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Supplementary Notes
Climate classification
From the orginal Köppen climate classification [1] we define five main clusters as shown in Figure S1:

• Arid: this type of climate is defined by little precipitation and it contains the 7 sub zones such as BWh, BWk, BSh, BSk,
Csa, Csb, Csc.

• Continental: this type of climate has at least one month on average below 0◦C and at least one month on average above
10◦C. It contains all the D subclasses.

• Polar: In this type of climate, the average temperature is below 10◦C in all months of the year and is defined by subzones
E. In our analysis, we do not observe cities in this climate cluster.

• Temperate: For this climate type, the coldest month averages between 0◦C and 18◦C and at least one month averages
above 10◦C . It grouped the following sub zones: BWh, BWk, BSh, BSk, Csa, Csb, Csc.

• Tropical: This type of climate has an average temperature of 18◦C or higher in each month of the year, with significant
precipitation and it is described by the A sub zones.

The spatial lag model
For an individual observation, the spatial lagged equation (written in matrix notation in Eq. ??) can be written as the following:

yi =
Q

∑
q=1

βqxiq +ρ

n

∑
j=1

wi jy j + εi (S1)

with j ̸= i, Q defines the number of independent parameters and n corresponds to the number of observed neighbors defined by
the approach: in this research we used a k-neighbors approach with k = 8, thus n = k = 8. Since the dependent variables, yi,
appear on both sides of the expression:

Y = Xβ +ρWY + ε (S2)

we can re-arrange this expression to solve for Y :

Y = (I −ρW )−1Xβ +(I −ρW )−1
ε (S3)

The design of this kind of mixed model incorporates spatial autocorrelation together with the influence of other (aspatial)
predictor variables. The objective of this revised approach is to obtain a significant improvement over a standard OLS model.
The level of improvement will depend on how well the revised model represents or explains the source data, and to an extent
this will vary depending on the detailed form of the weighting matrix, W . The spatial weight matrix W is key to any spatial
regression. It defines the relationships between the units of analysis so that the model can control for the fact that areas that are
near to each other are more similar than areas that are far apart [2]. Rook adjacency neighbors are defined as those that share a
common edge, and queen adjacency neighbors are defined as those that share a common edge or node. The number of links
created in a queen matrix will always be at least as large as the number from a rook matrix. We used the Python Pysal library
for the spatial analysis [3].

Diagnostics for spatial dependence
We assessed the spatial autocorrelation of the variables using six different tests comprises of Moran’s I (error), lagrange
multiplier (lag), robust LM (lag), lagrange multiplier (error), robust LM (error), and lagrange multiplier (SARMA) [4]. We
did that using Pysal [3]. At p-value of 0.001, the Moran’s I score of 0.93 is highly significant, indicating strong spatial
autocorrelation of the residuals. The robust LM statistics for spatial lag and spatial error dependence are found to be significant,
clearly indicating presence of spatial autocorrelation (Table S1).

Cross-validation setting
In order to validate the models we use a k-fold cross validation scheme that consists in three main phases: i) training, ii)
validation and iii) and test. As shown in Figure S7 we firstly define 5 sub-datasets containg the 20% of cities (10 cities for each
climate zone). The cities of the Test 1 do not appear in the other subsets and viceversa. For each of the test sets we define a
training/validation subset that contains all the cities except the ones in the selected test set. For each phase we then consider a
training/validation dataset of 160 cities (40 cities for each climate zone). In this dataset we perform a k-fold cross validation
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with k = 5 and we evaluate the performance of the models in the training and validation subsets. We choose the values of the
models’ parameters that optimize the value of the R2 in the validation setting and we test the models using the relative Test
subsets. In the Figure S7 we show the case for the Test 1. We repeat the same analysis 5 times for all the Test subsets and we
finally have 25 values of the R2 for the training and validation steps and 5 values for the test sets. We then use the average
values of the parameters β to perform the mitigation strategy analysis.

Supplementary Figures
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Continental
Polar
Temperate
Tropical

Figure S1. Cities grouped in the climate clusters defined from the Köppen climate classification.
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Figure S2. Data used for the regression model for the city of Guangzhou. From the top left to the bottom right: the definition
of urban boundary starting from the definition of cities by the Global Human Settlment Layer (GSHL) [5] in red, the urban
boundary in gray, heatmaps of the distance to water bodies in kilometers (dw), population, Normalized Difference Vegetation
Index (NDVI) and number of days and nights over threshold respectively.
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Figure S3. Values of the Land Surface Temperature (LST) 90th+ percentile for daytime (a) and nighttime (b) across various
cities based on their temporal distribution.
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Figure S4. The boxplots illustrate the distribution of the daytime (Day) and nighttime (Night) values of the Land Surface
Temperature (LST) thresholds of all cities.
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(a) Number of days in which over the daily value of the Land Surface Temperature (LST) is above the 90th percentile (LST d
90).

(b) Number of nights in which over the nighttime value of the Land Surface Temperature (LST) is above the 90th percentile (LST n
90).

Figure S5. Number of days over the critical thresholds for the city of Paris.
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Figure S6. Definition of total exposure to extreme heat for the city of Paris over the different years. From top to bottom:
population, average number of days over threshold, average number of nights over threshold and exposures.
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Figure S7. Schematic representation of the cross validation setting.
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Figure S8. Mean Absolute Error (MAE) for the A) Spatial Lag Model (SLM) and B) Ordinary Least Squares (OLS) models.
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Figure S9. Values of the R2 during the training and validation phase for an Ordinary Least Squares (OLS) regression model.
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Figure S10. Values of Normalized Difference Vegetation Index (NDVI) and total exposure for different scenarios.
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Supplementary Tables

Table S1. Diagnostics for spatial dependence: the mi/df ratio in PySAL [6] diagnostics for spatial dependence is the ratio of
the Moran’s I statistic to its degrees of freedom. This ratio is used to determine whether the spatial dependence in the data is
statistically significant. A ratio greater than 1 indicates positive spatial autocorrelation, and a ratio less than 1 indicates negative
spatial autocorrelation. If the ratio is close to 1, it suggests that there is no significant spatial autocorrelation in the data.

Test Value MI/DF Prob

Moran’s I 1482.912 0.93 0.0000
Lagrange Multiplier (lag) 2189960.088 1 0.0000
Robust LM (lag) 2543.394 1 0.0000
Lagrange Multiplier (error) 2198994.929 1 0.0000
Robust LM (error) 11578.235 1 0.0000
Lagrange Multiplier (SARMA) 2201538.323 2 0.0000

Table S2. Exposure reduction values for the city of Paris

Case Region Cumulated Local NDVI Total NDVI Total exposure T ET ∆T ET
NDVI increment increment [%] [million person·days] [%]

Observed Entire city 4364.15 0 0 164 0
Scenario 1 Entire city 6201.02 0.3 42 144 -12
Scenario 2 Most populated 4969.85 0.38 14 144 -12
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