
datasets can be observed for several groups, notably
fungi, and inflated variation means that study-specific
δ13C-EAA fingerprints are lost when using global data
compilations. Mixing models are sensitive to input data
(Bond & Diamond, 2011); therefore, the contrasting
basal organism datasets lead to apparent differences in
basal resource use, as shown in Figure 9b,c. The model
with global training data suggests higher microalgal
EAA contributions to Daphnia in oligotrophic Arctic
lakes compared with data measured in situ (see
Appendix S6 for a more detailed contrast and discus-
sion on the two approaches). In some instances, logisti-
cal constraints limit complete basal organism
characterization in situ, necessitating the use of care-
fully selected external training data. If incorporated,
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training data should have clearly documented meta-
data, align with analytical protocols (e.g., use the same
derivatization methods), and, ideally, inter-laboratory
analytical variability is accounted for. As international
reference materials are currently lacking, external
data should generally not be used as a substitute for
adequate system sampling if the aim is to accurately
quantify basal resource use and differences therein,

especially at local scales. Currently, we would advise
adequate sampling of basal organisms with each new
study where possible.

There are many underlying conditions and assump-
tions for robust proportional estimations with mixing
models. Consequently, other semi-quantitative tech-
niques have been implemented to resolve mixing sys-
tems, notably bootstrapped LDA-based classifications

δ

(a)

(d) (e)

(c)(b)

F I GURE 9 Linear discriminant analysis highlighting the increased variation and mean bias introduced to δ13C-EAA patterns in basal

organisms when using training data (individual data points plus their convex hulls, Figure 4) compared with in situ sampling for quantifying

basal resource use. Study data are from Larsen et al. (2013) examining basal resource use by Daphnia sp. in oligotrophic lakes in Alaska. Plot

(a) shows an LDA of the δ13C-EAA patterns (Leu, leucine; Ile, Isoleucine; Phe, phenylalanine; Thr, threonine; Val, valine) in the five main

basal organism groups measured within the study considered relevant to Daphnia sp. compared with using global training data. Study data

consist of samples taken directly from the Alaskan lake ecosystems, within-study, plotted as filled triangles, and organisms from cultures or

sampled from other cold-water lake ecosystems and forests, within-ecosystem, are plotted as filled circles. Training data for these basal

organism groups are taken from the global compilation in Discriminating basal organisms with δ 13C-EAA fingerprints section, plotted as

colored dots (see Appendix S6: Table S1). The within-study freshwater (FW) microalgae consists of a single seston filtratecomposite, which is

likely a mixture of microalgae and allochtonous POM, falls outside of the cultured data, and therefore not included within in situ sampling.

Mixing model contributions when using study data, plot (b), and training data, plot (c), highlight the bias that can occur when using training

data. How informative basal organism group data are to mixing model outputs is shown at the top of plots B and C, quantified as the

bootstrapped median Kullback–Leibler (KL) divergence of the marginal contributions (see Appendix S6 for details). Local study data provide

strong evidence for bacterial proportions (high KL value), but limited evidence for the estimated proportions of cyanobacteria and

microalgae (low KL). Global training data however reasonably inform the model across all basal organisms. Both setups do equally well at

reconstructing δ13C-EAA patterns in Daphnia sp., see plots (d) versus (e), highlighting that this is a poor method for comparative mixing

model validation (Brown et al., 2018). Posterior credible intervals are plotted as 50%, 75%, and 95% highest probability density intervals as

bars of decreasing thickness and color saturation, with posterior modes plotted as filled circles. Observed δ13C-EAA offsets in Daphnia

sp. are plotted as black dots in (d) and (e).
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(Fox et al., 2019). Arguments for this approach include a
“less rigid framework” regarding uncharacterized
basal organisms and mixing space geometry (Fox
et al., 2019; Manlick & Newsome, 2022). Such arguments
misconstrue that the “rigid” assumptions are inherent to
the statistics rather than the mixing systems themselves.
For example, individual consumer data falling outside of
the basal resource mixing space implies an inadequately
described mixing system. This general problem can be
masked by LDA dimensionality reduction, as exemplified
in Figure 9a where Daphnia δ13C-EAA patterns appear
to be encapsulated by the basal organisms, but in fact fall
outside the mixing space for some EAAs (Appendix S6,
see also Appendix S4). Such observations are more
noticeable when implementing Bayesian mixing models
as EAA data are often directly visualized, or are implied
by exceedingly large stretch errors. As LDA approaches
classify data rather than reconstructing mixtures, they
are highly sensitive to data geometry and therefore can
readily produce unreliable results dominated by a single
basal organism group (Manlick & Newsome, 2022;
Skinner et al., 2021, and see Appendix S4). In fact, as con-
sumer δ13C-EAA patterns are a mixture, rather than
wholly one of the defined basal organism groups, the
main assumption of LDA classification is violated a
priori. Recent simulations on lake ecosystem data high-
light that significant bias can occur between known
basal resource contributions and those estimated using
this LDA bootstrapping approach (Saboret et al., 2023).
As the LDA bootstrapping procedures only influence
the position of decision boundaries, this does not truly
incorporate uncertainty in the same way as mixing
models. Instead, it only affects classifications of con-
sumer data falling relatively equidistant between basal
organism groups. As LDA minimizes intragroup vari-
ability, uncertainty estimates are artificially deflated
giving a false view of precision. This not only influ-
ences LDA bootstrapping but may also be problematic
if practitioners use LD coordinates in mixing models
rather than δ13C-EAA values. We argue that the
perceived limitations of mixing models should be
considered a strength in that they require adequate
prior understanding of the ecosystem and consumers
(Makarewicz & Sealy, 2015). This can be incorporated
directly into Bayesian mixing models through
prior information and the rich and diverse model
structures, which is simply not achievable with LDA
boot-strapping approaches. It is frequently highlighted
that mixing models are only as good as the input data
(Phillips et al., 2014), yet quantifying basal resource
use is also only as good as the mathematical abstrac-
tion used to describe our understanding of ecosystem
processes.

PERSPECTIVES ON δ13C-AA
APPLICATIONS IN FOOD WEB
ECOLOGY

Carbon stable isotope analysis of AAs represents a consid-
erable development in the analytical tools for tracing basal
resources in food webs. Richly layered δ13C-AA datasets
offer detailed insights into the intertwined trophic, meta-
bolic, and environmental processes that obscure interpreta-
tions in traditional bulk stable isotope approaches (Yun
et al., 2022). With spatiotemporally consistent δ13C-EAA
fingerprints, coupled with the stability of AAs in
well-preserved tissues, reconstructions of consumer basal
resource use can extend into the paleontological record.
Baseline δ13C-EAA values incorporate environmental
effects, providing inferences about the basal organism habi-
tat while δ13C-NEAA values extend insights into including
dietary macronutrient content, diet quality, and catabolic
processes in consumers. Given the diverse metabolic roles
of AAs, δ13C-AA data help infer the metabolic processes
that underpin cellular and tissue functioning, unlocking
valuable inferences into the dynamic nutrient flows and
physiological responses that shape ecosystems. Diverse
aspects of basal resource use in food webs can therefore be
investigated with δ13C-AA data when the underlying
mechanisms of δ13C-AA values are sufficiently understood.

A priori ecological knowledge informs study sampling
specificity, and the subsequent robustness of inferences
made from δ13C-AA data. The high taxonomic resolution
reflected in the δ13C-EAA patterns of basal resources is
becoming increasingly apparent, notably within plants and
algae (See The diagnostic potential of δ13C-EAA patterns
among basal organisms, Elliott Smith et al., 2022; Larsen
et al., 2020; Scott et al., 2006; Stahl et al., 2023; Vane
et al., 2023). Although exhibiting equally diverse δ13C-EAA
patterns, a lack of data impedes comprehensive analyses of
δ13C-EAA pattern specificity within bacteria and fungi.
Further development of the mechanistic underpinning of
δ13C-EAA patterns in basal organisms, as initiated here in
sections Factors shaping amino acid δ13C values in basal
organisms and Discriminating basal organisms with
δ13C-EAA fingerprints, would facilitate targeted analyses of
discriminatory resolution. It is important to note that
δ13C-EAA patterns may not reflect ecological distinctions in
basal organisms. For example, it can be challenging discern-
ing between fresh tissues and their detrital material, because
δ13C-EAA patterns remain relatively consistent during tis-
sue necrosis, fragmentation, and detrital transport (Elliott
Smith et al., 2022; Larsen et al., 2013; Vane et al., 2023).

Extending beyond discriminating basal organisms
and reconstructing basal resource use in consumers,
extracting the full extent of metabolic information
embedded in δ13C-AA data relies on a solid mechanistic
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understanding of the processes that contribute to individ-
ual AA carbon isotope values. Research during the last
decade has advanced our understanding of the mecha-
nisms underpinning δ13C-AA data (e.g., Elliott Smith
et al., 2022; Larsen et al., 2015; Manlick & Newsome,
2022; Stahl et al., 2023). However, the rapid increase in
the use of these data in ecological research highlights the
need for further integrating and expanding mechanistic
insights for full comprehensive analyses. For instance,
new physiological hypotheses regarding basal organisms
can be generated through δ13C-AA data, such as the syn-
thesis of 13C-deplete lignin resulting in relatively
enriched δ13C values of phenylalanine in vascular plants
(See The diagnostic potential of δ13C-EAA patterns among
basal organisms). Furthermore, δ13C-AA data could shed
light on the degree of direct AA incorporation in faculta-
tive prototrophs. Culturing basal organisms on AA-free
media establishes the δ13C-AA pattern of purely de novo
synthesized AAs, which can be compared with those
sampled in situ, revealing the degree to which external
AAs are directly assimilated into the proteins of faculta-
tive AA prototrophs in natural settings. Such insights
would detail the biochemical functioning of saprotrophic
communities, disentangle the metabolic roles of hetero-
trophy in mixotrophs, and could be further facilitated by
the development of position-specific stable isotope ana-
lyses (Fry et al., 2023).

Despite the richness of information that δ13C-AA data
provides, the large analytical effort has likely contributed
to the trend of incorporating external training data into
study designs, varying from graphical comparisons
(e.g., Besser et al., 2022; Larsen et al., 2012; Stahl
et al., 2023) to extensive training data within mixing
models (e.g., Arsenault, Thorp, et al., 2022; Arthur
et al., 2014; Rowe et al., 2019). Herein lies, however, the
often underappreciated issue of interlab comparisons, a
problem that is not unique to the carbon stable isotope
analyses of AAs (e.g., de Laeter, 2005; Gröning, 2004;
Stichler, 1995). Direct δ13C-AA data comparisons should
be facilitated by international reference materials and the
standardization of analytical methodologies across
research facilities (Figure 7). Studies comparing inter-lab
methodologies would pinpoint the specific processes
within protocols that cause measurement biases, improv-
ing our understanding of stepwise fractionations
associated with specific workflows and redressing issues
with incorporating training data into study designs.
Ultimately, δ13C-AA values of basal organisms could be
collated into a single taxa-specific reference library for
future studies, constituting a separate functional role to
the wider calls for a centralized repository for isotope
data (Pauli et al., 2017).

The application of δ13C-EAA fingerprints holds
immense potential for addressing pressing ecological
questions on changing productivity in food webs. The
δ13C-EAA fingerprint approach affords the opportunity
to explore carbon fluxes across spatiotemporal scales
without having to characterize changes in baseline
δ13C-EAA values, offering basal organism characteriza-
tion and tracing that is unparalleled in its specificity and
inclusivity. Understanding basal resource use by meta-
zoans and their physiological responses in conjunction
with changes in basal organism abundance, composition,
nutritional quality, and the environment provides valu-
able insights into the resilience of differing food webs
across the world.
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