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Herbort5, Frank Kügler1[0000−0001−8101−0005], Jens
Lemanski6[0000−0003−3661−4752], Katja Liebal2, Andy

Lücking1[0000−0002−5070−2233], Alexander Mehler1[0000−0003−2567−7539], Kim
Tien Nguyen1, Wim Pouw7[0000−0003−2729−6502], Pilar Prieto8, Patrick Louis

Rohrer**8,9[0000−0002−2714−7294], Paula G.
Sánchez-Ramón1,8[0000−0002−3394−1013], Martin
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Abstract Multimodal communication research focuses on how different
means of signalling coordinate to communicate effectively. This line of
research is traditionally influenced by fields such as cognitive and neu-
roscience, human-computer interaction, and linguistics. With new tech-
nologies becoming available in fields such as natural language processing
and computer vision, the field can increasingly avail itself of new ways
of analyzing and understanding multimodal communication. As a result,
there is a general hope that multimodal research may be at the “precipice
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of greatness” due to technological advances in computer science and re-
sulting extended empirical coverage. However, for this to come about
there must be sufficient guidance on key (theoretical) needs of innova-
tion in the field of multimodal communication. Absent such guidance,
the research focus of computer scientists might increasingly diverge from
crucial issues in multimodal communication. With this paper, we want
to further promote interaction between these fields, which may enor-
mously benefit both communities. The multimodal research community
(represented here by a consortium of researchers from the Visual Com-
munication [ViCom] Priority Programme) can engage in the innovation
by clearly stating which technological tools are needed to make progress
in the field of multimodal communication. In this article, we try to fa-
cilitate the establishment of a much needed common ground on feasible
expectations (e.g., in terms of terminology and measures to be able to
train machine learning algorithms) and to critically reflect possibly idle
hopes for technical advances, informed by recent successes and challenges
in computer science, social signal processing, and related domains.

Keywords: Multimodal communication · Natural language processing
· Technical innovation

1 Introduction: Multimodal Communication

When people talk to each other, they naturally communicate with their whole
bodies (e.g., [58]). That is, besides speech or sign they use facial expressions,
move their hands and arms for gesturing, laugh, gaze, shrug, nod, sigh, among
other things. All these signals cohere into social interactions (e.g, [119]) and
are interpreted in relation to one another [76]. While some of these signals are
perceived in the acoustic modality, others are perceived visually, tactilely or
olfactorily. Thus, interactions are not only produced by the whole body, but also
perceived by various sense modalities. Hence, communication is multimodal,
captured in the eponymous term of multimodal communication.

We are researchers with different backgrounds working on multimodal com-
munication, specifically on gestures, sign languages, didactic and clinical aspects
of visual communication, animal communication, and human-computer inter-
action systems. Our work contributes to the Priority Programme Visual Com-
munication (ViCom), supported by the German Research Foundation (DFG).
ViCom aims at disclosing the specific characteristics of the visual modality as a
communication channel and its interaction with other channels (especially the
acoustic one) to develop models of human communication and their cognitive
and evolutionary foundations. We share an interest in visual communication and
are particularly interested in exploring to what extent vocal or signed linguistic
communication is multimodal at its core and substantially shaped by (social)
interaction [56,77]. We differ in the theoretical frameworks we employ [37], the
populations and species we work with, and the methodologies we use. What ties
us together is the idea that mutual progress can be made by employing principles
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of open science, sharing our expertise on different scientific strands, and paving
the way for cooperative science to move beyond the border of a single discipline.

Many aspects of multimodal communication remain unknown, including the
mechanisms by which multiple signals are quickly integrated in perception and
coordinated in production [187,6]. The study of multiple signals is therefore re-
quired, and in need of technological advancement to be explored. The detailed
investigation of different signals in isolation, as well as their cross-modal integra-
tion in different populations and species, requires tools and methods that differ
from those developed for written (and usually digitized) text. Over the past
years, tools and methods have been developed for simultaneously keeping track
of signals on various channels, but not necessarily in a joint effort by computer
science (expertise in data processing), linguistics (expertise in linguistic struc-
ture and its contributions to meaning, etc.), and other disciplines investigating
principles of communicative behavior.

1.1 Goals of this Article

Not least due to advances in audiovisual technology (i.e., recording and storing
ephemeral utterance events by means of camera and microphone for analysis),
an empirically grounded theory of multimodal language use and interaction is
developing [38] – “a scientific tool whose importance to our discipline equals that
of the microscope to biology” [178, p. 275].

We believe that multimodal research is necessary to advance theoretical re-
search on human and non-human animal communication. Here, we survey the
state-of-the-art of existing research tools that can and have been applied in mul-
timodal research on communication. We evaluate current approaches, point out
short- and long-term aims, and identify the scientific innovations that such aims
imply. We further provide suggestions for tools and applications, which we be-
lieve might help move the interdisciplinary research dialogue between cognitive
and computer science forward. Finally, we highlight the availability of these tools,
not only to increase their familiarity among linguists, but also to highlight how
some tools are now primarily used by computer scientists due to high technical
skills required to wield these tools.

1.2 Overarching Terms

“Multimodal communication” is a broad field of research that considers not
merely acoustic signals (which may be grouped into meaningful units) as be-
ing able to move communication forward. While most of this paper will revolve
around the acoustic and visual modes of communication, note that tactile cues
(e.g., in languages of the deaf-blind) or olfactory signals (e.g., in animal com-
munication) are used for communication as well. Typical examples of visual
communication are sign languages, gesturing, facial expressions, eye gaze, and
orofacial movements, but also diagrams, emojis, and written text, c.f., Figure 1.
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Multimodality can refer to the sensory channels (e.g., acoustic, visual) or dif-
ferent content types within a sensory channel (e.g., signs and facial expressions,
eye gaze, text and emojis).

Some forms of multimodal communication comprise complex grammar and
can express a potentially infinite range of different ideas (e.g., discourse in sign
languages), others have lexicalized meanings (e.g., individual signs or symbolic
and highly conventionalized gestures), or may refer to specific aspects of the cur-
rent situation (e.g., deictic gestures indicating spatial relations). In addition, the
different forms vary in complexity: For example, lexical items of a sign language
are highly complex signals that consist of discrete parameters (i.e., hand shape,
place of articulation, movement, and orientation), while symbolic gestures may
be formed in a simpler manner. Moreover, some forms of visual communication
such as sign languages are highly conventionalized (vertical axis of Figure 1),
while others, such as iconic gestures, may be created spontaneously. Within
gesture studies, degrees of conventionalization of hand-and-arm movements are
located on Kendon’s Continuum, popularized by [113, p. 37]. Note that the level
of conventionalization may differ within each form. For example, a simple draw-
ing of an object, like a hammer, is first and foremost its representation in the
iconic sense – it refers to a hammer through a sense of resemblance (but see
[25,17,57] for critical discussions of reducing reference to resemblance). How-
ever, if a hammer is combined with a sickle in a specific manner, it may stand
for a symbolic and conventional representation of Marxist-Leninist philosophy.

Lastly, forms vary in the specific effectors – the medium used for expression
(e.g., hands, face, paper/screen, c.f., colors in Figure 1) – they are typically tied
to, or their dynamicity (deictic gestures often being relatively static, while beat
gestures are dynamic). The use of visual cues in communication – which makes
it multimodal – can also set an implicit “tone” to the communicative situation.
This can be shown in the expression of emotional states or reversing the meaning
of what is said. Note also that multimodal communication may happen without
intention, or without consciously controlling effectors to communicate (e.g., in
non-human animal research).

2 Development of Multimodal Research

2.1 Establishing Multimodal Research

While the idea of communication being multimodal is not new itself, multimodal-
ity has yet to be adequately incorporated and modelled in linguistic theories. In
sharp contrast to the well-established interest in written and/or spoken language
understood as a unimodal phenomenon, multimodal aspects of communication
have received only some initial attention.

Multimodal communication research has emerged on the foundation of work
from pioneering scholars from the late 20th century (e.g., [79,80,113]), who
claimed that gesture had to be understood as an integral part of communication.
Since then, visual cues have been gradually accepted as a central component of
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Figure 1. Examples of a variety of different forms of visual communication (non-
exhaustive). Different forms of visual communication are organized horizontally ac-
cording to the complexity of the information that could potentially be conveyed and
vertically according to their level of conventionalization. Colors indicate the effectors
that are primarily involved (hands: blue, face: green, paper/screens: red). Images are
re-used courtesy of Oliver Herbort. Still images of DGS signs are copyright [184] and
re-used under Creative Commons Attribution 4.0 International License.

many communicative scenarios from a variety of perspectives. Crucially, this ac-
ceptance has been triggered by cutting-edge studies on both signed and spoken
languages. This makes important contributions to the assumption that the study
of visual aspects of communication should definitely be considered a worthwhile
(or even necessary) addition to theories. This relates not only to “communi-
cation” in the abstract sense but also more centrally to specifically linguistic
theories (e.g., [143] for a review, [43,42] for gesture, [155] for signed languages,
[65] for the gesture–sign interface, [105] for the gesture–grammar interface).

It is our belief that the incorporation of multimodal aspects of communica-
tion into linguistic theories may well come to resemble the inclusion of prosodic
aspects into grammatical models of language. Prosody initially was not deemed
important with regard to its effects on other linguistic subfields such as syntax,
semantics, lexical analysis, or information structure, c.f., [174,36]. This changed
only when the established methods of the neighboring subfields started consider-
ing that prosody has a productive impact on the language system as a linguistic
subfield in its own right (e.g., [69,179]). Important research by [146], [92] and [60]
demonstrated the phonological status of intonation across languages. Nowadays,
prosody has been shown to not only constitute an essential module of grammar
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but also having an impact on language production and processing (see [153] for
a review).

There is some level of agreement that multimodality can be an important
factor for communication research. However, from a wider perspective, multi-
modal communication research has not yet agreed on standard definitions (e.g.,
for concepts, categories, relations), nor on tools or methodologies required. Two
central dimensions have already been investigated in the relation between lan-
guage use and gesture (see [1] for a review), namely timing and meaning. Issues
that have not been fully solved include the transition from pure manual gesture
annotation to tools like automatic recognition of specific patterns, segmentation
tools, and natural language processing.

2.2 Interaction with Other Fields

Technological innovation in multimodal communication research is relevant not
only for understanding human communication but also for a number of other
fields, such as communication of emotions, human-computer interaction (HCI),
neuroscience, clinical research and animal communication (do specific gestures
and vocalizations co-occur to convey novel meanings during communicative in-
teractions [7]? A multimodal approach may be crucial to really understand the
meaning entailed by animal communication). For example, principles such as the
tight coupling of perception and expression between social agents not only un-
derpin communication using language [145], but also extend to nonverbal facial
[172] and auditory [52] communication and benefit from multimodal measure-
ments (e.g., [64]).

The consideration of multimodality in neuroscience may foster theoretical
and functional innovations: Brain systems mediating perception and expression
in a modality are often overlapping both in humans and non-human animals (see,
e.g., [52] for the auditory domain), yet higher-order regions processing abstract
information that is not part of the signal (e.g., syntax and semantics) such as
the language network seem to be organized in a modality-independent fashion
[189,185,90]. Increasingly, “mobile friendly” neuroscience methods such as fNIRS
(functional near-infrared spectroscopy) are used for the investigation of more
than one person and more than one brain during interaction [126] to assess
brain mechanisms and synchronization/coordination processes across brains [88].
Such approaches would greatly benefit from additional fine-grained assessment
of multimodal data streams reflecting communicative behavior and integrated
neurobehavioral analysis.

Multimodal communication researchers are often in the business of under-
standing time-varying bodily motions acting together in a referential or indica-
tive way. While the tools and conceptual schemes to categorize these complex
communicative objects have advanced, the analyses of the time-varying motion
have as such been lacking. There is thereby relatively little integration with
human movement science which focuses on non-referential bodily motions, and
hitherto a general lack of application of concepts from kinematics or biome-
chanics, and a lack of integration of tools that deal with high-dimensional time-
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varying data. But this is changing too. For example, there is increasingly robust
research on the kinematic information about intentions (e.g., [144,188,29]), ap-
plication of kinematic-acoustic analyses in typical and non-typical populations
(e.g., [39,104]), and new ways of compressing high-dimensional data for analyzing
multimodal signaling (e.g., [5,149]).

Time-sensitive, kinematic studies can contribute to a debated but difficult to
investigate phenomenon of multimodal communication, namely the cross-modal
constitution of “ensembles” [79,118]. Such ensembles, when used repetitively in
conversation, have a statistical effect (as assessed in information theoretic terms
for speech–gesture pairs by [115]). A generalization of such ensembles has been
suggested to be a cornerstone of (the speed of producing and comprehending)
multimodal communication in terms of multimodal gestalts [67]; see also the
challenges pointed out in section 1. However, recurrent ensembles or gestalts
may lead to a simplification of form – on side of the gesture, on side of speech,
or both [107]. It is suggestive to ascribe such simplifications to a balance between
production effort and comprehension, facilitated by repetition of use. In order
to quantify such recurrent phenomena, combined temporal and spatial measure-
ments are needed. These may also feed into time-dependent, embedding-based
approaches as employed, for instance, in semantic change detection [176].

Communicative movement is special and not simply guided by clearly testable
performance variables [183]. Rather, for communicative movements “meaning is
a performance variable” [95, p. 359]. Yet, meaning needs not always be such an
elusive concept, and communicative movements may also have informative value
qua movements, for example by deviating from how one usually moves [144] or
making use of biomechanical stabilities [151].

Advancement in multimodal communication research may also provide strong
benefits to clinical research, for example, to people with sensory impairments or
users of a cochlear implant [8,45]. Moreover, many developmental and men-
tal disorders are associated with problems in visual communication and social
functioning. Disentangling the respective mechanisms for different disorders is
important for advancing diagnostics (e.g., [171]) and intervention. For example,
although perception, expression, and imitation of facial emotions are disturbed
in the Autism Spectrum Disorder (ASD) [190], it is controversial whether facial
motor mimicry is involved as a mechanism that drives such disturbance [41,172].
Research into cross-modal imitation (for instance, a reflexive facial expressive
response that matches the emotion perceived in another´s voice) [110] suggests
a multimodal nature of emotion processing, but studies tackling this issue ex-
plicitly remain quite rare [200].

For clinical contexts and applications in real-world settings (i.e. when ecologi-
cal validity is particularly important), methods are needed that are easy to apply,
non-invasive, and flexible. For example, facial emotion expressions or speech were
traditionally measured using electrodes or sensor coils (e.g., facial electromyo-
graphy [172], real-time magnetic resonance imaging (MRI), or electromagnetic
articulography [123], respectively). Although precise and well-established, such
methods have the disadvantage of being bound to a lab than more recent contact-
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free approaches like video recordings for the analyses of facial expression, acoustic
analysis for automatic speech recognition, and recognition of emotions in speech
[170,40]. Video-based assessment of body pose is also increasingly used in clini-
cal populations [111], however, developing efficient machine learning algorithms
for semantic analysis of body pose and gestures remains a challenge. Ultimately,
this depends on the exact definition of semantically interpretable body config-
urations for the respective situation (e.g., a gesture “vocabulary”, categories of
the emotional tone of movement, etc.). Furthermore, these new methods also al-
low studying other species during natural interactions, without having to recur
to invasive research, which can be ethically problematic in some cases.

Overall, multimodal data acquisition poses both a challenge and an opportu-
nity in this respect: richer data allows for more precise characterizations, but its
mapping to meaningful communicative events requires stringent, theory-based
descriptions and theoretical models. Theoretical questions (broadly understood)
as well as empirical knowledge of previous studies should lay the foundation for
the development of standard procedures and technological development of new
tools. A step in the right direction would be, from our point of view, to estab-
lish fruitful collaborations across researchers, labs, research institutions, etc. In
this way, we could integrate our different needs, develop standard definitions of
concepts (e.g., from semantics, prosody, and technology), achieve more system-
aticity in terms of manual labeling and foster the development of technological
tools for the benefit of theoretical and applied research in this field.

3 Available Tools, Methods and Databases

Having assessed the integration of mulitmodal communication research into cog-
nitive science, in this section we provide a state-of-the-art on available tools,
methods and databases for empirical multimodal research. The employment of
automatic tools and methods for studying multimodal natural language use can
be roughly distinguished in terms of an annotation ladder, sketched in Figure 2.
To give a brief, stepwise description: (i) First, the physical signals realizing the
communicative behavior under observation need to be recorded. Therefore the
specificities of the recording techniques and knowledge about previous stud-
ies are key factors. Recording multiple signals with different devices imposes
a synchronization problem (bottom row). (ii) Within the continuous recording
stream, the actual units of observation have to be identified (segmentation). This
may require mapping the recorded signals into a meaningful feature space first
(e.g., mapping Cartesian movement coordinates onto a skeleton model). Seg-
ments from different signals have to be aligned (middle row). (iii) The units of
observation can then be classified (e.g., functionally, taxonomically, etc.). Note
that the labels of annotation and how to use them should be defined in an
annotation scheme. Multi-channel classification basically has to decide whether
different signals/segments belong to a single “ensemble” [80], bear a coherence
relation, or remain unrelated. Along these lines, results of automatized process-
ing finally feed into qualitative or quantitative theory building and testing (see
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section 1). The annotation ladder sketch is useful for assessing the subsequent
survey of recording and annotation tools in the discussion in section 4.

1 channel 2 or more channels

classification
(annotation)

ensemblehood
(unity, coherence, dissociation)

segmentation

(units of observation)

alignment

(offset)

recording

(physical signals)

synchronization

(timing)

mapping into feature space

 interpretation / method to theory

Figure 2. The annotation ladder for multimodal signals on a single channel (left) gives
rise to temporal or (dis-)integrative multi-channel relationships on each rung (right).
The blue and red lines represent distinct modes of continuous signals. The unidirec-
tionality of arrows indicates a step on the next rung. Depending on the current study,
however, knowledge from higher rungs may be used in the opposing direction (top-
down) to contribute to solving annotations on lower rungs. Note that in multilogue the
annotation ladder applies both within a single speaker and between different speakers.

3.1 Motion Recording Techniques

Data recording is often a crucial step when doing research in multimodal commu-
nication and it offers a variety of technologically supported tools. In this section,
we will review the main behavioral recording techniques. When multimodal com-
munication research is carried out, human-to-human communication is usually
recorded with one or more video cameras in immobile (cameras distributed in
space [101]) or mobile (cameras move with the people recorded; e.g., to reflect
the perspectives of the actors [72,201]) recording setups. For good audio qual-
ity, it is advisable to use (external) condenser microphones. In the following,
we describe different implementation options for data recording, which are not
mutually exclusive but can be combined in various ways to balance out their
individual advantages and disadvantages. Note, however, that overly complex
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setups may come at the expense of truly huge amounts of data, which also may
need to be synchronized and processed in a complex fashion during analyses (see
section 3.3). The choice of a recording technique is often based on the research
objectives, space, price, mobility, technical know-how, scalability, accuracy, fre-
quency, feature, scenario, etc. [51,206].

Recording scenarios can focus on the body as a whole or on specific body
parts. Full body tracking can be carried out by room-scale systems (which stat-
ically record scenes; are very specialized and accurate; require specifications in
advance, e.g., [22]), by AI systems (which are standalone cameras typically
with depth sensors; natively track body motion using specific key points), or
by body trackers (which are key points placed on the actor; can be either stan-
dalone or combined with external stations; typically 3–8 trackers are needed; e.g.,
[141,204]). Recording strategies focusing on single body parts usually record the
movement of the face, hands or eyes, using more specific key points (not al-
lowing full body tracking), and they are usually implemented by using mobile
head-mounted systems. Examples of these systems are eye tracking glasses (which
are glasses-type devices indicating the exact point the recorded eye fixates; e.g.,
[191,75]), Virtual Reality (VR) glasses (which usually measure head movements
in space, but increasingly also provide direct hand tracking and gesture recogni-
tion, native eye tracking, and face tracking; they are inexpensive and widespread;
can help to visualize stimuli/scenarios [136]; with the disadvantages that a por-
tion of the face is covered and they do not allow for direct human interaction)
or Augmented Reality (AR) glasses (which augment the real world for the user;
and include hand and eye tracking).

Tracking technology provides versatile means and devices for recording body
signals of various kinds. However, from the practical viewpoint of multimodal
researchers, their productive use in empirical studies places some obstacles: (i)
Special equipment is needed, which also needs to be operated by an expert.
That is, many of the above-mentioned methods do not work out of the box
for untrained researchers. (ii) The tracking data needs to be post-processed.
However, in contrast to written and digitized text, there is a glaring lack of
automatic annotation procedures (see section 1). (iii) Even manual annotation
poses problems: standard annotation tools are not prepared to handle data types
other than digitized text, audio or video files – see section 3.4. Furthermore,
there are no agreed-upon annotation schemes or standards for many non-verbal
kinematic communicative behaviors.

3.2 Neural & Physiology

In contrast to motion recording techniques (section 3.1) that capture sponta-
neous, behavioral data from the environment, neuroscientific methods are also
used with a focus on a better understanding of the underlying control or process-
ing components in multimodal communication. However, while there is relative
robustness of e.g., eye-tracking data against artifacts that originate from freely
moving participants – given careful and repeated calibration and firmly fitting
eye-tracking glasses – recording and analysis of, for example, electrophysiological
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data in interactive settings are more complicated. A number of such methods
are introduced in the following.

For example, electroencephalography (EEG) is a powerful tool to investigate
the time-course of cognitive processes. The electrical brain activity is recorded
from an electrode cap and any kind of movement generates artifacts – even blink-
ing. Most previous studies with freely-moving subjects used so-called dual-task
experiments, in which participants have to perform a common task from experi-
mental psychology (e.g., oddball detection) while performing a second task (e.g.,
[100,124]). This type of study compares the response to a target stimulus in dif-
ferent mobility conditions, for instance walking and sitting. Traditional averag-
ing methods to compute event-related potentials (ERPs; i.e. electrophysiological
signals time-locked to a stimulus event) have proven quite robust to movement-
related artifacts after standard preprocessing [100]. However, the movements in
these studies were temporarily and semantically unrelated to the experimental
task. Thus, their influence on the ERPs of interest might be small and “canceled
out” in the averaging process. In real-world experiments that are, for instance, in-
terested in language use and co-speech gestures, however, the bodily movements
(gestures) are related to another modality of the experimental stimuli of interest
(speech). Therefore, they systematically occur in critical trials and thus over-
lap with each other and with the critical language input. As a consequence, the
language-related ERPs usually overlap with gesture-related potentials, as well
as fixation-related potentials (since participants are looking at gestures while
listening to speech). Failing to account for this overlap might lead to a critical
distortion of the results. Therefore, calculating traditional, averaged ERPs is not
suited for this kind of data. Instead, it is advisable to use time-resolved regres-
sion (deconvolution) to calculate regression-based ERPs (rERPs) in real-world
studies. There are toolboxes for EEGs that have the flexibility for multimodal
analysis (c.f. [166] or [44].

Another common method to measure brain activity is functional near-infrared
spectroscopy (fNIRS), which is increasingly used in interaction research (e.g.,
[152,177]) due to its ability to capture multimodal signals. fNIRS is a haemo-
dynamic technique to assess functional activity based on the different optical
properties of oxygenated and deoxygenated haemoglobin [169]. fNIRS devices
are highly portable and relatively robust to motion artifacts (e.g., [9,147]). For
example, accurate signals have been obtained even while dancing [127] or playing
table tennis [10].

In addition, the emergence of hyperscanning studies [120] (i.e., measuring
the activity of multiple brains simultaneously) has started to decipher the brain
mechanisms underlying social interaction as a whole (rather than recording only
the brain of one involved person) (e.g., [54,137,11]). Opening new ways to mea-
sure interaction, hyperscanning provides an experimental means that enables
more ecological validity in neuroscientific studies of the social brain. More gen-
erally, we can also assess other physiological measures, such as individuals’ heart
rate or skin conductance, which should be sensitive to individuals’ movement.
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A challenge of working with multimodal data is to identify the point at which
modality-specific information is accessible. For example, the intonational contour
provides cues as the speech signal unfolds, and gestures or signs consist of various
components. When we are considering time-sensitive data, it is thus crucial to
consider the different signal components. ERP research on sign languages has for
instance used different time-locking points (triggers) that vary in latency up to
around 400 ms: handshape change (i.e. the neutral position of the hand between
two signs), target handshape (point of complete access to target handshape) and
sign onset (point at which target location is reached) [68].

3.3 Data Synchronization

A peculiarity of synchronization between audio and video is that these data
streams tremendously differ in most experiments regarding their sampling rate,
with audio having a much higher rate than video. For synchronization purposes,
it is advisable that one sampling frequency is an integer multiple of the other (for
further recommendations, see [130]). Otherwise, this can lead to a serious tim-
ing difference between the two streams (offset). This offset between two streams
increases over time, i.e. the longer a recording, the more asynchronous the tim-
ing of the streams. In controlled, laboratory experiments, the synchronization
of two data streams (e.g., eye-tracking and EEG) is straightforward and usu-
ally achieved via software trigger pulses which are simultaneously sent to the
two recording devices by the stimulus presentation software (or during prepro-
cessing). Alternatively, a generated audio beep can be recorded on two devices,
allowing for synchronization during data post-processing. Synchronization based
on image data is less common. In the future, another possibility, especially for
non-specialists, might be to move forward with the synchronization of various
data streams on multiple computers (which have different internal clocks that
can result in delays between signals). Also, since these synchronization events
are usually repeated trial by trial, the offset between two streams virtually never
reaches a level that might be relevant for analysis. While a high-precision syn-
chronization in the ms range for events between multiple participants or across
multiple data streams is not necessary for every application, it is essential for
applications such as time-locked neural responses (e.g. event-related potentials),
neural synchronization, behavioral synchronization that uses analysis techniques
for coherence in the frequency domain (such as wavelet coherence or lagged
cross–correlation) and the temporal study of acoustic and visual cues.

In interactive experiments, researchers often do not depend on stationary,
wired equipment, and they may even not present stimuli with specific presen-
tation software. One way to facilitate synchronization is then to use a clapper-
board like in the film industry, and later align the different streams manually,
before processing. A shortcoming of this approach is that, as time unfolds, tim-
ing imprecision increases. Another powerful tool is Lab Streaming Layer (LSL),
an open source, platform-independent library to send, receive, and synchronize
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(neuro-)physiological and behavioral data from a large variety of devices13. LSL
performs clock synchronization in regular intervals (default 5s), keeps track of
the differences between recorded data streams, and stores the data and timing
information in the extensible data format .xdf14 via the app LabRecorder15.
LSL also offers software for smartphones and is adaptable to specific recording
situations.

3.4 Manual Annotation and Existing Multimodal Corpora

Annotation Tools The manual annotation of multimodal data allows re-
searchers to quantitatively analyze multimodal data, by using annotation soft-
ware such as ELAN [197], EXMARaLDA [168], or Anvil [83]. These types of
software allow for the creation of time-aligned annotations on various tiers or
tracks, which can in turn be organized hierarchically to show relationship de-
pendencies between different annotations. While these tools are open source,
an actual system of coding methods has not been established in the field. As a
result, individual researchers, labs, or funded projects develop coding schemes
that may be disseminated through the publication of a coding manual.

While multimodal annotation software supports the annotation of both the
acoustic signal and the visual signal, a more in-depth and potentially fine-grained
annotation of the acoustic signal should preferably be done in Praat [21], for a
tutorial on Praat see [20]. Two potential areas of application are conceivable for
Praat. First, calculating precise time-aligned measures of gestures-speech inter-
action requires the accurate demarcation of corresponding domains in speech,
e.g., phrase, word, or syllable boundaries which are connected to visually com-
municative events [113,102]. Second, investigating the prosody-gesture link (e.g.,
[175,102,48]) requires an analysis of prosodic categories like pitch accents and/or
boundary tones. Usually, this type of analysis relies on annotating prosody ac-
cording to a ToBI system [74] of a given language, which is most conveniently
applied in a speech processing tool like Praat. In addition, Praat allows for many
kinds of acoustic-phonetic analyses. For gesture research, the individual spectral
or temporal parameters can be extracted and related to components of gestures
such as the apex, the stroke, the gesture phase or phrase [79]. In particular, with
respect to prosody, Praat allows for detailed phonetic analyses of pitch accen-
tuation, concretely their f0-shape or f0-height relations. For instance, measuring
the slope of falling pitch accents as a function of the presence or absence of focus
can in turn be related to the degree of alignment between a gestures’ apex and
the pitch accent [59].

Manual annotation is a time-consuming, labor-intensive practice that can
highly benefit from technological advances. In terms of gesture annotation, com-
bining (automatic) motion-tracking data with manual annotation allows labelers
to achieve consistent measures of time points when an individual gesture begins

13 https://github.com/sccn/labstreaminglayer
14 https://github.com/sccn/xdf
15 https://github.com/labstreaminglayer/App-LabRecorder.git

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/xdf
https://github.com/labstreaminglayer/App-LabRecorder.git
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or ends. Recent effort has focused on using automatic annotation tools to speed
up the annotation process (e.g., SPUDNIG [163]; the annotation tool from [71]).
While such automatic systems have revealed high reliability with human coders
identifying moments of movement (i.e., gesturing) and moments of rest, there
is still much work to be done with regard to automatically assessing more nu-
anced aspects of individual gestures (in terms of type or function with regards
to speech).

As previously mentioned, much gesture research accounts for the interaction
between gesture and speech, consequently resulting in the need for annotation of
multiple modes of communication (i.e., not only gestures but also textual tran-
scriptions and further annotation including, e.g., prosodic annotation or part-
of-speech annotation). While researchers have a multitude of automatic tools to
facilitate such transcriptions and annotations, it is important that the resulting
annotations capture the phenomena of interest. That is, they should maintain
information such as hesitations, filled pauses, restarts, etc., as these aspects of
speech may be of key interest to researchers who are working on speech fluency,
for example.

Annotation schemes To achieve reliability, comparability, and ease of mul-
timodal data processing, several coding schemes have been developed for (ges-
ture) annotation. Today, an internet search will return dozens of proposed coding
schemes, such as M3D [165], OTIM [19], LASG [24], NEUROGES [96], MUMIN
[4]. While many of these coding systems were designed to establish and develop
standard annotation procedures to assess the form and communicative function
of co-speech gestures, the theoretical foundations underlying each system vary
widely, as well as the aspects of gestures that the system proposes to annotate.
For example, a recent review of 10 gesture annotation systems [164] showed how
most systems largely agree on approaches to code gestural form (e.g., handshape,
palm orientation, etc.); however, only about half of the reviewed systems in-
cluded guidelines for articulators other than the hands (e.g., head movements or
facial expressions, etc.). For these articulators, specific annotation schemes have
been developed (e.g., for facial expressions [46], gesture timing [84], phonetics
[93], turns [173]), also for species other than humans [26,140,192,194]. Method-
ological differences in assessing gestural meaning are even more pronounced.
For example, in the field of gesture studies, McNeill’s (1992) [113] conception
of gestures being iconic, metaphoric, deictic, or beat types is widely accepted,
yet only one of the reviewed annotation systems directly adopts McNeill’s cate-
gorization of gestures, and only one system takes a “dimensional” approach to
assess gestural meaning. Specifically, M3D labels a gesture’s meaning in terms
of degrees of iconicity, metaphoricity, or deixis as proposed by McNeill in 2006
[114]. Other systems either do not account for gestural meaning or develop their
own taxonomies based on criteria stemming from form and/or function. Similar
challenges apply to the annotation of sign languages. While the use of glosses
to refer to (the meaning of) signs is consistent and signbanks (sign language
resources) may link lemma collections to video corpora (e.g., [33]), there are
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several annotation systems for phonological parameters of manual cues (e.g.,
[63,182,35]) and separate systems for non-manual cues (eyes: [30]; mouth: [34]).
In non-human animal research, additional strategies come into play to assess the
meaning of a gesture: context and response of the recipients [99,66,7].

The availability of so many labeling options offers the advantage that re-
searchers may choose to adopt a particular labeling system over another, as it
may be particularly relevant to answer the types of questions the researcher
aims to answer. For example, a researcher interested in the pragmatic functions
of gestures may be interested in the CorpAGEst labeling scheme [23]. However,
the field may also benefit from adopting more standardized terminology and
approaches to the assessment of gestural data (e.g., gesture classification, the
classification of the pragmatic meanings associated with gesture, gesture phas-
ing schemes; c.f., section 1.2).

Any approach to labeling gestural data should be widely accessible to the
general community and easily adaptable. Indeed most labeling systems merely
publish a short manual that briefly describes the annotation values that are
to be employed in ELAN. NEUROGES offers occasional training seminars to
become official NEUROGES-Certified labelers. The manual for the M3D system
offers more detailed examples, workflow tips, and solutions to ambiguous cases
and the system will be soon supported by further online training materials.
Thus, the community as a whole would benefit greatly from converging on a set
terminology and key approaches to assessing gesture, and crucially to making
this approach as openly accessible and reproducible as possible. Importantly, this
should be taken into account when considering how we can advance in tandem
with computer technology specialists.

In this context, it is also important to keep apart annotation (labeling an
annotation unit) from segmentation (identifying an annotation unit) [180]. A
well-known example from gesture studies is the individuation of gestures and
the demarcation of gesture phases (preparation, stroke, retraction – see [78]).
Since identifying annotation units is logically prior to annotation, differences
in the identification of annotation units do not only affect labeling, but also
impact any time-related analysis, from descriptive figures (e.g., number of ges-
tures, mean stroke length) to time-series analysis (e.g. [150]). Moreover, they
also affect the analysis of temporal relations between the relative timing of and
some relationships between communicative events on different channels (see e.g.,
[135]). Different segmentations furthermore lead to different outputs of multi-
modal behavior-producing systems, where output behaviors are regimented in
terms of the Behavior Markup Language [193], a representation format that cap-
tures the timing of various signals relative to each other. Note that segmentation
poses a genuine problem for evaluating annotation schemes, which is usually car-
ried out in terms of agreement studies (see the corresponding chapters in [70]).
The reason is that widespread statistical coefficients like Kappa [31] work on dif-
ferent annotators’ labels of a common set of items – whereas it is the very items
that are in question in segmentation. To this end, researchers have developed
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unitizing [87] or segmentation agreement [180] approaches, the latter being also
used within the video annotation software ELAN by means of Staccato [108].

Hence there are detailed annotation schemes only for a small subset of mul-
timodal communication signals, and there are abstract markup languages for
representing structured uni- or multimodal signals. There is still a need for a
unified form- and function-based annotation system for the full range of com-
municative behaviors, a need already addressed but not satisfactorily solved in
Birdwhistell’s Kinesics [18], which might also be successfully applied in species
other than humans.

Multimodal Corpora Annotated multimodal corpora represent a crucial re-
source for gesture researchers, as a single corpus may be used to answer a whole
host of research questions through different analyses or the addition of further
annotation. However, in order to make the most of such resources, it is necessary
that they be made openly accessible. Online repositories such as TalkBank16, The
Language Archive17, or Ortolang18 host a large number of multimodal corpora.
A browse through the multimodal corpora available on these websites makes
apparent the vast diversity of the types of corpora available. For example, the
TalkBank repository hosts multiple subcomponents which host corpora specific
to child development (e.g., CHILDES [109]), multilingualism (e.g., BilingBank),
or clinical research (e.g., DementiaBank [16]).

In line with what has been previously mentioned for annotation schemes,
the development of multimodal corpora has also often been carried out in order
to answer very specific research questions or to reach particular objectives. As
such, multimodal corpora often present a lot of variation. For instance, they may
include spontaneous conversational speech or play (e.g., the Signes et Familles
corpus, [121], or the EVA corpus [116]), recorded presentations (e.g., the M3D-
TED corpus [165]) to structured task-based corpora (e.g., the SAGA corpus
[106]) to a combination thereof (DGS [154]). For a discussion of the specificity
of multimodal corpora, as well as a general overview of the goals of multimodal
corpus linguistics, see [138]. Importantly, the multitude of diverse multimodal
corpora which are openly available in different online repositories represents a
rich resource (for research on humans but not other species) that can be exploited
to foster joint advancement in technological and multimodal communication re-
search.

3.5 Machine Learning

In addition to manual labeling, there is also the option of automated data pro-
cessing by appropriately trained systems. The data generated in this way is much
more error-prone than human-generated data, but can be used as a basis for the
actual annotation so that the data only needs to be corrected (e.g. by filtering

16 www.talkbank.org
17 https://archive.mpi.nl/tla/
18 https://www.ortolang.fr/

www.talkbank.org
https://archive.mpi.nl/tla/
https://www.ortolang.fr/
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them so that only relevant data points are processed, or by extending them with
features that are helpful but beyond the scope of the actual annotation; e.g.,
[202,117]).

Most tools are accessible if video footage of the communication is available.
There are countless tools (for a review see: [122]) to recognize (communicating)
persons and their pose based on these videos (e.g., OpenPose [28], MMPose [32],
PaddleDetection [134], OpenFace [12], although the latter has been reported
to require a non-negligible amount of manual verification [62]). Depending on
the system and model, the general pose of the actor can be determined based
on predefined key points such as the head, elbows, shoulders, or feet, but also
the position and posture of the hands and fingers, facial movements, and gaze
directions. These data can then be used to quantify a number of parameters
such as the amount of motion of an actor or a particular body part [186]. In
animal research, tools such as DeepLabCut [112] or SLEAP, revolutionized the
ease with which researchers can track morphologically unique body poses in a
wide range of animals. DeepLabCut also allows for flexible tracking of objects
together with biological objects, e.g., in communicative contexts where there are
also interactions of objects.

In addition to Pose Estimation, there are also systems that already perform
appropriate classifications at a wide variety of levels. For instance, there are
classifiers that determine the action and interactions that people perform [205],
what type of hand gestures are performed [131], or the classification of emotions
based on facial expressions [98], body language [3], or spoken language [81]. As
a current limitation, these systems are usually trained on very specific training
data and thus, the target classes are predefined. Further, the machine learning
community is increasingly taking up the challenge to employ state-of-the art
machine learning architectures for manual gesture detection (e.g., [91]), which
thereby goes beyond the current tools that researchers might already use (e.g.,
Spudnig).

Such supporting Machine Learning tools are not limited to visual information
but include also acoustic information. For most analyses, a conversion of spoken
words to a text format seems necessary, providing a base for the normalization
of spoken language which is needed to identify aspectual differences (e.g., in the
intonation of otherwise identical words). Countless tools are available to convert
spoken language to text (e.g., Whisper [158]). However, depending on the tool,
a lot of information can be lost, because many tools may clean up the speech
directly: For example, stuttering, intonation pauses, and overlapping of speakers
are usually lost.

Depending on the application, it might be important to use systems that
translate from one modality to another, e.g., by reconstructing hand gestures
from body movements [125] or facial movements from speech [161]. These mod-
els can then be used to analyze the correlation between modalities [27]). However,
translations can also contribute to accessibility, e.g., through models that recog-
nize words based on lip movements (lip reading) [49] or translate sign languages
into spoken languages [73].
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Not only pre-trained models need to be used, but one can train models by
using simulations [196] or by understanding the annotation process itself as a
bootstrapping approach (a model is trained with a small dataset, the human
corrects and improves the model, which results in speeding up the annotation
process [198]). Promising developments that increase flexibility are tools such
as NOVA [15]. Using a principle of “collaborative machine learning”, NOVA
provides a general user interface tailored towards manual annotation, with fur-
ther integration of supervised machine classification methods (such as Support
Vector Machines or Neural Networks). These can be trained on initial manual an-
notations, in turn allowing the user to hand-correct and retrain the classifier. In
general, a restriction is that many of these modern machine learning systems are
not freely available or easy to set up and use, require expensive hardware (graph-
ics cards), or require specialized programming effort, making these systems very
inaccessible to researchers from disciplines other than computer science.

In addition, personal data often raise ethical issues. For example, models
that reconstruct speech based on lip movements can be used for people who do
not like to be overheard, or there are initial approaches that can track people
and movements based on reflected Wi-Fi signals [160,53]. The machine learning
community generates many ongoing interdisciplinary implications that go be-
yond developing tools. A good example in this regard is the recent advance in
the artificial recreation of believable human co-speech gestures, or gesture syn-
thesis in short [128]. While it may seem that gesture synthesis might only have
implications for human-computer interaction systems such as avatar design in
games or other contexts, it also indirectly informs theories in cognitive science
and linguistics. For example, machine learning models trained on associations
of acoustic signal with body poses occurring as co-speech gestures, become very
capable of synthesizing rhythmic beat-like gestures from novel acoustic signals
alone [55,128]. Therefore, such models show that there is information in speech
sounds that can reliably predict the presence of a gesture [203], and they also
allow identifying what features in speech are predictive for specific kinematic
properties in gesture [50].

Exciting further research in this direction comes from work that makes use of
joint multimodal embedding spaces. Neural networks (transformers) trained on
detecting co-regularities between gesture poses and speech content (represented
as text), for instance, can make reliable predictions about discourse markers, and
can differentiate between the language spoken (Spanish vs. English) based on
body poses alone [2]. These findings from the machine learning community thus
forward theorizing in multimodal communication research about the information
available in multimodal signals, and how they inform one another, and they will
also further shape cognitive science research about what information humans
use in practice during communication [187].

3.6 Factors that can Accelerate Integration between Disciplines

In order to promote interdisciplinarity in multimodality research and implement
automatic tools and methods in the process, cooperation and mutual help are
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crucial. This entails understanding the other field’s questions and mode of in-
quiry, to formulate joint research questions and possibly conduct studies in a
way that other modes of inquiry may become available. Moreover, this interop-
erability is a mutual endeavor, in that researchers need to become more literate
about each other’s core state-of-the-art and the key methods for investigating
the same phenomenon.

Data requirements, metadata practices, and tools to overcome pri-
vacy challenges to open data If we are moving towards more integrated
fields, rather than isolated pockets of specializations [129], bridges between dis-
ciplines need to be built. One such bridge is metadata maintenance, i.e. how we
archive data so that it is maximally reusable later, possibly also in other fields
with different conventions. The fast pace of algorithm development in computer
science drives innovation, but may sometimes be at odds with requirements for
empirical studies that try to use these algorithms as research tools. For exam-
ple, replicability, evaluation of validity, and e.g., clinical utility require systematic
investigation of larger data samples [85]. The resulting resources (e.g., stimulus
databases, tests, algorithms, tutorials, workshops) should ideally be available to
the scientific community according to open science principles (e.g., [184,165]).

Open science principles can be a challenge for the protection of privacy. In-
deed, especially in multimodal communication research on humans, original data
that support one’s analyses are often not openly shared, because they often con-
sist of audiovisual recordings of identifiable people. There is, however, an increas-
ing number of tools that allow to partially mask the identities from video and
audio automatically, while still extracting non-identifiable information that can
support analyses, such as facial, hand, and body pose information [82,133,156].It
is important to note that these tools do not count as anonymization tools,
because either the transformed sound is still re-transformable to its original
(thereby allowing identification in principle) or is still present next to a bodily
mask. Indeed, as the yearly voice privacy challenge shows 19, the anonymiza-
tion of voices while maintaining their rich transmission of information is still
an unsolved problem. In any case, new computer vision and signal processing
methods allow for decreasing privacy risks when sharing multimodal data, which
is a positive development. Hopefully, these practices will be increasingly picked
up by researchers working in different domains.

Community of learners We believe that an important way to become more
literate as a community of researchers is to take up responsibilities that sup-
port a “community of learners”. In the most general sense, this means that
as researchers, we strive to provide the didactic means to facilitate becom-
ing literate in the particular methods employed. Practically, this can mean a
number of things. We need to write more transparent “computationally repro-
ducible” manuscripts ensuring that data and code are well-annotated with ad-
ditional documentation provided. There are many tools available now to fully

19 https://www.voiceprivacychallenge.org/

https://www.voiceprivacychallenge.org/
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integrate and write one’s manuscript in a “computationally reproducible way”,
enabling readers to follow the computation procedures step-by-step using tools
like RMarkdown or Jupyter notebook [142] or more recent platform agnostic
tools (Quarto20), which depict one strategy to make publications and tools eas-
ier to reuse.

Another practical implication of a community of learners is that new tools
or terminologies are supported in the literature with hands-on tutorials that are
written for either more or less informed audiences. The Huggingface platform
21, for example, offers a wide collection of pre-built and even fine-tuned machine
learning models provided by the community, including sample code and “spaces”
where they can be tried out directly. This may mean that a tutorial on machine
learning or phonology will look very different depending on whether you are
tailoring it toward readers in computer science or linguistics. Lastly, of course,
there must be undergraduate and graduate curricular integration at universities
that ensure that the different fields can, and do cooperate.

3.7 Summary

In this section, we provided insights into the currently available tools, meth-
ods, and databases for data collection, enrichment, and analysis in multimodal
communication research. A non-exhaustive overview of these resources is given
in Figure 3. Focusing on the visual and acoustic modes of communication, we
started by presenting possible recording techniques for the visual mode (sec-
tion 3.1) and communicative modes in general (section 3.2). Before or after
recording, the synchronization between different types of data needs to be en-
sured (section 3.3). Subsequently, data can be enriched by manual segmenta-
tion and annotation (section 3.4) or by using natural language processing (sec-
tion 3.5). Then, datasets can be analyzed, assembled to form multimodal corpora
(section 3.4) and used across research disciplines to move multimodal communi-
cation research forward (section 3.6).

4 Discussion

This paper aimed to provide an overview of the currently available tools and
methods in multimodal communication research. We presented state-of-the-art
tools that can facilitate research in this field and expressed specific require-
ments to achieve feasible technological development that can be integrated into
data collection, preparation, and analysis in the visual and acoustic domains.
Multimodal data acquisition and digital data analysis are yet relatively new
challenges in communication research (although they have been addressed with
a different focus in semiotics [148, Part 2], Conversation Analysis [167], and
human-computer interaction [132]). Therefore, we highlighted the need to intro-
duce specific terminology and importantly, presented the availability of various

20 https://github.com/quarto-dev/quarto
21 https://huggingface.co/ (last visited 27.01.2023)

https://github.com/quarto-dev/quarto
https://huggingface.co/
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Figure 3. Non-exhaustive overview over available tools for data recording and enrich-
ment.

kinds of systems. These are steps in establishing congruency within the fields of
multimodal communication research on the one hand, but also computer science
on the other hand.

We argue that increased interdisciplinarity in cognitive science and computer
science with regard to multimodal communication will have important implica-
tions: On the one hand, increased literacy by linguists/cognitive scientists in
computer science implies a better understanding of what machine learning al-
gorithms actually do, and what they can do for multimodal communication in
the future (e.g., better understandings of large language models like Lambda
or GPT3 [181]). Similarly, while multimodal researchers might hope that an-
notating minimal meaningful units as metaphoric gesture strokes will soon be
something of the past, it is also clear that machine learning systems cannot learn
to classify linguistic categories if researchers do not first agree on the definition or
application of those categories. On the other hand, computer scientists becoming
more literate in aspects of multimodal communication will also prevent down-
right renderings of the object of study (e.g., sign languages being understood
as incomplete languages; [199]) and minimally it will also combine what can be
done with what a particular community of users benefits from (c.f., [47,89]).
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In short, mutually informed research communities can advance research in
their own respective fields with crucial understandings from other disciplines. As
a side benefit, interdisciplinarity also provides training data for machine learn-
ing for processing of increasingly complex linguistic and multimodal structures
(manual annotations lead to the training of models which in turn can improve the
underlying annotations; e.g., Multimodal Distributional Semantics [13,157]). In-
vestigating the synchronization of acoustic and visual aspects of communication
opens the way to investigate multimodal transfer learning in new ways22. One
example is how data from one modality are technologically used to segment or
disambiguate data in another modality or to reconstruct them in an expectation-
driven manner when they have not been manifested or detected [14,139]. This
approach would eventually allow us to study the diverse relationships and in-
terdependencies of the modalities involved – whether on the level of signals or
their higher-level representations. An application of multimodal interoperabil-
ity allows the transfer and leveraging of annotations of one modality for the
annotation or automatic processing of another modality.

We can imagine the analysis of communication to be broken down into dif-
ferent levels of observation, which can be visualized as follows (cf. Figure 2):
signal → event → communicative behavior → [from quantitative to
qualitative] meaning → embedding in utterance context. From left to
right, there is a tendency for an increased amount of interpretation, even from
a human point of view. In terms of measurements, we are expecting an increase
of nominal scale measurements (classifications; cf. the distinction between well-
understood type-i measurements and less understood type-ii measurements by
[61] – on the right-hand side it is even not obvious what the scales should be,
indicated by the square bracket parenthesis (“from quantitative to qualitative”).
With the raw signal as input to a machine learning algorithm, it is therefore an
increasingly difficult task to automatically classify the respective units of obser-
vation: (Acoustic and visual) Signals and communicative events can be identified
more easily and automatically than the more complex communicative acts that
involve meaning, unless there is a huge amount of data annotated for the various
observational levels.

These considerations, against the backdrop of the overview given mainly in
sections 2 and 3, point at a number of (near-) future challenges:

– The majority of tools focus on the initial – and fundamental – step of record-
ing signals of various provenance, and in a synchronized way. In order to
progress from tracking to parsing, tools for segmentation and classification
are of course welcome. As above mentioned, this is not an obligation for
computer science in the first place; rather communication researchers are in
the need to agree on annotation schemes for individual signals as well as
integrated ones for multiple signals (see section 3.4), and provide annotated
datasets.

– Computational linguistics has developed powerful algorithms and tools for
processing text. However, these devices cannot readily be applied to spoken

22 For a recent overview of transfer learning, see [195].
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or signed languages: the speech or sign stream are signals that do not come in
discrete units [159]. Hence, the acoustic or visual signal has to be transcribed
first. In the acoustic domain, automatic transcription is brought about by
Automatic Speech Recognition (ASR) systems.
However, current ASR systems miss out on a couple of features of the audio
file [103]. For instance, the sound string “bob are (.) uh is sleeping” (us-
ing minimal notation following a conversation-analytic transcription system
[173]) is transcribed as Bob is sleeping. While this output can be input to
natural language processing tools, it lacks two peculiarities that are impor-
tant for multimodal communication studies: the speech error [97] is ignored
as is the hesitation marker uh, which may both trigger a lexical access-related
gesturing [86]. In order to capture these features of spoken language, ASR
systems have to be developed “more impurely” from a phonetic and incre-
mental point of view, including that communication researchers agree on a
useful transcription system (for humans and computers) – and provide big
amounts of transcribed data.

– While temporal synchrony is an important aspect of multiple signals in face-
to-face interactions, it yet does not fully determine coordination of semantic
meaning of those signals [162]. While temporal alignment is an observable,
measurable feature of multi-channel communication, semantic integration
involves interpretation [94]. That is, with temporal alignment as with any
signal, the meaning (also the grammar) is not in the signal but imposed by
the one processing the signal. Hence, it remains to be seen how far automatic
multi-signal classifications (the top-right node in Figure 2) can be pushed.

– We observe a plurality of methods: there are VR-based tracking methods
(see section 3.1), methods that work on the basis of video recordings (cur-
rently the most widespread ones; sections 3.1 and 3.5), and physiological
and neurological recordings (section 3.2). This pluralism poses the questions
(i) whether the approaches should be developed into enhanced stand-alone
pipelines, or (ii) how they can be inter-operated despite their prima facie
incommensurability. In either case, it would surely be beneficial to incor-
porate some of the advances from computer vision and machine learning
(section 3.5).

We believe that interoperability in multimodal communication will play an
important role in the further development of multimodal annotation. Thus, we
envision a system in which actions are generated by subjects in controlled envi-
ronments to provide experimenters with controlled access to multimodal data.
This can ground the communicative aspects involved in these actions and their
manifestations in the form of gestures, gazes, body movements, etc, but also in
equally controlled objects, their properties, and relations. One can see in this
an alternative to independent approaches to multimodal research, an alternative
that is integrating the point of view of combining various views on multimodality.

Concretely, the wishes of our consortium towards the automatization of pro-
cesses in multimodal research concern multiple steps in data acquisition. Starting
with the facilitation of programming communication experiments (partly auto-
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mated by functional software) and generating synchronized (acoustic and visual)
stimuli, technical innovation can unburden research before data collection. As
has been brought up in this paper, technical innovation can improve the process-
ing of data for analysis. This may include the automatic identification of specific
factors of visual data annotation (on-/offset and turning points of movements;
temporal alignment between acoustic and visual cues; grouping and clustering
of e.g., gestures; up to identification of smallest meaning bearing units). Ide-
ally, this can ultimately be achieved for gestures as well as signs and for human
and non-human communication. Similarly, the automatic processing of acoustic
signals could be facilitated by providing better segmentation of vocalized in-
put or automated prosodic annotation. This can ideally lead to the training of
neural networks (as mentioned in section 3.5) which could largely support the
annotation of big data sets.

This leads us to a final, self-reflective note: We started out by envisioning
“a roadmap for technical innovation in multimodal communication research”.
On every path on this roadmap we observed, however, the need for well-worked
out formats, standards and guidelines, defining our units of analysis in the first
place. Addressing this, important roadmap ground will already be covered.
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havioral parameters of on-going gaze encounters in a virtual environment. Fron-
tiers in Psychology 12 (2021). https://doi.org/10.3389/fpsyg.2021.673982

65. Herrmann, A., Pendzich, N.K.: Nonmanual gestures in sign languages. In: Müller,
C., Cienki, A., Fricke, E., Ladewig, S.H., McNeill, D., Bressem, J. (eds.) Handbook
Body -– Language -– Communication, pp. 2147–2160. DeGruyter Mouton, Berlin,
Boston (2014)

66. Hobaiter, C., Byrne, R.W.: The meanings of chimpanzee gestures. Current Biol-
ogy 24, 1596–1600 (2014)

67. Holler, J., Levinson, S.C.: Multimodal language processing in human
communication. Trends in Cognitive Sciences 23(8), 639–652 (2019).
https://doi.org/10.1016/j.tics.2019.05.006

68. Hosemann, J., Herrmann, A., Steinbach, M., Bornkessel-Schlesewsky, I.,
Schlesewsky, M.: Lexical prediction via forward models: N400 evidence
from German Sign Language. Neuropsychologia 51(11), 2224–2237 (2013).
https://doi.org/10.1016/j.neuropsychologia.2013.07.013
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