Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tuning catalytic activity of Ni–Co nanoparticles synthesized by gamma-radiolytic reduction of acetate aqueous solutions

MPG-Autoren
/persons/resource/persons212917

Tarakina,  Nadezda V.       
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yang, Y., Korzhavyi, P. A., Nikolaychuk, P. A., Bazarkina, E. F., Kvashnina, K. O., Butorin, S. M., et al. (2023). Tuning catalytic activity of Ni–Co nanoparticles synthesized by gamma-radiolytic reduction of acetate aqueous solutions. Advanced Materials Interfaces, 10(17): 2300038. doi:10.1002/admi.202300038.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-323D-7
Zusammenfassung
Transition metal-based catalysts show great potential to replace Pt-based material in energy conversion devices thanks to their low cost, reasonable intrinsic activity, thermodynamic stability, and corrosion resistance. The electrochemical performance of such catalysts is sensitive to their composition and structure. Here, it is demonstrated that homogeneous alloy nanoparticles with varying Ni-to-Co ratio and controlled structure can be synthesized from aqueous Ni(Co) acetate solutions using a facile γ-radiolytic reduction method. The obtained samples are found to possess defects that are ordered to form polytypes structures. The concentration of these defects depends on the Ni-to-Co ratio, as supported by the results of ab initio calculations. It is found that structural defects may influence the activity of catalysts toward the oxygen evolution reaction, while this effect is less pronounced with respect to the oxygen reduction reaction. At the same time, the activity of Ni–Co catalysts in the hydrogen evolution reaction is affected by formation of NiOH bonds on the surface rather than by the presence of structural defects. This study demonstrates that the composition of NiCo nanoparticles is an essential factor affecting their structure, and both composition and structure can be tuned to optimize electrochemical performance with respect to various catalytic reactions.